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a b s t r a c t 

During railway disruptions, most passengers may not be able to find preferred alterna- 

tive train services due to the current way of handling disruptions that does not take pas- 

senger responses into account. To offer better alternatives to passengers, this paper pro- 

poses a novel passenger-oriented timetable rescheduling model, which integrates timetable 

rescheduling and passenger reassignment into a Mixed Integer Linear Programming model 

with the objective of minimizing generalized travel times: in-vehicle times, waiting times 

at origin/transfer stations and the number of transfers. The model applies the dispatching 

measures of re-timing, re-ordering, cancelling, flexible stopping and flexible short-turning 

trains, handles rolling stock circulations at both short-turning and terminal stations of 

trains, and takes station capacity into account. To solve the model efficiently, an Adapted 

Fix-and-Optimize (AFaO) algorithm is developed. Numerical experiments were carried out 

to a part of the Dutch railways. The results show that the proposed passenger-oriented 

timetable rescheduling model is able to shorten generalized travel times significantly com- 

pared to an operator-oriented timetable rescheduling model that does not consider pas- 

senger responses. By allowing only 10 min more train delay than an optimal operator- 

oriented rescheduling solution, the passenger-oriented model is able to shorten the gen- 

eralized travel times over all passengers by thousands of minutes in all considered dis- 

ruption scenarios. With a passenger-oriented rescheduled timetable, more passengers con- 

tinue their train travels after a disruption started, compared to a rescheduled timetable 

from the operator-oriented model. The AFaO algorithm obtains high-quality solutions to 

the passenger-oriented model in up to 300 s. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

1. Introduction 

Railway systems play an important role in people’s daily travelling so that the operations are required as reliable as pos-

sible to ensure passenger punctuality. Unfortunately, unexpected disruptions occur in the railways on a daily basis ( Zhu and

Goverde, 2017 ), during which many train services are delayed and cancelled that disturb passenger planned journeys signifi-

cantly. When rescheduling a timetable in case of a disruption, traffic controllers decide which services have to be delayed or

cancelled in terms of pre-designed contingency plans, where the impact on passengers is considered to a very limited extent
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( Ghaemi et al., 2017b ). As a result, the rescheduled train services may not be passenger-friendly. For example, passengers

may hardly find alternative train services to reach the expected destinations in reasonable travel times. To provide pas-

sengers with better alternatives during disruptions, it is necessary to reschedule a timetable in a more passenger-oriented

way. 

1.1. The state-of-the-art on timetable rescheduling 

Passenger-oriented timetable rescheduling started from the field of delay management that decides whether a train

should wait for a delayed feeder train to guarantee the transfer connection of some passengers. Schöbel (2001) is the

first one dealing with this problem based on the assumption that if passengers missed the transfer connections, they

would wait for a complete cycle time to catch the next connection considering that the planned timetable is periodic.

Dollevoet et al. (2012) make an extension by introducing the possibility of rerouting passengers who are assumed to take

the shortest paths for their following travels in case of missed transfers. Both papers describe the infrastructure at a macro-

scopic level neglecting signals and block sections. To improve solution feasibility in practice, Corman et al. (2017) propose

a delay management model in which the infrastructure is described at a microscopic level. Albert et al. (2017) formulate

passenger behaviours in stations (e.g. queueing in boarding trains) at a microscopic level to describe passenger influences

on train delays rather than considering the impact of train delays on passenger behaviours only. 

Delay management deals with the interaction between timetable and passengers, but not the interaction between

timetable and reduced infrastructure availability, which however must be taken into account by disruption management.

Operator-oriented disruption management considers only the latter kind of interaction, while passenger-oriented disruption

management considers both kinds of interactions. In practice, disruption management consists of three phases starting from

the disruptive event (failure) ( Ghaemi et al., 2017b ). The first phase consists of getting information about the disruption and

its location, guaranteeing safety, estimating the expected duration and deciding on the rescheduling measures. In the second

phase the rescheduled timetable is applied and in the third phase the traffic recovers to the original timetable. At present,

the first phase can take up quite some time depending on how existing contingency plans need to be adjusted, how many

changes have to be made to the dispatching plans, and how drivers can be informed of disruptions ahead. Speeding up this

process is required to avoid queuing of stranded trains. A time limit of 5 minute to compute a rescheduling solution will be

sensible for mainline railway networks and would imply a big improvement on the current practice. Note that this paper

handles serious disruptions of blocked tracks that go beyond simple re-timing or re-ordering decisions. 

Most literature on disruption management is operator-oriented, including ( Ghaemi et al., 2017, 2018; Meng and Zhou,

2011; Veelenturf et al., 2015; Zhan et al., 2015, 2016; Zhu and Goverde, 2019 ). The differences among these papers lie in

the considered railway lines (single-track lines or double-track lines), the adopted dispatching measures, whether consid-

ering the transition from the planned timetable to the disruption timetable and vice versa, the extent of infrastructure

description (macroscopic or microscopic level), the number of considered disruptions (single disruption or multiple disrup-

tions), and/or the characteristic of disruption length (deterministic or uncertain). The similarity among these papers is that

they all use operator-oriented objectives: e.g., minimizing train delays and/or cancellations, in which a constant cancellation

penalty is used to represent the delay of cancelling each train. There are a few papers that consider both operators and

passengers. Bettinelli et al. (2017) associate dispatching decisions with different penalties considering the extents of their

impacts on passengers. For example, a major change in a train path is associated with a bigger penality. Louwerse and Huis-

man (2014) include a term in the objective to balance the numbers of cancelled trains in both directions to distribute the

disruption impact evenly over the different passenger groups in case of partial track blockage. 

A few works focus on passenger-oriented disruption management. Cadarso et al. (2013) propose a two-step approach

in which a frequency-based passenger assignment model is performed first to estimate the passenger demand and then

a rescheduling model (for timetable and rolling stock) is solved to accommodate the passenger demand as much as pos-

sible. The adopted dispatching measures are limited to cancelling original trains and inserting additional trains. Zhu and

Goverde (2019c) adopt a schedule-based passenger assignment model to obtain the travel path of each passenger in terms

of the planned timetable. With this information, the potential impact of each dispatching decision on passenger planned

travels is estimated, which is used as weight in the objective to minimizing passenger delays. The adopted dispatching mea-

sures include re-timing, re-ordering, cancelling, flexible stopping (i.e. adding extra stops and skipping scheduled stops), and

flexible short-turning. Short-turning a train means that a train stops at the last possible station before the blocked tracks

and the corresponding rolling stock turns at that station to serve the opposite operation. Flexible short-turning means that

each train is given a full choice of short-turning station candidates, and the model decides the optimal station and time

of short-turning a train. Both Cadarso et al. (2013) and Zhu and Goverde (2019c) consider static passenger demand, which

neglect that passengers may choose other travel paths rather than the planned ones due to the rescheduled train services.

To formulate passenger behaviour in a more realistic way, it is necessary to take into account passenger responses towards

the rescheduled train services. Veelenturf et al. (2017) propose an iterative approach that embeds a timetable reschedul-

ing model and a passenger assignment model into an iterative framework where at each iteration an adjustment will be

applied on the timetable if it reduces the total passenger inconvenience as evaluated by the passenger assignment model.

The adjustments are restricted to adding stops. Binder et al. (2017) propose an integrated approach of formulating the

timetable rescheduling and the passenger assignment into one single model that computes a rescheduled timetable by an

optimization solver directly. The applied dispatching measures include re-timing, re-ordering, cancelling, global re-routing
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and inserting additional trains. The rolling stock circulations at the short-turning and terminal stations of trains are ne-

glected. Gao et al. (2016) also propose a timetable rescheduling model considering dynamic passenger flows, while focusing

on the recovery phase of a disruption. As the target case is a metro corridor, all passengers are assumed to choose direct

trains (i.e. no transfers). The dispatching measures of stop-skipping and re-timing are used to adjust the timetable to reduce

passenger waiting times at stations. Due to the computational complexity, the master problem of generating a rescheduled

timetable is decomposed into a series of sub-problems that each reschedules one train only. When solving a sub-problem

for one train, the stopping patterns and time schedules of the previous considered trains are all fixed. 

1.2. The scientific gaps on passenger-oriented timetable rescheduling 

Formulating passenger re-routing as a multi-commodity flow problem is a method commonly used in the literature. For

example in Binder et al. (2017) and Corman et al. (2017) , a timetable is formulated into a directed acyclic graph (DAG) to

describe passenger path choices. Then, the passenger re-routing is modelled as a multi-commodity flow problem, in which

passengers flow through the arcs of the DAG that is updated according to the rescheduled timetable. The challenges of

modelling passenger re-routing this way mainly lie in two aspects: (1) how to formulate a DAG from a timetable to describe

more path attributes with limited nodes/arcs, and (2) how to reformulate a DAG dynamically during timetable rescheduling

when passenger re-routing is integrated. The existing literature either uses a simple method of formulating a DAG, which

cannot reflect certain path attributes (e.g. the number of transfers), or adopts a formulation method that will lead to a

large-size of DAG if focusing on a railway network with high-frequency services. Also, limited dispatching measures (e.g.

no flexible stopping) are used in the literature, which need to be extended to explore more alternative path choices for

passengers during disruptions. However, including more dispatching measures will increase the complexity of reformulating

a DAG during timetable rescheduling. Another challenge is designing an efficient algorithm to solve the integrated timetable

rescheduling and passenger re-routing model with high-quality solutions in an acceptable time. This has been reported as a

challenging task in the literature so far ( Corman et al., 2017; Binder et al., 2017 ). 

1.3. The contributions of this paper 

This paper contributes to the literature by improved methods of DAG formulation and reformulation to enable a better

integrated timetable rescheduling and passenger re-routing model in terms of the considerations of multiple path attributes

and multiple dispatching measures. This paper also contributes with an efficient algorithm to solve the integrated model

with optimal or near-optimal solutions. The key contributions of this paper are summarized as follows. 

• An improved method of formulating a DAG (called an event-activity network in this paper) from a timetable is proposed,

by explicitly distinguishing passenger activities at origin stations, transfer stations (if any) and trains without time dis-

cretization. 
• A new concept, the transition network, is proposed to enable the dynamic formulation of event-activity networks con-

sidering the impacts of multiple dispatching measures, the characteristics of the disruption, the operational requirements

of trains, and the travel requirements of passengers. 
• For the first time, the dispatching measure of flexible stopping (adding and skipping stops) is formulated with passenger

re-routing in a railway network (instead of one corridor) where transfers are allowed. 
• An adapted fix-and-optimize (AFaO) algorithm is designed to iteratively solve the proposed passenger-oriented timetable

rescheduling model. The algorithm allows to balance the solution quality and computation time by changing the input

parameter. 
• The passenger-oriented timetable rescheduling model is able to generate rescheduling solutions with shorter generalized

travel times than an operator-oriented model according to results of real-life instances in part of the Dutch railway

network. 

This paper considers single disruption that blocks tracks between stations completely assuming that the duration of

the disruption is known at the beginning of the disruption, and will not change over time. We describe infrastructure at

a macroscopic level and handle railway networks with both single-track and double-track railway lines. We use the dis-

patching measures of re-timing, re-ordering, cancelling, flexible short-turning, and flexible stopping to compute a feasible

rescheduled timetable from the start of a disruption until it is fully recovered. A train is assumed to have unlimited ca-

pacity, which means that a passenger is able to board any train if he/she decides to board this train. This is because we

focus on providing better alternative train services to passengers so that the possible impact of vehicle capacity on pas-

sengers is neglected. In this way, we can get the optimal rescheduled timetable in terms of generalized travel times. This

optimal rescheduled timetable can then be used as an input to rolling stock rescheduling that aims to accommodate the

passenger demand as much as possible. For example, Kroon et al. (2014) and Van der Hurk et al. (2018) both deal with

passenger-oriented rolling stock rescheduling with a rescheduled timetable given as input. 

The remainder of the paper is organized as follows. Section 2 introduces the general framework of establishing the

passenger-oriented timetable rescheduling model. Section 3 explains how to formulate a timetable into an event-activity

network, which is a directed acyclic graph with events as nodes and activities as arcs to describe passenger path choices. A
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Fig. 1. An overview of the passenger-oriented timetable rescheduling model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

path is constituted by a series of connected events and activities. The planned timetable can be formulated into an event-

activity network �plan , which is then extended to a transition network �∗ that enables the dynamic formulation of event-

activity networks during timetable rescheduling. A transition network is a combination of all events and activities that

could be in any event-activity networks formulated from feasible rescheduled timetables towards the disruption concerned.

Section 4 introduces the method of constructing a transition network. Based on a transition network, the passenger-oriented

timetable rescheduling model is proposed in Section 5 followed by Section 6 that introduces the methods of reducing the

computational complexity of the model. In Section 7 , extensive numerical experiments were carried out to a part of the

Dutch railways. Finally, Section 8 concludes the paper and points out future research directions. 

2. General framework 

This paper integrates timetable rescheduling with passenger re-routing into an MILP model, for which two preprocessing

steps are needed. Fig. 1 gives an overview of the model. 

The first preprocessing step transforms the planned timetable into an event-activity network �plan , which is a di-

rected acyclic graph used to describe passenger path choices. The method of constructing an event-activity network from

a timetable is introduced in Section 3 . In case of a disruption, the planned timetable will become infeasible, and so does

the corresponding event-activity network �plan that now is unable to reflect the paths currently available in the railways.

Under this circumstance, the timetable has to be rescheduled, and during rescheduling the corresponding event-activity net-

works have to be updated as well to consider timetable-dependent passenger behaviours. To enable a dynamic event-activity

network formulation during timetable rescheduling, we perform the second preprocessing step to construct a transition net-

work �∗. A transition network is extended from the event-activity network �plan by adding all events and activities that

could exist in any event-activity network �dis corresponding to a feasible rescheduled timetable obtained for a specific

disruption. In other words, �∗ = 

⋃ 

i �
i 
dis 

∪ �plan , where �i 
dis 

refers to the event-activity network corresponding to the i th

feasible rescheduled timetable. For one specific disruption there are usually multiple feasible rescheduled timetables. Note

that �∗ varies with the disruption characteristics (i.e. location and starting/ending time) and the dispatching measures al-

lowed. A transition network �∗ is not a directed acyclic graph as it includes the possibility of changing the order of trains.

The method of constructing a transition network is introduced in Section 4 . 
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Table 1 

Event attributes. 

Symbol Description 

st e The corresponding station of event e ∈ E \ E penal 

tr e The corresponding train of event e ∈ E ar ∪ E de ∪ E dde 

tl e The corresponding train line of event e ∈ E ar ∪ E de ∪ E dde 

λe The corresponding departure event of e ∈ E dde 

o e The scheduled time of event e ∈ E ar ∪ E de ∪ E dde 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The constructed transition network, the planned timetable, the disruption characteristics, and the allowed dispatching

measures are all necessary inputs to establish the passenger-oriented timetable rescheduling model, which is formulated

as an MILP in this paper. This model consists of the constraints for three purposes: 1) timetable rescheduling, 2) dy-

namic event-activity network formulation, and 3) passenger reassignment. The timetable rescheduling constraints ensure 

a rescheduled timetable does not violate any infrastructure and operational restrictions. The constraints relevant to the

dynamic event-activity network formulation decide which activities and events of �∗ should be selected to construct an

event-activity network �dis in terms of a rescheduled timetable. The passenger reassignment constraints decide the weight

of each activity of �dis from the perspectives of passengers, and assign each passenger to one path only. A path is described

by a sequence of connected activities. The total activity weight of a path is the generalized travel time of this path. The

objective of the model is minimizing the generalized travel times of all passengers. By this model, a rescheduled timetable

that leads to the shortest generalized travel times of all passengers can be obtained, as well as the path chosen by each

passenger under the rescheduled timetable. 

3. Event-activity network 

This section defines an event-activity network, which is a representation of a timetable and allows passenger path choices

to be described. An event-activity network needs to be reconstructed if the corresponding timetable is rescheduled. This

section introduces how to formulate an event-activity network given a fixed timetable. 

3.1. Events 

Six types of events are created in an event-activity network. They are arrival events, departure events, duplicate depar-

ture events, entry events, exit events and a penalty event, which constitute the sets E ar , E de , E dde , E entry , E exit and E penal ,

respectively. In particular, E ar = E 
alight 
ar ∪ E 

pass 
ar , and E de = E board 

de 
∪ E 

pass 

de 
, where E 

alight 
ar is the set of arrival events that corre-

spond to passenger alighting, and E board 
de 

is the set of departure events that correspond to passenger boarding. The arrival

(departure) events associated to a through train that do not correspond to passenger alighting (boarding) constitute the set

of E 
pass 
ar ( E 

pass 

de 
). 

The attributes of events are indicated in Table 1 . Note that an event e ∈ E dde is the duplicate of a departure event

e ′ ∈ E board 
de 

with exactly the same attributes which e ′ has, and with an extra attribute λe to indicate the departure event

e ′ corresponding to e : E dde = { e | λe = e ′ , e ′ ∈ E board 
de 

} . One and only one duplicate is created for a departure event e ′ ∈ E board 
de 

.

Duplicate departure events are used for constructing wait, boarding and transfer activities, which are explained in more

detail in Section 3.2 . Note that this paper defines these activities differently than Zhu and Goverde (2019a) . As for E penal , it

contains only one penalty event for constructing the penalty arcs that enable passengers who cannot find preferred paths

to leave the railways. 

3.2. Activities 

An activity is a directed arc between two different events. Ten types of activities are created in an event-activity network,

which are constructed as follows. 

A entry = { ( e, e ′ ) | e ∈ E entry , e 
′ ∈ E dde , st e = st e ′ } . Entry activities enable passengers to enter the railways when arriving at the

origins. 

A exit = { ( e, e ′ ) | e ∈ E 
alight 
ar , e ′ ∈ E exit , st e = st e ′ } . Exit activities enable passengers to leave the railways when arriving at the

destinations, 

A enpenal = 

{(
e, e ′ 

)∣∣e ∈ E entry , e 
′ ∈ E penal 

}
, and A expenal = 

{(
e ′ e 

)∣∣e ′ ∈ E penal , e ∈ E exit 

}
. Entry penalty activities and exit penalty 

activities together enable passengers to drop the railways in case no preferred paths can be found, 

A board = 

{(
e, e ′ 

)∣∣e ∈ E dde , e 
′ ∈ E board 

de 
, e ′ = λe 

}
. Boarding activities enable passengers to board a train. Each duplicate depar- 

ture event is linked to its corresponding departure event. 

A run = 

{(
e, e ′ 

)∣∣e ∈ E de , e 
′ ∈ E ar , tr e = tr e ′ , st e is the upstream station adjacent to s t e ′ 

}
. Running activities enable passengers 

to travel from one station to another in a train. 
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Fig. 2. A planned timetable with the constructed transition network. 
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A dwell = 

{ (
e, e ′ 

)∣∣e ∈ E 
alight 
ar , e ′ ∈ E board 

de 
, tr e = tr e ′ , st e = st e ′ , o e ′ − o e > 0 

} 

. Dwell activities enable passengers to wait at a sta-

tion in a train. 

A pass = 

{(
e, e ′ 

)∣∣e ∈ E 
pass 
ar , e ′ ∈ E 

pass 

de 
, tr e = tr e ′ , st e = st e ′ , o e ′ − o e = 0 

}
. Pass-through activities enable passengers to pass

through a station in a train. Note that it is necessary to distinguish the planned pass-through and dwell activities so that

we can recognize the skipped(extra) stops in a rescheduled timetable because the dispatching measure of flexible stopping

is applied in this paper. 

A wait = 

{ (
e, e ′ 

)∣∣∣e ∈ E dde , e 
′ = arg min 

{
o e ′ | o e ′ ≥ o e , e 

′ ∈ E dde , tr e ′ � = tr e , st e ′ = st e 
}} 

. Wait activities enable passengers to wait

at a station. Each duplicate departure event is linked to the next time-closest duplicate departure event that is at the same

station but corresponds to another train. 

A trans = 

{ (
e, e ′ 

)∣∣∣e ∈ E 
alight 
ar , e ′ = arg min 

{
o e ′ | o e ′ ≥ o e + � trans 

e,e ′ , e ′ ∈ E dde , tr e ′ � = tr e , st e ′ = st e 
}} 

. Transfer activities enable pas-

sengers to transfer from one train to another. Each arrival event is linked to the next time-closest duplicate departure event

that occurs at least � trans 
e,e ′ later at the same station but corresponds to another train. Here, � trans 

e,e ′ represents the minimum

transfer time required from the arrival train tr e to another departure train tr e ′ , which are alongside the same platform or

different platforms affecting the value of � trans 
e,e ′ . 

An event-activity network is � = ( E, A ) , which is a directed acyclic graph (DAG). In the blue box of Fig. 2 , all nodes and

arcs colored in black constitute an event-activity network formulated from the planned timetable shown in the left. 

3.3. Weights of activities 

The weights of activities are determined as follows: 

w a = βvehicle (o e ′ − o e ) , a = (e, e ′ ) ∈ A run ∪ A dwell ∪ A pass , 

w a = βwait (o e ′ − o e ) , a = (e, e ′ ) ∈ A wait , 

w a = βwait (o e ′ − o e ) + βtrans , a = (e, e ′ ) ∈ A trans , 

w 

g 
a = o e ′ − t ori 

g , a = (e, e ′ ) ∈ A entry : o e ′ ≥ t ori 
g 

w 

g 
a = T max 

g , a = (e, e ′ ) ∈ A enpenal 

w a = 0 , a = (e, e ′ ) ∈ A board ∪ A exit ∪ A expenal , 

where βvehicle and βwait represent respectively passenger preference on in-vehicle times and waiting times at stations, and

βtrans refers to the time penalty of one transfer. Note that the weight of an entry activity or entry penality activity is

passenger dependent. t ori 
g is the time when passenger group g arrives at the origin station, and this paper assumes that

each passenger group g has an acceptable maximum generalized travel time T max 
g in the railways. 
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Table 2 

Sets relevant to a transition/event-activity network. 

Notation Description 

�∗ Transition network: �∗ = ( E ∗, A ∗) 
�plan Event-activity network formulated from the planned timetable: �plan = 

(
E plan , A plan 

)
and �plan ⊂�∗

�dis Event-activity network formulated from any possible disruption timetable by adjusting the planned timetable: �dis ⊂�∗

E ∗ Set of events in �∗

E plan Set of events in �plan : E 
plan ⊂ E ∗

E plan 
i 

Set of i events in �plan , i ∈ {ar, de, dde, entry, exit, penal}: E plan 
i 

⊂ E plan 

E alight , plan 
ar Set of arrival events that correspond to passenger alighting in �plan : E 

alight , plan 
ar ⊆ E plan 

ar 

E pass , plan 
ar Set of arrival events that do not correspond to passenger alighting in �plan : E 

pass , plan 
ar = E plan 

ar \ E alight , plan 
ar 

E board , plan 

de 
Set of departure events that correspond to passenger boarding in �plan : E 

board , plan 

de 
⊆ E plan 

de 

E pass , plan 

de 
Set of departure events that do not correspond to passenger boarding in �plan : E 

pass , plan 

de 
= E plan 

de 
\ E board , plan 

de 

A ∗ Set of activities in �∗

A ∗
i 

Set of i activities in �∗: A ∗
i 

⊂ A ∗, i ∈ {wait, trans, board, entry, exit} 

A plan Set of activities in �plan : A 
plan ⊂ A ∗

A plan 
i 

Set of i activities in �plan : A 
plan 
i 

⊂ A plan , i ∈ {run, dwell, pass, wait, trans, board, entry, exit, enpenal, expenal} 

A undis 
k 

Set of undisrupted k activities in �∗: A undis 
k 

⊂ A plan 

k 
, k ∈ {run, dwell, pass, wait, trans, board, entry, exit} 

A dis 
k 1 

Set of disrupted k 1 activities in �∗: A dis 
k 1 

= A plan 

k 1 
\ A undis 

k 1 
, k 1 ∈ {run, dwell, pass} 

A dis 
k 2 

Set of disrupted k 2 activities in �∗: A dis 
k 2 

= A ∗
k 2 

\ A undis 
k 2 

, k 2 ∈ {wait, trans, board, entry, exit} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Transition network 

This section defines a transition network, which allows a dynamic event-activity network formulation during timetable

rescheduling. The transition network �∗ is an extension of the event-activity network �plan formulated from the planned

timetable by adding all events and activities that could exist in any rescheduled timetables. In other words, �∗ represents all

possible timetable adjustments, which can be used to describe the alternative paths available to passengers during timetable

rescheduling. Before giving the details of constructing a transition network, an example on a simple case is given below to

explain the basic idea. 

Example Fig. 2 shows a planned timetable with three stations A, B and C, and two trains tr 1 and tr 2 . Both trains start

from A and end at B with train tr 1 additionally stopping at B. In the blue box, the events and activities in black constitute

the event-activity network �plan from the planned timetable, while the events and activities in black and orange together

constitute the transition network �∗. In this case, �∗ is extended from �plan by adding a new event and eight new activ-

ities (colored in orange) that do not exist in the planned timetable but could exist in a rescheduled timetable. Due to the

dispatching measure of re-ordering, train tr 1 could depart later than train tr 2 at station A, although train tr 1 was originally

planned to depart earlier than train tr 2 . Considering this possible train order change, an extra wait activity is added from

event (dde, tr 2 , A) to event (dde, tr 1 , A), which creates a cycle between both events. This disables a transition network to be

a DAG. Due to the dispatching measure of flexible stopping, an extra stop could be added to train tr 2 at station B. Thus, a

new event (dde, tr 2 , B) is added as well as an entry activity, a boarding activity, a wait activity, two transfer activities, and

an exit activity. As can be seen entry/exit penalty activities always remain the same in �∗ as in �plan . 

In the following, we introduce how to construct a transition network by extending the event-activity network �plan 

corresponding to a planned timetable. The set notation with the superscript of plan represents the events/activities sets in

�plan . The set notation with the superscript of ∗ represents the extended events/activities in �∗. Table 2 shows the notation

of sets relevant to a transition/event-activity network. 

4.1. Extended events 

All events of event-activity network �plan are included in the transition network �∗, in which only the set of duplicate

departure events is extended 

E ∗
dde 

= 

{ 

e 

∣∣∣λe = e ′ , e ′ ∈ E 
plan 

de 

} 

, where E 
plan 

de 
= E 

board , plan 

de 
∪ E 

pass , plan 

de 
. Here, E 

board , plan 

de 
and E 

pass , plan 

de 
represent respectively

the set of departure events that correspond and do not correspond to passenger boarding in the planned timetable. Recall

that in an event-activity network, duplicates are only created for departure events that correspond to passenger boarding. 

4.2. Extended activities 

All activities of event-activity network �plan are included in the transition network �∗, in which five types of activi-

ties are extended including A 

∗
wait 

, A 

∗
trans , A 

∗
board 

, A 

∗
entry and A 

∗
exit 

. Except entry/exit penalty activities, each type of activities is

classified into two subsets, undisrupted and disrupted : 

A 

plan 
i 

= A 

undis 
i 

∪ A 

dis 
i 

, i ∈ { run , dwell , pass } , 
A 

∗
k 

= A 

undis 
k 

∪ A 

dis 
k 

, k ∈ { wait , trans , board , entry , exit } . 
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We define an activity an undisrupted activity if both of the two events in this activity were originally planned to occur

before t start or after t end + R, in which R is the time length required for the normal schedule to be fully recovered after

the disruption ends. In that sense, an undisrupted activity is an activity that will never be different than planned in the

rescheduled timetable. In this paper, we ensure an arrival (departure) event that was originally scheduled to occur before

the disruption start t start or at least R minutes later than the disruption end t end will not be delayed/cancelled. This also

applies to duplicate departure events, which are always with the same occurrence times as their corresponding departure

events. We define an activity a disrupted activity if at least one of the two events in this activity could be cancelled or

delayed. In that sense, a disrupted activity is an activity that could be different than planned in the rescheduled timetable.

This paper requires that only the events, which were originally planned to occur during the period [ t start , t end + R ] could

be cancelled or delayed. These events can correspond to any stations, which are not distinguished between disrupted and

undisrupted in the paper. Based on these, we decide whether an activity is undisrupted or disrupted as follows. 

4.2.1. Running, dwell, and pass-through activities 

The disrupted and undisrupted running, dwell, and pass-through activities are respectively defined as 

A 

dis 
i 

= 

{ (
e, e ′ 

)
∈ A 

plan 
i 

| t start ≤ o e < t end + R or t start ≤ o e ′ < t end + R 

} 

, i ∈ { run , dwell , pass } , 
A 

undis 
i 

= A 

plan 
i 

\ A 

dis 
i 

, i ∈ { run , dwell , pass } , 
where o e refers to the original scheduled time of e, t start ( t end ) represents the start (end) time of the disruption, and R

represents the duration required for the disruption timetable resuming to the planned timetable after the disruption ends. 

4.2.2. Entry, exit, and boarding activities 

The disrupted entry activities are defined as A 

dis 
entry = A 

dis , 1 
entry ∪ A 

dis , 2 
entry , where 

A 

dis , 1 
entry = 

{ (
e, e ′ 

)
∈ A 

plan 
entry | t start ≤ o e ′ < t end + R 

} 

, 

A 

dis , 2 
entry = 

{ (
e, e ′ 

)∣∣∣e ∈ E 
plan 
entry , e 

′ ∈ E ∗
dde 

\ E plan 

dde 
, st e = st e ′ , t start ≤ o e ′ < t end + R 

} 

. 

The disrupted exit activities are defined as A 

dis 
exit 

= A 

dis , 1 
exit 

∪ A 

dis , 2 
exit 

, where 

A 

dis , 1 
exit 

= 

{ (
e, e ′ 

)
∈ A 

plan 
exit 

| t start ≤ o e < t end + R 

} 

, 

A 

dis , 2 
exit 

= 

{ (
e, e ′ 

)∣∣∣e ∈ E 
pass , plan 
ar , e ′ ∈ E 

plan 
exit 

, st e = st e ′ , t start ≤ o e < t end + R 

} 

. 

The disrupted boarding activities are defined as A 

dis 
board 

= A 

dis , 1 
board 

∪ A 

dis , 2 
board 

, where 

A 

dis , 1 
board 

= 

{ (
e, e ′ 

)
∈ A 

plan 

board 
| t start ≤ o e ′ < t end + R 

} 

, 

A 

dis , 2 
board 

= 

{ (
e, e ′ 

)∣∣∣e ∈ E ∗
dde 

\ E plan 

dde 
, e ′ ∈ E 

pass , plan 

de 
, e ′ = λe , t start ≤ o e ′ < t end + R 

} 

. 

A 

dis , 1 
entry , A 

dis , 1 
exit 

, and A 

dis , 1 
board 

represent respectively the entry, exit, and boarding activities that could be cancelled due to the

disruption. A 

dis , 2 
entry , A 

dis , 2 
exit 

, and A 

dis , 2 
board 

represent respectively the entry, exit, and boarding activities that are not in �plan but

might be needed due to extra stops added in a rescheduled timetable. The undisrupted entry, exit, and boarding activities

are respectively defined as A 

undis 
entry = A 

plan 
entry \ A 

dis , 1 
entry , A 

undis 
exit 

= A 

plan 
exit 

\ A 

dis , 1 
exit 

, and A 

undis 
board 

= A 

plan 

board 
\ A 

dis , 1 
board 

. 

4.2.3. Wait activities 

To construct disrupted wait activities, we first define three event sets, E max 
dde 

= { arg max { o e | e ∈ E 
plan 

dde 
, o e < t start , st e =

st}} st∈ ST , E min 
dde 

= { arg min { o e | e ∈ E 
plan 

dde 
, o e ≥ t end + R, st e = st}} st∈ ST , and E dis 

dde 
= { e ∈ E ∗

dde 
| t start ≤ o e < t end + R } , in which ST is

the set of stations. Set E max 
dde 

includes at each station st ∈ ST the latest duplicate departure event before t start . Set E min 
dde 

in-

cludes at each station st ∈ ST the earliest duplicate departure event after t end + R . The events in E max 
dde 

and E min 
dde 

will not be

affected by the disruption, while E dis 
dde 

includes all duplicate departure events that could be affected by the disruption. 

Based on E max 
dde 

, E min 
dde 

and E dis 
dde 

, the set of disrupted wait activities is defined as A 

dis 
wait 

= 

⋃ 

j∈{ 1 , ... , 4 } A 

dis , j 
wait 

, in which 

A 

dis , 1 
wait 

= 

{(
e, e ′ 

)∣∣e ∈ E max 
dde 

, e ′ ∈ E dis 
dde 

, st e ′ = st e , o e ′ − o e ≤ � max 
wait 

}
, 

A 

dis , 2 
wait 

= 

{(
e, e ′ 

)∣∣e ∈ E dis 
dde 

, e ′ ∈ E min 
dde 

, st e ′ = st e , o e ′ − o e ≤ � max 
wait 

+ D 

}
, 

A 

dis , 3 
wait 

= 

{(
e, e ′ 

)∣∣e, e ′ ∈ E dis 
dde 

, e � = e ′ , st e = st e ′ , 0 ≤ o e ′ − o e ≤ � max 
wait 

+ D 

}
, 

A 

dis , 4 
wait 

= 

{(
e, e ′ 

)∣∣e, e ′ ∈ E dis 
dde 

, e � = e ′ , st e = st e ′ , −D ≤ o e ′ − o e < 0 
}
. 
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Table 3 

Decision variables. 

Symbol Description Module 

x e Continuous variable deciding the rescheduled time of an event e ∈ E plan 
ar ∪ E plan 

de 
∪ E ∗

dde 
. 1, 2, 3 

c e Binary variable with value 1 deciding event e ∈ E plan 
ar ∪ E plan 

de 
∪ E ∗

dde 
is cancelled, and 0 otherwise. 1, 2 

s a Binary variable deciding whether a scheduled stop a ∈ A plan 

dwell 
is skipped or 1, 

2 whether an extra stop is added to a ∈ A plan 
pass . 

If a ∈ A plan 

dwell 
, then s a = 1 indicates a is skipped. 

If a ∈ A plan 
pass , then s a = 1 indicates a is added with a stop. 

y a Binary variable with value 1 deciding activity a ∈ �∗ is effective in �dis , and 0 otherwise. 2, 3 

u g a Binary variable with value 1 deciding activity a ∈ �∗ is chosen by passenger group g , and 0 otherwise. 3 

w 

g 
a Continuous variable deciding the weight of activity a ∈ �∗ perceived by each passenger in group g 3 

Module 1: timetable rescheduling; Module 2: dynamic event-activity network formulation; Module 3: passenger reassignment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, D represents the maximum allowed delay per event, and � max 
wait 

represents the maximum waiting time that a

passenger would like to spend at a station. We assume that � max 
wait 

≥ D . Then, undisrupted wait activities are defined as

A 

undis 
wait 

= A 

plan 
wait 

\ (A 

plan 
wait 

∩ A 

dis 
wait 

) . 

4.2.4. Transfer activities 

To construct disrupted transfer activities, we first establish two event sets, E dis 
ar = { e | e ∈ E 

plan 
ar , t start ≤ o e < t end + R } ,

and E trans 
ar = { e | e ∈ E 

plan 
ar , o e < t start , (e, e ′ ) ∈ A 

plan 
trans , t start ≤ o e ′ < t end + R } . E dis 

ar includes the arrival events that could be de-

layed/cancelled due to the disruption. E trans 
ar contains the arrival events that will not be delayed/cancelled by the disruption

but the corresponding planned transfer activities could be cancelled due to the disruption. 

Based on E dis 
ar and E trans 

ar , the disrupted transfer activities are defined as A 

dis 
trans = 

⋃ 

j∈ { 1 , ... , 5 } A 

dis , j 
trans , where 

A 

dis , 1 
trans = 

{(
e, e ′ 

) ∣∣e ∈ E trans 
ar , e ′ ∈ E min 

dde 
, t r e ′ � = t r e , s t e ′ = s t e , � 

trans 
e,e ′ ≤ o e ′ − o e ≤ � max 

trans 

}
, 

A 

dis , 2 
trans = 

{(
e, e ′ 

) ∣∣e ∈ E trans 
ar , e ′ ∈ E dis 

dde 
, t r e ′ � = t r e , s t e ′ = s t e , o e ′ − o e ≤ � max 

trans 

}
, 

A 

dis , 3 
trans = 

{(
e, e ′ 

) ∣∣e ∈ E dis 
ar , e 

′ ∈ E min 
dde 

, t r e ′ � = t r e , s t e ′ = s t e , � 
trans 
e,e ′ ≤ o e ′ − o e ≤ � max 

trans + D 

}
, 

A 

dis , 4 
trans = 

{(
e, e ′ 

) ∣∣e ∈ E dis 
ar , e ′ ∈ E dis 

dde 
, t r e ′ � = t r e , s t e ′ = s t e , 0 ≤ o e ′ − o e ≤ � max 

trans + D 

}
, 

A 

dis , 5 
trans = 

{(
e, e ′ 

)∣∣e ∈ E dis 
ar , e 

′ ∈ E dis 
dde 

, tr e ′ � = tr e , st e ′ = st e , � 
trans 
e,e ′ − D ≤ o e ′ − o e < 0 

}
, 

Here, � trans 
e,e ′ represents the minimum transfer time, and � max 

trans represents the maximum transfer time that a passenger

would like to spend at a station. We assume that � max 
trans ≥ D > � trans 

e,e ′ . A 

dis , 1 
trans and A 

dis , 2 
trans are both related to E trans 

ar , while A 

dis , 3 
trans ,

A 

dis , 4 
trans and A 

dis , 5 
trans are all related to E dis 

ar . Undisrupted transfer activities are then defined as A 

undis 
trans = A 

plan 
trans \ (A 

plan 
trans ∩ A 

dis 
trans ) . 

5. Passenger-oriented timetable rescheduling model 

In this section, we formulate the passenger-oriented timetable rescheduling problem as an MILP model, with the objec-

tive of minimizing generalized travel times. The MILP model consists of three constraint modules: 1) timetable rescheduling,

2) dynamic event-activity network formulation, and 3) passenger reassignment. 

The timetable rescheduling module computes a feasible rescheduled timetable. The dynamic event-activity network for- 

mulation module formulates an event-activity network �dis corresponding to the rescheduled timetable based on the pre-

constructed transition network �∗. The passenger reassignment module decides the weight of each activity a ∈ �∗ perceived

by each passenger, and assigns each passenger to the path with the shortest generalized travel time perceived by this pas-

senger. 

The constraints used in the timetable rescheduling module are all from Zhu and Goverde (2019c) so that we do

not present them in this paper, neither the decision variables that are only used in this module. We refer to Zhu and

Goverde (2019c) for details. In this paper, we present the constraints in the modules of the dynamic event-activity network

formulation and the passenger reassignment, as well as the corresponding decision variables. Table 3 lists these decision

variables and the modules in which they are used. The notation of parameters/sets can be found in Table 19 in the Ap-

pendix. Note that the rescheduled time x e of any event e that was originally scheduled to occur before t start or after t end + R

is forced to be the same as its original scheduled time o e by constraints from Zhu and Goverde (2019c) . In other words, our

model respects what has already happened before the beginning of the disruption, and recovers the disruption back to the

normal schedule at latest R time after the end of the disruption. 

Due to flexible stopping, scheduled stops could be skipped and extra stops could be added. The scheduled stops (non-

stops) can also be cancelled, due to short-turning or complete train cancellation. Table show all possible stop types in a

rescheduled timetable, and the corresponding values of the relevant decision variables. There are specific constraints in the
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timetable rescheduling module to limit the value combinations of c e , c e ′ and s a . We refer to Zhu and Goverde (2019c) for

details. 

5.1. Dynamic event-activity network formulation 

The dynamic event-activity network formulation module decides which events and activities of the transition net-

work �∗ are effective in an event-activity network �dis corresponding to a rescheduled timetable by respecting the rules

of constructing an event-activity network introduced in Section 3 . Recall that �∗ = ( E ∗, A 

∗) , where E ∗ = E 
plan 
ar ∪ E 

plan 

de 
∪

E ∗
dde 

∪ E 
plan 
entry ∪ E 

plan 
exit 

∪ E 
plan 

penal 
, and A 

∗ = A 

plan 
run ∪ A 

plan 

dwell 
∪ A 

plan 
pass ∪ A 

∗
wait 

∪ A 

∗
trans ∪ A 

∗
board 

∪ A 

∗
entry ∪ A 

∗
exit 

∪ A 

plan 

enpenal 
∪ A 

plan 

expenal 
. In partic-

ular, A 

plan 
i 

= A 

undis 
i 

∪ A 

dis 
i 

, i ∈ { run , dwell , pass } , and A 

∗
j 
= A 

undis 
j 

∪ A 

dis 
j 

, j ∈ { wait , trans , board , entry , exit } , which means that in

the transition network �∗, each kind of activity set consists of two subsets: an undisrupted activity set, and a disrupted

activity set. For an undisrupted activity, both of the corresponding events will not be delayed/cancelled by the disruption;

while for a disruption activity, at least one of the corresponding events could be delayed/cancelled by the disruption. 

5.1.1. Deciding which events are effective in �dis 

The binary cancellation decision c e of an event e ∈ E 
plan 
ar ∪ E 

plan 

de 
∪ E ∗

dde 
is equivalent to deciding whether this event is

effective in �dis . An event e ∈ E 
plan 
ar ∪ E 

plan 

de 
∪ E ∗

dde 
is effective in �dis if it is not cancelled, c e = 0 . The cancellation decision c e

and the rescheduled time x e of an arrival (departure) event e ∈ E 
plan 
ar (e ∈ E 

plan 

de 
) are determined in the timetable rescheduling

module. A duplicate departure event e ′ ∈ E ∗
dde 

is required to be cancelled/kept simultaneously as its corresponding departure

event e ∈ E 
plan 

de 
, and the rescheduled times of both events are forced to be the same: 

c e ′ = c e , e ′ ∈ E ∗dde , e ∈ E plan 

de 
, λe ′ = e, (1)

x e ′ = x e , e ′ ∈ E ∗dde , e ∈ E plan 

de 
, λe ′ = e, (2)

where λe ′ is a given attribute indicating the departure event corresponding to duplicate departure event e ′ . 
An event e ∈ E 

plan 
entry ∪ E 

plan 
exit 

∪ E 
plan 

penal 
is always effective in any �dis . 

5.1.2. Deciding which activities are always effective in any �dis 

Entry/exit penalty activities, and undisrupted activities are effective in any �dis : 

y a = 1 , a ∈ A 

plan 

enpenal 
∪ A 

plan 

expenal 
, (3)

y a = 1 , a ∈ 

{
A 

undis 
k 

}
k ∈ K , K = { run , dwell , pass , wait , trans , board , entry , exit } , (4)

where y a is a binary variable with value 1 indicating that activity a is effective in �dis , and 0 otherwise. Recall that both of

the events corresponding to an undisrupted activity will not be delayed/cancelled due to the disruption. 

5.1.3. Deciding which disrupted run activities are effective in �dis 

Recall that a running activity is from a departure event e to an arrival event e ′ , which correspond to the same train

at neighbouring stations. A disrupted running activity in the transition network �∗ will be effective in an event-activity

network �dis if neither of the corresponding events is cancelled: 

y a = 1 − c e , a = (e, e ′ ) ∈ A 

dis 
run , (5)

y a = 1 − c e ′ , a = (e, e ′ ) ∈ A 

dis 
run . (6)

Note that in the timetable rescheduling module ( Zhu and Goverde, 2019c ), the departure event e and the arrival event e ′
in the same running activity are forced to be cancelled/kept simultaneously: c e = c e ′ , which is why we use equalities for

(5) and (6) . 

5.1.4. Deciding which disrupted dwell/pass-through activities are effective in �dis 

Recall that a dwell (pass-through) activity is from an arrival event e to a departure event e ′ , which correspond to the

same train at the same station. We decide whether a disrupted dwell (pass-through) activity of �∗ will be effective in �dis

by: 

y a ≤ 1 − c e , a = (e, e ′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass , (7)

y a ≤ 1 − c e ′ , a = (e, e ′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass , (8)

y a ≥ 1 − c e − c e ′ , a = (e, e ′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass . (9)

Constraints (7) and (8) mean that a disrupted dwell (pass-through) activity will not be effective in �dis if at least one of the

corresponding events is cancelled; otherwise, it must be effective (9) . Recall that A 

dis 
dwell 

⊆ A 

plan 

dwell 
and A 

dis 
pass ⊆ A 

plan 
pass . 
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Table 4 

The stop type of activity a = (e, e ′ ) ∈ A plan 

dwell 
in a rescheduled timetable according to 

c e , c e ′ and s a . 

c e c e ′ s a Stop type 

0 0 0 Stop 

0 0 1 Skipped stop 

1 0 0 Cancelled stop 

0 1 0 Cancelled stop 

1 1 0 Cancelled stop 

Table 5 

The stop type of activity a = (e, e ′ ) ∈ A plan 
pass in a rescheduled timetable according to 

c e , c e ′ and s a . 

c e c e ′ s a Stop type 

0 0 0 Extra stop 

0 0 1 Non-stop 

1 0 1 Cancelled non-stop 

0 1 1 Cancelled non-stop 

1 1 1 Cancelled non-stop 

 

 

 

 

 

 

 

 

 

 

 

5.1.5. Deciding which disrupted entry activities are effective in �dis 

Recall that an entry activity is from an entry event e to a duplicate departure event e ′ , which both correspond to the

same station. We use a binary parameter r e ′ with value 1 to indicate that a (duplicate) departure event e ′ corresponds to a

train origin departure, and 0 otherwise. For a disrupted entry activity a = 

(
e, e ′ 

)
of which the duplicate departure event e ′ 

corresponds to a train origin departure, a will be effective in �dis if e ′ is not cancelled: 

y a = 1 − c e ′ , a = (e, e ′ ) ∈ A 

dis 
entry , r e ′ = 1 . (10) 

For a disrupted entry activity a = 

(
e, e ′ 

)
of which the duplicate departure event e ′ does not correspond to a train origin

departure, we established the following constraints to decide whether a is effective in �dis : 

y a ≤ 1 − c e ′ , a = (e, e ′ ) ∈ A 

dis 
entry , r e ′ = 0 , (11) 

y a ≤ 1 − s a ′ + c e ′′ + c e ′′′ , a = (e, e ′ ) ∈ A 

dis 
entry , r e ′ = 0 , e ′′′ = λe ′ , a 

′ = (e ′′ , e ′′′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass , (12) 

y a ≥ 1 − s a ′ − c e ′′ − c e ′′′ , a = (e, e ′ ) ∈ A 

dis 
entry , r e ′ = 0 , e ′′′ = λe ′ , a 

′ = (e ′′ , e ′′′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass . (13) 

Constraint (11) means that a disrupted entry activity a = (e, e ′ ) will not be effective in �dis if its corresponding duplicate

departure event e ′ is cancelled. Otherwise, a will be effective only if its corresponding duplicate departure event e ′ is asso-

ciated with a real stop a ′ = (e ′′ , e ′′′ ) ∈ A 

dis 
dwell 

∪ A 

dis 
pass that has c e ′′ = 0 , c e ′′′ = 0 and s a ′ = 0 (see Table 4 and Table 5 ), in which

e ′′′ is the departure event corresponding to e ′ : e ′′′ = λe ′ . This is represented by (12) and (13) . 

5.1.6. Deciding which disrupted boarding activities are effective in �dis 

Recall that a boarding activity is from a duplicate departure event e to the corresponding departure event e ′ . For a

disrupted boarding activity a = 

(
e, e ′ 

)
of which the duplicate departure event e corresponds to a train origin departure, a

will be effective in �dis if e is not cancelled.: 

y a = 1 − c e , a = (e, e ′ ) ∈ A 

dis 
board , r e = 1 . (14) 

For a disrupted boarding activity a = 

(
e, e ′ 

)
of which the duplicate departure event e does not correspond to a train origin

departure, we decide whether a is effective in �dis by 

y a ≤ 1 − c e , a = (e, e ′ ) ∈ A 

dis 
board , r e = 0 , (15) 

y a ≤ 1 − s a ′ + c e + c e ′ , a = (e, e ′ ) ∈ A 

dis 
board , r e = 0 , a ′ = (e ′′ , e ′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass , (16) 

y a ≥ 1 − s a ′ − c e ′′ − c e ′ , a = (e, e ′ ) ∈ A 

dis 
board , r e = 0 , a ′ = (e ′′ , e ′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass . (17) 

Constraint (15) means that a disrupted boarding activity a will not be effective in �dis if its corresponding duplicate depar-

ture event e is cancelled. Otherwise, a will be effective only if its corresponding departure event e ′ is associated with a real

stop a ′ = (e ′′ , e ′ ) ∈ A 

dis 
dwell 

∪ A 

dis 
pass that has c e ′′ = 0 , c e ′ = 0 and s a ′ = 0 . This is represented by (16) and (17) . 
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5.1.7. Deciding which disrupted exit activities are effective in �dis 

Recall that an exit activity is from an arrival event e to an exit event e ′ , which both correspond to the same station. We

use a binary parameter f e with value 1 to indicate that an arrival event e corresponds to a train destination arrival, and 0

otherwise. For a disrupted exit activity a = 

(
e, e ′ 

)
of which the arrival event e corresponds to a train destination arrival, a

will be effective in �dis if e is not cancelled: 

y a = 1 − c e , a = (e, e ′ ) ∈ A 

dis 
exit , f e = 1 . (18)

For a disrupted exit activity a = 

(
e, e ′ 

)
of which the arrival event e ′ does not correspond to a train destination arrival, we

established the following constraints to decide whether a is effective in �dis : 

y a ≤ 1 − c e , a = (e, e ′ ) ∈ A 

dis 
exit , f e = 0 , (19)

y a ≤ 1 − s a ′ + c e + c e ′′ , a = (e, e ′ ) ∈ A 

dis 
exit , f e = 0 , a ′ = (e, e ′′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass , (20)

y a ≥ 1 − s a ′ − c e − c e ′′ , a = (e, e ′ ) ∈ A 

dis 
exit , f e = 0 , a ′ = (e, e ′′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass , (21)

Constraint (19) means that a disrupted exit activity a = (e, e ′ ) will not be effective in �dis if its corresponding arrival event e

is cancelled. Otherwise, a will be effective only if its corresponding arrival event e is associated with a real stop a ′ = (e, e ′′ ) ∈
A 

dis 
dwell 

∪ A 

dis 
pass that has c e = 0 , c e ′′ = 0 and s a ′ = 0 . This is stated by (20) and (21) . 

5.1.8. Deciding which disrupted wait activities are effective in �dis 

Recall that a wait activity is from a duplicate departure event e to the next time-closest duplicate departure event e ′ that

occurs at the same station but corresponds to a different train. We decide whether a disrupted wait activity a = (e, e ′ ) is

effective in �dis by 

y a ≤ 1 − c e , a = (e, e ′ ) ∈ A 

dis 
wait , (22)

y a ≤ 1 − c e ′ , a = (e, e ′ ) ∈ A 

dis 
wait , (23)

y a ≤ 1 − s a ′ + c e ′′ + c e ′′′ , a = (e, e ′ ) ∈ A 

dis 
wait , r e = 0 , e ′′′ = λe , a 

′ = (e ′′ , e ′′′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass , (24)

y a ≤ 1 − s a ′ + c e ′′ + c e ′′′ , a = (e, e ′ ) ∈ A 

dis 
wait , r e ′ = 0 , e ′′′ = λe ′ , a 

′ = (e ′′ , e ′′′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass , (25)

y a + y a ′ ≤ 1 , a = (e, e ′ ) ∈ A 

dis 
wait , a 

′ = (e ′ , e ) ∈ A 

dis 
wait (26)

∑ 

a ∈ A dis 
wait 

, 

tail(a )= e 

y a ≤ 1 , e ∈ E dis 
dde , (27)

∑ 

a ∈ A dis 
wait 

, 

head(a )= e ′ 

y a ≤ 1 , e ′ ∈ E dis 
dde , (28)

x e ′ − x e ′′ ≤ M(1 − y a ) , a = (e, e ′ ) ∈ A 

dis 
wait , a 

′ = (e, e ′′ ) ∈ A 

dis 
wait , (29)

x e ′′ − x e ′ ≤ M(1 − y a ′ ) , a = (e, e ′ ) ∈ A 

dis 
wait , a 

′ = (e, e ′′ ) ∈ A 

dis 
wait , (30)

x e ′ − x e ≥ −M(1 − y a ) , a = (e, e ′ ) ∈ A 

dis 
wait , (31)

where tail ( a ) refers to the tail event of an activity: the event which an activity starts from, head ( a ) refers to the head event

of an activity: the event which an activity directs to, and M is a sufficiently large number of which the value is set to 2880.

Constraints (22) and (23) mean that a disrupted wait activity will not be effective in �dis if at least one of the corresponding

events is cancelled. Constraint (24) (25) requires a disrupted wait activity a = (e, e ′ ) to be ineffective if the corresponding

duplicate departure event e ( e ′ ) does not correspond to a train origin departure and is not associated with a real stop. A

duplicate departure event could be relevant to multiple disrupted wait activities in a transition network, while at most one

of these activities can be effective in an event-activity network �dis (26)–(28) . Constraints (29)–(31) together ensure that a

duplicate departure event e can only be linked to the next time-closest duplicate departure event to construct an effective

wait activity in �dis . 
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5.1.9. Deciding which disrupted transfer activities are effective in �dis 

Recall that a transfer activity is from an arrival event e to the next time-closest duplicate departure event e ′ that occurs

at the same station as e but corresponds to a different train. We decide whether a disrupted transfer activity a = (e, e ′ ) is

effective in �dis by 

y a ≤ 1 − c e , a = (e, e ′ ) ∈ A 

dis 
trans , (32) 

y a ≤ 1 − c e ′ , a = (e, e ′ ) ∈ A 

dis 
trans , (33) 

y a ≤ 1 − s a ′ + c e + c e ′′ , a = (e, e ′ ) ∈ A 

dis 
trans , f e = 0 , a ′ = (e, e ′′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass , (34) 

y a ≤ 1 − s a ′ + c e ′′ + c e ′′′ , a = (e, e ′ ) ∈ A 

dis 
trans , r e ′ = 0 , e ′′′ = λe ′ , a 

′ = (e ′′ , e ′′′ ) ∈ A 

dis 
dwell ∪ A 

dis 
pass , (35) 

∑ 

a ∈ A dis 
trans , 

tail(a )= e 

y a ≤ 1 , e ∈ E trans 
ar ∪ E dis 

ar , (36) 

x e ′ − x e ′′ ≤ M(1 − y a ) , a = (e, e ′ ) ∈ A 

dis 
trans , a 

′ = (e, e ′′ ) ∈ A 

dis 
trans , (37) 

x e ′′ − x e ′ ≤ M(1 − y a ′ ) , a = (e, e ′ ) ∈ A 

dis 
trans , a 

′ = (e, e ′′ ) ∈ A 

dis 
trans , (38) 

x e ′ − x e ≥ −M(1 − y a ) + � trans 
e,e ′ , a = (e, e ′ ) ∈ A 

dis 
trans , (39) 

where � trans 
e,e ′ refers to the minimum transfer time. Constraints (32) and (33) means that a disrupted transfer activity will

not be effective in �dis if at least one of the corresponding events is cancelled. Constraint (34) requires a disrupted transfer

activity a = (e, e ′ ) to be ineffective if the corresponding arrival event e does not correspond to a train destination arrival

and is not associated with a real stop. Constraint (35) requires a disrupted transfer activity a = (e, e ′ ) to be ineffective if the

corresponding duplicate departure event e ′ does not correspond to a train origin departure and is not associated with a real

stop. Constraint (36) means that for an arrival event e ∈ E trans 
ar ∪ E dis 

ar , which has multiple disrupted transfer activities starting

from it, at most one of these activities will be effective in an event-activity network �dis . Constraints (37)–(39) together

ensure that an arrival event e can only be linked to the next time-closest duplicate departure event to construct an effective

transfer activity of which the minimum transfer time must be respected. 

5.2. Passenger reassignment 

There could be multiple passengers who share exactly the same journeys in terms of the planned timetable: the same

origin station, the same arrival time at the origin station, the same destination, and the same expected generalized travel

time from the origin to the destination. These passengers form a same group g ∈ G , which is assumed to be inseparable

in case of a disruption, and will not change the destination. G represents the set of passenger groups, possibly consisting

of a single passenger. Recall that a path is a sequence of connected activities. Deciding which path will be chosen by a

passenger group is equivalent to deciding which activities will be chosen by this group, while each group g is associated

with the same activity choice set A 

∗. The passenger reassignment module decides which activity a ∈ A 

∗ will be chosen by a

passenger group g and the weight of each activity a ∈ A 

∗ perceived by g . 

5.2.1. Assigning each passenger group to one path only 

An activity a ∈ A 

∗ cannot be chosen by a passenger group if a is not effective in �dis ( y a = 0): 

u 

g 
a ≤ y a , a ∈ A 

∗, g ∈ G, (40) 

where u 
g 
a is a binary decision with value 1 indicating that activity a ∈ A 

∗ is chosen by passenger group g ∈ G , and 0

otherwise. 

A path that could be chosen by a passenger group g must start from an entry (entry penalty) event corresponding

to his/her origin O g , end in an exit (exit penalty) event corresponding to his/her destination D g , and include at least one

intermediate event to connect them: ∑ 

a ∈ A undis 
entry ∪ A dis 

entry ∪ A plan 

enpenal 
, 

s t tail(a ) = O g 

u 

g 
a = 1 , g ∈ G, (41) 

∑ 

a ∈ A undis 
entry ∪ A dis 

entry ∪ A plan 

enpenal 
, 

s t tail(a ) � = O g 

u 

g 
a = 0 , g ∈ G. (42) 
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∑ 

a ∈ A undis 
exit 

∪ A dis 
exit 

∪ A plan 

expenal 
, 

s t tail(a ) = D g 

u 

g 
a = 1 , g ∈ G, (43)

∑ 

a ∈ A undis 
exit 

∪ A dis 
exit 

∪ A plan 

expenal 
, 

s t tail(a ) � = D g 

u 

g 
a = 0 , g ∈ G ; (44)

∑ 

a ∈ I n e 
u 

g 
a = 

∑ 

a ′ ∈ Ou t e 

u 

g 
a ′ , e ∈ E ∗\ 

{ 

E plan 
entry , E 

plan 

exit 

} 

, g ∈ G, (45)

M(1 − u 

g 
a ) + x e ′ ≥ t ori 

g , a = (e, e ′ ) ∈ A 

undis 
entry ∪ A 

dis 
entry , st e = O g , g ∈ G, (46)

where { A 

undis 
entry , A 

dis 
entry , A 

plan 

enpenal 
} contains all entry and entry penality activities in �∗, and { A 

undis 
exit 

, A 

dis 
exit 

, A 

plan 

expenal 
} contains all

exit and exit penalty activities in �∗. Recall that an entry (entry penalty activity) is from an entry event to a duplicate

departure (penalty) event, while an exit (exit penalty activity) is from an arrival (penalty) event to an exit event. st tail ( a )

refers to the corresponding station of the tail event of an activity, In e ( Out e ) is the set of activities going in (going out)

event e , and t ori 
g represents the time of passenger group g arriving at origin station O g . Constraint (41) means that among

the entry and entry penalty activities relevant to the origin of a passenger group, one and only one of them will be chosen

by this group. Constraint (42) means that among the entry and entry penalty activities that do not correspond to the origin

station of a passenger group, none of them will be chosen by this group. Constraint (43) means that among the exit and exit

penalty activities relevant to the destination of a passenger group, one and only one of them will be chosen by this group.

Constraint (44) means that among the exit and exit penalty activities that do not correspond to the destination station of a

passenger group, none of them will be chosen by this group. Constraint (45) is for flow balance at intermediate events (i.e.

excluding entry and exit events). It means that if an activity a = (e ′ , e ) , which goes into an intermediate event e , is chosen

by a passenger group g ( u 
g 
a = 1), then another activity a ′ = (e, e ′′ ) , which goes out from event e should also be chosen by this

group ( u 
g 

a ′ = 1). Constraint (46) means that an entry activity a = (e, e ′ ) that corresponds to the origin station of a passenger

group could be chosen by this group only if the rescheduled time x e ′ of the duplicate departure event e ′ in a is later than

the time of this group arriving at the origin station t ori 
g . 

5.3. Deciding the weight of each activity perceived by a passenger group 

Suppose we use w a to represent the decision on the weight of an activity a . Then, the generalized travel time of a

passenger in group g can be described as 
∑ 

a ∈ A ∗ w a · u 
g 
a , which is a nonlinear formulation because w a and u 

g 
a are both

decision variables. To formulate the generalized travel time of a passenger in a linear way, we use w 

g 
a instead, which is

a continuous variable indicating the weight of an activity a perceived by each passenger in group g . The generalized travel

time of each passenger in group g is then formulated as 
∑ 

a ∈ A ∗ w 

g 
a . The value of w 

g 
a is forced to be 0 if activity a is not chosen

by group g . Otherwise, the value of w 

g 
a is determined according to the time cost of activity a and passenger preference on

the type of a . In the following, we introduce the constraints of deciding w 

g 
a for each kind of activity. 

If an activity a is not chosen by group g ( u 
g 
a = 0 ), the weight of this activity will be 0: 

w 

g 
a ≤ M 

∗u 

g 
a , a = (e, e ′ ) ∈ A 

undis 
j ∪ A 

dis 
j , j ∈ { entry , wait , run , dwell , pass , trans } , g ∈ G, (47)

w 

g 
a ≥ 0 , a = (e, e ′ ) ∈ A 

undis 
j ∪ A 

dis 
j , j ∈ { entry , wait , run , dwell , pass , trans } , g ∈ G, (48)

where M 

∗ is a sufficiently larger number, of which the value is set to βwait M . Here, βwait is the multiplier of waiting time

perceived by passengers at stations. 

If an entry activity a is chosen by group g ( u 
g 
a = 1 ), the weight of this entry activity perceived by each passenger in group

g is determined by 

w 

g 
a ≤ βwait 

(
x e ′ − t ori 

g 

)
+ M 

∗(1 − u 

g 
a 

)
, a = (e, e ′ ) ∈ A 

undis 
entry ∪ A 

dis 
entry , g ∈ G, (49)

w 

g 
a ≥ βwait 

(
x e ′ − t ori 

g 

)
− M 

∗(1 − u 

g 
a 

)
, a = (e, e ′ ) ∈ A 

undis 
entry ∪ A 

dis 
entry , g ∈ G, (50)

where w 

g 
a is forced to be βwait 

(
x e ′ − t ori 

g 

)
if u 

g 
a = 1 , in which case x e ′ must be larger than t ori 

g due to (46) . 

If a wait activity a is chosen by group g ( u 
g 
a = 1 ), the weight of this wait activity perceived by each passenger in group g

is determined by 

w 

g 
a ≤ βwait ( x e ′ − x e ) + M 

∗(1 − u 

g 
a 

)
, a = (e, e ′ ) ∈ A 

undis 
wait ∪ A 

dis 
wait , g ∈ G, (51)

w 

g 
a ≥ βwait ( x e ′ − x e ) − M 

∗(1 − u 

g 
a 

)
, a = (e, e ′ ) ∈ A 

undis 
wait ∪ A 

dis 
wait , g ∈ G, (52)
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where w 

g 
a is forced to be βwait ( x e ′ − x e ) if u 

g 
a = 1 , in which case x e ′ must be larger than x e (otherwise a would not be

effective and then would not be chosen by g ). 

If a run, dwell or pass-through a is chosen by group g ( u 
g 
a = 1 ), the weight of this activity perceived by each passenger

in group g is determined by 

w 

g 
a ≤ βvehicle ( x e ′ − x e ) + M 

∗(1 − u 

g 
a 

)
, a = (e, e ′ ) ∈ A 

undis 
j ∪ A 

dis 
j , j ∈ { run , dwell , pass } , g ∈ G, (53) 

w 

g 
a ≥ βvehicle ( x e ′ − x e ) − M 

∗(1 − u 

g 
a 

)
, a = (e, e ′ ) ∈ A 

undis 
j ∪ A 

dis 
j , j ∈ { run , dwell , pass } , g ∈ G, (54) 

where βvehicle is the multiplier of in-vehicle time perceived by passengers. Here, w 

g 
a is forced to be βvehicle ( x e ′ − x e ) if u 

g 
a = 1,

in which case x e ′ must be larger than x e (otherwise a would not be effective and then would not be chosen by g ). 

If a transfer activity a is chosen by group g ( u 
g 
a = 1 ), the weight of this transfer activity perceived by each passenger in

group g is determined by 

w 

g 
a ≤ βtrans + βwait ( x e ′ − x e ) + M 

∗(1 − u 

g 
a 

)
, a = (e, e ′ ) ∈ A 

undis 
trans ∪ A 

dis 
trans , g ∈ G, (55) 

w 

g 
a ≥ βtrans + βwait ( x e ′ − x e ) − M 

∗(1 − u 

g 
a 

)
, a = (e, e ′ ) ∈ A 

undis 
trans ∪ A 

dis 
trans , g ∈ G, (56) 

where βtrans is the fixed time penalty of one transfer. Here, w 

g 
a is forced to be βtrans + βwait ( x e ′ − x e ) if u 

g 
a = 1, in which case

x e ′ must be larger than x e (otherwise a would not be effective and then would not be chosen by g ). 

The weight of an entry penalty activity is determined by 

w 

g 
a = μ · T plan 

g · u 

g 
a , a = (e, e ′ ) ∈ A 

plan 

enpenal 
, g ∈ G, μ ≥ 1 , (57) 

where T 
g 

plan 
refers to the expected generalized travel time of passenger group g in terms of the planned timetable, and

μ · T 
g 

plan 
refers to the maximum generalized travel time which passenger group g would accept during a disruption. Both

T 
g 

plan 
and μ are given parameters. 

The weight of a boarding activity, an exit activity, or an exit penalty activity is set to 0: 

w 

g 
a = 0 , a = (e, e ′ ) ∈ 

{ 

A 

plan 

expenal 
, A 

undis 
board , A 

dis 
board , A 

undis 
exit , A 

dis 
exit 

} 

, g ∈ G. (58) 

5.4. Objective 

The objective is to minimize the generalized travel times of all passengers, which is 

z p = 

∑ 

g∈ G 

∑ 

a ∈ A ∗
n g w 

g 
a , (59) 

where n g represents the number of passengers in group g . 

To summarize, the proposed passenger-oriented timetable rescheduling model (POTR) is given by constraints 

(1)–(58) presented in this paper, as well as the constraints presented in Zhu and Goverde (2019c) , with objective (59) . 

6. Reducing the computational complexity of the passenger-oriented timetable rescheduling model 

When dealing with a large railway network and/or considering numerous passengers, the proposed passenger-oriented

timetable rescheduling model (POTR) may not be able to find a high-quality solution in an acceptable time, because a binary

variable u 
g 
a is created for each activity a ∈ A 

∗ associated with each passenger group g ∈ G , of which the total number is

| A 

∗| × | G |. To reduce the computational complexity, we propose 1) a pre-processing method to shrink the activity choice set

for each passenger group in a reasonable way, and 2) an iterative solution method to solve the model with limited passenger

groups considered in each iteration, which also restricts the solution space to avoid excessive operational deviations that are

not preferred by the railway operators. We introduce both methods in this section. 

6.1. Shrinking the activity choice set of a passenger group 

The passenger-oriented timetable rescheduling model proposed in Section 5 considers A 

∗ as the activity choice set for

each passenger group g ∈ G , while A 

∗ contains some activities that will never be chosen by g . Thus, we introduce a method

of constructing an improved activity choice set A 

∗
g for passenger group g ∈ G by excluding the activities that will never be

chosen by g . In other words, A 

∗
g ⊂ A 

∗, and 

⋃ 

g A 

∗
g ⊆ A 

∗. Recall that A 

∗ = A 

plan 
run ∪ A 

plan 

dwell 
∪ A 

plan 
pass ∪ A 

∗
wait 

∪ A 

∗
trans ∪ A 

∗
board 

∪ A 

∗
entry ∪

A 

∗
exit 

∪ A 

plan 

enpenal 
∪ A 

plan 

expenal 
. Table 6 shows activity sets relevant to passenger group g . 

We first define the events that could be reachable by passenger group g , and then define the activity set A 

∗
g , which

contains all activities that could be chosen by g according to the reachable events. We decide whether event e is reachable

by group g in terms of multiple factors. These factors are the time of passenger group g arriving at the origin, t ori 
g ; the
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Table 6 

Activity sets relevant to passenger group g . 

Notation Description 

A ∗g The activity choice set associated with passenger group g : A ∗g ⊂ A ∗

A plan 
i,g 

Set of i activities associated with passenger group g : A plan 
i,g 

⊂ A plan 
i 

, i ∈ { run , dwell , pass } 
A ∗

k,g 
Set of k activities associated with passenger group g : A ∗

k,g 
⊂ A ∗

k 
, k ∈ { wait , trans , board , entry . exit } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maximum acceptable generalized travel time of passenger group g , μT 
plan 

g ; the minimal travel time from the origin of group

g to the corresponding station of event e , � min 
O g ,st e 

; the minimal travel time from the corresponding station of event e to the

destination of group g , � min 
st e ,D g 

; the maximum delay allowed per train event, D ; and the original scheduled time of event e,

o e . 

Event e is defined reachable by passenger group g if the following two conditions are both satisfied: 

1. o e + D ≥ t ori 
g + � min 

O g ,st e 
, 

2. o e ≤ t ori 
g + μT 

plan 
g − � min 

st e ,D g 
. 

In condition 1, o e + D represents the maximum rescheduled time of event e , which should be later than the earliest time

point when g could reach the station st e from the origin. Otherwise, e will not be reachable by g . Condition 2 means that

the minimum rescheduled time of event e (equivalent to the value of o e ) should be earlier than the latest time point that g

can be at station st e so that he/she reaches the destination below the acceptable delay threshold. Otherwise, e will not be

reachable by g . 

Based on the defined reachable events, we add 

• an activity a = (e, e ′ ) ∈ A 

plan 
i 

to A 

plan 
i,g 

for any i ∈ {run, dwell, pass}, if both events e and e ′ could be reachable by passenger

group g , 
• an activity a = (e, e ′ ) ∈ A 

∗
i 

to A 

∗
j,g 

for any j ∈ {wait, trans, board}, if both events e and e ′ could be reachable by passenger

group g , 
• an activity a = (e, e ′ ) ∈ A 

∗
entry to A 

∗
entry ,g if duplicate departure event e ′ could be reachable by passenger group g and

st e ′ = O g , 

• an activity a = (e, e ′ ) ∈ A 

∗
exit 

to A 

∗
exit ,g 

if arrival event e could be reachable by passenger group g and st e ′ = D g , and 

• each activity a ∈ A 

plan 

enpenal 
∪ A 

plan 

expenal 
to A 

∗
g . 

Thus, A 

∗
g = { A 

plan 
i,g 

} i ∈ I ∪ { A 

∗
k,g 

} k ∈ K ∪ A 

plan 

enpenal 
∪ A 

plan 

expenal 
, in which I = { run , dwell , pass } , K = { wait , trans , board , entry , exit } . The

constructed A 

∗
g reduces the number of binary variables u 

g 
a and continuous variables w 

g 
a , as well as the corresponding con-

straints in the passenger-oriented timetable rescheduling model. 

Using Fig. 2 as an example we show which activities should be excluded for a specific passenger group. Suppose pas-

senger group g plans to travel from station A ( O g ) to station C ( D g ), and arrives at the origin station A after the planned

departure of train tr 1 but before train tr 2 . In this case we assume that the events that can not be reachable by g include

(dde, tr 1 , A), (de, tr 1 , A), and (ar, tr 1 , B), which depend on the values of specific factors (e.g., t ori 
g , D , μT 

plan 
g , etc.) as explained

before. The activities, which consist of at least one of the non-reachable events will be excluded from the activity choice

set A 

∗
g of passenger group g . These include the entry activity directing to event (dde, tr 1 , A), the waiting activities between

events (dde, tr 1 , A) and (dde, tr 2 , A), the boarding activity from (dde, tr 1 , A) to (de, tr 1 , A), the running activity from (de,

tr 1 , A) to (ar, tr 1 , B), and the transfer activity from (ar, tr 1 , B) to (dde, tr 2 , B). Besides, all entry activities to stations B and

C, and all exit activities from stations A and B are also excluded from A 

∗
g . 

6.2. Adapted fix-and-Optimize (AFaO) algorithm 

The Fix-and-Optimize (FaO) algorithm iteratively solves a model over all real-valued variables with the majority of the

binary variables fixed ( Sahling et al., 2009; Lang and Shen, 2011; Franz et al., 2019 ), which is used and adapted in this

paper as the Adapted Fix-and-Optimize (AFaO) (Algorithm 1) . The AFaO algorithm is different from the FaO in the sense

that AFaO includes less variables in an earlier iteration, while FaO includes all variables in each iteration. Our AFaO solves

the passenger-oriented timetable rescheduling model iteratively by considering limited passenger groups in each iteration,

where the timetable rescheduling problem is solved for all train services although restricted passenger groups are consid-

ered. Each iteration determines the activities for the next set of additional considered groups while keeping the activities of

the previous considered groups as fixed. More details about the proposed AFaO is introduced below. 

The number of new passenger groups n new 

considered in an iteration determines the number of required iterations

I = � | G | 
n new 


 , where G represents the set of all passenger groups. G is sorted according to a specific rule that decides the

order of passengers to be considered. The sorting rule affects the solution quality. In Section 7.3.4 we carried out extensive

numerical experiments to investigate the impacts of different sorting rules on the solution quality. The impacts of n new 

on
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Algorithm 1: The adapted fix-and-optimize algorithm. 

Input : OOTR , POTR , G, E 

∗, 
{

A 

∗
g 

}
g∈ G , n new 

, t stop , T stop , �

1 Solve the OOTR model to get z ∗o ; 
2 Add constraint 

∑ 

e ∈ E plan 
ar 

w c c e + d e ≤ z ∗o + � to the POTR model; 

3 I = 

⌈ | G | 
n new 

⌉
; 

4 G 

′ = ∅ ; 

5 POTR 

1 = POTR ; 
6 i = 1 ; 

7 while i ≤ I and T stop is not reached do 

8 if i < I then 

9 G new 

= { g j+1 , · · · , g j+ n new } ⊂ G, j = (i − 1) n new 

; 
10 G 

′ = G 

′ ∪ G new 

; 

11 

{
˜ x e , ˜ u 

g 
a , ̃  z p 

}
← solve POTR 

i for all g ∈ G 

′ within t stop or until a feasible solution is found, using the 

solution of OOTR model as an initial guess if i = 1 or the solution of POTR 

i −1 as an initial guess if 
i ≥ 2 ; 

12 Construct POTR 

i +1 by adding constraints: u 

g 
a = 

˜ u 

g 
a , a ∈ A 

∗
g , g ∈ G new 

, into POTR 

i ; 

13 i = i + 1 ; 

14 else 

15 G new 

= 

{
g (i −1) n new +1 , · · · , g | G | 

}
⊂ G ; 

16 G 

′ = G 

′ ∪ G new 

; 

17 

{
˜ x e , ˜ u 

g 
a , ̃  z p 

}
← solve POTR 

i for all g ∈ G within t stop or until a feasible solution is found, using the 

solution of POTR 

i −1 as an initial guess; 

18 if G 

′ � = G then 

19 Construct POTR 

′ by adding constraints: x e = 

˜ x e , e ∈ E 

plan 
ar ∪ E 

plan 

de 
∪ E 

∗
dde 

, into POTR ; 

20 

{
˜ x e , ˜ u 

g 
a , ̃  z p 

}
← solve POTR 

′ for all g ∈ G ; 

21 Return 

{
˜ x e , ˜ u 

g 
a , ̃  z p 

}
finally obtained; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the solution quality and the computation time of the iterative solution method are also investigated in Section 7.3 . The

iterative solution method terminates until either all passenger groups in G are considered or the total running time limit

T stop is reached, while in the latter case one more process will be needed to evaluate the responses of all passengers towards

the rescheduled timetable finally obtained. At each iteration a computation time limit t stop is set to avoid excessive searching

for the optimal solution, while a longer computation than t stop will be allowed to find a feasible solution in case no feasible

solution can be obtained within t stop . 

Algorithm 1 needs the following inputs: the operator-oriented timetable rescheduling model (OOTR), the passenger-

oriented timetable rescheduling model (POTR), the set of passenger groups G , the set of events E ∗, the activity choice set

A 

∗
g of each passenger group g ∈ G , the number of new passengers n new 

considered in each iteration, the computation time

limit t stop of each iteration, the total computation time limit T stop , and the maximum allowed deviation � from the optimal

operator-oriented objective value in terms of train cancellations and delays. The OOTR model is the timetable rescheduling

module from Zhu and Goverde (2019c) , which in this paper adopts the objective of minimizing train cancellations and de-

lays: z o = 

∑ 

e ∈ E plan 
ar 

w c c e + d e , where c e is a binary cancellation decision, d e is a continuous decision representing the delay of

event e , and w c is the penalty of cancelling a train service between two neighbouring stations. Solving the OOTR model to

optimality gets the optimal operator-oriented objective z ∗o . The POTR model consists of the timetable rescheduling module,

the dynamic event-activity network formulation module, and the passenger reassignment module, which aims to minimize

the generalized travel times of passengers: z p = 

∑ 

g∈ G 
∑ 

a ∈ A ∗g n g w 

g 
a . 

In Algorithm 1 , the OOTR model is solved first to obtain the optimal operator-oriented rescheduled timetable that has the

operator-oriented objective value of z ∗o (line 1). To find a passenger-friendly rescheduled timetable that can also be preferred

by railway operators, we add a constraint to the POTR model to require that the passenger-oriented rescheduled timetable

obtained by the POTR model will not deviate from the optimal operator-oriented rescheduled timetable by � in terms of

train cancellations and delays (line 2). Line 3 initializes the number of iterations needed to solve the POTR model, and line

4 initializes the set of passenger groups considered at each iteration as an empty set. In line 5, we define the passenger-

oriented timetable rescheduling model to be solved in the 1st iteration as POTR 

1 . The iteration is initialized in line 6. If the

required iterations are not completely performed and the total computation time until the current iteration is shorter than

T stop , then the while-loop starting from line 7 continues. 
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Hmbv Hmh Hm Hmbh Dn Hrt
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WtMzHze
GpEhv

Stations allowing short-turning to both directions

Stations allowing short-turning to one direction (the green side)

Stations prohibiting short-turning to both directions

Fig. 3. The schematic track layout in the considered network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the current iteration is not the final iteration (line 8), we select n new 

passenger groups from G as the passenger groups

that are newly considered in the current iteration (line 9), which are then added to G 

′ (line 10). Considering all passenger

groups in G 

′ , the current POTR 

i model is solved within the required time limit t stop . If no feasible solution has been found

within t stop , the search will continue until a feasible solution is found (line 11). To speed up the computation time, we

give an initial guess to warm-start the solver. Note that GUROBI can benefit from an initial guess on where to start the

search, so called warm-starting. When the current iteration is the first iteration, the initial guess is chosen as the solution

obtained earlier from the OOTR model. When the current iteration is the second or a later iteration, the initial guess is

chosen as the solution from the POTR 

i −1 model in the previous iteration. The outputs of the current model POTR 

i include

the rescheduled time ˜ x e of event e ∈ E 
plan 
ar ∪ E 

plan 

de 
∪ E ∗

dde 
, the choice ˜ u 

g 
a of passenger group g ∈ G 

′ on activity a ∈ A 

∗
g , and

the passenger-oriented objective value ˜ z p that represents the generalized travel times over all passenger groups in G 

′ . In

line 12, we construct the passenger-oriented timetable rescheduling model POTR 

i +1 to be solved in the next iteration by

adding constraints to the current POTR 

i . These constraints require the activity choices of the passenger groups that are

newly considered in the current iteration to be fixed to the assigned paths in all following iterations. In line 13, we proceed

to the next iteration. 

If the current iteration is the final iteration (line 14), we add the passenger groups that have not be considered yet (line

15) to the G 

′ (line 16), which now includes all passenger groups of G : G 

′ = G . Considering all passenger groups in G , the

current POTR 

i model is solved within the required time limit t stop . If no feasible solution has been found within t stop , the

search will continue until the first feasible solution is found by giving the solution from the previous iteration as an initial

guess to warm-start the solver (line 17). In this case, the algorithm terminates by returning the results from POTR 

i (lines

21). 

The while-loop could end before all required iterations are performed due to the total computation limit of T stop . Under

this circumstance, the passenger groups in G have not been completely considered (line 18), which means that the ˜ z p finally

obtained in the while-loop does not represent the generalized travel times of all passenger groups in G . Therefore, we

construct POTR 

′ by adding constraints to the original POTR model, which require the rescheduled timetable finally obtained

in the while-loop to be fixed (line 19). In that sense, solving POTR 

′ is not to compute a new rescheduled timetable but

to evaluate the generalized travel times of all passenger groups in G under a given rescheduled timetable that is finally

obtained in the while-loop (line 20). Hence, the computation time of solving POTR 

′ is not counted in T stop . 

7. Case study 

The case study aims to investigate the performance of the passenger-oriented timetable rescheduling model on shorten-

ing generalized travel times during railway disruptions, and to analyse the computational efficiency of the proposed AFaO

algorithm to the passenger-oriented timetable rescheduling model. Section 7.1 describes the case study, while Section 7.2 and

Section 7.3 report the performance of the passenger-oriented model and the computational efficiency of the proposed algo-

rithm, respectively. 

7.1. Setup 

The case study is performed to a part of the Dutch railways, of which the schematic track layout is shown in Fig. 3 .

The considered network is totally around 128 km long, which has both single-track (23.5 km) and double-track (104.5 km)

railway lines with in total 17 stations. The stations that allow short-turning to both directions are colored in full green,

the stations that prohibit short-turning to both directions are colored in full grey, and the stations that allow (prohibit)

short-turning to one direction are colored in half green (grey). Six train lines operate half-hourly in each direction in the

considered network, of which the scheduled stopping patterns are indicated in Fig. 4 , as well as the terminal stations of
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Train line Terminal

IC800

IC1900 Venlo (Vl)

IC3500

SPR6400 Wt and Eindhoven (Ehv)

SPR9600 Dn

SPR32200 Roermond (Rm)

Fig. 4. The train lines operating in the considered network. 

Table 7 

Parameter settings. 

Parameter Value Parameter Value Parameter Value Parameter Value 

� trans 
e,e ′ 5 min β trans 10 min D 25 min t stop 30 s 

� max 
trans 30 min βvehicle 1 R 25 min T stop 300 s 

� max 
wait 

30 min βwait 2.5 μ 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

these train lines in the considered network. The rolling stock circulations at the short-turning and terminal stations of

trains are both dealt with. We distinguish between intercity (IC) and local (called sprinter (SPR) in Dutch) train lines. All

experiments were carried out in MATLAB on a desktop with Intel Xeon CPU E5-1620 v3 at 3.50 GHz and 16 GB RAM. The

solver GUROBI release 7.0.1 was used either to solve the passenger-oriented timetable rescheduling model directly or called

by the iterative solution method to solve the model iteratively. 

The parameters used to construct an event-activity/transition network � trans 
e,e ′ , � max 

trans and � max 
wait 

are set to 5 min, 30 min

and 30 min, respectively. Recall that � trans 
e,e ′ represents the minimum transfer time, and � max 

trans ( � max 
wait 

) represents the maxi-

mum transfer (waiting) time which a passenger is willing to spend at a station. The maximum delay allowed to a train

departure/arrival D is set to 25 min. The disruption timetable is required to recover to the planned timetable no later than

25 min after the disruption ends: R = 25 . Passengers are assumed to leave the railways if they cannot find paths with less

than two times of their expected generalized travel times within the railways: μ = 2 . The coefficient of waiting time at an

origin/transfer station βwait is set to 2.5 and the coefficient of in-vehicle time βvehicle is set to 1 ( Wardman, 2004 ). The

penalty of one transfer βtrans is set to 10 min ( de Keizer et al., 2012 ). For the iterative solution method to the passenger-

oriented timetable rescheduling model, we set the total computation time limit T stop to 300 s, and the computation time

limit of each iteration t stop to 30 s. Table 7 lists the parameter values. 

We consider four cases with increasing disruption length. We consider the passengers whose arrival times at the origin

stations are during the period of [ t start , t end + R ] . Note that although passengers who started travel before t start and are still

travelling when the disruption starts are not considered in the case study, they could be handled still. This requires a pre-

processing step to determine the first arrival stations of these passengers during the disruption, and then given as input to

the proposed passenger-oriented model, of which the formulation does not need to change. We form the passengers who

share the same expected journey in terms of the planned timetable into the same group g ∈ G . The number of passenger

groups | G | varies with the disruption starting/ending time and the required recovery time length. Table 8 indicates the total

numbers of passenger groups and the total numbers of passengers considering different disruption durations but the same

required recovery time length 25 min. To show the size of the problem considered in each cases, the numbers of continuous

variables, binary variables, and constraints are also given, which are associated with disrupted section Mz-Hze considering

� = 10 as an example. Note that he numbers of passengers in different groups can be different. In each case of Table 8 ,

the largest group contains 126 passengers, while the smallest group contains 1 passenger only. Fig. 5 shows the numbers of

passenger groups considering different group sizes. Recall that n g refers to the number of passengers in a group g . In each

case, most groups contain less than 10 passengers, and few groups contain 30 passengers or more. 
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Table 8 

Disruption and passenger demand cases. 

Case Disruption Disruption Travel starting Total number of Total number of Continuous ∗ Binary ∗ Constraints ∗

start end period passenger groups | G | passengers 
∑ 

g∈ G n g variables variables 

I 8:00 8:30 [8:00,8:30 + 00:25] 334 2,557 189,017 215,783 1,240,814 

II 8:00 9:00 [8:00,9:00 + 00:25] 477 3,320 314,752 342,325 2,011,421 

III 8:00 9:30 [8:00,9:30 + 00:25] 618 3,897 437,067 465,452 2,761,470 

IV 8:00 10:00 [8:00,10:00 + 00:25] 728 4,357 538,420 567,622 3,384,069 

∗The variables and constraints associated with disrupted section Mz-Hze considering �= 10 

Fig. 5. Passenger group sizes. 

Table 9 

Notation relevant to a passenger-oriented (operator-oriented) solution. 

Notation Description 

z o The objective of the OOTR model: minimizing train cancellations and arrival delays 

z o = 

∑ 

e ∈ E plan 
ar 

w c c e + d e 

w c The penalty of cancelling a train service between neighbouring stations: w c = 100 

z p The objective of the POTR model: minimizing the generalized travel times over all passengers 

z p = 

∑ 

g∈ G 
∑ 

a ∈ A ∗g n g w 

g 
a 

z ∗o The objective value of the optimal rescheduled timetable obtained by the OOTR model 

˜ z o The resulting train cancellations and arrival delays of a rescheduled timetable obtained by the POTR model 

˜ z o = 

∑ 

e ∈ E plan 
ar 

w c c e + d e , 

˜ z p The resulting generalized travel times over all passengers of a rescheduled timetable obtained by the OOTR model 

˜ z p = 

∑ 

g∈ G 
∑ 

a ∈ A ∗g n g w 

g 
a 

� The maximum allowed deviation of ˜ z o from z ∗o 

 

 

 

 

 

 

 

 

 

 

 

 

 

We consider section Mz-Hze (between Eindhoven and Roermond) to be completely blocked during the considered four

disruption periods (see Table 8 ), respectively. The operator-oriented timetable rescheduling model (OOTR) is adopted from

Zhu and Goverde (2019c) , which uses the objective z o of minimizing train cancellations and arrival delays in this paper.

The OOTR is used to solve each disruption case to obtain optimal z ∗o . The passenger-oriented timetable rescheduling model

(POTR), which uses the objective z p of minimizing generalized travel times, is used to solve each disruption case by requiring

that the resulting train cancellations and arrival delays cannot exceed z ∗o + �, where � ≥ 0. The resulting generalized travel

times of the rescheduled timetables obtained by the OOTR model are evaluated and denoted by ˜ z p . The resulting train

cancellations and arrival delays of the rescheduled timetables obtained by the POTR model are evaluated and denoted by

˜ z o . Table 9 gives the notation relevant to a passenger-oriented (operator-oriented) solution. Note that the penalty w c of

cancelling one service is set to 100. 

7.2. The performance of the passenger-oriented timetable rescheduling model 

Table 10 shows the optimal solutions obtained from both the operator-oriented and the passenger-oriented timetable

rescheduling models by using Gurobi directly (i.e. not using the AFaO algorithm). Due to different objectives, the optimality

gap of a solution obtained by the operator-oriented model is different from the optimality gap of a solution obtained by the

passenger-oriented model, and thereby we use ‘O-gap ( z o )’ and ‘O-gap ( z p )’ to distinguish them. In each case, the passenger-
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Table 10 

General results by using a solver directly: disrupted section Mz-Hze. 

Case Operator-oriented (solver) Passenger-oriented (solver): �= 10 

z o ˜ z p Time O-gap ( z o ) ˜ z o z p Time O-gap ( z p ) z o − ˜ z o z p − ˜ z p 
[min] [min] [sec] [%] [min] [min] [sec] [%] [min] [min] 

I 848 116,211 5 0.00 857 110,757 28 0.00 9 -5,454 

II 2,742 161,057 7 0.00 2,752 154,568 150 0.00 10 -6,489 

III 4,639 195,944 10 0.00 4,649 189,322 370 0.00 10 -6,622 

IV 6,536 221,773 12 0.00 6,546 216,481 250 0.00 10 -5,292 

Table 11 

Train-related results by using a solver directly: disrupted section Mz-Hze. 

Case Operator-oriented (solver) Passenger-oriented (solver): �= 10 

# Cancelled Train arrival # Extra # Skipped # Cancelled Train arrival # Extra # Skipped 

services delays [min] stops stops services delays [min] stops stops 

I 6 248 3 2 6 257 6 4 

II 24 342 3 2 24 352 6 6 

III 42 439 3 2 42 449 6 7 

IV 60 536 4 2 60 546 5 8 

Table 12 

Passenger-related results by using a solver directly: disrupted section Mz-Hze. 

Case Operator-oriented (solver) Passenger-oriented (solver): �= 10 

# Dropped # Dropped Total in-vehicle Total wait Total # Dropped # Dropped Total in-vehicle Total wait Total 

groups passengers time [min] wait [min] # transfer groups passengers time [min] time [min] # transfer 

I 21 228 45,205 21,975 85 18 ↓ 200 ↓ 45,824 ↑ 20,004 ↓ 83 ↓ 
II 54 593 49,527 27,654 92 45 ↓ 514 ↓ 51,714 ↑ 25,683 ↓ 91 ↓ 
III 88 820 53,612 31,544 165 81 ↓ 800 ↓ 54,126 ↑ 29,145 ↓ 164 ↓ 
IV 126 1,028 56,710 33,754 176 123 ↓ 1,025 ↓ 56,685 ↓ 31,723 ↓ 176 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

oriented solution reduced generalized travel times ( z p − ˜ z p ) by over 50 0 0 min with at most 10 min additional train delay

( ̃ z o − z o ) than the optimal operator-oriented solution when setting � to 10 in the passenger-oriented model. 

Table 11 gives train-related results in more detail. In each case, the numbers of cancelled services were the same in the

operator-oriented and the passenger-oriented solutions. This is because the deviation of a passenger-oriented solution from

the optimal operator-oriented solution cannot exceed 10 ( � = 10 ) while the penalty of cancelling one train service is set

to 100 ( w c = 100). The resulting total train arrival delays were different in the operator-oriented and the passenger-oriented

solutions, as well as the numbers of extra stops and skipped stops. The number of both extra stops and skipped stops in

a passenger-oriented solution was more than in the operator-oriented solution of the same case, because larger operation

deviation was allowed in the passenger-oriented model which thereby made more changes on train stopping patterns to

reflect on passenger needs. We want to emphasize that in the passenger-oriented model the decisions of adding or skipping

stops were made with the aim of reducing generalized travel times, whereas in the operator-oriented model these decisions

were made with the aim of reducing train cancellations and arrival delays. For example in the operator-oriented model an

extra stop will be added to a train at the station where this train was originally planned to pass through but now has

to dwell at this station for waiting on platform capacity to be released in a downstream station where this train will be

short-turned. 

Table 12 gives passenger-related results in more detail, where the symbol ↓ ( ↑ ) is used to denote the decrease (in-

crease) in a passenger-oriented solution compared to the operator-oriented solution of the same case. We can see that

compared to the operator-oriented solutions, the passenger-oriented solutions resulted in less passenger groups leaving the

railways, and the total number of passengers in these groups was also smaller. The passenger-oriented solutions also helped

to shorten passenger waiting times at stations in all cases and reduce the number of transfers in most cases. In cases I-III,

the passenger-oriented solutions resulted in longer passenger in-vehicle times, because in the passenger-oriented objective 

waiting times at stations were penalized 2.5 times of in-vehicle times considering passenger preferences ( βwait = 2.5 and

βvehicle = 1). Under this circumstance, the passenger-oriented model tends to delay the departures of specific trains at spe-

cific stations, which is beneficial to passengers who could now catch the train. The waiting times of these passengers were

reduced by earlier boarding because of the delayed train departures, whereas other passengers who were on-board the

delayed trains experienced longer in-vehicle times. 

To investigate the impact of maximum allowed operation deviation � on the solutions obtained by the passenger-

oriented model, we performed 10 more experiments on case IV using different values of �. The results are shown in Fig. 6 .

Each green triangle indicates the performance of a solution obtained by the passenger-oriented model using a specific �,
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Fig. 6. The optimal passenger-oriented solutions for case IV under different settings of �: disrupted section Mz-Hze. 

Fig. 7. The optimal operator-oriented rescheduling solution for case IV: disrupted section Mz-Hze. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and each blue circle indicates the performance of the optimal solution obtained by the operator-oriented model. On the one

hand, with the increase of � the passenger-oriented model resulted in larger weighted train cancellations and train arrival

delays ( ̃ z o ). The number of cancelled services always remained the same while train arrival delays increased gradually with

the growth of �. More extra stops and skipped stops were created under larger �. On the other hand, with larger operation

deviation allowed the passenger-oriented model resulted in shorter generalized travel times ( z p ). The generalized travel time

of a passenger is the sum of the weighted waiting time, in-vehicle time and the number of transfers. It can be seen that

larger � led to shorter waiting times but longer in-vehicle times, whereas the number of transfers almost remained the

same. This is because waiting time is perceived 2.5 times of the same length of in-vehicle time by passengers so that the

model tends to reduce the waiting times of some passengers at the expense of longer in-vehicle times of other passengers.

Under whichever �, the number of passengers who chose to leave the railways was always smaller in a passenger-oriented

solution compared to the operator-oriented solution. 

We take case IV as an example to show the operator-oriented solution in Fig. 7 , and the passenger-oriented solutions

of � = 10 and � = 30 in Fig. 8 and Fig. 9 , respectively. The grey rectangle indicates the time-distance disruption window,

the dashed (dotted) lines represent the original scheduled services that were cancelled (delayed), the solid lines represent

the services scheduled in the rescheduling solution, and the red triangles (circles) represent the extra (skipped) stops. The
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Fig. 8. The optimal passenger-oriented rescheduling solution for case IV: disrupted section Mz-Hze and � = 10 . 

Fig. 9. The optimal passenger-oriented rescheduling solution for case IV: disrupted section Mz-Hze and � = 30 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

differences of train stopping patterns in each of the passenger-oriented solutions ( Fig. 8 or Fig. 9 ) compared to the operator-

oriented solution ( Fig. 7 ) are highlighted by dashed black rectangles. Because station Hze lacks turning facilities, downstream

trains from line SPR6400 (in dark blue) and line IC800 (in yellow) were both short-turned at an earlier station Gp. Because

station Mz lacks turning facilities for short-turning upstream trains, an upstream train from line IC3500 (in pink) had to

be delayed until the disruption ended, and a train from line SPR6400 (in dark blue), which reached its destination (station

Wt) around 8:00, had to wait until the disruption ended to operate in opposite direction. These happened in both the

operator-oriented solution ( Fig. 7 ) and the passenger-oriented solutions ( Fig. 8 and Fig. 9 ). 

Compared to the operator-oriented solution ( Fig. 7 ), the passenger-oriented solution of � = 10 ( Fig. 8 ) added 1 more

extra stop to an upstream train from line IC3500 (in pink) at station Gp around 10:15, skipped 6 more scheduled stops of

two downstream trains from line SPR9600 (in light blue) at stations Hm, Hmh, and Hmbv, and delayed more train services,

e.g., the departures of two downstream trains from line SPR9600 (in light blue) at station Hmbh. These departure delays

reduced the waiting times of the passengers who arrived at station Hmbh just after the original departure times of these

two trains and originally had to board other trains departing later. Due to the delayed departures, the passengers who

were on-board these two trains at station Hmbh would experience arrival delays at their destinations so that the model

skipped the following stops at stations Hm, Hmh and Hmbv to avoid the destination arrival delays of these passengers.

Compared to these on-board passengers, there were much fewer passengers who would board/leave these two trains at

station Hm, Hmh or Hmbv, which was another reason why the model decided to skip these stops. Due to the additional

stop at station Gp around 10:15 in the passenger-oriented solution of � = 10 ( Fig. 8 ), one passenger group (including six

passengers) that arrived at station Gp at 10:00 and expected to station Ehv benefitted from earlier boarding by shorter
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generalized travel times, and another three passenger groups chose not to leave the railways. These three groups include (1)

one passenger who arrived at station Rm at 9:00, (2) one passenger who arrived at station Wt at 9:15, and (3) one passenger

who arrived at station Rm at 9:45, whose destinations were all station Gp. Given the passenger-oriented solution ( Fig. 8 ),

these passengers all took the same train from line IC3500 (in pink), which additionally stopped at station Gp around 10:15.

Without this stop (as in the operator-oriented solution shown by ( Fig. 7 ), these passengers would have to take an upstream

train to station Ehv first and then transfer to another downstream local train from line SPR6400 (in dark blue) to reach the

destination Gp. This would cost much longer than what these passengers would tolerate, which is why they were observed

to leave the railways under the operator-oriented solution. Recall that we assume the maximum generalized travel time a

passenger is willing to accept under a rescheduled timetable is twice of his/her expected generalized travel time in terms

of the planned timetable. 

More differences on train stopping patterns from the operator-oriented solution ( Fig. 7 ) were observed in the passenger-

oriented solution of � = 30 ( Fig. 9 ) due to the increase of �, which helped to shorten generalized travel times further. For

example, the four more extra stops (highlighted by dashed black rectangles in Fig. 9 ) helped to shorten the generalized travel

times of 31 passengers. Eight of these passengers were observed to leave the railways under the operator-oriented solution

( Fig. 7 ) or the passenger-oriented solution of � = 10 ( Fig. 8 ), who however chose to travel by train under the passenger-

oriented solution of � = 30 ( Fig. 9 ). When � = 10 the passenger-oriented solution ( Fig. 8 ) skipped two scheduled stops

at station Wt as in the operator-oriented solution ( Fig. 7 ) in order to enable the additional train delay below the current

�. When increasing � to 30 the passenger-oriented solution ( Fig. 9 ) kept these two scheduled stops although leading to

more train delay that was acceptable under the current �. By keeping these two scheduled stops at station Wt, two more

passenger groups chose to not leave the railways compared to either the operator-oriented solution ( Fig. 7 ) or the passenger-

oriented solution of � = 10 ( Fig. 8 ). These two passenger groups include (1) 15 passengers who arrived at station Ehv at

9:30, and (2) 14 passengers who arrived at station Ehv at 9:45, whose destinations were all station Wt. 

These results indicate that the proposed passenger-oriented timetable rescheduling model is able to provide better alter-

native train services during disruptions with shorter generalized travel times and also helps railway operators to keep more

passengers within the railways. By allowing only 10 min additional train delay than the optimal operator-oriented solution,

the passenger-oriented model reduced generalized travel times by thousands of minutes, which is a significant improvement

to passengers. By allowing more operation deviations from the optimal operator-oriented solution, the passenger-oriented

model can reduce generalized travel times further. 

Compared to the operator-oriented model, the passenger-oriented model is able to find better rescheduling solutions

to passengers while the needed computation times are longer. From Table 10 we know that by using a solver directly an

optimal solution can be obtained from the operator-oriented model in seconds, while obtaining an optimal solution from

the passenger-oriented model took 370 s in the worst case. With the increase of disruption duration, more passenger groups

need to be taken into account, which is why in case I (0.5h disruption) the passenger-oriented model only took 28 s to get

an optimal solution, but in case II (1h disruption), case III (1.5h disruption), or case IV (2h disruption) it consumed longer

time to generate an optimal solution (see Table 10 ). Although case III considered a half-hour shorter disruption than case IV,

it took a longer computation time than case IV. This is because the disruption durations in both cases are not significantly

different and the computation time can be affected by the starting/ending time of a disruption. 

7.3. The performance of the AFao algorithm 

This section explores the performance of the AFaO algorithm under different parameter settings, including the value of

n new 

( Section 7.3.1 ), the value of � ( Section 7.3.2 ), the disrupted locations ( Section 7.3.3 ), the sorting method of passenger

groups G ( Section 7.3.4 ), and the value of μ ( Section 7.3.5 ). How the solution quality evolves over iterations is investigated

in Section 7.3.6 . Note that except for Section 7.3.4 , passenger groups G are sorted in descending order according to the

expected total generalized travel times of all passengers in a group in terms of the planned timetable. In that sense, a group

g with a larger value of n g T 
plan 

g will be handled in an earlier iteration. 

7.3.1. The influence of n new 

on the AFaO algorithm 

To solve the passenger-oriented model in a more efficient way, we proposed an AFaO algorithm in Section 6 , which is

used here to solve the passenger-oriented model for the same cases considered in Table 10 . The results from the AFaO algo-

rithm are indicated in Table 13 , in which n new 

refers to the number of passenger groups newly considered in an iteration.

I need and I finish refer to the number of required iterations and the number of completed iterations within T stop , respec-

tively. Recall that we set the computation time limit of each iteration to 30 s and the total computation limit to 300 s.

Table 13 showed that when n new 

= 10 the AFaO algorithm terminated when reaching the required computation limit in case

III or IV, whereas when n new 

= 50 or 100 the required iterations were all completed within the required computation limit

in each case. It was observed that with more passenger groups newly considered in an iteration, the total computation time

was shorter and the obtained solution was also better. This is because larger n new 

requires less iterations, at each of which

the quality of the solution obtained can also be improved. For each disrupted section the appropriate value of n new 

to obtain

a good solution in short time can be different. For disrupted section Mz-Hze, n new 

= 100 is better than n new 

= 50 while we

found that for disrupted section Hze-Gp n new 

= 50 is better than n new 

= 100 . This will be introduced later. 
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Table 13 

Results of applying the AFaO algorithm and the solver to the passenger-oriented model: disrupted section Mz-Hze, and � = 10 . 

AFaO algorithm 

Case n new = 10 n new = 50 n new = 100 

z p I need I finish Time O-gap ( z p ) z p I need I finish Time O-gap ( z p ) z p I need I finish Time O-gap ( z p ) 

[min] [sec] [%] [min] [sec] [%] [min] [sec] [%] 

I 112,140 34 34 107 1.23 110,770 7 7 33 0.01 110,758 4 4 29 0.00 

II 156,311 48 48 225 1.12 155,408 10 10 70 0.54 154,668 5 5 58 0.06 

III 191,078 62 50 300 0.92 189,493 13 13 120 0.09 189,500 7 7 93 0.09 

IV 217,262 73 48 300 0.36 217,018 15 15 155 0.25 217,018 8 8 107 0.25 

Solver 

I 110,757 - - 28 0.00 110,757 - - 28 0.00 110,757 - - 28 0.00 

II 154,568 - - 150 0.00 × - - 70 - × - - 58 - 

III 195,944 - - 300 3.38 × - - 120 - × - - 93 - 

IV 216,491 - - 250 0.00 × - - 155 - × - - 107 - 

× : no feasible solution 

Table 14 

The passenger-oriented solutions for case IV under different �: disrupted section Mz-Hze. 

Solver AFaO algorithm ( n new = 100) 

� z p Time O-gap ( z p ) z p I need I finish Time O-gap ( z p ) 

[min] [sec] [%] [min] [sec] [%] 

0 221,704 213 0.00 221,704 8 8 104 0.00 

10 216,481 250 0.00 217,018 8 8 107 0.25 

20 213,693 246 0.00 214,010 8 8 110 0.15 

30 212,321 472 0.00 212,365 8 8 124 0.02 

40 211,331 640 0.00 211,656 8 8 132 0.15 

50 210,439 527 0.00 210,986 8 8 131 0.26 

60 209,649 834 0.00 210,038 8 8 131 0.19 

70 209,175 1,291 0.00 209,369 8 8 128 0.09 

80 208,835 1,935 0.00 209,236 8 8 136 0.19 

90 208,477 2,212 0.00 208,842 8 8 134 0.17 

100 208,129 4,101 0.00 208,312 8 8 135 0.09 

Average 1,156 0.00 Average 125 0.14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For disrupted section Mz-Hze, under whichever setting of n new 

the optimality gaps of the obtained solutions were all

small, among which the worst case was 1.23% and the best case was 0.00%. We use the computation time of the AFaO

algorithm as the computation time limit for the solver, and the results are shown in the lower part of Table 13 . It is found

that when setting n new 

= 10 in most cases the AFaO algorithm took longer times than the solver and the solutions by

the AFaO were slightly worse than the ones by the solver. However when setting n new 

= 50 or 100, in most cases the AFaO

algorithm took very short time to find optimal or near-optimal solutions, while the solver cannot even find feasible solutions

within these times. Besides, the computation times of the AFaO algorithm under n new 

= 50 or 100 were mostly much shorter

than the times required by the solver to compute optimal solutions. Hence for our case, setting n new 

at least to 50 is good

to ensure the computation efficiency and the solution quality by the proposed AFaO algorithm. 

7.3.2. The influence of � on the AFaO algorithm 

In addition, we used case IV as an example to investigate the computational efficiency of the AFaO algorithm when

allowing larger maximum operation deviation in the passenger-oriented model. 

Table 14 shows the results by using a solver directly and the AFaO algorithm to solve the passenger-oriented model

under different values of �. The time needed to find an optimal solution by a solver directly became longer with the

increase of �, because a larger solution space needed to be explored. On average, the solver took 1, 156 s to find an optimal

solution, which would not be acceptable for real-time application. In contrast, the AFaO algorithm with n new 

= 100 took

125 s on average to find a near-optimal solution. It was observed that the computation time needed by the AFaO algorithm

was much less sensitive to the increase of � compared to the solver. This indicates that if � is increased, the solution

space is larger, and thus the proposed algorithm has better performance than the solver. The passenger-oriented solutions

of � = 10 and � = 30 by the AFaO algorithm are shown in Fig. 10 and Fig. 11 , respectively. The dashed rectangles highlight

the differences on train stopping patterns compared to the operator-oriented solution ( Fig. 7 ). Compared to the optimal

passenger-oriented solution ( Fig. 8 or Fig. 9 ), the passenger-oriented solution by the AFaO algorithm ( Fig. 10 or Fig. 11 )

was slightly different on the stopping patterns of trains that were originally planned to run through the disrupted section.

This is because the passengers who planned to travel through the disrupted section were handled at later iterations due to
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Fig. 10. The sub-optimal passenger-oriented solution by the AFaO algorithm for case IV: disrupted section Mz-Hze and � = 10 . 

Fig. 11. The sub-optimal passenger-oriented solution by the AFaO algorithm for case IV: disrupted section Mz-Hze and � = 30 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

their shorter expected generalized travel times in this case, while it was observed that the AFaO algorithm determined the

solution mainly according to the needs of passengers handled at earlier solutions. 

7.3.3. The influence of disrupted locations on the AFaO algorithm 

The previous experiments were carried out on the same disrupted section Mz-Hze. To investigate the performance of the

passenger-oriented rescheduling model and the AFaO algorithm on other disrupted locations, we performed experiments

to all sections shown in Fig. 4 . In each of these experiments, the maximum allowed deviation from the optimal operator-

oriented solution � is set to 10 in the passenger-oriented model, and the number of passenger groups newly considered

in each iteration n new 

is set to 100 in the AFaO algorithm. Table 15 shows the resulting generalized travel times ˜ z p of the

optimal operator-oriented solutions, and the resulting generalized travel time z p of the optimal passenger-oriented solutions

obtained by the solver directly and by the AFaO algorithm. It is observed that an optimal operator-oriented solution was

obtained quickly for each disrupted section, but the resulting total generalized travel time is longer than either the one of

the optimal passenger-oriented solution or the one of the passenger-oriented solution from the AFaO algorithm. We use ↓ to

highlight the decrease in a passenger-oriented solution compared to the corresponding optimal operator-oriented solution.

The computation time of generating an optimal passenger-oriented solution by the solver directly varied across disrupted

sections. Disrupted section Hrt-Br took the shortest computation time of 41 s, while disrupted section Wt-Mz took the

longest computation time of 5, 6 6 6 s. The reason is relevant to the number of train lines that were originally scheduled to

run through a disrupted section and the starting/ending time of the considered disruption, which both affect the solution

space to be explored. 
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Table 15 

Results of different disrupted sections considering case IV. 

Operator-oriented Passenger-oriented: �= 10 

Disrupted (solver) Solver AFaO algorithm ( n new = 100) 

section ˜ z p Time O-gap ( z o ) z p Time O-gap ( z p ) z p I need I finish Time O-gap ( z p ) z p − ˜ z p 
[min] [sec] [%] [min] [sec] [%] [min] [sec] [%] [min] 

Rm-Wt 217,814 13 0.00 209,801 ↓ 204 0.00 211,040 ↓ 8 8 124 0.59 -6,774 

Wt-Mz 228,131 12 0.00 214,981 ↓ 5,666 0.00 224,217 ↓ 8 1 300 4.12 -3,914 

Mz-Hze 221,773 12 0.00 216,481 ↓ 250 0.00 217,018 ↓ 8 8 107 0.25 -4,755 

Hze-Gp 223,649 12 0.00 218,086 ↓ 534 0.00 220,855 ↓ 8 8 132 1.25 -2,794 

Gp-Ehv 230,820 12 0.00 225,795 ↓ 302 0.00 225,858 ↓ 8 8 102 0.03 -4,962 

Ehv-Hmbv 241,442 9 0.00 237,066 ↓ 388 0.00 237,518 ↓ 8 8 102 0.19 -3,924 

Hmbv-Hmh 241,508 9 0.00 236,809 ↓ 343 0.00 237,316 ↓ 8 8 100 0.21 -4,192 

Hmh-Hm 241,676 9 0.00 236,854 ↓ 353 0.00 237,428 ↓ 8 8 99 0.24 -4,248 

Hm-Hmbh 231,575 9 0.00 226,125 ↓ 253 0.00 227,150 ↓ 8 8 74 0.45 -4,425 

Hmbh-Dn 233,161 9 0.00 227,983 ↓ 252 0.00 228,858 ↓ 8 8 85 0.38 -4,303 

Dn-Hrt 209,022 9 0.00 201,304 ↓ 49 0.00 201,439 ↓ 8 8 76 0.07 -7,583 

Hrt-Br 205,075 9 0.00 197,694 ↓ 41 0.00 198,523 ↓ 8 8 69 0.42 -6,552 

Br-Vl 203,624 9 0.00 196,495 ↓ 57 0.00 197,616 ↓ 8 8 79 0.57 -6,008 

Vl-Tg 195,050 6 0.00 189,402 ↓ 125 0.00 189,402 ↓ 8 8 60 0.00 -5,648 

Tg-Rv 193,861 6 0.00 188,213 ↓ 46 0.00 188,213 ↓ 8 8 51 0.00 -5,648 

Rv-Sm 193,492 6 0.00 187,640 ↓ 67 0.00 187,988 ↓ 8 8 52 0.19 -5,504 

Sm-Rm 192,653 6 0.00 187,005 ↓ 227 0.00 187,005 ↓ 8 8 64 0.00 -5,648 

Average 217,902 9 0.00 211,631 ↓ 539 0.00 212,791 ↓ – – 99 0.54 -5,075 

Table 16 

Sorting methods of passenger groups G . 

Method No. Sorting element Description Sorting Order 

1 n g T 
plan 

g The total expected generalized travel times of all passengers in a group g Descending 

2 n g The number of passengers in a group g Descending 

3 t ori 
g The arrival time at the origin of group g Ascending 

4 d ori 
g The expected departure time from the origin of group g Ascending 

5 ˜ t dest 
g The expected arrival time at the destination of group g Ascending 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 15 we see that in all disrupted sections, the AFaO algorithm found better solutions in terms of generalized

travel times than the corresponding operator-oriented solutions. It is observed that the passenger-oriented solution by the

AFaO algorithm reduced generalized travel times by thousands of minutes in each disrupted section, which is indicated by

z p − ˜ z p . The gap of a solution from the AFaO algorithm to the corresponding optimal passenger-oriented solution was 0.54%

on average. The average computation time of obtaining a passenger-oriented solution from the AFaO algorithm was 99 s. In

16 out of 17 disrupted sections, the required iterations were completely finished with at most 132 s in total. An exception

was disrupted section Wt-Mz, for which only one iteration was finished and the corresponding computation time reached

the required computation time limit: 300 s. This is because disrupted section Wt-Mz was the most difficult section to be

solved and thus including 100 new passenger groups in each iteration was still computation-consuming to the passenger-

oriented model. 

7.3.4. The influence of the sorting method of G on the AFaO algorithm 

The sequence of passenger groups handled in the AFaO algorithm affects the solution quality. In this section, we in-

troduced five methods of deciding the sequence of passenger groups as shown in Table 16 . Each of these methods sorts

passenger groups G according to a specific element in a specific order. For example, method 1 sorts passenger groups G in

descending order regarding the total expected generalized travel times of all passengers in a group g ∈ G . In that sense, a

group g with a larger value of n g T 
plan 

g will be handled at an earlier iteration. The values of the sorting elements are esti-

mated according to the expected travel paths of passengers in terms of the planned timetable. The expected travel paths

are obtained by the passenger assignment model of Zhu and Goverde (2019a) . 

The cases solved by the proposed algorithm in Section are all based on the sorting method 1. In this section, we apply

the other four sorting methods to the same cases shown in Table 15 of Section 7.3.3 , and handle 100 new passenger groups

in each iteration of the AFaO algorithm (i.e. n new 

= 100 ). The results are shown in Fig. 12 , where each subfigure indicates the

objective values (generalized travel times) of the passenger-oriented solutions by the proposed algorithm based on the five

sorting methods for a specific disrupted section. Note that by whichever sorting method, the obtained passenger-oriented

solution is better than the operator-oriented solution in terms of the generalized travel times. 

From Fig. 12 we can see that handling passenger groups with larger expected generalized travel times (method 1) or

larger passenger volumes (method 2) first resulted in the best solutions in most cases except in disrupted sections Wt-Mz,

Mz-Hze, and Hze-Gp. In disrupted section Wt-Mz, handling passenger groups with earlier expected departure times from
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Fig. 12. The objective values (generalize travel times) of the passenger-oriented solutions by the AFaO algorithm based on different sorting methods of G 

for each disrupted section ( n new = 100 ). 

Fig. 13. The size n g of each group ordered by different sorting methods when n new = 100 . 

 

 

 

 

 

 

 

 

the origins (method 4) first resulted in the best solution. In disrupted sections Mz-Hze, and Hze-Gp, handling passenger

groups with earlier expected destination arrival times (method 5) first resulted in the best solution. 

These results indicate that the group size ( n g ) is an important element to be considered when deciding the sequence of

passenger groups handled by the proposed algorithm, although in a few situations other elements might be more important.

In general, it is suggested to include larger passenger groups at earlier iterations in the proposed algorithm. Fig. 13 indicates

the size n g of each group ordered by different sorting methods. The largest n g is 126, while the smallest n g is 1. The red

vertical lines separate the groups newly considered in different iterations ( n new 

= 100 ). From left to right is iteration 1 to 8.

There are 728 groups in total. 

7.3.5. The influence of μ on the AFao algorithm 

In previous experiments, the value of μ is set to 2, and in this section we increased the value of μ to see how that

would affect the results by the AFaO algorithm. Recall that μ determines the maximum generalized travel times accepted

by passengers during disruptions. Larger μ means longer acceptable generalized travel times. 
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Table 17 

Results under different settings of μ by the AFaO algorithm: disrupted section Mz-Hze, and � = 10 . 

Case n new μ Disrupted # Dropped Total number %Dropped Time 

section passengers of passengers passengers [sec] 

IV 100 2 Mz- 

Hze 

1,028 4,357 23.6 107 

2.5 994 4,357 22.8 138 

3 920 4,357 21.1 185 

3.5 866 4,357 19.9 229 

4 604 4,357 13.9 258 

Table 18 

Results of different disrupted locations under the same setting of μ by the AFaO algorithm: � = 10 . 

Case n new μ Disrupted # Dropped Total number %Dropped Time 

section passengers of passengers passengers [sec] 

IV 100 2 Mz-Hze 1028 4,357 23.6 107 

Dn-Hrt 508 4,357 11.7 76 

Br-Vl 543 4,357 12.5 79 

Sm-Rm 261 4,357 6.0 64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 17 indicates the results under different settings of μ by applying the AFaO algorithm to disrupted section Mz-Hze

considering case IV of Table 8 . From Table 17 we find that increasing the value of μ does not have a large impact on the

computational complexity. The computational time grows almost linearly with the increase of μ. The number/percentage of

dropped passengers slightly decreases with increasing μ for μ ≤ 3.5. A big decrease on the number/percentage of dropped

passengers was observed for μ = 4 . In railway systems in which there are parallel alternative transportation options, the

disrupted rail demand can be largely served by other transport means. For example in Melbourne, Australia, half of the

disrupted railway demand will be served by bus services implying that 50% passengers will leave the railways ( Wang et al.,

2014 ). In the Netherlands, the train operators provide bus shuttle services during railway disruptions. We set μ = 2 , under

which the resulting percentage of dropped passengers is up to 23.6%. In fact, the number/percentage of passengers leaving

the railways is more sensitive to the disrupted locations rather than the value of μ. Table 18 shows that under the same

setting of μ = 2 the percentage of passengers leaving the railways ranges from 6% to 23.6% across disrupted sections. More

accurate values of μ can be obtained by analysing passenger data during disruptions. This parameter can then be adjusted

accordingly. 

7.3.6. The quality of a solution obtained at each iteration 

The quality of a solution obtained by the AFaO algorithm is determined by the new passenger groups considered at

earlier iterations. In this section, we take disrupted sections Wt-Mz, Mz-Hze and Hze-Gp as examples to show how the

solution quality evolves over iterations. Passenger groups G are sorted in descending order according to the total expected

generalized travel times of all passengers in a group (sorting method 1). 

Disrupted section Wt-Mz is the most difficult case as shown in Table 15 , which was solved by the proposed algorithm

with only one of the 8 required iterations completed within the time limit of 300 s. Fig. 14 shows the iterative solutions

of disrupted section Wt-Mz by setting n new 

to 50 and 100, respectively. For each solution computed in an iteration, we

evaluated the resulting generalized travel times of all passengers. The operator-oriented solution was also indicated for

comparison. The x-axis refers to the iteration number, and the y-axis refers to generalized travel times. When n new 

= 100,

only one iteration was completed due to reaching the total computation time limit of 300 s, while the obtained passenger-

oriented solution was still better than the operator-oriented solution. When n new 

= 50, the required 15 iterations were all

completed. This indicates that for a disruption case that is difficult to be solved using a smaller value of n new 

helps to

find a better solution quickly. This shows that the proposed algorithm provides a tool to tune the setting of n new 

to find

a good balance between the solution quality and the computation time. It was observed from Fig. 14 that when n new 

= 50

the passenger-oriented solution by the AFaO algorithm was the same as the operator-oriented solution at the 1st iteration,

but was largely improved in the 2nd and 3rd iterations. From the 4th iteration until the final iteration, the passenger-

oriented solution was barely improved. This indicates that the quality of the final solution obtained by the AFaO algorithm

is mainly determined by earlier iterations. This is because the path choices of passenger groups who have already been

considered at an earlier iteration were fixed in the AFaO algorithm at the following iterations where new passenger groups

were included but reducing their generalized travel times may increase the ones of earlier considered passenger groups so

that very few/none schedule adjustments were made to avoid affecting earlier considered passengers. Recall that in the case

study the passenger groups with larger expected generalized travel times are considered at earlier iterations. 

We also take disrupted section Mz-Hze and disrupted section Hze-Gp as two more examples to explore the performance

of the AFaO algorithm. Fig. show the relevant results, respectively. It is observed that in both disrupted sections, the quality

of the passenger-oriented solutions by the AFaO algorithm are mainly determined by earlier iterations when n new 

= 50 or

100, and are all better than the corresponding operator-oriented solutions. In disrupted section Mz-Hze ( Fig. 15 ), a stable
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Fig. 14. Results for disrupted section: Wt-Mz ( �= 10). 

Fig. 15. Results for disrupted section: Mz-Hze ( �= 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

passenger-oriented solution was obtained after 1 iteration when n new 

= 100, and after 2 iterations when n new 

= 50. Here,

we describe a solution as stable when no/few improvements were made on this solution in all following iterations in the

AFaO algorithm. The computation time for generating the stable solution was no longer than 30 s when n new 

= 50 or 100.

In disrupted section Hze-Gp ( Fig. 16 ), a stable passenger-oriented solution was obtained after 4 iteration when n new 

= 100,

and after 3 iterations when n new 

= 50. In these two situations, the computation times for generating the stable solutions

were 66 s and 45 s, respectively. It is observed that in disrupted section Hze-Gp the quality of the solution when setting

n new 

to 100 is worse than the quality of the solution when setting n new 

to 50. The reason is when n new 

= 100 the solution

obtained at the 1st iteration was a suboptimal solution, which took 30 s reaching the required computation time limit of an

iteration. The relatively poor quality of the 1st solution affects further improvements in the following iterations. Whereas

when n new 

= 50, the solution obtained at the 1st iteration was an optimal solution, which helps for further improvements in

later iterations. 

The results shown in Section 7.3 indicate that the performance of the AFaO algorithm is relevant to the number of

passenger groups newly considered at an iteration, the computation time limit required at an iteration, the total computation

limit, the disrupted section, and the sorting method of passenger groups G . It is also found that the passenger groups

considered at earlier iterations play an important role in determining the quality of the solution finally obtained by the

AFaO algorithm. In that sense, the computation time of obtaining a high-quality passenger-oriented solution by the AFaO

algorithm can be improved further by only performing a few iterations. 

Recall that this paper assumes that trains have unlimited vehicle capacities. To validate the assumption, we checked the

number of on-board passengers of each non-cancelled train running through each section, and found that the number was
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Fig. 16. Results for disrupted section: Hze-Gp ( �= 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

always below the maximum capacity of the corresponding train. In other words, the capacity of each non-cancelled train

was able to handle all passengers who chose to board the train during the disruption. 

8. Conclusions and future directions 

This paper developed a novel MILP model that integrates timetable rescheduling with passenger reassignment to com-

pute passenger-oriented rescheduled timetables in case of railway disruptions. The objective is minimizing generalized travel

times of passengers, which consist of in-vehicle times, waiting times at origin/transfer stations and the number of transfers.

Multiple dispatching measures were adopted to adjust the timetable with respect to passenger needs, including re-timing,

re-ordering, cancelling, flexible stopping and flexible short-turning trains. An adapted fix-and-optimize algorithm was pro- 

posed to solve the model efficiently, by considering restricted passenger groups at each iteration. 

The passenger-oriented timetable rescheduling model was applied to a part of the Dutch railways, and compared to

an operator-oriented timetable rescheduling model that does not formulate passenger reactions so that the objective is

minimizing train cancellations and arrival delays. It was observed that the passenger-oriented model was able to shorten

generalized travel times by thousands of minutes with only 10 min more train arrival delay than the optimal operator-

oriented solution. With more operation deviations allowed, the passenger-oriented model is able to shorten generalized

travel times further. When given a passenger-oriented rescheduling solution, more passengers chose to continue their train

travels after the disruption started, compared to an operator-oriented solution for the same disruption case. By the proposed

iterative solution method, high-quality rescheduling solutions were obtained by the passenger-oriented model in up to 300 s.

It was found that the quality of the final solution obtained by the iterative method is mainly determined by the number of

new passenger groups considered at earlier iterations. 

In future, we will apply the passenger-oriented model to a larger railway network, by which the computation time will

increase further as more train services and passengers will be considered. For this situation, the iterative solution method

proposed in this work might also be able to obtain a good solution efficiently as long as representative passenger groups

that determine the solution quality can be identified. Then, only these passenger groups need to be handled. During dis-

ruptions, trains could become crowded due to detouring passengers whose planned trains were cancelled, and then some

passengers would be denied to board specific trains because of lacking capacities. Therefore, we also will take limited ve-

hicle capacity into account to handle both timetable rescheduling and rolling stock rescheduling for providing passengers

with more reliable alternative train services in case of railway disruptions. Besides disruption management, the proposed

passenger-oriented timetable rescheduling model can be applied to disturbance management by few modifications, which

is also promising to be used for improving an existing non-cyclic timetable in terms of generalized travel times. For exam-

ple, because our model formulates flexible stopping it can be used to determine the planned train stopping patterns of a

timetable according to passenger needs. 
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Appendix. Parameters and sets 

Table 19 

Parameters and sets. 

Symbol Description 

head ( a ) The event which activity a starts from 

tail ( a ) The event which activity a directs to 

f e Binary parameter with value 1 indicating that arrival event e is a train destination arrival, and 0 otherwise. 

r e Binary parameter with value 1 indicating that (duplicate) departure event e is a train origin departure, and 0 otherwise. 

In e Set of activities going in event e 

Out e Set of activities going out from event e 

G Set of passenger groups 

G ′ Set of passenger groups that are considered in an iteration in the iterative solution method: G ′ ⊆G 

G new Set of passenger groups that are newly considered in an iteration in the iterative solution method: G new ⊆G ′ 
O g The origin of passenger group g 

D g The destination of passenger group g 

t ori 
g The origin arrival time of passenger group g 

n g The number of passengers in passenger group g 

T plan 
g The expected generalized travel time of passenger group g in terms of the planned timetable 

μT plan 
g The maximum acceptable generalized travel time of passenger group g in terms of a rescheduled timetable: μ ≥ 1 

� min 
trans The minimum transfer time needed at a station 

� max 
trans The maximum transfer time which a passenger would like to spend at a station 

� max 
wait 

The maximum waiting time which a passenger would like to spend at a station 

βwait The multiplier of waiting times perceived by passengers at stations 

βvehicle The multiplier of in-vehicle times perceived by passengers 

β trans The fixed time penalty perceived by passengers on one transfer 

t stop The computation time limit of each iteration in the iterative solution method 

T stop The total computation time limit of the iterative solution method 

n new The number of passenger groups newly considered in each iteration of the iterative solution method 

t start Start time of disruption 

t end End time of disruption 

R The time length required for the planned timetable to be recovered after the disruption ends 

D Maximal allowed delay per event 

M A sufficiently larger number whose value is set to 2880 

M 

∗ A sufficiently larger number whose value is set to βwait M 
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