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Abstract 
We report results from a survey on spreadsheet use and 
experience with textual programming languages (n = 49). 
We find significant correlations between self-reported for-
mula experience, programming experience, and overall 
spreadsheet experience. We discuss the implications of 
our findings for spreadsheet research and end-user pro-
gramming research, more generally. 

Author Keywords 
spreadsheets; programming; expertise; experience; end-
user programming; survey 

CCS Concepts 
•Social and professional topics → Computing liter-
acy; Informal education; •Applied computing → Spread-
sheets; •Human-centered computing → Empirical stud-
ies in HCI; •General and reference → Empirical studies; 

Introduction 
Spreadsheets are an empowering technology; users can 
store, manipulate, and analyse data for their own bene-
fit. Yet there is a wide spectrum of spreadsheet expertise, 
which creates disparities between users. Recent analyses 
have shown that as little as ∼7% of spreadsheets contain 
formulas, suggesting that much spreadsheet use consists 
of little more than data storage and manipulation [2]. 
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Previous work has shown how spreadsheet expertise is ac-
quired in ‘informal, opportunistic, and social’ ways [28] – 
learnt primarily on the job, from informal resources such as 
online fora, and help from colleagues [23]. However, while 
previous work has focused on how the social environment 
can foster the acquisition of spreadsheet expertise, it has 
not explored how the rest of the users’ technical ecosys-
tem may play a role. The workplace as well as the educa-
tion landscape has changed. It is increasingly common for 
people to acquire formal experience in computing and pro-
gramming, whether it is through a computing curriculum at 
school,1 after school code clubs,2 or at university – where 
there is growing demand for programming courses in non-
computing degrees [8], or at work, through personal efforts 
to become ‘conversational’ at programming [9]. 

In this paper, we aim to open up a relatively under-explored 
theme within the field of programming expertise, namely, 
the interplay of traditional programming expertise (in a tex-
tual programming language such as Python or Java), and 
end-user programming in spreadsheets. This contrasts with 
previous research in end-user programming expertise, that 
has viewed people through the narrow slice of their expe-
rience with a specific tool. In doing so we seek to better 
understand, and to be better prepared for, the impact of in-
creased programming literacy on spreadsheet expertise. 
For instance, may we assume that an increase in formula 
expertise within the population will naturally follow from the 
increase in programming literacy? 

Our research question is, therefore: is programming expe-
rience related to spreadsheet experience? We present the 
design and results of an exploratory survey to find out. 

1https://www.gov.uk/government/publications/ 
national-curriculum-in-england-computing-programmes-of-study 

2https://codeclub.org/en/ 

Background 
Theories of programming expertise 
There are multiple theories for the development of program-
ming expertise. The leading theory holds that learning to 
program consists of a knowledge-restructuring process, 
leading to the development of hierarchical schemata – units 
of knowledge – that allow people to succeed at the activity 
of programming [10]. This theory derives from constructivist 
[6] and constructionist [24] perspectives. However, recent 
work has questioned the constructivist account of learning, 
suggesting that this view has been received and perpetu-
ates due to incidental social circumstances, and that alter-
natives remain extremely under-explored, especially when 
compared with language or mathematics education [17]. 

While the mechanism of expertise acquisition is still de-
bated, certain differences between expert and novice pro-
grammers are consistently observed. Expert programmers 
have highly organised knowledge that allows them to do 
better at recall tasks [33, 7]. Beginner programmers un-
derstand individual lines of code but not the relationships 
between them; experts see the more abstract, overall pat-
tern of a program [20]. The effect of working memory and 
experience on programming skill is mediated through pro-
gramming knowledge [3]. Experts possess sophisticated 
mental imagery representing software designs, which they 
can mentally manipulate and externalise as design and 
communication resources [25]. 

Spreadsheet expertise 
What motivates people to acquire spreadsheet expertise? 
Spreadsheet learning tends to be goal-driven rather than 
structured [22, 28], an approach that could lead to lower 
quality spreadsheets as users do not acquire principles of 
design. Spreadsheet users are usually focused on under-
standing their problem domain, rather than understanding 
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Question & answer text 

How would you classify your 
spreadsheet experience? 
(single choice) 
(1) Little or no experience 
(2) Some experience, but I’m 
still a beginner 
(3) A lot of experience, but my 
use is basic 
(4) A lot of experience, and I 
use some advanced features 
(5) A lot of experience with 
many advanced features 

What is the main purpose 
of spreadsheets you use? 
(multiple choice) 
- Maintaining lists (e.g. names 
and addresses) 
- Tracking data (e.g. budgets, 
sales, inventories) 
- Analysing data (e.g. financial, 
operational) 
- Determining trends and mak-
ing projections 
- Other (free text response) 

Table 1: Main questionnaire items 
in our final survey (part 1). 

programming, and therefore while they might become more 
familiar with their domain due to spreadsheet experience, 
they might not necessarily become better programmers 
[15]. Learning out of necessity rather than curiosity has also 
been found for web designers [11]. 

How is spreadsheet expertise acquired? 
Small groups of people within organisations have been 
found to be responsible for sharing files, establishing and 
perpetuating ‘informally-defined norms of behaviour’ [21]. 
While beginners learn spreadsheets mainly socially through 
colleagues, experts are more likely to further their knowl-
edge using books, manuals and online resources, and in ei-
ther case formal training is not common [19, 23, 28]. There 
is support for constructivist and constructionist accounts of 
spreadsheet expertise development; a think-aloud study of 
10 participants [26] found that participants who self-explain 
while trying to learn how to use spreadsheets prove to be 
better problem solvers. A further study found that problem 
solving is a more effective method for acquiring spread-
sheet skills than watching tutorials [18]. 

What differentiates spreadsheet experts from non-experts? 
The flexibility of spreadsheets permits a variety of ‘coping 
mechanisms’ for users to deal with low expertise, without 
having to acquire additional expertise [28]. In some cases, 
these coping mechanisms can be characterised as ‘bad 
practice’ [19], which differentiates experts and non-experts; 
experts perform more planning and design activities when 
writing spreadsheets. Experts exhibit greater appreciation 
for the legibility of formulas to themselves and others, help-
ing them avoid ‘smells’ [16]. Non-expert spreadsheet users 
sometimes collaborate with experts who can complete high-
expertise tasks, therefore alleviating the need to learn, al-
though this collaboration sometimes has an informal learn-
ing outcome for the non-expert [23]. 

Measuring expertise 
Previous work has used several indicators as direct or indi-
rect measures of programming experience. A comprehen-
sive review of 161 papers that measure programming expe-
rience is given by Feigenspan et al. [14], which we will not 
repeat in detail. In summary, they found eight categories of 
measures (plus a ninth category of ‘unreported’): years of 
programming experience, education level, self-estimation, 
unspecified questionnaire, size of programs written by the 
subject, unspecified pre-test, and skill estimation by the 
subject’s supervisor/manager. 

Ad-hoc programming tasks or tests are sometimes used 
[4]. Months or years of ‘tenure’ as participants on a project 
or on a platform such as GitHub are also sometimes used 
as proxies [32]. The measurement of end-user program-
ming expertise specifically is under-explored, although one 
survey did show that Likert-scale questionnaire items could 
reliably be used to measure end-user computing skills [31]. 

In our exploratory study, we needed a concept that could 
be operationalised as a questionnaire item. We therefore 
choose to focus on self-reported experience, rather than 
developing mechanical tests of expertise, as previous work 
has shown that it is possible for respondents to self-report 
in a consistent manner [14, 30]. Self-reported experience 
measures do have the limitation that respondents may give 
levels different interpretations; respondents with lower ex-
perience may inadvertently place themselves on a higher 
experience level (a version of the Dunning-Kruger effect 
[13]), and respondents with higher experience may rate 
themselves lower due to greater self-awareness or mod-
esty. Nonetheless, the provision of additional information to 
help respondents self-assess, as well as the opportunity to 
consult with the experimenters for clarification, can greatly 
mitigate these effects. For example, in some cases where 
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Question & answer text 

Which best describes your 
expertise with spreadsheet 
formulas? (single choice) 
(1) I don’t know what they are 
(2) I know what they are but don’t 
use them 
(3) I only use a few basic functions 
(such as SUM and AVERAGE) in 
my formulas. I don’t know how to 
do more advanced things. 
(4) I only use a few basic functions 
in my formulas. I know how to do 
more advanced things, but I rarely 
/ never need to. 
(5) I use a variety of different 
functions in my formulas 
(6) I use a variety of functions. I 
have written my own functions 
using VBA, or installed add-ins 
that make new functions available. 

Which best describes your pro-
gramming experience in tradi-
tional programming languages, 
such as Java, Python, C, SQL, 
R, JavaScript, VBA, etc.? (single 
choice) 
(1) I have never programmed 
(2) I have learnt a little bit but 
never used it 
(3) I know enough to use it for 
small infrequent tasks 
(4) I am moderately experienced 
and write programs regularly 
(5) I am highly experienced 
(6) I program or have programmed 
in a professional capacity 
(7) Other (free text response) 

Table 2: Main questionnaire items 
in our final survey (part 2). 

the sample is from a well-defined group (e.g., a university 
course cohort), response consistency on a self-reported 
experience question can be improved by asking respon-
dents to rank their own position within the peer group [27]. 
An additional advantage of self-reporting is that it allows 
the opportunity to capture aspects of expertise that are 
hard to measure using tests (such as planning and design 
skills), but which make up a significant portion of expertise 
as manifested. 

Survey 
The survey was implemented using Microsoft Forms.3 Par-
ticipants were first presented with a brief description of the 
survey and signed a form of informed consent. Participants 
optionally provided the following demographic information: 
age range and occupation. Participants also noted the spe-
cific spreadsheet application(s) they normally used. We did 
not record the gender or location of participants. 

To test the questionnaire we conducted a pilot survey with 
a convenience sample of 15 respondents. After they com-
pleted the survey, we discussed the appropriateness and 
effectiveness of the questionnaire items with our pilot par-
ticipants. Our pilot prompted several adjustments to the 
survey design and implementation. The main questions 
used in our final questionnaire can be found in Tables 1 and 
2. For brevity, we have excluded some questions such as 
optional demographics. 

Participants 
After revising the questionnaire, we recruited a fresh sam-
ple of 57 participants, located mostly in the UK and USA, 
through a combination of convenience and snowball sam-
pling. This is unlikely to be representative of the global pop-
ulation. In our report, we therefore avoid drawing general in-

3https://forms.office.com 

ferences of population-level distributions, but instead focus 
on within-subjects correlations along different measures. 
The following general results serve purely to illustrate the 
constitution of our participants. 

• Age: 56 respondents chose to provide their age 
range (1 declined). Of those that provided age range, 
the median and mode age range was 25-34. 

• Applications used: all 57 participants reported reg-
ular use of Microsoft Excel, with 43 (75%) being ex-
clusive Excel users. Twelve (21%) reported use of 
Google Sheets and Excel. One participant reported 
use of OpenOffice Calc and Excel, and another par-
ticipant reported use of Apple Numbers and Excel. 

• Spreadsheet use cases: previous work had re-
vealed four categories of spreadsheet use [19], which 
we tracked using a questionnaire item. Analysing 
data (e.g., financial, operational) was the most com-
mon use case, regularly encountered by 43 respon-
dents (75%). Nonetheless, all use cases were com-
mon amongst some respondents, with the least com-
mon use case (‘Determining trends and making pro-
jections’) still encountered by 10 respondents (18%). 

• Occupations: respondents reported a wide range 
of occupations. They included academic research, 
business administration, marketing, sales, healthcare, 
education, and financial analysis. 

Results 
We assigned numeric codes to the responses for the ques-
tionnaire items regarding self-reported spreadsheet ex-
perience, formula experience, and programming experi-
ence. These were assigned integer codes from 1-5, 1-6, 
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Figure 1: Counts of users at each 
level of formula and spreadsheet 
experience (higher is more 
experienced). 

Figure 2: Counts of users at each 
level of spreadsheet and 
programming experience (higher is 
more experienced). 

Figure 3: Counts of users at each 
level of formula and programming 
experience. 

and 1-6 respectively, with 1 denoting the point of lowest 
self-reported experience. These codes establish an ordinal 
ranking of responses. Throughout our analysis, the correla-
tions we report are Spearman’s ρ (rs). We apply a Bonfer-
roni correction to our significance threshold α. For brevity, 
we henceforth use the word ‘experience’ to mean our ordi-
nal scale measure of participants’ self-reported experience. 
Certain groups were underrepresented in our sample. Pro-
gramming experience levels 5 and 6, formula experience 
levels 1 and 2, and spreadsheet experience levels 1 and 2 
all had 3 or fewer participants. We removed these groups 
from our correlation analysis, leaving us with a final sample 
of n = 49. 

We find that spreadsheet experience and formula expe-
rience are positively correlated (Spearman’s rs = 0.52, 
p = 1.3 · 10−4). See Figure 1. This is the least surprising of 
our observed correlations, as much advanced spreadsheet 
use involves formulas. 

We find that, although spreadsheet experience has a weak 
positive correlation coefficient with programming experi-
ence, this correlation is not statistically significant (Spear-
man’s rs = 0.26, p = 0.07). See Figure 2. Respondents 
with different levels of spreadsheet experience all showed a 
wide range of self-reported programming experience. 

We find that formula experience and programming expe-
rience are positively correlated (Spearman’s rs = 0.42, 
p = 2.6 · 10−3). See Figure 3. This tells us that while 
we cannot assume that experienced spreadsheet users in 
general are more likely to have some experience of pro-
gramming in a textual programming language, we can ex-
pect that spreadsheet users who are highly experienced at 
using formulas are more likely to also have experience of 
programming in a traditional language. This is discussed in 
greater detail in the next section. 

CHI 2020, April 25–30, 2020, Honolulu, HI, USA

We included a questionnaire item about spreadsheet use 
cases identified in previous work [5]. We did not observe 
any correlation between spreadsheet experience and the 
four use cases we track (determining trends, analysing 
data, tracking data, and maintaining lists), although the first 
two did skew slightly towards higher experience. 

Discussion 
Recall that we use ‘experience’ to mean our ordinal scale 
measure of participants’ self-reported experience. We ob-
served a correlation between spreadsheet and formula 
experience. This was expected; much of utility of spread-
sheets is derived from formulas, which transform spread-
sheets from passive datastores into active programs, and 
many features of spreadsheets are supported by formulas. 
For example, conditional formatting and data validations 
can both be specified in terms of formulas, and the name 
manager is only useful if names are referenced in formulas. 

Furthermore, we observed that spreadsheet experience 
is not (significantly) correlated with programming expe-
rience. This can be attributed to the diversity of ways in 
which spreadsheet experience can manifest. Recall that 
we did not observe a relationship between use cases and 
spreadsheet experience. Nonetheless, certain use cases 
for spreadsheets (such as tracking data, and maintaining 
lists) require very little or no formula use. It is possible, 
therefore, to have high levels of experience using spread-
sheets in this manner, without necessarily acquiring ex-
pertise in formula authoring (and by extension, in program-
ming). Other phenomena, such as the delegation of formula 
authoring to others with more expertise [23], may also help 
in maintaining this diversity. 

Our most interesting observation is that formula experience 
is correlated with programming experience. To our knowl-
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edge, we are the first to observe this phenomenon. There 
are multiple potential explanations for this. One possibility is 
that there is a direct causal link between the acquisition of 
formula expertise and programming expertise. That is, if a 
spreadsheet user has pre-existing expertise in a traditional 
programming language, they are able to immediately trans-
late that into higher expertise in formula authoring. Comput-
ing education research has shown that acquiring expertise 
in a second programming language is considerably eas-
ier than the first [29], due to the pre-existence of suitable 
mental models (e.g., notional machines [12]). Conversely, 
pre-existing expertise in formula authoring may help users 
acquire expertise in traditional programming languages. 

Another possibility is that there is an underlying causal fac-
tor that prompts expertise acquisition in both formulas and 
traditional programming. Such an underlying factor may ei-
ther be intrinsic or extrinsic. Aghaee et al. [1] have provided 
a personality-based account for intrinsic motivation in end-
user programming. In particular, their research shows that 
certain personality profiles (which may be characterised 
as artistry, bricoleurism, and technophilia) are intrinsically 
predisposed to programming. Extrinsic factors may include 
problems in the user’s work domain or personal life that can 
only be solved through the acquisition of programming skill. 
For instance, Sarkar and Gordon [28] found that skill ac-
quisition in spreadsheets was often motivated by specific 
workplace problems. 

These possibilities, i.e., mechanisms of influence between 
formula expertise, programming expertise, and underly-
ing causal factors, are not mutually exclusive. Indeed, they 
are likely to interplay with each other. People may traverse 
a variety of paths through these, with different needs. For 
example, one person may learn traditional programming 
due to a workplace need, and then translate that into for-

mula expertise. Another may learn spreadsheet formulas 
due to an intrinsic interest in spreadsheets, and then apply 
that knowledge to traditional programming. The nature of 
this interplay is likely to be highly nuanced and individual-
istic. In future work, it would be interesting to explore how 
this knowledge is acquired and transferred across different 
programming paradigms. 

A limitation of our study was that we initially designed the 
survey as an interview recruitment tool. We wished to in-
terview participants about how they learnt to use spread-
sheets. We designed the survey to help us recruit partici-
pants with a range of spreadsheet and programming exper-
tise. Thus we did not include items that would have enabled 
us to make causal inferences. Nonetheless, we found an 
interesting pattern that suggests a relationship between 
spreadsheet and programming experience. In future, we 
may obtain greater understanding of this relationship with 
results from our interviews. 

Conclusion 
Our paper explores the understudied relationships between 
experience in traditional programming and end-user pro-
gramming, particularly in spreadsheets. Our study recog-
nises that end-user programming systems and their users 
do not exist in isolation; there are relevant experiences from 
outside these systems that may strongly influence them, 
or be influenced by them. It is a simple premise that has 
not previously been shown through quantitative data. In our 
survey sample, we have found that experience in spread-
sheet formula usage is correlated with experience in pro-
gramming in a traditional language. We have discussed 
multiple possible relationships between experience in tra-
ditional programming and formula authoring. It would be 
worthwhile to explore this trend using a redesigned survey 
and a larger sample size. 
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