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Abstract This position paper focuses on the problem of building dialogue systems 

for people who have lost the ability to communicate via speech, e.g., patients of 

locked-in syndrome or severely disabled people. In order for such people to com-

municate to other people and computers, dialogue systems that are based on brain 

responses to (imagined) speech are needed. A speech-based dialogue system typi-

cally consists of an automatic speech recognition module and a speech synthesis 

module. In order to build a dialogue system that is able to work on the basis of brain 

signals, a system needs to be developed that is able to recognize speech imagined 

by a person and can synthesize speech from imagined speech. This paper proposes 

combining new and emerging technology on neural speech recognition and auditory 

stimulus construction from brain signals to build brain signal-based dialogue sys-

tems. Such systems have a potentially large impact on society.  

  Introduction: A speech-based dialogue system typically takes in a spoken ut-

terance by the user on the basis of which an action from the dialogue system follows. 

Communication from the dialogue system to the user occurs either in text or using 

synthesized speech. People who have lost the ability to communicate via speech or 

sign language (e.g., severely paralyzed people or patients of locked-in syndrome 

[1]) cannot use existing dialogue systems, nor are they able to communicate with 

other people. In order for them to communicate, brain-computer interfaces are 

needed [2]. These brain-computer interfaces should be able to convert the intended 

message from the neural activity in the brain areas related to speech processing and 

production into an action carried out by the dialogue system or into text or synthe-

sized speech in case of communication with another person [3].  

Two approaches investigating the decoding of speech from neural signals can be 

distinguished: in the overt condition, listeners’ neural signals when listening to 

speech are recorded and decoded; in the covert condition, listeners’ neural signals 

are recorded while they imagine to speak and subsequently decoded. The former 

case is an important step to understand the relationship between the acoustic signal 

and the neural signal; the latter case is the situation that allows patients to communi-

cate their thoughts and wishes and is the ultimate dream. 

Neural signals: The most often used type of neural signal is electrocorticogra-

phy (ECoG), which is an invasive methodology in which electrode arrays are placed 

directly onto the surface of the brain in patients. Electroencephalography (EEG) is 



2  

less invasive as it ‘only’ requires wearing a cap with electrodes, making it a tech-

nique that is more user-friendly and cheaper than ECoG. A downside to using EEG 

signals compared to ECoG is that because EEG caps are placed on the outside of 

the skull, brain signals obtained with EEG are noisier and have a less good spatial 

resolution than ECoG signals. EEG signals however have good time resolution 

which is import in speech processing. 

Overt condition: [4] presented a proof-of-concept neural speech recognition 

system, which used brain responses to continuous speech produced by two speakers 

obtained using ECoG from three patients receiving surgery related to epilepsy. Data 

from these three individuals were used to train three listener-dependent systems and 

a listener-independent system. The obtained phone error rates ranged from 70% to 

over 80% for the listener-dependent systems. A review of automatic speech recog-

nition of different types of neural signals found that ECoG provided the best recog-

nition results [5]. Although recognition is poor, these systems show that listener-

independent linguistic information can be obtained from the ECoG signals. 

Covert condition: The neural signals that give the best results in brain-computer 

interfaces are obtained using ECoG [6][7][8]. EEG signals have, however, with lim-

ited success been used to decode imagined articulation of two English vowels [9], 

three Dutch vowels [10], two Japanese vowels [11], and “yes” and “no” [12] with 

above chance accuracy. Although more research is needed before this technique can 

be fully used, for a dialogue system, “yes” and “no” are highly important words. 

Auditory stimulus reconstruction: Auditory stimulus reconstruction is an in-

verse mapping technique which attempts to create an auditory signal from the neural 

signals [3][13][14][15]. This technique can be used to convert the neural signals 

from a person listening to speech (overt condition) or the articulation of words im-

agined by a person (covert condition) into a temporal and spectral representation. 

Typically, in speech-based brain-computer interfaces, the neural activity to (imag-

ined) speech is decoded into linguistic units such as phonemes or words or acoustic 

units such as the speech envelope or the magnitude spectrogram (see [14] for refer-

ences), which can be synthesized as speech. Recently, [14] proposed to train a DNN 

to directly predict the parameters of the synthesizer from ECoG signals to covert 

speech rather than go via intermediate representations, so combining neural speech 

recognition and synthesis. This approach significantly outperformed a system which 

used an audiospectrogram as an intermediate unit. 

Conclusion: The question whether it is possible to build dialogue systems for 

people who have lost the ability to communicate via speech using their brain re-

sponses to speech cannot yet be answered in the affirmative. However, initial build-

ing blocks are in place to build such systems, especially for the construction of dia-

logue systems which require “yes”/”no” answers. The ultimate goal is to make it 

possible for the patient to communicate his or her thoughts by imagining speech 

which subsequently can be synthesized, ideally including emotional and speaker-

dependent characteristics. Because of user-friendliness, EEG-based technology is 

preferred over the invasive ECoG-based approach. More research is needed to im-

prove the independent modules and integrate them into working dialogue systems. 
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