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Summary 
 Summary 

 

Prognostics is an emerging field of research that enables the real-time health assessment of 

an engineering system and the prediction of its future state based on up-to-date information. 

This field integrates various scientific disciplines including physics/mechanics, 

computational statistics and probabilistic modeling, machine learning and sensing 

technologies. The main goal is the prediction of the remaining useful life (RUL) of the 

engineering system while it is in-service. Lately, there is an effort to study and predict the 

future status of engineering systems that exhibit a complex degradation process. The 

availability of condition monitoring (CM) data, the constantly increasing computational 

power, the development of machine learning algorithms and the advancements on the 

physics/mechanics for several engineering systems form a solid foundation to achieve that 

goal. 

 

Among the engineering systems that exhibit a complex degradation process are composite 

structures. Composite structures have made a significant mark in numerous industries, 

driven by advantages in structural efficiency, performance, versatility and cost. 

 

It is well known that the damage accumulation process of composite structures depends on 

several parameters, i.e. the type of material and the lay-up, the loading frequency and 

sequence, the manufacturing process. Additionally, the multi-phase nature of composites 

and the variation of defects result in a stochastic activation of the different failure 

mechanisms. So, one expects that the long-term behaviour of two comparable composites 

structures, subjected to comparable environmental and loading conditions, will differ and 

that makes the fatigue damage analysis, and consequently the prediction of RUL, very 

complex tasks. This difference is profound especially when unexpected phenomena may 

occur. 

 

The goal of this research is to develop a new RUL prediction model that is able to learn from 

unexpected phenomena and adapt its parameters accordingly. The model is composed of 

three elements; 1) sensing techniques to acquire online CM data, 2) machine learning 

algorithm for developing a damage modelling strategy and 3) stochastic modelling for 

uncertainty quantification. 

 

Based on the literature review, it was concluded that a frequentist data-driven model has the 

potential to fulfil the research goal and an extension of the Non-Homogenous Hidden Semi 

Markov model (NHHSMM) is a good candidate. The first step was to design the structure 

of the RUL prediction model and define its elements. The next step was to develop the 

extension of the NHHSMM, and verify its correctness and robustness, utilizing simulated 

Monte-Carlo (MC) data. A series of assumptions was necessary in order to frame the 

applicability of the model towards composite structures and to achieve an efficient 

prediction process. 
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Finally, the last step was the demonstration of the efficiency and robustness of the developed 

methodology. Given the fact that the research presented in this thesis took place at the 

Structural Integrity & Composites Group of the Aerospace Engineering Faculty, 

unidirectional carbon fibre prepregs, commonly used in aerospace industry, were utilized. 

Open-hole specimens were subjected to constant amplitude fatigue loading up to failure 

while in-situ impact and manufacturing imperfections were used so as to demonstrate 

unexpected phenomena. Acoustic emission and digital image correlation techniques were 

employed in order to collect CM data which were used for the training and testing processes. 

In addition, a new data fusion methodology, on a feature-level, was presented utilizing the 

available CM data. Eight specimens were used for the training process and they were 

subjected only to fatigue loading. Four specimens were used for testing the proposed 

adaptive model. Three of them were subjected to fatigue and in-situ impact, and created a 

left, a right outlier and an inlier performer respectively to the training specimens. The last 

one was subjected just to fatigue loading but created one more left outlier case since it had 

a manufacturing imperfection. Furthermore, five prognostic performance metrics, found in 

literature, were employed and two new were introduced, in order to compare the 

performance of the RUL predictions and it was found that the Adaptive Non-Homogenous 

Hidden Semi Markov model (ANHHSMM) provides better prognostics, indicating that this 

model has the potential to predict more accurately the RUL of outlier and inlier cases. 

 

In conclusion, this thesis has addressed important challenges and limitations of the current 

prognostic models and it provides a solid base for further extensions towards a global version 

of a real-time adaptive data-driven model. 
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Samenvatting 
 

Prognostiek is een opkomend onderzoeksveld dat het real-time bepalen van de gezondheid 

van een technisch system mogelijk maakt, alsmede het voorspellen van zijn toekomstige 

staat, gebaseerd op actuele informatie. Dit veld integreert verschillende wetenschappelijke 

disciplines, waaronder fysica/mechanica, computerstatistiek en probabilistisch modelleren, 

machine learning, en sensortechnieken. Het hoofddoel is het voorspellen van het resterende 

nuttig leven (RNL) van het technisch systeem terwijl het in gebruik is. Recent is er een 

inspanning in het bestuderen en voorspellen van de toekomstige staat van technische 

systemen die een complex degradatieproces vertonen. De beschikbaarheid van conditie 

monitoring (CM) data, de constant toenemende computerkracht, de ontwikkeling van 

machine learning algoritmes en de voortgang in de fysica/mechanica van een aantal 

technische systemen vormen een solide basis om dit doel te bereiken. 

 

Onder de technische systemen die een complex degradatieproces vertonen bevinden zich 

composietconstructies. Composietconstructies hebben een grote stempel gedrukt op vele 

industrieën, gedreven door voordelen wat betreft constructieve efficiëntie, prestaties, 

veelzijdigheid en kosten.  

 

Het is algemeen bekend dat het schade-accumulatieproces van composietstructuren van 

verschillende parameters afhangt, nl: het type materiaal en de oplegging, de 

belastingsfrequentie en volgorde, en het fabricageproces. Bovendien leidt de multi-fase 

natuur van composieten en de variatie in defecten tot een stochastische activering van de 

verschillende faalmechanismen. Men verwacht dus dat het lange termijn gedrag van twee 

vergelijkbare composietconstructies die worden blootgesteld aan vergelijkbare 

omgevingsinvloeden en belastingen, zal verschillen. Dit maakt de analyse van de 

vermoeiingsschade en derhalve de voorspelling van het RNL erg complexe taken. Het 

verschil in gedrag is in het bijzonder groot als onverwachte fenomenen zich kunnen 

voordoen.  

 

Het doel van dit onderzoek is het ontwikkelen van een nieuw RNL voorspellingsmodel dat 

kan leren van onverwachte fenomenen en zijn parameters dienovereenkomstig kan 

aanpassen. Het model bestaat uit drie elementen: 1) sensortechnieken om online CM data te 

verzamelen, 2) machine learning algoritme voor het ontwikkelen van een 

schademodelleringsstrategie en 3) stochastisch modelleren voor getalsmatige bepaling van 

onzekerheid.  

 

Gebaseerd op het literatuuronderzoek, werd geconcludeerd dat een frequentistisch data-

gedreven model de potentie heeft om het onderzoeksdoel te vervullen en een uitbreiding van 

het Niet-Homogene Verborgen Semi Markov model (NHVSMM) een goede kandidaat is. 

De eerste stap was het ontwerpen van de structuur van het RNL voorspellingsmodel en het 

definiëren van zijn elementen. De volgende stap was het ontwikkelen van de uitbreiding van 

het NHVSMM en verifiëren van zijn juistheid en robuustheid, gebruikmakend van 

gesimuleerde Monte-Carlo (MC) data. Een serie aannames was nodig om de toepasbaarheid 

van het model richting composietstructuren te kaderen en om een efficiënt 

voorspellingsproces te verkrijgen. 
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Ten slotte was de laatste stap het demonstreren van de efficiëntie en robuustheid van de 

ontwikkelde methodologie. Gegeven het feit dat het onderzoek dat in dit proefschrift wordt 

gepresenteerd plaatsvond bij de Structural Integrity & Composites leerstoel van de Faculteit 

Luchtvaart & Ruimtevaarttechniek, werd gebruik gemaakt van unidirectionele koolstofvezel 

prepregs, die algemeen gebruikt worden in de luchtvaartindustrie. Open-gat proefstukken 

werden onderworpen aan vermoeiingsbelasting met constante amplitude tot aan falen, 

terwijl in-situ inslag en fabricage-imperfecties werden gebruikt om onverwachte fenomenen 

te demonstreren. Akoestische emissie en digitale beeldcorrelatie technieken werden ingezet 

om CM data te verzamelen, die werden gebruikt voor trainings- en testprocessen. Bovendien 

werd een nieuwe datafusie methodologie op een kenmerkniveau gepresenteerd, 

gebruikmakende van de beschikbare CM data. Acht proefstukken werden gebruikt voor het 

trainingsproces en zij werden alleen onderworpen aan vermoeiingsbelasting. Vier 

proefstukken werden gebruikt voor het testen van het voorgestelde alternatieve model. Drie 

ervan werden onderworpen aan vermoeiing en in-situ inslag, en creëerden zo een linker- en 

rechter-uitschieter en een ingesloten prestatie in vergelijking tot de trainingsproefstukken. 

Het laaste proefstuk werd alleen onderworpen aan vermoeiingsbelasting maar vormde nog 

een linker-uitschieter aangezien het een fabricage-imperfectie bevatte. Verder werden vijf 

prognostische prestatiemeeteenheden uit de literatuur ingezet en werden er twee nieuwe 

geïntroduceerd, om de prestaties van de RNL voorspellingen te vergelijken. Er werd 

gevonden dat het aangepaste NHVSMM betere prognostiek levert, wat aangeeft dat dit 

model de potentie heeft om nauwkeuriger de RNL te voorspellen van zowel ingesloten 

casussen, als van uitschieters. 

 

Concluderend; dit proefschrift heeft belangrijke uitdagingen en beperkingen van de huidige 

prognostische modellen aangepakt en levert een solide basis voor verdere uitbreidingen naar 

het doel van een allesomvattende versie van een real-time adaptief datagedreven model. 
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Ithaka 
 

As you set out for Ithaka 

hope your road is a long one, 

full of adventure, full of discovery. 

Laistrygonians, Cyclops, 

angry Poseidon—don’t be afraid of them: 

you’ll never find things like that on your way 

as long as you keep your thoughts raised high, 

as long as a rare excitement 

stirs your spirit and your body. 

Laistrygonians, Cyclops, 

wild Poseidon—you won’t encounter them 

unless you bring them along inside your soul, 

unless your soul sets them up in front of you. 

 

Keep Ithaka always in your mind. 

Arriving there is what you’re destined for. 

But don’t hurry the journey at all. 

Better if it lasts for years, 

so you’re old by the time you reach the island, 

wealthy with all you’ve gained on the way, 

not expecting Ithaka to make you rich. 

 

Ithaka gave you the marvelous journey. 

Without her you wouldn't have set out. 

She has nothing left to give you now. 

 

And if you find her poor, Ithaka won’t have fooled you. 

Wise as you will have become, so full of experience, 

you’ll have understood by then what these Ithakas mean. 

 

 

 

BY C.P. CAVAFY 

Translated by Edmund Keeley 
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Nomenclature 
 Nomenclature 

 

Symbols 

 
aij Constant coefficients of data-fusion function 

bj(k) The emission probability of observing the kth value of the condition moniroting data when 

the device is in hidden state j 

D Total number of condition monitoring samples till failure  

E Impact’s energy 

f Frequency of fatigue loading 

ft Data-fusion output at time point t 

K Number of available training engineering systems 

M Complete model (M={ζ,θ}) 

M* Estimated complete model (M={ζ,θ*}) 

M** Adapted complete model (M={ζ,θ**}) 

N Number of hidden states 

Qt system’s hidden state at time point t 

R Ratio of fatigue loading 

Ti Time point of the ith transition 

ti Time of the ith sample 

V Number of discrete monitoring values 

Xi Hidden state of the system after the ith transition 

y(k) Degradation condition monitoring sequence of the kth engineering system 

y(ti) Discrete condition monitoring value at the ti time point 

Z Discrete condition monitoring space 

zk 

 

the state of the engineering system at time point k 

α(i,j) Weibull scale parameters 

Β 

B* 

B** 

The set of characteristic parameters associated with the observation process 

The estimated set of characteristic parameters associated with the observation process 

The adapted set of characteristic parameters associated with the observation process 

β(i,j) Weibull shape parameters 

Γ 

Γ* 

Γ** 

The set of characteristic parameters associated with the degradation process 

The estimated set of characteristic parameters associated with the degradation process 

The adapted set of characteristic parameters associated with the degradation process 

ζ Initialization topology (ζ={Ν,Ω,λ,V}) 

θ Unknown parameters that characterize the degradation process (θ={Γ,Β}) 

θ* Estimated parameters (θ*={Γ*,Β*}) 

θ** Adaptived parameters (θ**={Γ**,Β**}) 

λ 
σmax 

σmin 

Statistical form of transition rate functions 

Maximum fatigue loading 

Minimum fatigue loading 

Ω  Connectivity between hidden states 
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Subscripts 

 
arg Argument  
max Maximum  
min Minimum  
std Standard deviation  

 

 

 

Abbreviations 

 
AE Acoustic Emission  
AI Artificial Intelligence  
ANHHSMM Adaptive Non-Homogenous Hidden Semi Markov model  
ARMA Autoregressive Moving Average model  
BIC Bayesian Information Criterion  
BNN Bayesian Neural Network  
BVID 

CBM 

Barely Visible Impact Damage 

Condition Based Maintenance 
 

CDF Cumulative Distribution Function  
CDS Characteristic Damage State  
CEM Convergence  
CFRP Carbon Fiber Reinforced Polymer  
CIDC Confidence Intervals Distance Convergence  
CM Condition Monitoring  
CRA Cumulative Relative Accuracy  
DDM Data-Driven Model  
DIC Digital Image Correlation  
DM Dynamic Modelling  
EM Expectation Maximization  
GBT Gradient Boosted Tree  
HMM Hidden Markov Model  
HM Hybrid Model  
HSMM Hidden Semi Markov Model  
LCI Lower Confidence Interval  
MAPE Mean Absolute Percentage Error  
MBM Model-Based Model  
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1.1. Prognostics: The science of prediction  

Prognosis (Greek: Πρόγνωσις) is originally a Greek word, which means to know in advance, 

to foresee. In the period of the 7th century to the 4th century BC, people all over the known-

world would visit the temple of Apollo in Delphi Greece, to consult the Oracle (Greek: 

Πυθία) for personal matters. The Oracle in a state of awareness and inspiration would 

provide an enigmatic prophecy letting people take the final decision by themselves. This 

decision-making process was performed using the information provided by the Oracle. Over 

the centuries the mystic process of the prophecy became the science of prediction and 

nowadays it is an emerging research field, known as prognostics.  

 

Prognostics enables the real-time health assessment of an engineering system and the 

prediction of its future state based on up-to-date information. This field integrates various 

scientific disciplines including physics/mechanics, computational statistics and probabilistic 

modeling, machine learning and sensing technologies. It is considered to be the key element 

for the realization of the condition based maintenance (CBM) (in some industries, i.e. wind 

energy CBM is referred as predictive maintenance), a practice that guides the engineers to 

repair or replace only the actual damaged parts of the system, aiming to reduce its 

maintenance costs and increase its availability. The idea behind the CBM is, by using 

autonomous software and hardware, to monitor the asset, detect and identify failures, assess 

its current health state and predict its future health state in order to make reliable decisions 

about its operation.  

 

Prognostics, in the context of CBM, has been already explored in many engineering domains 

including aerospace, automotive, wind energy and naval. Each domain has its own specifics 

and needs and there is no common guideline how to practice CBM. For example, in 

aerospace industry, safety is the critical factor that determines the boundaries of CBM 

whereas in wind energy, the performance of a wind park (energy production/downtime) 

plays the key-role on the decision-making process.  

 

Lately, there is an effort to study and predict the future status of engineering systems that 

exhibit complex degradation process. The availability of condition monitoring (CM) data, 

the constantly increasing computational power, the development of machine learning 

algorithms and the advancements on the physics/mechanics for several engineering systems 

form a solid foundation to achieve that goal.  

 

Certainly, composite structures belong to this group of engineering systems with complex 

degradation process. Composite structures have made a significant mark in numerous 

industries, driven by advantages in structural efficiency, performance, versatility and cost. 

For example, in aerospace industry, they are used as primary structures (airwings, fuselage, 

etc.) in commercial aircraft such as Airbus A350 and Boeing 787, for which more than 50% 

of their structural weight made of composites. Despite the fact that aerospace industry 

promotes the use of composites, a comprehensive understanding of their long-term 

mechanical behaviour is missing and the existing design tools and prediction models are 

conservative and not robust. In order to manage the risk that comes with this deficiency in 

understanding, large safety factors are applied in design. The overdesign due to these large 

safety factors reduces the potential efficiency of composite structures, particularly in terms 

of their weight.  
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Thus, there is an urgent need to strengthen our understanding of the damage progression 

process and to develop a reliable assessment of the current (diagnostics) and future health 

state (prognostics) of a composite structure. 

 

The core business of structural prognostics is the prediction of the remaining useful life 

(RUL) of the structure while it is in-service. A RUL prediction model should be able to 

tackle a variety of uncertainties, given the stochastic nature of the damage accumulation 

process. Due to this stochastic nature, one expects that the long-term behaviour of two 

comparable structures subjected to comparable environmental and loading conditions will 

differ. This difference is profound especially when unexpected phenomena may occur. 

Manufacturing defects, foreign object impacts, extreme oscillations in the environment are 

among the events that can alter the damage accumulation process and thus the RUL 

significantly.   

 

1.2. Research Goal and Scope 

The goal of this research is to develop a new RUL prediction model that is able to learn from 

unexpected phenomena and adapt its parameters accordingly. The model will be composed 

of three elements: 1) sensing techniques to acquire online CM data, 2) machine learning 

algorithms for developing a damage modelling strategy and 3) stochastic modelling for 

uncertainty quantification. This new model targets engineering systems, which either 

underperformed or outperform, due to unexpected phenomena that might occur during their 

lifetime. The aim is to provide more accurate RUL predictions than the state-of-the-art RUL 

prediction models.  

 

This thesis focuses on the fatigue life prognosis of aerospace composite structures, which 

face unexpected phenomena during their service. In order to accomplish the proposed 

prognostic model, emphasis is given in the following three research topics: 

 

 feature extraction 

 data fusion 

 prognostic performance metrics. 

 

It is expected that the results of this thesis will advance the field of prognostics and create a 

generic model that is able to take into account unexpected phenomena of uncertainty 

assuring reliability and robustness on its predictions. As already mentioned, the main 

application of this thesis is on aerospace composite structures where the actual degradation 

state is complex, not directly observable and several unexpected phenomena can occur 

during the structure’s lifetime. 

 

I believe that developing this RUL prediction model is top priority and I, as member of the 

engineering community working in the field of prognostics, will contribute to a faster 

realization of CBM in aerospace industry. 
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1.3. Thesis Outline 

This thesis is composed of 8 chapters and here below an outline is provided:  

 

 Chapter 2 reviews the available literature on the field of prognostics and examines 

whether the available adaptive models are applicable to the case of interest.  

 

 In Chapter 3, a general methodology which includes the new adaptive RUL 

prediction model, is presented where emphasis is given into the process of training 

and testing.  

 

 Chapter 4 provides the fundamentals of how to design a generic and flexible 

probabilistic model. This model is the successor of the Non-Homogeneous Hidden 

Semi Markov model (NHHSMM) developed by Moghaddass and Zuo [1]. The 

assumptions made in order to develop the adaptive edition of NHHSMM are 

discussed. This chapter is the fundamental chapter of this thesis and its equations 

are directly used in the rest of the thesis.  

 

 In Chapter 5, simulation-based numerical data, utilizing the Monte Carlo (MC) 

simulation method, are used to verify the prognostics capabilities of the new 

adaptive RUL prediction model i.e. the Adaptive Non-Homogeneous Hidden Semi 

Markov model (ANHHSMM). The objective is to verify that the ANHHSMM is 

able to predict more accurately the RUL than the NHHSMM.  

 

 Chapters 6 and 7 demonstrate the adaptive methodology by testing open-hole 

carbon reinforced polymer specimens. The training data set consists of CM data 

collected from specimens, which were subjected only to fatigue loading, while the 

testing data set consists of CM data collected from four specimens. Three of the 

testing specimens were subjected to fatigue and in-situ impact loading and the last 

one was subjected only to fatigue loading but this specimen has an artificial drilling 

defect on it. The objective of that chapter is to verify that the ANHHSMM is able 

to predict more accurately the RUL than the NHHSMM, when the testing 

composite specimens is an outlier, left or right, and to predict the RUL at least with 

the same level of accuracy when the composite specimen doesn’t exhibit extreme 

behaviour. Furthermore, RUL predictions utilizing different kind of CM features 

are compared via established and newly proposed prognostic performance metrics.  

 

 In Chapter 8 the results of the thesis are summarized, conclusions are drawn and 

new directions for future research are presented. 

 

References 

[1] R. Moghaddass and M. J. Zuo, “An integrated framework for online diagnostic and 

prognostic health monitoring using a multistate deterioration process,” Reliab. Eng. Syst. 

Saf., vol. 124, pp. 92–104, 2014. 
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2.1. Introduction 

This chapter is devoted to reviewing four topics the literature related to prognostics: 

 

 damage accumulation for composite structures 

 prognostics taxonomies 

 prognostics of composite structures 

 adaptive prognostics 

 

and it is organized as follows; Section 2.2 discusses the fatigue damage accumulation 

process of composite structures and motivates why this phenomenon has to be described in 

a stochastic way. Section 2.3 presents the available work on prognostic taxonomies and 

Section 2.4 the available prognostic studies in composite structures. Section 2.5 reviews 

adaptive prognostic approaches studies for any kind of engineering system. Finally, in 

Section 2.5, the literature gaps are identified and the thesis’ contribution is formulated so as 

to fulfil these gaps.  

 

2.2. Fatigue damage accumulation of composite structures 

Fatigue of composite structures has been in the center of the research activities the last four 

decades, where the research community has tried to model the process of damage 

accumulation and develop predictive tools. Extensive experimental campaigns for different 

material types and lay-up configurations and a considerable number of models emerged from 

those activities and revealed that the fatigue damage process is a multistate degradation 

procedure where several damage mechanisms occur, interact, act synergistically, and lead 

the structure to final failure. 

 

It is from the very early ages in composites research that researchers attempted to understand 

the way damage evolves and accumulates in a composite structure. The idea of the multistate 

process goes back to the 1980s, where Reifsnider et al. in [1] explained in a qualitative 

manner how damage and failure mechanisms may commence, interact and lead to the final 

failure. Reifsneider et al. described the damage accumulation as a three-stage process. 

Therefore, it is a multi-state degradation process which initiates with transverse matrix 

cracking in the most highly stressed/strained layers. Matrix cracks form, saturate at the 

Characteristic Damage State (CDS), propagate and coalesce to form early debondings and 

in very tough matrices lead to early fiber failures locally. Debondings and matrix cracks 

propagate to form delaminations in the interfaces between the layers whilst fiber bundles 

begin to fail more frequently accelerating the induced damage in the final stage of the 

material’s service life up to the final macroscopic failure. It should be pointed out that this 

is a generic description and not a precise one, it is more a qualitative than a quantitative 

description. The precise damage accumulation sequence depends on the exact layup, the 

material properties of the composite’s constituents, the defects induced during 

manufacturing, the loading profile, environmental conditions etc. Figure 2.1 summarizes the 

process of damage accumulation in composite structures under any type of service loading. 

 

 

 



547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou
Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020 PDF page: 31PDF page: 31PDF page: 31PDF page: 31

2.3. RUL taxonomies 

 

7 

 

2 

 

Figure 2.1. Damage accumulation process during a composite structure’s lifetime [1]. 

Ever since, the researchers have focused on developing prediction models implementing 

phenomenological and progressive damage approaches [2-8]. However, only the progressive 

damage approaches consider to some extent the damage mechanisms. Despite the efforts 

and the progress made in the field, it was clear, rather early, that a universal model, which 

can cover all types of composite structures, lay-up configurations and loading scenarios is 

very difficult to be established. Additionally, the inhomogeneous nature of the composite 

material and the stochastic activation of different damage mechanisms should also be taken 

into account making the damage process a very complex phenomenon to study. When it 

comes to analyse their effect on the damage process and consequently on the RUL, all these 

parameters should be considered as uncertainties. Therefore, researchers have to develop 

approaches for quantifying the uncertainty associated with the RUL. RUL should be defined 

as a random variable and not as a deterministic value. 

 

2.3. RUL taxonomies 

Existing RUL models for quantifying uncertainty can be classified utilizing four different 

taxonomies found in the literature [9-12]. The taxonomies share common categories but their 

authors provide different and some cases conflicting definitions. For clarity, each category 

will be addressed separately when the taxonomy is presented. 

 

Schwabacher and Goebel categorized RUL prediction models into two categories: model-

based (MBMs) and data-driven models (DDMs) [9]. Figure 2.2 illustrates the break-down 

of these two models. According to the authors, MBMs encode human knowledge via a user 

defined representation of the engineering system. Such a model can be either physics-based 

or classical. A classical MBM is based on techniques from Artificial Intelligence (AI). 

DDMs fit a model to the system’s behaviour based on the extracted historical data. DDMs 

can use either conventional algorithms, such as linear regression or Kalman filters, or 
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algorithms from the machine learning and data mining AI communities, such as neural 

networks, decision trees, and support vector machines. It is unclear in which category the AI 

methods belong because, based on the authors’ definition, AI methods can be part both of 

model-based and data-driven prognostic models. In addition, this taxonomy of RUL 

prediction models excludes models that combine both model-based and data-driven models. 

 

 

Figure 2.2. Schwabacher and Goebel 's taxonomy of prognostic models. 

Sikorska et al. proposed that RUL prediction models can be grouped into four categories: 

knowledge based models, life expectancy models, artificial neural networks and physical 

models, see Figure 2.3 [11]. Knowledge-based models assess the similarity between an 

observed situation and a databank of previously defined failures, and they deduce the life 

expectancy from previous events. Life expectancy models determine the life expectancy of 

individual machine components with respect to the expected risk of deterioration under 

known operating conditions. Artificial Neural Networks compute an estimated output for 

the RUL of a system via a mathematical representation of the studied system that has been 

derived from observation data rather than a physical understanding of the failure processes. 

Physical models compute an estimated output for the RUL of a system from a mathematical 

representation of the physical behaviour of the degradation processes. Based on these 

definitions it is really difficult to classify nowadays prognostic models since a significant 

proportion of them presented in the literature are actually a combination of two or more RUL 

prediction models. 

 

 

Figure 2.3. Sirkorska et al.'s taxonomy of prognostics algorithms. 

Maio and Zio [10] proposed two categories: model-based and data-driven models, similar to 

Schwabacher and Goebel. MBMs attempt to set up physical models of the system for the 

prediction of the RUL. On the basis of these models, several approaches have been proposed 

in order to analyse reliability-based and condition-based maintenance approaches. DDMs 

utilize monitored operational data related to system’s health. DDMs, based on the authors 

approach, can be divided to statistical techniques such as regression and Autoregressive 

Moving Average (ARMA) models and AI techniques e.g. neural networks, fuzzy systems 

and support vector machines. Figure 2.4 illustrates Maio and Zio’s taxonomy. Similar to 
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Schwabacher and Goebel, this taxonomy is not able to categorize a model, which is a 

combination of MBMs and DDMs. 

 

 

Figure 2.4. Maio and Zio’s taxonomy of prognostics algorithms. 

Finally, Byington et al [12] classified prognostic models into four categories: reliability 

based models, physics-based models, data-driven models and hybrid models. Figure 2.5 

presents the four aforementioned categories. Byington et al mention that complexity, 

computational cost and accuracy of prognostic models are inversely proportional to its 

applicability since increasing RUL predictions’ accuracy with low computational cost and 

complexity is an interesting but also big challenge. 

 

 

2.5. Byington et al’s taxonomy of prognostics algorithms. 

The reliability based model is used mainly for uncritical, unmonitored engineering 

components/systems for which a physical model is not known. This model depends only on 

historical data derived from similar systems and their average rates of failure. Some 

characteristic reliability based models are the Weibull analysis, log-normal and Poisson 

laws. Physics-based models demand a physical model, which is defined as a mathematical 

representation of failure models and degradation phenomenon. In order to establish this 

model, a thorough understanding of the system’s physics is required. In addition to 

knowledge of system’s physics, knowledge about operation conditions e.g. environmental 

and loading conditions are required too. On the other hand, data-driven models don’t require 

any kind of physical models because the main idea of these models is to use CM data so as 

to create a model that correlates these data to system degradation and then use this model 

for RUL predictions. Lastly, hybrid approaches are combining both data-driven and physics-

based models together to get the best characteristics from each. 

 

Byington’s taxonomy is the most general one out of the four but none of them includes every 

trend and type of analysis found in the current literature. Thus, based on this thesis 

perspective, a new taxonomy is proposed hereafter, see Figure 2.6. This taxonomy consists 

of two main pillars: static modelling and dynamic modelling. The terms static and dynamic 

modelling are distinguished based on the availability of online CM data. Knowledge for 

damage accumulation regarding a specific engineering system can be gained from extracted 

online CM data. The online data exist only on the dynamic modelling pillar. Accordingly, 

in static modelling ‘offline’ data can be used. Offline data is defined as the data which is not 

extracted during the lifetime of the studied engineering system. These two pillars can be 

further categorized to DDMs, MBMs and hybrid models (HMs) and distinguish based on 
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the nature of the available data, online or offline. DDMs is the application of specific 

algorithms to extract patterns from system’s degradation data. Characteristic examples of 

DDMs [13] are Kalman filters, particle filters, regression, statistical methods, artificial 

neural networks [14], Markov processes [15,16], support vector machines, Gaussian 

processes etc. MBMs use physics-based models of the studied system for the estimation of 

the RUL. It should be mentioned that the term physical models does not contain 

phenomenological or empirical models. These models can be categorized as DDMs. If the 

model that characterizes the studied system is a combination of a DDM and MBM then this 

model is defined as hybrid. 

 

 

Figure 2.6. Suggested taxonomy of RUL prediction models. 

Further, DDMs, MBMs and HMs can be Deterministic, Frequentist and Bayesian. Each 

transition, i.e. Deterministic to Frequentist and Frequentist to Bayesian, is possible allowing 

the models to enhance their capabilities regarding the uncertainty. A deterministic model 

will always produce the same output from a given starting condition or initial state. 

Therefore, a deterministic model can simulate efficiently only systems in which no 

uncertainties are involved in the development of future system’s states. Frequentist model is 

based on the existence of inherent variability and is suitable only in the context of random 

experiments. Traditional statistical principles are primarily based on the concepts of 

frequentist probability. Bayesian model expresses the degree of the analyst’s belief 

regarding a particular statement and can be assigned even in the absence of inherent 

variability. The principles of Bayesian statistics are based on the concept of subjective 

probability.  

 

Since prognostics deal with the assessment of the future, it is important to understand that it 

is almost impossible to make precise predictions due to the various sources of uncertainty 

that the future contains. Some researchers have classified the different sources of uncertainty 

into different categories in order facilitate uncertainty quantification and management. 

While it has been customary to classify the different sources of uncertainty into physical 

variability and lack of knowledge, such a classification may not be suitable for CM purposes 

as mentioned in [17]. Sankararaman et al [17] proposed a completely different approach for 
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classification, particularly applicable to condition-based monitoring and is outlined 

hereafter: 

 

 Present uncertainty: In order to be able to predict the RUL of an engineering 

system, CM data are needed, collected by using CM sensors. However, these 

sensors are engineering systems too and as a result they degrade simultaneously 

with the studied engineering system. Therefore, the quality of the extracted data is 

not constant during the degradation process of the studied engineering system since 

the sensor’s noise level varies. 

 Future uncertainty: The most important source of uncertainty in the context of 

prognostics is due to the fact that the future is unknown. For example, the operating 

and environmental conditions are not known precisely. 

 Modelling uncertainty: As already mentioned it is necessary to use a RUL 

prediction model so as to estimate the future state behaviour of the studied 

engineering system. However, practically it is unrealistic to believe that it is 

possible to develop models which are able to accurately predict reality. 

 Prediction uncertainty: Even if all the above sources of uncertainty can be 

quantified accurately, it is necessary to quantify their combined effect on the RUL 

prediction, and thereby, quantify the overall uncertainty in the RUL prediction. It 

may not be possible to do this accurately in practice and it may result to additional 

uncertainty. 

 

However, this classification approach is not able to take into account sources of uncertainties 

which occurred in the past such as sources which are linked with the installation and 

manufacturing process of the engineering system or even with the material of the 

engineering system. Therefore, this thesis proposes to include to the above categories one 

more source of uncertainty; the past uncertainty. Figure 2.7 represents graphically all the 

aforementioned possible sources of uncertainty so as to clarify the necessity to compute the 

uncertainty associated with RUL.  
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Figure 2.7. Sources of uncertainty in engineering systems. 

 

2.4. RUL prediction models for composite structures 

Most of the published work in the area of structural prognostics focuses on metallic 

components. In the area of composite structures, prognostics is a new dynamically rising 

field that has emerged the last decade. Although research has already been reported on 

damage diagnostics [18], that deals with damage detection, localization and quantification. 

However, limited published work is available regarding prognostics of composite structures. 

An argument is the complex degradation process of composite structures that makes difficult 

to find an appropriate RUL prediction model. Recently, some RUL prediction models have 

been applied to the prognosis of composite structures. Hereafter these prediction models are 

discussed following the proposed taxonomy. 

 Static modelling 

Static modelling (SM) requires numerical and analytical models, extended experimental 

campaigns and critical understanding of the basic principles of the composite structure. SM 

doesn’t use online data thus it is not possible to model past, present and future sources of 

uncertainty. As mentioned in Chapter 1 the ultimate goal of this research is to involve a new 

RUL prediction model that is capable of real-time learning and adapting its estimated 

parameters based on online CM data in order to be able to model as much sources of 

uncertainty as possible. SM fails to satisfy the requirements of real-time learning and 

adapting and consequently, it will not be considered further. 
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 Dynamic modelling 

Dynamic modelling (DM) requires the availability of online CM data. A network of sensors 

is permanently installed to the structure and it records periodically or continuously data 

during the in-service life of the structure. The data is associated then to the integrity of the 

structure and this process is known as structural health monitoring (SHM). It should be noted 

that the sensors measure the response of the structure to the loading and not directly the 

damage. Sensitive information is hidden within the data and feature extraction should be 

performed in order to relate the recordings to different damage states. As long as a 

correlation is achieved, then, by using appropriate models, prediction of the RUL can be 

performed. The main advantage of this method is that past, present and future state 

uncertainties can be taken into account as data collected from the structure of interest is 

directly used.  

2.4.2.1. Online model-based models 

MBMs require the existence of a physical model that describes the degradation process of 

composite structures. To establish a MBM, a thorough understanding of the damage 

accumulation phenomenon of a composite structure is required. However, physics-based 

models, showing satisfactory prediction capabilities, are still rather hard to find. Also, even 

if a physics-based model is obtained, it will be obtained for a specific case e.g. loading 

conditions, lay-up etc. and its reusability will be very limited to other similar cases. In 

summary, the research community has mainly descriptive knowledge regarding the damage 

accumulation in composite structures but a thorough understanding, which would lead to a 

universal physical model is missing. 

 

There are several scientists who support that empirical/phenomenological models, such as 

Paris equation, are physics-based models as they describe a physical phenomenon. However, 

the defending line of this thesis is that they do not represent any physical law, as their 

parameters need tuning for every case. For example the parameters of Paris power-law 

relationship[13,19], depend on the type of failure, loading case, geometry and stacking 

sequence, limiting the applicability of these models to composite coupons rather than in 

complex composite structures. Therefore, it is generally believed that empirical or 

phenomenological models such as Paris equation, shear-lag, variational, crack opening 

displacement models cannot describe efficiently more complex geometries, stacking 

sequences and loads. In addition, these models are effective only when one damage 

mechanism is present in the structure and that is by far not the case in composite structures.  

 

In literature [20-25], most research work has been focused on evolving 

phenomenological/empirical models so as to predict the RUL of composite structures. these 

models cannot be characterized as physical since they use only empirical or 

phenomenological equations and their tuned fatigue parameters cannot describe the physical 

meaning of composite structures’ damage evolution. Therefore, RUL prediction models that 

utilizing phenomenological/empirical equations are categorized not as MBMs but as DDMs. 

As a conclusion, there isn’t any MBM available in literature that deals with composite 

structures. 
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2.4.2.2. Online data-driven models 

2.4.2.2.1. Deterministic analysis 

As mentioned in Chapter 1, the procedure of damage accumulation in composite structures 

especially during fatigue loading, is a complex phenomenon of stochastic nature which 

depends on a number of parameters and includes many sources of uncertainties. 

Consequently, it is not possible to predict precise the RUL of composite structures due to 

the various sources of uncertainty that the past, present and future contain. Therefore, 

deterministic RUL prediction models are out of this thesis given that these models describe 

the RUL variable as a determinist value. 

2.4.2.2.2. Frequentist analysis 

In case of frequentist DDMs all unknown parameters in a model are treated as deterministic 

variables except the diagnostic and prognostic measures which are handled as random 

variables. The documented work in frequentist RUL DDMs are presented hereafter. 

 

In Liu et al. [26] a data-driven Gaussian prognostic model was presented. Gaussian process 

based on acoustic emission (AE) data and Lamb wave signals used to predict the RUL of 

composite beams subjected to constant amplitude fatigue loading. Composite beams were 

prepared with unidirectional carbon fibre/epoxy composite material. For the feature 

extraction process, wavelet transform and principal component analysis (PCA) were applied 

in order to determine effective damage indices. A damage index is defined using the 

minimum and maximum value of the sensing feature. Therefore, using a damage index it is 

not possible to obtain real-time RUL predictions since it is mandatory to know the minimum 

and maximum value, values which are known usually after the structure has failed.  

 

The same research team in [27] proposed a condition based structural health monitoring and 

prognosis model to predict the RUL of notched CFRPs composite specimens with [0/90]s 

stacking sequence under uniaxial and biaxial fatigue loading utilizing real time sensor 

signals from strain gages. In addition, a flash thermography system was used in order to 

estimate the initial healthy and final damaged state of the composite specimen. The proposed 

RUL prediction model consisted of an online-diagnostics process i.e. direct cross-correlation 

analysis and the offline prognostics process i.e. Gaussian process. Also in this case study 

Liu et al. used a damage index approach and as a result this model cannot provide real-time 

RUL predictions too. 

 

In order to illustrate the frequentist analysis, part of the work during this PhD thesis has been 

published [28-30]. These studies proposed a novel purely data-driven model for prognosis 

of the RUL in open hole carbon/epoxy specimens with [0/45/–45/90]2s stacking sequence 

under constant amplitude fatigue loading. This approach was based on stochastic multi-state 

degradation modelling utilizing the NHHSMM and AE [28]or strain measurements [29]. 

Regarding the first case, windowed cumulative RA (rise time/amplitude) data were used as 

damage sensitive feature. In the second case a stereovision system was used to perform 3D 

full field Digital Image Correlation (DIC) measurements in order to monitor the strain 

distribution on the coupons’ surface during fatigue tests. In both cases the CM data used to 

estimate the parameters of the NHHSMM and successfully used it to obtain RUL predictions 

in unseen data with uncertainty quantification.  
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Finally in [30] two data-driven prognostic models, the NHHSMM and Bayesian Neural 

Networks (BNNs), utilizing AE measurements, were compared via several prognostic 

performance metrics. Open hole carbon/epoxy specimens tested under fatigue loading. 

Based on the selected prognostic performance metrics the NHHSMM provides better RUL 

predictions than BNNs. The aforementioned case studies represent some frequentist data-

driven prognostic models that are encountered in the literature on application to composite 

structures. 

2.4.2.2.3. Bayesian analysis 

On the contrary, all Bayesian DDMs’ unknown parameters are treated as random variables 

and inference is based upon the (posterior) probability distribution of these parameters. As 

discussed in Subsection 2.4.2.1, RUL prediction models employing phenomenological or 

empirical equations are categorized as DDMs. Consider that the published work in Bayesian 

RUL DDMs of composite structures, is presented hereafter. 

 

Peng et al. [20,31] proposed a real-time fatigue life prognosis model for carbon-epoxy open-

hole specimens with layup [903/03]s under constant amplitude fatigue loading. This 

prognosis model combined piezoelectric sensor measurements i.e. Lamb waves, a 

mechanical stiffness degradation model utilizing a Bayesian inference modified Paris law 

and a stiffness model, which was a second order multiple variable regression model. The 

proposed stiffness model correlated the normalized stiffness with Lamb waves’ features such 

as normalized amplitude, correlation coefficient and cross correlation. In order to validate 

the normalized stiffness estimation the force displacement curve via the hydraulic machine 

was used. In addition, the modified Paris law described the relationship between the stiffness 

degradation rate, the stress range and current stiffness. 

 

Chiachio et al. [21,24] utilized a Bayesian filtering model that incorporated information from 

empirical damage models and CM data so as to enable predictions of the RUL of composite 

materials. Chiachio et al. realized remaining fatigue life estimations in composite materials 

under constant amplitude fatigue loading utilizing monitoring data and some damage 

mechanics empirical models, i.e. shear-lag, variational and crack opening displacement, in 

order to correlate the macro-scale stiffness reduction and the micro-scale damage. 

Furthermore, a Bayesian reference of the modified Paris equation was used to model the 

evolution of matrix-cracks density. A set of 12 piezoelectric sensors were used to monitor 

the effects of matrix micro-cracks density and delamination and a set of triaxial strain gauges 

to measure the normalized effective stiffness. Also, periodic X-rays were taken to visualize 

and evaluate the micro-crack density. This information was used to develop a mapping 

between the Lamb wave signals and micro-crack density. Utilizing the estimated micro-

crack density and all of the aforementioned damage mechanics models the current stiffness 

was assessed. Taking into consideration this assessment and the Bayesian modified Paris 

equation the RUL was predicted. In this study notched dog-bone geometry carbon-epoxy 

specimens with stacking sequence [02/904]s were used. A key finding from this study is that 

the shear-lag model is the best option regarding this specific case study.  

 

Corbetta et al. [25] proposed a particle filter-based Bayesian model for damage prognosis of 

composite laminates exhibiting concurrent matrix cracks and delamination. This study 

enhanced the methodology proposed in previous papers by extending the Bayesian 

framework to multiple damage mechanisms, and validates the approach using damage 
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progression data from notched cross-ply CFRP coupons subject to tension-tension fatigue. 

A multiple damage-mode model, which was embedded in modified Paris equation, for the 

estimation of the strain energy release rate and the remaining stiffness of damaged laminates 

constitutes the core of the particle filtering algorithm. Also, the damage state can be evolved 

into the future enabling simulation of damage progression and prediction of RUL of the 

composite material.  

2.4.2.3.Online hybrid models 

Currently, hybrid models are not available due to the lack of physical based models that can 

thoroughly describe the fatigue damage process of composite structures. However, hybrid 

models will be soon the state of the art since these models combine both model-based and 

data-driven approaches aiming to get the best from each i.e. MBMs can compensate the lack 

of data and DDMs can compensate the lack of knowledge about composites’ damage 

evolution. 

 

2.5. Adaptive methodologies  

Composite structures usually operate in non-uniform environments and altering operational 

conditions e.g. loads, whereby CM data are changing. The composite structure’s life is 

heavily influenced by the way it is operated, maintained, the environmental and operation 

conditions, which are not always the designed ones, since unexpected phenomena can be 

occurred during the structure’s lifetime. For the latter, let’s consider an example from the 

aviation industry. Foreign objects impacts, such as birdstrikes, hail, tool drops etc., may 

occur anytime during the lifetime of the aircraft. These events fail into category of 

unexpected phenomena that may create damage, which has not been anticipated into the 

design phase. The implication of such an unexpected phenomenon to the integrity of the 

structural component could be severe and a common practice, as long as the operators record 

the event, is to interrupt the aircraft operation and initiate inspection and repair actions 

resulting to unplanned costs. In this case, the role of a RUL prediction model would be to 

assess the effect of the unexpected phenomenon and to provide an updated prediction.  

 

However, the current state-of-the-art RUL prediction models may not be suitable for the 

following reasons. A MBM will not be able to take into account these unexpected 

phenomena since it is not realistic to involve any physical law that is able to describe all the 

possible unexpected phenomena. On the other hand, ‘classic’ DDMs have a strong 

limitation, because they are able to predict degradation processes efficiently, only when the 

testing data are extracted under the same conditions as the training data. For the case of the 

foreign object impact, the RUL predictions of the structural composite component of the 

aircraft will be accurate only if the training data contains data related to the impact. In other 

words, a DDM may not provide accurate RUL predictions of the testing composite structure 

if the training composite structures have not experienced that unexpected phenomenon 

before. However, in order to create a training database, which covers all the possible testing 

scenarios is impractical. Consequently, there is a need to develop RUL models with real-

time adapting capabilities in order to be able to predict more accurate the RUL of composite 

structures that either underperform or outperform due to unexpected phenomena that might 

occur during the service life. Nevertheless, there is no literature available about adaptive 
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prognostics in composite structures. Due to that, the literature study is extended to adaptive 

prognostics of engineering systems in general.  

 

A few adaptive prognostic models have been proposed in the literature the last 15 years. 

Orchard et al. [32] utilized two different approaches for outer feedback correction loops in 

particle filters algorithms. These loops incorporate information for the short term prediction 

error in order to improve the performance of the overall prognostic framework. However, 

important initialization parameters such as the number of prediction steps (k), the variance 

vector of the kernel noise [p q]T have to predefined. Both approaches were tested using data 

from an artificial fault test in a critical component of rotorcraft transmission system. Results 

show that outer feedback correction loops improve the precision and accuracy of the 

predicted RUL. 

 

Sbarufatti et al. [33] proposed a model for batteries’ prognostics, which is a combination of 

particle filters and radial basis function neural networks (RBFNNs). This model could be 

considered adaptive as the RBFNNs are trained online. To be more specific the neural 

networks parameters are identified online by the particle filters as soon as new observations 

of the battery terminal voltage become available. The RBFNNs algorithm has shown to be 

able to provide satisfactory prognostic predictions over normal and aging scenarios. 

However, before RBFNNs use, the dataset has to be significantly corrupted by adding 

artificial noise. In general, the choice of the noise variances is not an easy task since too 

small values may hamper a proper exploration of the state-space, and at the same time too 

large values don’t guarantee an efficient state estimation.  

 

Furthermore, in Khan et al [34] an adaptive degradation prognostic model, utilizing particle 

filter with a neural network degradation model, was proposed in order to predict the RUL of 

turbofan jet engines. The RUL predictions were generated using two different algorithms 

for benchmarking the results, the nominal RBHNNs with particle filters and the similarity 

based prognostics. The RUL predictions for both algorithms are characterized by volatility 

but more importantly the similarity based approach does not support the prediction of RUL 

confidence intervals which is an essential output for the reliability of the algorithm. 

Furthermore, the proposed prognostic model requires the initialization of the random walk 

step size (σa). The σa selection is not a straight forward choice, since a large value of it will 

give fast convergence but high fluctuations whereas a small value will produce a smoother 

but a slower convergence of the parameter estimation process, and at the same time is an 

important selection regarding the final prognostics. As a result, the selection of σa is driven 

from the case-study.  

 

Daroogheh et al. proposed a hybrid prognosis model, which integrates particle filters and 

neural networks for gas turbine engines [35]. It is worth mentioning that the integration of 

particle filters and neural networks is a common combination in the literature, since both of 

these algorithms are available in many commercial and open source programming language 

and their implementation is relative easy in respect to other algorithms. The authors 

developed a hybrid prediction model based on extending particle filters to the future time 

horizon by utilizing an observation forecasting scheme. This scheme is provided by using 

the neural network approach as a nonlinear time series forecasting scheme. Neural networks 

are trained adaptively based on the newly received data in the case that the deviations 

between the forecasted observation from this network and the real observation increase from 
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one test data to another test data set. Nonetheless, the main disadvantage of this hybrid 

prognosis model is the absence of confidence intervals. 

 

Si et al. [36] utilized a Wiener-process-based model with a recursive filter algorithm for 

RUL predictions. A state space model updates the drift coefficients, which are defined as 

random variables, and an expectation maximization (EM) algorithm re-estimates all the 

unknown parameters as soon as new data is available. The proposed model is applied to 

estimate the RUL of gyros in an inertial navigation system. The proposed model of Si at all 

excels in most of the cases that are presented in [37] and [38]. However, Wiener models 

assume that the degradation process of the studied system and the operation time are linearly 

connected, which is not always the case. 

 

A very recent work of Cadini et al. [39] proposed to exploit the flexibility of neural networks 

so as to adaptively learn from a monitored metallic structure and derive models for 

diagnostics and prognostics in real time. In order to achieve that neural networks are 

embedded within a particle filtering scheme and the training process of the network is 

performed in real time as CM data become available during the structure’s operation. As a 

result, the proposed RUL model is capable of sequentially updating itself utilizing the 

available CM data. This model was demonstrated on simulated and real fatigue crack growth 

tests of metallic aeronautical panels. The main drawbacks of the Cadini et al’s RUL model 

are the required convergence time to the actual RUL, which tends to be larger than similar 

RUL models, the volatile RUL predictions and the divergent behavior of confidence 

intervals towards the end of life. However, the proposed model may play a role in structural 

prognostics in the future where physics‐based or more accurate empirical/phenomenological 

models become available. 

 

2.6. Conclusions 

Based on the conducted literature review, there is clearly a need to develop models with real-

time adapting capabilities in order to be able to predict more accurately the RUL of 

composite structures that either underperform or outperform due to unexpected phenomena 

that might occur during the service life. These composite structures are often referred as 

outliers and the prediction of their RUL is a challenging task. These adaptive models have 

to be data-driven in case of composite structures because the incomplete knowledge about 

the physics behind the evolution and interaction of composites’ damage mechanisms and the 

unrealistic involvement of any physical law, that is able to describe all the possible 

unexpected phenomena, make a MBM not a visible option.  

 
The DDM could be frequentist or a Bayesian based. This study is focusing on a frequentist 

approach mainly for the following two reasons; in prognostics one crucial parameter is the 

computational time of an estimation, to be more specific how many time units the algorithm 

needs to predict system’s reliability and as it is known Bayesian inference may be 

computationally intensive due to integration over many parameters. On the other hand 

frequentist inference tends to be less computationally intense [40]. Furthermore, Bayesian 

inference is subjective to the selection of prior distributions. There is no single method for 

choosing a prior, so different people will produce different priors and may therefore arrive 

at different posteriors and conclusions.
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Therefore, this study is focusing on the development of a new data-driven frequentist 

prognostic model, which will be capable of sequentially updating itself using the available 

online CM data gathered during the composite structure's operation, avoiding the typical 

limitations associated to non-adaptive RUL models, which are, in general, not capable of 

capturing the effect of unexpected phenomena in RUL predictions. 
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3.1. Introduction 

As already mentioned in Chapter 2, there is a need for developing data-driven frequentist 

models, which will be able to adapt their estimated parameters using online CM data. These 

models will be part of a more general methodology. Figure 3.1 summarizes the proposed 

adaptive methodology and it consists of two processes; the training and testing. The training 

process contains the training CM data, the feature extraction process and the selected 

stochastic model. The feature extraction process is designed only based on the training CM 

data and during the testing process exactly the same feature extraction process is followed. 

In addition, the initialization step of the selected stochastic model is utilized and stochastic 

model’s parameters θ are estimated (θ*) during the training process. The testing process uses 

the training process’ output θ*, the testing CM data, the pre-designed feature extraction 

process and diagnostics in order to predict the RUL of the testing engineering system. The  

diagnostics part is the adaptation’s backbone element since this measure is the ‘trigger’ of 

the adaptation model and the main indicator of any possible unexpected event. After the 

adaptation, prognostics for the testing engineering system can be calculated. The aim of this 

new adaptive model is to provide more accurate RUL prediction for systems, which may 

face uncertainties during their operation life that were not encountered during the training 

process. In order to evaluate the performance of the new adaptive model, prognostic 

performance metrics are introduced in the testing process. In Section 3.1 and 3.2 the main 

elements of the training and testing processes are described and explained, respectively. 

 

3.2. Training process 

This section reviews the main elements of the training process, namely, the feature extraction 

process and the selected stochastic model. 

 Feature extraction process 

A set of metrics in order to illustrate a feature extraction process has been proposed in the 

literature and consists of monotonicity, prognosability and trendability [1]. Monotonicity 

characterizes a parameter's general increasing or decreasing trend, prognosability measures 

the spread of a parameter's failure value and finally, trendability indicates whether 

degradation histories of a specific parameter have the same underlying trend.  
 
In order to produce features with strong prognostic capability, the aforementioned metrics 

can be used either as identification of an appropriate prognostic feature (to compare possible 

features) or as a feature design property. Monotonicity is an important prognostic feature 

since in this thesis it is assumed that systems do not undergo repair actions or self-healing 

and as a result the CM degradation histories are expected to have monotonic trend. It should 

be noted that this assumption is not valid for some components such as batteries, which may 

experience some degree of self-repair during short periods of nonuse [2]. However, for 

mechanical components or systems with a combination of electronic and mechanical 

components, this assumption holds. Based on the literature [3-5], a feature that is sensitive 

to the degradation process is desirable to have a monotonic trend. To quantify the 

monotonicity the Mann-Kendall (MK) criterion can be used [6], Equation (3.1). 
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𝑀𝐾 =∑ ∑ (𝑡𝑗 − 𝑡𝑖) ∙ sgn (y(𝑡𝑗) − y(𝑡𝑖))

D

j=1,j>i

D

i=1

 

 

(3.1) 

 

where y(ti) the feature value at time of measurement ti, D the number of measurements 

and 𝑠𝑔𝑛(𝑥) = {

−1   𝑖𝑓 𝑥 < 0
   0   𝑖𝑓 𝑥 = 0

   1   𝑖𝑓 𝑥 > 0
}. 

 

In this thesis the Modified Mann-Kendall (MMK) criterion is introduced so as to quantify 

the feature monotonicity, Equation (3.2), for the following reasons:  

 

 MK values have not any informative meaning in terms of how monotonic a feature 

is. For example, in [7] study the MK values’ range from [105, 4x105]. However, 

MMK value expresses a percentage of monotonicity in the range of [-1,1]. If 

MMK=1, the degradation history is strictly increasing, while if MMK=-1, the 

degradation history is strictly decreasing. In any other case the degradation history 

is not strictly monotonic.  

 Each degradation history has the same monotonicity weight no matter its length. 

On the other hand, the classical MK criterion is biased since a longer degradation 

history gives a higher MK value. 

 

Monotonicity =  
𝑀𝐾

∑ ∑ (𝑡𝑗 − 𝑡𝑖)
D
j=1,j>i

D
i=1

∙ 100% 
(3.2) 

 

Prognosability and trendability are defined via the work of Coble and Hines [1]. 

Prognosability is calculated as the variance of the failure values for each degradation history 

divided by the mean range of the history. This is exponentially weighted to give the desired 

zero to one scale: 

𝑃𝑟𝑜𝑔𝑛𝑜𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑒
−

𝑠𝑡𝑑(𝑦(𝑡𝐷))

𝑚𝑒𝑎𝑛|𝑦(𝑡𝐷)−𝑦(𝑡1)| 
 

(3.3) 

 

where y(ti) the feature value at time of measurement ti and D the number of measurements. 

The trendability of a CM feature is more complex to define than the other two metrics. A 

candidate feature is trendable if each degradation history of the population can be modeled 

with the same functional form. This can be measured to some degree by comparing the 

fraction of positive first and second derivatives in each history. Again, when using real world 
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3 

data, these parameters should be smoothed to give a more accurate estimate of the 

derivatives. The formalization of trendability is given by Coble and Hines [1]: 

 

𝑇𝑟𝑒𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑠𝑡𝑑(𝑧𝑖) (3.4) 

 

where 

𝑧𝑖 =
𝑛𝑜.𝑜𝑓

𝑑𝑦
𝑑𝑡⁄ >0

𝐷−1
+
𝑛𝑜.𝑜𝑓

𝑑2𝑦
𝑑𝑡2
⁄ >0

𝐷−2
, y(ti) the feature value at time of measurement ti and D 

the number of measurements of the ith degradation history. 

 

These three intuitive metrics can be formalized to give a quantitative measure of prognostic 

feature suitableness but also, as already mentioned, they can be used as a feature design 

property in terms of combining different CM features so as to involve a new one with higher 

monotonicity, prognosability and trendability. 

 

The process of extracting information from different CM techniques and integrate them into 

a consistent, accurate and reliable feature (hyper-feature) is known as data fusion and it has 

been already successfully applied to damage diagnostics [8,9]. In principle, data fusion can 

be implemented in three levels; raw multi-sensor data fusion, feature-level fusion and 

decision-level fusion. Raw data fusion should be treated with caution as sensor recordings 

may have different acquisition, pre-filtering and amplification settings. In addition, raw data 

fusion needs to have as input commensurate data in terms of values’ range. As a result, 

feature-level and decision-level fusion are more common [10]. In this thesis a feature-level 

data fusion methodology is proposed. 

 

The fusion scheme receives as inputs at least two features, e.g. feature X and feature Y, 

where the following equation explains the rationale behind the fusion process. 

 

𝑓(𝑋, 𝑌) =∑ ∑ 𝑎𝑖𝑗

𝑖+𝑗≤𝑀

𝑖=0

𝑀

𝑗=0

∙ 𝑋𝑗 ∙  𝑌𝑖  

 

(3.5) 

  

where 𝑓 is the fused output feature, 𝑎𝑖𝑗  are constant coefficients that control the weight of 

the exponential X and Y features’ product and M the maximum polynomial degree power 

that these features can use. The aforementioned three metrics, i.e. monotonicity, 

prognosability and trendability, are adopted to enable the data fusion process and are 

expressed in Equation (3.6) by defining a fitness function as a weighted sum of the three 

metrics. Fitness function is used as an objective function to be maximized and thus determine 

which polynomial degree M and constant coefficients aij give the best prognostic fused 

feature. 

 

Fitness = a ∗ Monotonicity + b ∗ Prognosability + c ∗ Trendability (3.6) 

 

and the constants a, b, and c control how important each metric is in the optimization and 

they are user-defined parameters. 

 

The constant polynomial coefficients 𝑎𝑖𝑗 , for each polynomial degree M, are based on the 

optimization problem described in Equation (3.7) with the fitness as the objective function. 
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For the aforementioned optimization problem, different optimization techniques can be used 

i.e. Nelder-Mead, Neural Networks, Particle Swarm Optimization (PSO), Genetic 

Algorithms and OptQuest/NLP (OQNLP). The unconstrained optimization problem is 

formulated as:  

𝛼𝑖𝑗
∗ = argmax

𝑎𝑖𝑗
 (Fitness(𝑎𝑖𝑗 , M)) 

(3.7) 

In conclusion, the outputs of the proposed data fusion methodology are the optimum 

polynomial degree M and the optimum constant coefficients aij based on the Fitness function, 

Equation (3.7). 

 Stochastic model 

As already discussed in Chapter 2, this study is focusing on the involvement of a new data-

driven frequentist prognostic model, the ANHHSMM, which is an extension of the 

NHHSMM.  

 

NHHSMM is the most extensive version of Hidden Markov models (HMMs). Although 

HMMs were initially introduced and studied in the late 1960s and early 1970s [11] they 

became popular recently. Peng and Dong highlighted that HMMs have a rich mathematical 

structure and can form a solid theoretical foundation for use in engineering applications [12]. 

An added benefit of employing HMMs is the ease of model interpretation in comparison 

with pure ‘black-box’ modeling methods such as artificial neural networks that are often 

employed in advanced prognostic models [13]. However, HMMs’ main disadvantage is that 

they assume an exponentially distributed state duration (sojourn time), which is not always 

the case. Hidden Semi Markov models (HSMM), relaxes this assumption allowing the 

unconstrained modeling of sojourn times. HSMMs have been utilized successfully for 

prognostic RUL predictions in condition monitoring of machines [12] and [14]. In HMMs 

and HSMMs, there is the limitation that the state transitions are not dependent on the age of 

the engineering system or on the sojourn time in the current state.  

 

The work of Moghaddass and Zuo extended the HSMMs to NHHSMMs in order to 

overcome this limitation [15]. According to NHHSMM, state transitions are a dynamic 

procedure, which depends on the current hidden state, the time spent in this state (sojourn 

time), the total age of the engineering asset or any combination of these parameters. A 

similar work from Peng and Dong also extended the HSMMs to NHHSMMs using an 

iteration algorithm [12]. This algorithm uses the transition matrix obtained from the HSMM 

in order to create a new one, which includes aging factors. Three different types of aging 

factors, i.e. constant, multiple and exponential form, are presented by Pend and Dong. The 

work of Moghaddass and Zuo doesn’t include any kind of limitations regarding the 

dependency between the state transitions and the aging parameter. Therefore, it can be 

characterized as the most extensive one until now in the literature of Markov models.  

 

The NHHSMM excels in many aspects, as it is a DDM and it doesn’t have any sojourn time 

limitation, in comparison with other available prognostic models. Two studies of Loutas et 

al. compare the NHHSMM with gradient boosted trees (GBTs) and Bayesian feed-forward 

neural networks (BNN), [16] and [17] respectively. In the first paper, the authors predicted 

the RUL of in-service reciprocating compressors using temperature as health indicator data 

measured in Head End and Crank End discharge valves. In the second paper, the authors 

predict the RUL of composite structures subjected to fatigue loading utilizing AE 
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measurements as health indicator data. According to the benchmark between the NHHSMM 

and GBTs and BNN, the NHHSMM performs better using several metrics and it gives more 

coherent predictions for both studies. Thus an adaptive extension of the NHHSMM seems 

to be very promising. The adaptive version of the NHHSMM will be presented in full details 

in the next chapter. 

 

3.3. Testing process 

This section reviews the main elements of the testing process, namely, diagnostics, 

prognostics and prognostic performance metrics. 

 Diagnostics and prognostics 

In real world engineering systems, diagnostics and prognostics are calculated through 

several dynamic reliability measures reflecting certain aspects of the degradation process. 

These dynamic reliability measures are estimated using the CM data extracted from the 

testing engineering system utilizing exactly the same feature extraction process as the 

training CM data used. In this thesis dynamic means that the measure is calculated over time 

given the most updated sequence of the CM data.  

 

As a result, dynamic diagnostic measures employ all the available CM data up to the current 

time point to provide information regarding the current actual degradation level. Using CM 

data for diagnostic purposes has been reported frequently in the literature [18,19]. The most 

commonly used measure is the current degradation level of the system (hidden or damage 

state), which can be estimated using methods such as the Viterbi algorithm [11]. The Viterbi 

algorithm is a dynamic programming algorithm and it is able to identify the most likely 

sequence of damage states via a sequence of CM data. Moghaddass and Zuo [20] were the 

first ones who involved diagnostic measures with the ability to reflect the dynamic behaviour 

of the degradation process for a multistate degradation process. 

 

While dynamic prognostic measures can help maintenance makers to determine the time to 

initiate maintenance setup so as to prevent the engineering system’s failure, prognostics 

provide information regarding the RUL of the studied system. Over the past years, there has 

been a significant increase on prognostic methodologies [21,22]. Moghaddass and Zuo [20] 

developed prognostic measures that can be calculated based on real-time CM data according 

to NHHSMM. In Chapter 4, the mathematical derivations for important diagnostic and 

prognostic measures are mentioned for a degradation process under NHHSMM. 

 Prognostic performance metrics 

Prognostics aim to avoid failures in critical systems through the RUL estimations. However, 

as it is mentioned in Chapter 2 it is challenged by past, present and future uncertainties 

involved with operating loads, model inaccuracies, data noise and environmental conditions 

among others. This imposes a strict validation requirement through a rigorous performance 

evaluation before they can be certified for critical applications. As a result, prognostic 

performance metrics has gained significant attention in the past few years. Metrics can create 

a standardized language with which technology developers and users can communicate their 

findings and compare results. 
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In this thesis seven prognostic performance metrics are employed in order to evaluate the 

predictive performance of the ANHHSMM. The first five are metrics widely used in 

literature [23,24]; Precision, Mean Squared Error (MSE), Mean Absolute Percentage Error 

(MAPE), Cumulative Relative Accuracy (CRA), Convergence (CEm) while the last two were 

developed within the framework of this thesis. The prognostic performance metrics are 

defined as: 

 

1.Precision 

Precision =√
∑ (𝐸𝑚(ti)−𝐸𝑚̅̅ ̅̅̅(ti))

2D
i=1

D−1
, where 𝐸𝑚̅̅ ̅̅  is the mean value of error Em and  

Em(ti) = RULactual(ti)-𝑚𝑒𝑎𝑛𝑅𝑈𝐿(ti) and ti ε [1,D] is the discrete time moment 

when the ith SHM observation is recorded. 

2. Mean Squared Error (MSE) 

MSE = √
∑ (𝐸𝑚(ti))

2D
i=1

D
. 

3. Mean Absolute Percentage Error (MAPE) 

MAPE = 
1

D
∑ |

100∙𝐸𝑚(𝑡𝑖)

RULactual(𝑡𝑖)
|D

i=1 . 

4. Cumulative Relative Accuracy (CRA) 

CRA= 
∑ RA(𝑡𝑖)
D
i=1

D
 where RA(ti) = 1-|

𝐸𝑚(𝑡𝑖)

𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙(𝑡𝑖) 
|. 

5. Convergence (CEm) 

CEm =√(𝑥𝑐 − 𝑡1)
2 + 𝑦𝑐

2 

where 

𝑥𝑐 =  
∑ (𝑡𝑖+1

2 − 𝑡𝑖
2) ∙ |𝐸𝑚(i)|

D−1
i=1

2 ∙ ∑ (𝑡𝑖+1 − 𝑡𝑖) ∙ |𝐸𝑚(i)|
D−1
i=1

    𝑎𝑛𝑑   𝑦𝑐 =  
∑ (𝑡𝑖+1 − 𝑡𝑖) ∙ 𝐸𝑚(i)

2D−1
i=1

2 ∙ ∑ (𝑡𝑖+1 − 𝑡𝑖) ∙ |𝐸𝑚(i)|
D−1
i=1

. 

6. Monotonicity 

The prognostic’s function monotonicity can be measured based on the proposed 

MMK monotonicity criterion, see Equation (3.2), where y(𝑡𝑖) is replaced with 

𝑚𝑒𝑎𝑛𝑅𝑈𝐿(𝑡𝑖). In case of the studied function, which is the RUL prediction 

function, the preferable value of MMK=-1 since it is expecting that the engineering 

system’s RUL is decreasing monotonically during its lifetime. 

 

7. Confidence Intervals Distance Convergence (CIDC) 

Goebel et al. [25] stated that as the amount of data increases during the fatigue life, 

the confidence intervals distance should converge towards the actual life. In order 

to quantify this statement, a new metric is introduced; the CIDC. This metric is an 

extension of the metric of convergence in [23] but in this case the centroid is under 

the confidence intervals distance curve. In general, lower Euclidian distance means 

faster convergence. Let (xc, yc) be the center of mass of the area under the 
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confidence intervals distance curve, then the CIDC can be represented by the 

Euclidean distance between the (xc, yc) and the origin (t1,0), where: 

 

CIDC =√(𝑥𝑐 − 𝑡1)
2 + 𝑦𝑐

2 

where 

𝑥𝑐 =  
∑ (𝑡𝑖+1

2−𝑡𝑖
2)∙(𝑈𝐶𝐼(i)−LCI(i))D−1

i=1

2∙∑ (𝑡𝑖+1−𝑡𝑖)∙(𝑈𝐶𝐼(i)−LCI(i))
D−1
i=1

   ,   𝑦𝑐 =  
∑ (𝑡𝑖+1−𝑡𝑖)∙(𝑈𝐶𝐼(i)−LCI(i))

2D−1
i=1

2∙∑ (𝑡𝑖+1−𝑡𝑖)∙(𝑈𝐶𝐼(i)−LCI(i))
D−1
i=1

  

and  

 

UCI, LCI the upper and lower selected confidence intervals. 

 

Figure 3.2 demonstrates how the CIDC metric works in two hypothetical sets of 

confidence intervals 1 and 2. The confidence intervals in case 2 converge faster 

than confidence intervals 1, see Figure 3.2(a). In Figure 3.2(b) the Euclidean 

distance of the mass center 2 and the origin (CIDC2= 9.7419) is lower than the 

Euclidian distance of the mass center 1 and the origin (CIDC1= 10.5048) thus, the 

CIDC metric is validated. 

 

 
(a) 

 
(b) 

 

Figure 3.2. Validation of Confidence Intervals Distance Convergence metric a) Hypothetical sets of confidence 

intervals b) Mass centers under the confidence intervals distance curves 
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4.1. Introduction 

This chapter introduces the basic structure of the ANHHSMM, a successor of the NHHSMM 

developed by Moghaddass and Zuo [1], and explains how this stochastic process can be used 

for multistate degradation modeling when states are hidden (not directly observable) and 

unexpected events may occur. Furthermore, the main assumptions and elements of the 

NHHSMM are described in Section 4.2. Section 4.3 presents the diagnostic measure, which 

evaluates the current health status of the studied engineering system and Section 4.4 presents 

the adaptation process and three additional assumptions, which were used to design the 

ANHHSMM. Finally, in Section 4.5, prognostic measures, which predict the RUL of the 

engineering system, are introduced. 

 

4.2. Non-Homogeneous Hidden Semi Markov model 

This section presents and discusses the main assumptions that Moghadass and Zuo [1] made 

so as to involve the NHHSMM. Moghadass and Zuo’s assumptions are presented just for 

the consistency of the thesis. In addition, the basic structure and key elements of the 

NHHSMM are presented in that section too. 

 Assumptions 

Moghadass and Zuo’s assumptions set the scope with regards to practical applications. The 

main NHHSMM’s assumptions are itemized as follows [1]: 

 

I. The engineering system has N known possible discrete levels of degradation 

states ranging from the perfect functioning state (state 1) to the complete 

failure state (state N). Each health state may reflect a certain level of damage, 

operational performance, efficiency, and/or physical properties. 

 

II. Except the failure state, which is assumed to be self-announcing, the state of 

the engineering system is only indirectly observable through CM data. 

 

III. At any level of health states, the engineering system can degrade according to 

three types of transitions, which are; (I) transition to the neighbour state (soft 

degradation), (II) transition to the failure state (hard failure), and (III) transition 

to any intermediate state (multi-step degradation).  

 

IV. Transition rate function is used as the main describer of the degradation 

process. Each degradation transition can follow an arbitrary distribution. 

Degradation transitions between two states may depend on the states involved 

in the transition, the time spent at the current state, the total age of the 

engineering system, or any combination of these factors.  

 

V. CM data cannot directly reflect the actual damage state of the studied 

engineering system. Also, in this thesis a single CM indicator is used for health 

monitoring. This single indicator can be the output of a feature fusion process, 

which transforms a set of indicators to a single one. This indicator is calculated 

at certain discrete points referred to as observation points. 
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VI. The time between two observation points is small enough, so that at most one 

transition may occur in the interval between two observation points. 

 

VII. The CM indicator can take one of the V possible outcomes denoted by z1,z2 

,...,zv. 

 

VIII. The CM indicator is stochastically related to the actual levels of degradation. 

This relationship is represented by a nonparametric discrete probability 

distribution referred to as the observation probability distribution (B) with 

discrete values (z1,z2 ,...,zv). In a general form, the probability that zk is 

observed when the device is in state j (Qt = j) is defined as bj(k) = Pr(Yt = zk|Qt 

= j), ∀t, 1 ≤ k ≤ D. 

 

IX. The engineering system is not repairable or self-healed. 

 

It should be pointed out that the above-described assumptions are related to the NHHSMM. 

Three additional assumptions for the adaptation process will be discussed in Section 4.4. 

 Model Selection Process 

The primary step in order to use the NHHSMM for diagnostic and prognostic purposes is to 

define a reasonable and efficient, in terms of computational time, structure for the associated 

multistate model, in other words to find the best set of characteristic parameters for the 

selected model. That process is called model selection process and it involves two steps; the 

initialization step and the parameter estimation step.  

 

The main elements regarding the initialization step that determine a multistate topology are 

the following ζ={N, Ω, λ, I, V} parameters: 

 

 Number of hidden states (Ν). N refers to the number of discrete levels of 

degradation. This value can be defined with respect to the actual degradation states 

that the system might experience during its lifetime. Many studies have assumed 

that this parameter is known [2]. However, hidden states are not quantitatively but 

just qualitatively correlated with the degradation process. As a result, there are also 

many studies that the number of hidden states is treated as a decision making 

variable [3]. The parameter N is the most important one since it affects all the other 

elements of the multistate structure. In addition, as already mentioned in the 

previous Subsection 4.2.1 the main assumption in this thesis is that the system 

under study starts to operate on its perfect functioning state, hidden state 1, until its 

total failure i.e. state N. The final state N is not hidden but self-announcing and 

always corresponds to the failure state. As a result, the last observation of the 

available training data should be unique dictating a common failure threshold in 

the training data.  

 

 Transition between the hidden states (Ω). This parameter defines the connectivity 

between the N selected hidden states. As noted in the previous Subsection 4.2.1 the 

studied engineering system is assumed to be not repairable or self-healed and 

subsequently the possible transition types can be only left-to-right transitions. A 
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possible left-to-right transition can be: (I) soft (gradual transition to neighbour 

hidden state), (II) hard (sudden transition from any hidden state to failure state N) 

and (III) multistep (transition to an intermediate state between the current hidden 

state and the failure state). Figure 4.1 illustrates the three possible types of left-to-

right transition.  

 

Figure 4.1. Soft (I), hard (II) and multistep (III) types of transition. 

 Transition rate function (λ). This parameter is the main describer of the degradation 

process since each transition is going to follow this λ rate function. The transition 

process depends on the involved hidden states, the sojourn time of the current 

hidden state, the total operation time (aging) and any other combination between 

the aforementioned parameters. In this current study the selected transition type is 

the Non-Homogeneous semi Markovian degradation type. Commonly used 

distributions for the λ function are the Weibull, Gaussian, Exponential and Gamma 

failure rates [4]. In this study the Weibull failure rate is used since it is the most 

generic one and the most commonly used distribution to represent degradation [5]. 

 

 Condition monitoring feature (I). A CM feature is assumed to be a single indicator 

having hidden or indirect connection with the actual degradation level of the studied 

engineering system. This connection, between the damage/hidden states and the 

selected CM feature, is a stochastic relationship and is modeled via a nonparametric 

discrete probability distribution and represented by an observation probability 

matrix. In real word applications, finding such a single indicator having a stochastic 

relationship with the actual damage state is really challenging and difficult task. 

 

 Discrete CM indicator space (Z={z1,z2,…,zV}). As mentioned in the previous bullet 

point the final CM feature is represented in a nonparametric discrete form and 

consequently it has to be converted to several discreet levels. The selection of the 

value V is crucial for the observation process since the emission probability matrix 

has N (number of hidden states) rows and V (number of discrete monitoring values) 

columns. Therefore, the value V reflects how the selected CM feature is 

represented. Different methods e.g. vector quantization and clustering can be used 

in order to determine the value V [6]. 

 

Once ζ parameters are determined, the structures of the multistate degradation and 

observation process are known and the parameter estimation step can be introduced. 

 

With regards to the parameter estimation step, parameters θ={Γ, B} have to be estimated 

since these ones characterize the degradation process (Γ) and observation process (Β). Γ 

parameters characterize the distributions of transition rates between hidden states. For 

example, if a Weibull distribution is used to represent a Non-Homogeneous Semi-Markov 
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transition between two states two parameters, the shape and scale, need to be estimated for 

this transition. 

 

The second group of parameters to be estimated (B) represents the stochastic relationship 

between the hidden state of the studied engineering system and the observation process. As 

already mentioned this relationship is represented in a nonparametric and discrete form by 

the observation probability matrix. The entries of this matrix are some of the unknown 

parameters of the N. This matrix has N (number of hidden states) rows and V (number of 

discrete monitoring values) columns. The entry in the element (i,j) of the emission 

probability matrix represents the probability that zj CM value is observed when the system 

is in hidden state i. 

 

Let’s assume that there are K independent degradation histories, extracted from K similar 

engineering systems. This set of K degradation histories called training data set. Each 

degradation history of the selected CM feature was extracted while the engineering system 

was operating.  

 

Moghadass and Zuo [1] proposed a method for defining the Maximum Likelihood Estimator 

(MLE) θ* of the model parameter θ. The MLE utilization leads to maximize the likelihood 

function L(θ,y(1:K)) Equation (4.1), where y(k) is the k-th degradation history. 

 

𝐿(𝜃, 𝑦(1:𝐾)) =∏𝑃𝑟(𝑦(𝑘)|𝜃)
𝐿′=𝑙𝑜𝑔 (𝐿)
⇒      

𝐾

𝑘=1

𝐿′(𝜃, 𝑦(1:𝐾)) = ∑ 𝑙𝑜𝑔(𝑃𝑟(𝑦(𝑘)|𝜃))

𝐾

𝑘=1

 

 

𝜽∗ = 𝑎𝑟𝑔max
𝜃
(∑ 𝑙𝑜𝑔 (𝑃𝑟(𝑦(𝑘)|𝜽))

𝐾

𝑘=1

) 

      

(4.1) 

 

The MLE approach begins with a random initialization of θ={Γ,Β} parameters and it aims 

to the iterative maximization of the ∑ 𝑙𝑜𝑔 (𝑃𝑟(𝑦(𝑘)|𝜽))𝐾
𝑘=1  value. This procedure concludes 

to the estimation of parameters θ*, that describe the most probable model for a given training 

data set and initialization parameters ζ. With M*={ζ,θ*} the estimated complete model is 

denoted for further diagnostic and prognostic use. 

 

4.3. Diagnostics 

As the degradation process has a monotonic behaviour then a feature sensitive to the 

degradation process with monotonic behaviour should be found. However, finding such a 

monotonic behaviour is an interesting and challenging topic for real time applications [7]. 

In order to provide useful information for the current degradation state of an engineering 

system, diagnostic measures have to be developed. In this subsection, the Most Likely State 

(MLS) is presented, which employs CM data that reflects the current degradation state of 

the system under study.  

 

MLS is capable to monitor the overall health status of an engineering system since it is 

sensitive to the degradation process and characterized by monotonicity [8]. There are two 
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main reasons why monotonicity is of importance [7]. Firstly, an oscillating measure cannot 

reflect the damage development trends perfectly. Secondly, as in this thesis the studied 

engineering system is assumed to be non-repairable or self-healed, the damage has to 

increase during the system’s lifetime as a result a proper diagnostic measure has to follow 

this monotonic trend. Therefore, a measure with monotonic trend can better represent the 

degradation process. It should be pointed out here that the common assumption throughout 

this subsection is that the structure of the multistate model (M*) is already known. 

 

At any time point t the MLS can be calculated as follows: 

 

MLS(t|y1:t, 𝐌
∗)=argmax

i
 Pr(Qt = i|y1:t, 𝐌

∗) (4.2) 

and this measure maximizes the probability Pr(Qt = i|y1:t, 𝐌
∗) of being at the hidden state 

i at the time point t given the available testing CM data up to time t, where Qt is the hidden 

state of the system at the t observation time point and M*={ζ, θ*} the estimated complete 

model. 

 

4.4. Adaptation process 

In addition to the NHHSMM’s assumptions, presented in Subsection 4.2.1, three additional 

assumptions should be considered for the development of the ANHHSMM: 

 

X. The emission matrix does not depend on time because it correlates CM data 

and hidden states. Furthermore, the CM data range remains the same since the 

last observation, as already mentioned (Assumption I), should be unique 

dictating a common failure threshold in the training and testing data set. As a 

result, it is assumed that the emission matrix remains the same during the 

adaptation process (B**= B*). 

 

XI. The scale and shape parameters of the Weibull failure rate distribution describe 

the degradation process Γ. The shape parameter can be interpreted as a value 

that indicates when the failure rate remains constant, decreases or increases 

over time. On the other hand, the scale parameter shifts the distribution along 

the abscissa scale. Assuming that the studied system has the same volume of 

damage at the end of its lifetime, the scale Weibull parameter adapts only, 

enabling the sojourn time of each hidden state to shift in time. In order to 

quantify this shift the aforementioned dynamic diagnostic measure MLS is 

used. During the testing process, the MLS is estimated enabling the 

observation of the transition time from the current hidden state i to any new 

hidden state j. Therefore, the sojourn time of the i hidden state can be defined 

(Mean_Γi,j**). However, the probability density function (PDF) of sojourn 

time, at hidden state i, is estimated based on the NHHSMM’s Γ* parameters 

(Mean_Γi,j*) and a comparison between these two sojourn times (Mean_Γi,j**, 

Mean_Γi,j*) can be achieved. Since the target of the ANHHSMM is to estimate 

more accurately the RUL of the testing engineering system the scale Γ* 

parameters are dynamically adapted so as to have mean sojourn times the 
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values which the MLS has defined. This adaptation is determined via 

introducing the Equation (4.3) [9]. 

 

                  Scale_Γi, j∗∗  =
Mean_Γi, j∗∗ 

Gamma(1 + 1 Shape_Γi, j∗⁄ )
 

 

 (4.3) 

XII. The ratios between the training and testing sojourn times of hidden state i and 

i+1 should be constant. To demonstrate this last assumption, which 

dynamically updates the sojourn times of the future hidden states based on the 

current and past hidden states’ sojourn time adaptation, the following 

flowcharts and pseudo code are presented. 

 

 
 

Figure 4.2. Sojourn times per hidden state based on the NHHSMM Γ* parameters. 

 

 

Figure 4.3. Sojourn times per hidden state based on the MLS diagnostic measure when the studied engineering 

system just transited from the hidden state i to i+1. 

The following pseudo code adapts dynamically the sojourn time of each hidden state when 

the engineering system just transited from the hidden state i to i+1. 

 

 For s=1 to N 

        If s<i+1 then  

                               meanΓs,s+1
**=Ts,s+1  

                                    𝑅𝐹𝑠,𝑠+1 = 
𝑚𝑒𝑎𝑛𝛤𝑠,𝑠+1

∗∗

𝑚𝑒𝑎𝑛𝛤𝑠,𝑠+1
∗  

          Else 

                                 Rescaling_Factor =mean(RF) 

                                 meanΓs,s+1
** = Rescaling_Factor × meanΓs,s+1

*
 

       End 

End 

 

Based on the aforementioned three assumptions the dynamic adaptation process, which is 

the key element of the ANHHSMM, receives as inputs the extracted testing CM data and 

the estimated model´s parameters θ*. Τhe flowchart of the adaptation process is presented in 

Figure 4.4. 

 

 

1
meanΓ1,2

* . . .
i-1

meanΓi-1,i
*

i
meanΓi,i+1

*
i+1

meanΓi+1,i+2
* . . . N

1
T1,2

. . .
i-1

Ti-1,i

i
Ti,i+1

i+1
???

. . . N
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4.5. Prognostics 

Although important diagnostic measures, such as MLS, can provide useful information on 

the current damage state of the studied engineering system, prognostic measures are more 

attractive to maintenance decision makers as they provide information on the future health 

status of an engineering system, which can be used for maintenance decision making. This 

subsection is devoted to important prognostic measures, which are calculated from the 

available testing CM data, the complete adapted model M**={ζ, θ**} and provide 

information regarding the RUL of the testing engineering system. 

 

Prognostics tries to estimate the probability of being in hidden states 1,…,N-1 at a specific 

time points in future using the conditional reliability function. The conditional reliability 

function, R (t|y1:tp , D > tp, 𝐌
∗∗) = Pr (D > t|y1:tp , D > tp, 𝐌

∗∗), that is, the probability 

that the studied engineering system continues its operation after a time t given; time t is less 

than life-time D (D>t), time point t is further than the current time tp, the engineering system 

has not failed yet (D>tp), the testing data y1:tp and the complete adapted model M**. The 

cumulative distribution function (CDF) of RUL is defined at any time point via the 

conditional reliability according to the following equation: 

 

Pr (RULtp ≤ t|y1:tp, 𝐌
∗∗) = 1 − R(t + tp│y1:tp , 𝐌

∗∗) (4.4) 

 

In this study the mean and confidence intervals of RUL are proposed as prognostic measures. 

These measures were calculated via the CDF of RUL [5]. Equation (4.5) defines the mean 

RUL expression. 

 

𝑅𝑈�̂� (𝑡|𝑦1:𝑡𝑝, 𝐿 > 𝑡𝑝,𝑀) = ∫ 𝑅 (𝑡 + 𝜏|𝑦1:𝑡𝑝 , 𝐿 > 𝑡𝑝,𝑀) 𝑑𝜏
∞

0

 
 

(4.5) 

 

In prognostics, an estimate of the uncertainty associated with the mean RUL predictions is 

of utmost importance, in order to give a confidence of the predicted mean value. The 

calculation of confidence intervals is based on the calculation of the a% and (1-a)% lower 

and upper percentiles respectively. It is important to note that simulation-based numerical 

data, via the MC simulation method, are used in Chapter 5 so as to verify the efficiency and 

correctness of the ANHHSMM. 
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Figure 4.4. Dynamic adaptation process flowchart. 
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Verification process 
6 SHM system design 

 

 

 
  



547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou
Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020 PDF page: 70PDF page: 70PDF page: 70PDF page: 70

5.Verification process 

 

46 
 

5.1. Introduction 

In this chapter, simulation-based numerical data, utilizing the MC simulation method, are 

used to evaluate the prognostics validity of the ANHHSMM. The objective is to verify that 

the ANHHSMM is able to predict more accurately the RUL than the NHHSMM, when the 

studied engineering system is a left or right outlier and to predict the RUL with the same 

level of accuracy when the system doesn’t exhibit extreme behavior utilizing MC simulated 

data. The degradation process Γ and observation process B have to be defined in order to 

extract the aforementioned MC simulated data. The MC data prognostics of the ANHHSMM 

will then be compared with the NHHSMM’s prognostics and the actual RUL, which was 

originally used to generate the MC data. 

 

5.2. Monte-Carlo inputs 

Let’s assume that an engineering system, is operating under N discrete levels of degradation. 

The system will start from hidden state one (health state) and pass through all hidden states 

before failure (Ω: soft transitions). All states are hidden except the failure state (N), as it is 

self-announcing as the model dictates. It is assumed that the gradual transition to the 

neighbour hidden state j depends on the two hidden states involved in the transition and the 

sojourn time spent at the current state i. For transition rate function (λ) the Weibull failure 

rate distribution is used as follows: 

 

𝜆𝑖,𝑗(𝑠, 𝑡) =
𝛽𝑖,𝑗

𝑎𝑖,𝑗
(
𝑡

𝑎𝑖,𝑗
)
𝛽𝑖,𝑗−1

        𝑖𝑓 1 ≤ 𝑖 ≤ 𝑁 − 1,   𝑗 = 𝑖 + 1        (5.1) 

 

in this context, it is important to evaluate the effectiveness of the model by introducing a 

realistic scenario for the N discrete levels of degradation. The NHHSMM data-driven 

approach has already been applied for a series of applications, e.g. [1] and [2], where it was 

found that N=4 is a representative number to describe the degradation process until failure 

of those specific systems, thus four levels are adopted for further explanation and 

demonstration of the model’s capabilities. Furthermore, it is challenging for the proposed 

adaptive model to select four discrete levels because, as mentioned in Chapter 4, the 

adaptation process occurs when a transition from one hidden state to another takes place. 

Therefore, the hypothesis is that for a large number of N discrete levels, more transitions are 

modelled, so more opportunities occur to adapt, giving more chances to the model to update 

its RUL prediction. Thus, by keeping the N number small the flexibility and effectiveness 

of the model are limited.   

 

The Weibull scale and shape parameters of the MC simulation are as follows: 

 
 

  - 64 - - 

α = - - 46 - 

  - - - 25 

 
  - 12 - - 

β = - - 10 - 

  - - - 6 

Where the elements in the ith row and jth column of the scale α and shape β matrices are the 

parameters of the Weibull distribution associated with the transition from hidden state i to 

hidden state j.  
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Regarding the observation process B, it is assumed that the CM indicator has ten possible 

discreet values (V=10), which are defined by Z={1,2,3,4,5,6,7,8,9,10}. The stochastic 

relationship between the hidden states and the CM data is represented by the nonparametric 

discrete distribution emission matrix (B). This matrix has four rows since N=4 and ten 

columns since V=10, where the element in the ith row and jth column of this matrix represents 

the probability that the observation will be equal with j when the system is in the hidden 

state i. It should be noted that the sum of values in each row equals to 1. The emission matrix 

B is defined below: 

 

  0.30 0.25 0.20 0.10 0.08 0.05 0.02 0 0 0 

B = 0.03 0.06 0.10 0.12 0.20 0.25 0.18 0.05 0.01 0 

  0 0.02 0.05 0.08 0.10 0.15 0.20 0.25 0.15 0 

  0 0 0 0 0 0 0 0 0 1 

 

Considering the above information the initialization parameters ζ={N,Ω,λ,V}, the 

degradation and observation parameters θ={Γ,Β} are defined. As a result the model is now 

fully defined M={ζ,θ}. 

 

5.3. Simulated MC data Generation 

MC method simulates the stochastic behaviour of the studied idealistic system and as a result 

simulated observation histories are extracted and used as inputs for the parameter estimation 

process. Based on the parameter estimation process’s outputs diagnostics and prognostics 

can be obtained and compared with the actual values. In this subsection, the MC data 

generation procedure is described. The simulation process explained here generates multiple 

sequences of degradation states and their corresponding observation values based on the 

previously defined model parameters M. The simulation process is based on the inverse 

transform technique. The following pseudo code is used so as to generate one degradation 

history: 
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 inputs: M={ζ,θ} 

X0=1 

T0=0 

Tage=0 

for c=0 to N-1 

 i=Xc 

 s=Tc 

 j=i+1 

 a~U(0,1) 

 Tj
 ~Λ i,j-1(s,-log(1-a)) where Λ i,j(s,t)=∫ 𝜆𝑖, 𝑗(𝑠, 𝑢)𝑑𝑢

𝑡

0
 

 Tage=Tage+Tj 

 for t=(Tc+1) to (Tage-1) 

  a~U(0,1) 

  for f=2 to V 

   if   ∑ 𝑏𝑋𝑗(𝑧)
𝑓−1

𝑧=1
< 𝑎 <∑ 𝑏𝑋𝑗(𝑧)

𝑓

𝑧=1
 

    yt=f 

   else  

    yt=1 

   end 

  end 

 end 

end 

output: Xi, Ti where 1<=i<=N-1 and yt where t ɛ [1,D]. 

 

where Xn and Tn are respectively the hidden state and the time at the nth transition, Ti,j
s is a 

random number for the time transition from hidden state i to j, given that hidden state i is 

reached at time s and V is the maximum discreet CM value. Based on the defined model M 

there are transitions as X1=2, X2=3 and X3=4 with corresponding times T1, T2 and T3 and Y 

the observation process, where yi (1<=i<=L), which is the corresponding values of the MC 

observation process with length D associated with (Xn,Tn). 

   

The output of the above described simulation process is thirteen MC degradation histories 

(K=13), which are generated for the training and testing process. For the training process, 

ten MC degradation histories, Table 5.1 presents the lifetime of these ten engineering 

systems, will be used as inputs for the parameter estimation process while the remaining 

three will be used as testing data. One of the training MC degradation histories is shown in 

Figure 5.1. The choice of this MC degradation history was random, similar results were 

obtained for the rest of the other MC engineering systems.  
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Table 5.1. Lifetimes of training MC systems. 

Training MC engineering systems Lifetime unit 

1 131 

2 149 

3 129 

4 139 

5 149 

6 135 

7 150 

8 136 

9 144 

10 124 

 

 

 

Figure 5.1. MC observation sequence. 

Regarding the testing process three MC degradation histories generated and can be used to 

verify the adaptability of the proposed probabilistic model. The testing data consists of two 

outliers, one left and one right, and one inlier MC system. The two outliers have significantly 

shorter (left outlier) and longer (right outlier) lifetimes than any of training systems’ 

lifetimes. The inlier and outliers’ MC degradation (red) and observation (blue) processes are 

presented in Figures 5.2-5.4. 
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Figure 5.2. Right outlier’s observation (blue) and degradation (red) processes. 

 

Figure 5.3. Left outlier’s observation (blue) and degradation (red) processes. 

 

Figure 5.4. Inlier’s observation (blue) and degradation (red) processes. 

 



547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou
Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020 PDF page: 75PDF page: 75PDF page: 75PDF page: 75

5.4. Parameter estimation process 

 

51 

 

5 

5.4. Parameter estimation process 

The proposed parameter estimation process requires the initialization parameters 

ζ={N,Ω,λ,V}. The initialization parameters ζ are exactly the same with the MC initialization 

parameters, so in that case N=4, Ω: soft transitions, λ: Weibull failure rate and V=10, since 

in the adaptive parameter estimation process the ζ parameters are initialization parameters 

and the goal is to estimate the observation process (B) and degradation process (Γ) 

parameters (θ={Γ,Β}). Therefore, the parameter estimation process requires initial estimates 

for all the unknown θ parameters. For the transition distributions the initial value of 50 is 

assumed for all the scale parameters (α) and the initial value of 4 is assumed for all shape 

parameters (β). The selection of these initial values is based on the training data set’s 

lifetimes. The mean value of our training data set failure time, see Table 5.1, is 138 time 

units and the mean Weibull value of each hidden state, except the final one, setting the scale 

parameter equal to 50 and the shape parameter equal to 4 is 45. As a result utilizing these 

initialization parameter the assumed failure time is 3x45+1=136 time units which is pretty 

close to the mean training data set failure time (138 time units). In case of setting totally 

different scale and shape initial values, the parameter estimation process’ computational 

time will be affected and became less efficient. For the emission matrix (B) the discrete 

uniform distribution is utilized whereby a finite number of values are equally likely to be 

observed. The selection of the discrete uniform distribution makes sense since it is not 

known how the hidden states are connected with the CM data. To be more specific, the initial 

value of (1/(M-1)) is assumed for all entries except those in the last row and the last column, 

which are related to the observable failure state, B(4,10)=1. The threshold of 0.001 is 

considered as the stopping criterion for the log-likelihood function improvement (Equation 

4.1). The final estimated θ*={Γ*,Β*} parameters are presented and compared with MC 

parameters in Tables 5.2 and 5.3. 

 

Table 5.2. Comparison between MC and NHHSMM Weibull (Γ) parameters. 

Scale 

Parameters 

MC 

value 

Estimated 

value 

Shape 

Parameters 

MC 

value 

Estimated 

value 

α(1,2) 64 68 β(1,2) 12 16 

α(2,3) 46 49 β(2,3) 10 13 

α(3,4) 25 26 β(3,4) 6 6 

 

Table 5.3. Comparison between MC and NHHSMM emission matrix (B) parameters. 

MC values 

 

  0.30 0.25 0.20 0.10 0.08 0.05 0.02 0 0 0 

B = 0.03 0.06 0.10 0.12 0.20 0.25 0.18 0.05 0.01 0 

  0 0.02 0.05 0.08 0.10 0.15 0.20 0.25 0.15 0 

  0 0 0 0 0 0 0 0 0 1 

            
 

Estimated values 
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  0.27 0.26 0.21 0.10 0.08 0.06 0.02 0 0 0 

B* = 0.03 0.04 0.12 0.11 0.20 0.24 0.19 0.06 0.01 0 

  0 0.02 0.04 0.07 0.10 0.17 0.20 0.24 0.16 0 

  0 0 0 0 0 0 0 0 0 1 
 

 

5.5. Adaptation process 

The suggested adaptation process receives as inputs the testing MC data and the estimated 

parameters θ*. The adaptation process will be applied three times, once per observation 

sequence i.e. left outlier, right outlier and inlier case. Only the left outlier will be presented 

hereafter in details, since the adaptation process for the other two cases is exactly the same.  

 

Figure 5.5 presents the left outlier’s MLS estimations as calculated from Equation (4.2) at 

each time point. Figure 5.5 reflects that this MC system is an outlier since the sojourn time 

of the hidden state 1 based on MLS is just 34 time units and based on the NHHSMM is 66 

time units, see Figure 5.6. Similar results were obtained for the sojourn time of the hidden 

state 2 since MLS sojourn time is 26 time units and NHHSMM sojourn time is 47 time units. 

Utilizing the NHHSMM estimated parameters θ*, the testing data and the MLS estimations 

the ANHHSMM can be defined and dynamically adapt the parameters θ* to θ**, following 

the process which described in Section 4.3. The outcome (Weibull pdfs) of the ANHHSMM 

(dashed lines) is presented in Figure 5.6 and it is compared with the NHHSMM’s estimated 

parameters. 

 

 

Figure 5.5. MLS diagnostic estimations of left outlier’s case. 
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Figure 5.6. Sojourn time Weibull distributions utilizing the Γ* and Γ** parameters of left outlier’s case. 

Based on Figure 5.6 the ANHHSMM Weibull pdfs are shifted to the left side as it was 

desired since the testing MC system is the left outlier while the NHHSMM Weibull pdfs 

don’t manage to capture the swift properly. In this direction the ANHHSMM prognostic 

estimations are expected to be more accurate, comparing with the NHHSMM estimations 

since the mean sojourn time values are getting shorter. 

 

Figures 5.7 and 5.8 present the adaptation output for the right outlier and the inlier case 

correspondingly. Based on Figure 5.7 the ANHHSMM Weibull pdfs are shifted to the right 

side as it is desired since the testing MC system is a right outlier, while for the inlier case 

the Weibull pdfs are not shifted significantly as Figure 5.8 presents. 

 

 

Figure 5.7. Sojourn time Weibull distributions utilizing the Γ* and Γ** parameters of right outlier’s case. 
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Figure 5.8. Sojourn time Weibull distributions utilizing the Γ* and Γ** parameters of inlier’s. 

 

5.6. Prognostics verification 

Following the aforementioned adaptive framework, a four-state (N=4) model allowing only 

soft state transitions was developed where θ* and θ** parameters were estimated according 

to the training and testing MC data respectively. The conditional RUL CDF is calculated 

using Equation (4.4),  in real-time at each time point utilizing all the testing MC data up to 

that time point. The mean RUL and the 2.5% and 97.5% percentiles that define a 95% CI 

are also highlighted. Figures 5.9–5.11 present the prognostic results of the ANHHSMM for 

the left, right outlier and the inlier case respectively. As already mentioned previously, each 

testing MC observation sequence was unseen, that is, they did not participate in the training 

process. For example of the left outlier, the minimum failure time of this training data set is 

150 time units while the left outlier's failure time is 77 time units, see Figure 5.3.  

 

 

Figure 5.9. RUL predictions of the left outlier. 
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Figure 5.10. RUL predictions of the right outlier. 

 

 

Figure 5.11. RUL predictions of the inlier. 

The ANHHSMM provides clearly better prognostics from the NHHSMM for the two 

outliers, since the mean ANHHSMM RUL predictions are able to approach more 

satisfactorily the real RUL predictions and it provides equally acceptable prognostics as the 

NHHSMM for the inlier case. The outstanding performance of the ANHHSMM for both the 

right and left outliers, demonstrates that the proposed adaptive framework has succeed its 

objective; the mean ANHHSMM RUL predictions are satisfactorily close to the real RUL 

predictions and the confidence intervals contain the real RUL curve during almost the whole 

lifetime of the left and right outlier. Furthermore, the ANHHSMM can identify at a very 

early stage an outlier and adapt the RUL predictions in an efficient and accurate way since 

it succeeds the initial RUL predictions to be closer to the real values than the NHHSMM’s 

RUL predictions. 
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5.7. Conclusions 

In this chapter, the efficiency and the correctness of the ANHHSMM were verified via 

simulated MCdata. Ten MC observation histories were used for training and three for the 

testing process. In conclusion, the results demonstrate that the ANHHSMM provides better 

prognostics regardless if the engineering is an outlier or inlier. As a result, adapting in real-

time the NHHSMM’s parameters using the MLS diagnostic measures has the potential to 

predict the RUL of outlier and inlier cases more efficiently and accurately.  

 

References 

[1] T. Loutas, N. Eleftheroglou, G. Georgoulas, P. Loukopoulos, D. Mba, and I. Bennett, “Valve 

Failure Prognostics In Reciprocating Compressors Utilizing Temperature Measurements, 

PCA-based Data Fusion And Probabilistic Algorithms,” IEEE Trans. Ind. Electron., vol. 

PP, no. c, pp. 1–1, 2019. 

[2] N. Eleftheroglou, D. Zarouchas, T. Loutas, R. Alderliesten, and R. Benedictus, “Structural 

health monitoring data fusion for in-situ life prognosis of composite structures,” Reliab. 

Eng. Syst. Saf., vol. 178, 2018. 

 



547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou
Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020 PDF page: 81PDF page: 81PDF page: 81PDF page: 81

 

57 

 

 

6  

Experimental campaign 
7 Reliability analysis 

 
 

 



547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou
Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020 PDF page: 82PDF page: 82PDF page: 82PDF page: 82

6. Experimental campaign 

 

58 
 

6.1. Introduction 

To demonstrate the adaptability and the efficiency of the proposed model, open-hole 

carbon/epoxy specimens were subjected to in-situ impact and constant amplitude fatigue 

loading up to failure. The training data set consists of CM data collected from eight 

specimens, which were subjected only to fatigue loading, while the testing data set consists 

of CM data collected from four specimens. Three of the testing specimens were subjected to 

fatigue and in-situ impact loading and the fourth specimen was subjected only to fatigue 

loading but it had an artificial drilling defect on it. The impact and the artificial drilling 

defect were introduced only to the testing process aiming to influence the fatigue life and 

produce outlier cases. Thus, the in-situ impact and the artificial drilling defect can be 

considered as unexpected phenomena and unseen events regarding the training process. 

Based on the analysis of the different sources of uncertainty, see Figure 2.5, the in-situ 

impact can be categorized as a lifetime future state uncertainty and the artificial drilling 

defect as a lifetime past state uncertainty.  

 

6.2. Experimental set-up and material 

Figure 6.1 presents the experimental set-up. The set-up consists of a 100 kN MTS fatigue 

controller and a bench fatigue machine, an impact canon, an AE system and two cameras 

for DIC measurements.  

 

 
(a) 
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(b) 

Figure 6.1. The experimental set-up. 

The impact cannon consists of three parts, the actual (impact) cannon, the nitrogen gas bottle 

and a safety box. The impact cannon accelerates a projectile in the barrel to a high velocity 

after which the projectile impacts on the test specimen. The acceleration of the projectile is 

done with the use of nitrogen up to a desired pressure. The required pressure for the required 

impact energy is determined utilizing a number of test impacts so as to identify which 

pressure creates a barely visible impact damage (BVID). BVID is defined as the likely 

impact damage at the threshold of reliable detection utilizing a visual inspection procedure. 

The actual cannon consists of a barrel, gas tank, electro-pneumatic valve, valve switch and 

a pressurization system. The pressurization system contains a pressure sensor, an inlet valve, 

a safety valve and an operator panel. Figure 6.2 presents a more detailed picture of the impact 

canon and its components. Because shooting a projectile is inherently dangerous, a safety 

aluminium cylinder was designed and connected to the canon as Figure 6.1(b) shows. The 

cylinder was then secured to an aluminium frame, which surrounded the specimen, using 

two screws. This way, the canon could be used during the fatigue tests without the need to 

interrupt and remove the specimens.  
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Figure 6.2. Picture of the impact canon [1]. 

DIC is used for full-field strain measurements, consists of two 8-bit “Point Grey” cameras 

with “XENOPLAN 1.4/23” lenses. Both cameras have a resolution of 5 MP. DIC was 

calibrated before the first test and the calibration quality was checked before each new 

experiment. Vic-Snap 8 software was used to acquire images, which are then processed 

using the Vic-3D 8 software. In processing these images, the subset size was set to 21 x 21 

pixels with a step size (distance between subsets) of 7 pixels. In order to acquire DIC images 

the following procedure was designed; every 500 cycles the fatigue test was interrupted, the 

load was set automatically within one second at σmin and then the load ramped to σmax within 

a second and two images were acquired. After that the fatigue test continued for the next 500 

cycles, see Figure 6.3. The process of image acquiring was automated and by triggering the 

DIC system via the fatigue controller. In case of the in-situ impact, the safety aluminum 

cylinder covered the specimens monitoring area so DIC images could not be acquired for 

strain analysis. Therefore, the fatigue controller was paused during the in-situ impact 

loading.  

 

 

Figure 6.3. DIC data acquisition strategy 

An AMSY-6 Vallen Systeme GmbH, 8-channel AE system with the sampling rate of 2 MHz, 

was employed to record the acoustic emission signals continuously. One broadband single-

crystal piezoelectric transducer, i.e. VS900-M, was attached using a clamping device, at the 

side of specimens between the rigid grip (lower) of the fatigue machine side and of the safety 

aluminium cylinder. Ultrasound gel was applied between the surfaces of the sensor and the 

specimen to ensure good acoustical coupling. A standard pencil lead break procedure was 

used to check connection between the specimen and the sensor prior to the fatigue test and 

to define the recording threshold, which is equal to 50 dB. 
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For the in-situ impact tests, two different procedures are possible. For the first one, the canon 

can be mounted on the frame without interrupting the fatigue test. Although this way the in-

situ impact is more realistic, there are technical challenges to address; it is extremely difficult 

to control at which load level, within the fatigue cycle, the impact occurred and as the safety 

aluminum cylinder covered the specimens, DIC images could not be acquired for strain 

analysis immediately after the impact. For the second procedure, the fatigue tests can be 

interrupted at the desired fatigue cycle and the desired load level. The canon is mounted on 

the frame, the impact is occurred, then the canon is removed and the fatigue test continues. 

The procedure of mounting and removing the canon from the test frame lasted for about 3-

5 minutes. In this way, it is easier to control at which load the impact would occur and 

acquire images for the DIC analysis. It is assumed that this short interruption would not 

affect the fatigue life of the specimens. Based on the aforemetioned reasons the second in-

situ impact procedure was followed. 

 

The material used for this study is a unidirectional Prepreg tape Hexply® F6376C-

HTS(12K)-5-35%. A laminate with [0/45/90/-45]2s lay-up and average thickness of 2.28mm 

was manufactured using hand lay-up, with a debulking procedure performed after every 

three plies. The laminate was cured in an autoclave at 180 °C and 9 bar gauge pressure for 

120 min time, following the cycle recommended by the manufacturer. Afterwards, the 

laminate was roughly cut using a Carat liquid-cooled diamond saw, followed by precise 

cutting using a Proth Industrial liquid-cooled saw. Fifteen specimens, with the following 

geometrical details; dimensions [400mm x 45mm] and a central hole of 10mm diameter, 

were tested. Three specimens were tested under quasi-static loading with a displacement rate 

of 1.5 mm/min in order to define the mean tensile failure load (S=36 kN), see Figure 6.4. 

Twelve specimens were tested under constant fatigue loading with load control at 90% of 

the mean static tensile failure load with R=0.1 and f=10 Hz. Out of twelve specimens, three 

were exposed to in-situ impact and one had an artificial drilling defect. The in-situ impact 

was occurred at the hole, as this location experiences the highest stresses, aiming to 

maximize the effect of impact on the damage accumulation process. The selected energy 

was E=6 J (impact velocity 20 m/sec) for all three cases and it can be categorized as high 

speed low energy impact. Furthermore, during the impact, the specimens were under tension 

equal to the mean fatigue load (16.2 kN). The time of impact was limited to the period 

between the start of the fatigue test and until damage could be observed by visual inspection. 

 

 
           S=36.1 kN 

 
            S=35.3 kN 

 
            S=36.6 kN 

Figure 6.4. Tensile failure loads of the three quasi-static specimens and their failure patterns. 
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Table 6.1 presents the fatigue lifetime of the training and testing specimens and when the 

impact occurred. Specimens 09-11 are the testing specimens for which the impact occurred 

at 5000, 8300 and 2400 sec of their fatigue life respectively. Specimen 12 is the one with the 

artificial drilling defect (see specimen 12 in Figure 6.5). In terms of clarity in Figure 6.5 all 

the training and testing specimens are presented. The testing data consists of four specimens; 

three outliers, one left (specimen10) and one right (specimen11) caused by a future state 

uncertainty, one left (specimen12) caused by a past state uncertainty, and an inlier 

(specimen09). 

Table 6.1. Fatigue lifetime and impact times of training and testing specimens. 

Specimens Impact time (sec) Lifetime (sec) 

1 - 80996 

2 - 57465 

3 - 59938 

4 - 48978 

5 - 67982 

6 - 75993 

7 - 95357 

8 - 106981 

Mean value - 74211.25 

9 5000 52418 

10 8300 37973 

11 2400 130497 

12 artificial drilling defect 14976 

 

 
Specimen01 

 
Specimen02 

 
Specimen03 

 
Specimen04 

 
Specimen05 

 
Specimen06 

 
Specimen07 

 
Specimen08 

 
Specimen09 

 
Specimen10 

 
Specimen11 

 
Specimen12 

Figure 6.5. Training and testing open-hole specimens. 
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6.3. Feature extraction process 

As mentioned in Chapter 3, it is often desirable to monitor features with a monotonic trend 

so as to correlate measurements with damage detection [2]. Figure 6.6 summarizes the 

feature extraction outputs. 

 

 

Figure 6.6. Feature extraction process’ inputs and outputs. 

 AE Condition Monitoring data 

AE hits are recorded in a non-periodic random manner and the process of monotonic feature 

extraction is not straightforward. In my previous studies, windowed cumulative AE features 

such as RA and amplitude, calculated in periodic intervals of constant duration, were used, 

[2] and [3]. However, in this current study it was not possible to identify any AE feature 

with monotonic trend without accumulating the feature’s values. Therefore, the proposed 

health indicator is the cumulative energy feature, which by default demonstrates a monotonic 
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behavior. The AE degradation histories for the twelve specimens are shown in Figure 6.7 

while the testing specimens are presented using a dash line. It is important to mention that 

the feature extraction process is executed utilizing only the training histories since the testing 

ones are unknown during the whole training process. 

 

 

Figure 6.7. Cumulative AE energy observation histories. 

 

Furthermore, as mentioned in Chapter 4, one of the main assumptions of the NHHSMM 

requires the last observation to be unique for all the training data so as to define a common 

end-of-life threshold [4]. However, as Figure 6.7 presents, it is hard to find such as a 

threshold using the cumulative AE energy observation training histories. For the reason that 

the threshold should be drawn using as reference the training specimen04, in that case the 

threshold corresponds almost to 50% of the lifetime in all the other specimens, resulting to 

an unrepresentative training data set. 

 

The only way to tackle this issue is to normalize each cumulative energy history with the 

maximum energy value, as Figure 6.8 showcases. However, by normalizing the feature with 

the maximum value, hinders the real-time applicability of the RUL for the testing specimens, 

because prior knowledge of the maximum AE energy cannot be obtained.  

 

The normalized cumulative AE energy observation histories of Specimens 1 to 8 will be 

used as inputs for the parameter estimation process. Regarding the testing process the 

remaining four observation histories, i.e. Specimen 9 to 12, will be used to verify the 

adaptability of the proposed probabilistic methodology. 
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Figure 6.8. Normalized cumulative AE energy observation histories. 

In addition, as discussed earlier in Chapter 4, the final CM feature should be represented in 

a nonparametric discrete form. Therefore, the normalized cumulative energy histories need 

to be converted to several discrete values. In literature several clustering techniques are used 

so as to convert the value of a feature in a continuous domain to a discrete domain, among 

them unsupervised k-means clustering has been successfully applied in the domain of CM 

[5].  

 

The key element and challenge of using k-means clustering are to find the optimal number 

of clusters V that represents the number of discrete values for the CM feature. In general, if 

a very small number of clusters V are selected, the feature cannot be a reasonable 

representative of the degradation process since it is not possible to vary much with the 

lifetime of the specimen. Therefore, the V should be reasonably large to better reflect the 

degradation process. However, considering a very large number of clusters V is 

computationally expensive. In order to identify the optimal number of clusters monotonicity 

can be used since, as mentioned, it is a desirable characteristic of any CM feature.  

 

To evaluate the variability of a monotonic trend, the MMK criterion, Equation (3.2), can be 

utilized. Figure 6.9 presents the change in the monotonicity index by increasing the number 

of clusters. It can be seen that the monotonicity converges for V≥10. Therefore, the number 

of possible CM outcomes is selected as 10 (V=10) and the clustering centers for the training 

and testing specimens are presented in Figure 6.9. Figure 6.10 presents the final CM outputs. 

Once again only the training histories used so as to estimate the number of clusters V and 

the center of each cluster. These discretized CM histories are considered as the input for 

parameter estimation process.  
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Figure 6.9. MMK monotonicity index versus the number of states and clustering centers when V=10 and CM 

feature is the normalized cumulative energy acoustic emission feature. 

 

Figure 6.10. Clustered AE degradation histories of training and testing open-hole specimens. 

 DIC Condition Monitoring data 

DIC technique enabled strain measurements in the entire surface of the specimen. Figure 

6.11 presents the axial strain distribution, strain in the load direction Y axis, as calculated at 

the maximum loading during the fatigue test of specimen01 after 500 fatigue cycles. Based 

on the analytical model of Lekhnitskii [6], which calculates the effect of a notch on the 

stress/strain distribution, the write rectangle, highlighted at the Figure 6.11, was chosen as 

the critical point to extract axial strains. Figure 6.12 presents the training and testing axial 

strain degradation histories, which were extracted for the aforementioned critical point. 
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Figure 6.11. Axial strain distribution of specimen01 and its critical area. 

 

Figure 6.12. Axial strain degradation histories of twelve open-hole specimens. 

Based on Figure 6.12 the axial strain feature fulfils the desired monotonic trend and the main 

assumption of the NHHSMM, which requires the last observation to be unique for all the 

training data. Therefore, the axial strain feature can be used as it is for the parameter 

estimation process. 

 

In Figure 6.13, the extracted axial strain data of specimen09 to specimen11 (testing 

specimens with impact), specimen12 (artificial drilling defect) and specimen05 (training 

specimen) are presented in order to show that the feature of axial strain is able to capture at 

least qualitative an unexpected event in real-time. In case of the future state uncertainty, 

jumps’ time points of specimens 09-11 are exactly the same with the impact time points and 

in case of the past state uncertainty the initial axial strain of specimen12 is larger than the 

all the other specimens.  

X 

Y 

X 

Y 
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Figure 6.13. Axial strain degradation histories jumps due to impact loading. 

The final CM feature should be presented in a discrete form by the clusters V and it can be 

calculated using the MMK criterion. The MMK converges for the number of clusters V 

equals to 10 for the axial strain data, as Figure 6.14 presents. Figure 6.15 presents the final 

clustered axial strain data after the thresholding process. 

 

 

Figure 6.14. MMK monotonicity index versus the number of states and clustering centers when V=10 and CM 

feature is the axial strain feature. 
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Figure 6.15. Clustered axial strain degradation histories of training and testing open-hole specimens. 

However, it is important in terms of clarity and validation to compare AE RUL predictions 

to DIC RUL predictions independently on the feature extraction process. Therefore, one 

more DIC feature is designed exactly the same as the final AE feature. Figure 6.16 presents 

the cumulative normalized axial strain feature, designed based on the axial strain degradation 

histories as presented in Figure 6.12. As it was expected, the new feature is a linear function 

of the lifetime. The fatigue life of the laminate used in this study is dominant by the fatigue 

behaviour of the 0 degrees plies/laminas since the selected lay-up is [0/45/90/-45]2s. It is 

known that the axial strain in the direction of 0 degrees for those plies remain almost constant 

throughout the fatigue course. Therefore, the cumulative axial strain feature is an integration 

over a constant variable i.e. the axial strain. As a result, the cumulative axial strain feature 

is a linear function over time. Hereafter, this new feature is called DIC2 while the clustered 

axial strain feature is called DIC1. The final discretized DIC2 feature is presented in Figure 

6.17 utilizing ten clusters since once again the MMK converges for the number of clusters 

V equals to 10 as Figure 6.18 presents.  

 

 

Figure 6.16. Normalized cumulative axial strain observation histories. 
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Figure 6.17. Clustered cumulative normalized axial strain degradation histories of training and testing open-hole 

specimens. 

 
Figure 6.18. MMK monotonicity index versus the number of states and clustering centers when V=10 and CM 

feature is the normalized cumulative axial strain feature. 

 Fused condition monitoring data 

The fusion scheme receives as input the clustered normalized cumulative AE energy (AE) 

and the clustered normalized cumulative axial strain (DIC2) features, based on the following 

Equation (6.1). 

 

𝑓(𝐷𝐼𝐶2, 𝐴𝐸) =∑ ∑ 𝑎𝑖𝑗

𝑖+𝑗≤𝑀

𝑖=0

𝑀

𝑗=0

∙ 𝐷𝐼𝐶2𝑗 ∙  𝐴𝐸𝑖 

 

(6.1) 

where 𝑓 is the fused output feature, 𝑎𝑖𝑗  are constant coefficients that control the weight of 

the exponential DIC2 and AE features’ product and M the fusion polynomial degree power. 
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In this thesis, the fusion scheme is based only on trendability since inputs’ monotonicity and 

prognosability indexes have already the maximum values. Therefore, only the trendability 

index, Equation (3.4), is adopted to enable the data fusion process. Trendability is used as 

an objective function to determine which polynomial degree M and constant coefficients aij 

give the maximum trendability index. 

 

The constant polynomial coefficients 𝑎𝑖𝑗 , for each polynomial degree M, are based on the 

optimization problem described in Equation (6.2) with the trendability obtained by the 

equation (3.4) as the objective function. For the aforementioned optimization problem, 

different optimization techniques were used i.e. Nelder-Mead, Neural Networks, Particle 

Swarm Optimization (PSO), Genetic Algorithms and OptQuest/NLP (OQNLP). For this 

exercise, it was found that OQNLP [7] is the most efficient optimization technique in respect 

to the computational time for estimating the parameters 𝑎𝑖𝑗  and M. The unconstrained 

optimization problem is formulated as:  

 

𝛼𝑖𝑗
∗ = argmax

𝑎𝑖𝑗
 (Trendability(𝑎𝑖𝑗 , M)) 

(6.2) 

the results of the optimization study, Equation (6.2), are presented for various polynomial 

degrees M in Figure 6.19. The MMK monotonicity converges for a polynomial degree M≥7. 

Therefore, the polynomial degree is selected as M = 7. 

 

 

Figure 6.19. Trendability index versus the fusion polynomial degree. 

For a polynomial degree with M=7, Table 6.2 summarizes the optimization results for the 

constant coefficients aij where is concluded that the fused data are designed mainly using 

the DIC2 feature since the AE coefficients are much smaller than the DIC coefficients. 

 

 

 

Table 6.2. Optimization results for M=7. 



547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou
Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020 PDF page: 96PDF page: 96PDF page: 96PDF page: 96

6. Experimental campaign 

 

72 
 

 AE0 AE1 AE2 AE3 AE4 AE5 AE6 AE7 

DIC20 -3.411e9 2.223e6 1 1 1 1 1 1 

DIC21 2.161e8 1 1 1 1 1 1 0 

DIC22 -6.292e6 1 1 1 1 1 0 0 

DIC23 1.073e6 1 1 1 1 0 0 0 

DIC24 -4.095e3 1 1 1 0 0 0 0 

DIC25 1 1 1 0 0 0 0 0 

DIC26 1 1 0 0 0 0 0 0 

DIC27 1 0 0 0 0 0 0 0 

 

The fused features are depicted in Figure 6.20. MMK convergence study is presented in 

Figure 6.21 and the final fusion feature in Figure 6.22. Based on the aforementioned 

optimization results (Table 6.2), the fused feature (Figure 6.22) and the DIC2 feature (Figure 

6.17) are exactly the same thus the RUL predictions utilizing the fused data and the DIC2 

data are expecting to be the same. 
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Figure 6.20. Fused degradation histories of twelve open-hole specimens. 

 

Figure 6.21. MMK monotonicity index versus the number of states and clustering centers when V=10 and CM 

feature is the fused data.
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Figure 6.22. Clustered fused degradation histories of training and testing open-hole specimens. 

Finally, Table 6.3 presents the trendability index for each CM feature i.e. AE, DIC2 and 

fused data and it is observed that the fused data has the highest trendability rate.  

 

Table 6.3. Comparison between DIC2, AE and fusion trendability index. 

 DIC2 AE FUSION 

Trendability 0.99963 0.78247 0.99971 
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7.1. Introduction 

The objective of this chapter is to benchmark ANHHSMM against the state-of-the-art 

NHHSMM, for testing data, which exhibit outlier behaviour in respect to training data, and 

to predict the RUL at least with the same level of accuracy when the composite specimen 

doesn’t exhibit extreme behaviour, although it experienced an unexpected event. The 

benchmark of the RUL predictions is performed using established in literature and newly 

proposed prognostic performance metrics. Figure 7.1 summarizes the content of Chapter 7. 

 

7.2. Parameter estimation process 

As discussed in Chapter 4, the first step of using the ANHHSMM is to determine the ζ={N, 

Ω, λ, I, V} initialization parameters for the aforementioned four features i.e. AE, DIC1, 

DIC2 and Fusion feature. The CM features (I) and their discrete monitoring indicator space 

Z (V=10) are already defined in Chapter 6. The transition rate's statistical function (λ), from 

hidden state i to hidden state j, follows a Weibull type degradation. Homogeneous 

transitions, towards the neighborhood state (soft types of transition) and non-homogeneous 

hard failures i.e. direct transitions from any state to the failure state (hard types of transition) 

are allowed only: 

 

𝜆𝑖,𝑗(𝑠, 𝑡) =

{
 
 

 
 𝛽𝑖,𝑗

𝑎𝑖,𝑗
(
𝑡

𝑎𝑖,𝑗
)

𝛽𝑖,𝑗−1

 𝑖𝑓 1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑗 = 𝑖 + 1(𝑠𝑜𝑓𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)

𝛽𝑖,𝑗

𝑎𝑖,𝑗
(
𝑠 + 𝑡

𝑎𝑖,𝑗
)

𝛽𝑖,𝑗−1

𝑖𝑓 1 ≤ 𝑖 ≤ 𝑁 − 2, 𝑗 = 𝑁(ℎ𝑎𝑟𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)

 

  (7.1) 

where t is the sojourn time at state i and s the time of entry into state i. 
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Figure 7.1. Content of Chapter 7. 

Having already at hand the final degradation histories from the AE, DIC and fused CM data 

in Figures 6.10, 6.15, 6.17 and 6.22, the only remaining model parameter is the number of 

hidden states N. Therefore, the initialization parameter N is considered as the only element 

that is unknown and not predefined and needs to be estimated. This is a model selection 

process and a classical way, though non-optimal, is the maximization of the Bayesian 

Information Criterion (BIC) utilizing the training CM data. 

 

𝐵𝐼𝐶(𝛭𝑖) = ∑ log (𝑃𝑟(𝑦(𝑘), 𝑄(𝑘)|𝛭𝑖)

𝐾

𝑘=1

− 𝑤
𝐻𝑖
2
log (𝑛) 

 

(7.2) 

 

where Mi is the candidate model, y(k) the CM data from K training degradation histories, Q(k) 
the state sequence of the kth training example, Hi is the number of estimated parameters of 

model Mi and n the number of all observations of K training sequences. Parameter w is the 

weight of the penalty term and is taken as w=1 in the thesis. It is notable that the computation 

complexity obviously increases exponentially as the number of hidden states N increases. 

 



547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou
Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020 PDF page: 104PDF page: 104PDF page: 104PDF page: 104

7. Validation process 

 

80 
 

Figure 7.2 depicts the BIC for all K=8 observation sequences of each available feature. BIC 

gives the highest probability for N=4 in all cases.  

 

 

Figure 7.2. BIC for the estimation of the number of hidden states N. 

 After defining the number of hidden states N the initialization process is totally defined: 

 N=4 

 Ω: soft and hard transitions 

 λ: Weibull failure rate 

 I: AE, DIC1, DIC2 and fused feature  

 V=10  

 

For further details about the calculation of the initialization parameters, the reader is referred 

to the work of [1] and [2]. A four-state model is thus trained for each CM feature, assuming 

all neighborhood state transitions of the type 1→2, 2→3, 3→4 as well as hard-type failures 

of the type 1→4, 2→4. The goal of the parameter estimation process is to estimate the 

observation process (B) and degradation process (Γ) parameters (θ={Γ,Β}), therefore, the 

adaptation/parameter estimation process requires initial estimations for all the unknown θ 

parameters.  

 

For the transition distributions the initial value of 50 is assumed for all scale parameters (α) 

and the initial value of 1 is assumed for all shape parameters (β). The selection of these initial 

values is based on the training data set’s lifetimes. In our case the mean value of our training 

data set failure time, see Table 6.1, is 74211.25 sec and the mean Weibull value of each 

hidden state, except the final one, setting the scale parameter equal to 27305 and the shape 

parameter equal to 4 is 24749 sec. As a result utilizing these initialization parameter the 

assumed failure time is 3x24749+1=74278 sec which is pretty close to the mean training 

data set failure time (74211.25 sec). In case of setting totally different scale and shape initial 

values the parameter estimation process’ output will be the same for the estimated values 

but the computational time will increase and become less efficient.  
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For the emission matrix (B) the discrete uniform distribution is utilized, whereby a finite 

number of values are equally likely to be observed. The selection of the discrete uniform 

distribution it makes sense since we don’t know how the hidden states are connected with 

the CM data. To be more specific, the initial value of (1/(V-1)) is assumed for all entries 

except those in the last row and the last column, which are related to the observable failure 

state, B(4,10)=1. The threshold of 0.0001 is considered as the stopping criterion for the log-

likelihood function improvement (Equation (4.1)). The final estimated θ*={Γ*,Β*} 

parameters are presented in Tables 7.1 and 7.2 for each CM feature.  

 

In our training sets, hard-type failures were not observed and this leads to unrealistic 

estimated values of the coefficients 𝛼1,4, 𝛽1,4, 𝛼2,4, 𝛽2,4 which were consequently excluded 

from the adaptation, diagnostic and prognostic tasks. This is interesting since the training set 

actually imposes on the estimated Weibull coefficients the type of transitions that actually 

take place, excluding transitions non-existent in the training set.  

 

Furthermore, the aforementioned statement regarding the similarity between DIC2 and 

fusion features is validated through the estimated B* and Γ* parameters since for both 

features they are exactly the same. Therefore, for the rest of the thesis the fusion feature is 

excluded since fusion prognostics are going to be exactly the same with DIC2 prognostics. 

 

Table 7.1. NHHSMM Weibull (Γ*) parameters. 

A
E

 

Scale Parameters Estimated value Shape Parameters Estimated value 

α(1,2) 33149 β(1,2) 2.00 

α(2,3) 27441 β(2,3) 2.44 

α(3,4) 22727 β(3,4) 1.85 

D
IC

1
 α(1,2) 44390 β(1,2) 4.44 

α(2,3) 23637 β(2,3) 2.36 

α(3,4) 22252 β(3,4) 2.23 

D
IC

2
 α(1,2) 27054 β(1,2) 4.51 

α(2,3) 26511 β(2,3) 4.14 

α(3,4) 27203 β(3,4) 4.29 

F
u

si
o

n
 

α(1,2) 27054 β(1,2) 4.51 

α(2,3) 26511 β(2,3) 4.14 

α(3,4) 27203 β(3,4) 4.29 
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Table 7.2. NHHSMM emission matrix (B*) parameters. 
A

E
 

 

  0.29 0.21 0.22 0.28 0 0 0 0 0 0 

B* = 0 0 0 0.01 0.32 0.33 0.34 0 0 0 

  0 0 0 0 0 0 0.01 0.49 0.5 0 

  0 0 0 0 0 0 0 0 0 1 
 

D
IC

1
 

 

  0.29 0.70 0.01 0 0 0 0 0 0 0 

B* = 0 0 0.59 0.40 0.01 0 0 0 0 0 

  0 0 0 0.02 0.57 0.27 0.08 0.03 0.03 0 

  0 0 0 0 0 0 0 0 0 1 
 

D
IC

2
 

 

  0.34 0.33 0.33 0 0 0 0 0 0 0 

B* = 0 0 0 0.33 0.34 0.33 0 0 0 0 

  0 0 0 0 0 0 0.33 0.33 0.34 0 

  0 0 0 0 0 0 0 0 0 1 
 

F
u

si
o

n
 

 

  0.34 0.33 0.33 0 0 0 0 0 0 0 

B* = 0 0 0 0.33 0.34 0.33 0 0 0 0 

  0 0 0 0 0 0 0.33 0.33 0.34 0 

  0 0 0 0 0 0 0 0 0 1 
 

 

7.3. Adaptation process 

The suggested adaptation process receives as inputs the testing AE, DIC1 and DIC2 

degradation histories and the estimated parameters θ*
AE, θ*

DIC1, θ*
DIC2. In this case-study the 

adaptation process will be applied twelve times, once per degradation history; present state 

left outlier (specimen10), present state right outlier (specimen11), inlier case (specimen09) 

and past state left outlier case (specimen12), and once per CM feature; AE, DIC1 and DIC2 

features. Figures 7.3-7.5 presents the MLS estimations as calculated from Equation (4.2) at 

each time point for each specimen and each feature. DIC1 feature’s transition time points 

from hidden state 1 to hidden state 2 are the closest to impact time points, comparing to 

DIC2 and AE transition times, see Table 7.3.  

 

Table 7.3. Comparison between transition time points from hidden state 1 to hidden state 2 with impact time 

points. 

 Specimen09 Specimen10 Specimen11 

Impact time point 5000 sec 8300 sec 2400 sec 

AE transition 12 time point 17500 sec 12000 sec 65500 sec 

DIC1 transition 12 time point 7000 sec 8500 sec 5500 sec 

DIC2 transition 12 time point 18000 sec 13000 sec 43000 sec 
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Therefore, DIC1 feature can be characterized as the best one in terms of diagnostics since 

MLS estimations are the closest to impact time points, something that was already observed 

in Figure 6.13.  

 

Figure 7.3. AE MLS diagnostic estimations of Specimen09-12. 

Figure 7.4. DIC1 MLS diagnostic estimations of Specimen09-12. 
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Figure 7.5. DIC2 MLS diagnostic estimations of Specimen09-12. 

 

In Figures 7.6-7.8 the outcome (Weibull pdfs) of the ANHHSMM (dashed lines) is presented 

and compared with the NHHSMM’s estimated parameters for each specimen and feature. 

 

Figure 7.6. AE sojourn time Weibull distributions utilizing the Γ* and Γ** parameters. 

Figures 7.3 and 7.6 reflects that specimen10 is an outlier since the sojourn time of the hidden 

state 1 based on MLS is just 12000 sec (see Figure 7.3) and based on the NHHSMM is 29376 

sec (Figure 7.6). Similar results were obtained for the sojourn time of the hidden state 2 since 

MLS sojourn time is 12000 sec and NHHSMM sojourn time is 24335 sec. Utilizing the 

NHHSMM estimated parameters θ*
AE, the testing AE data and MLS estimations the 



547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou547071-L-bw-Eleftheroglou
Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020Processed on: 21-8-2020 PDF page: 109PDF page: 109PDF page: 109PDF page: 109

7.3. Adaptation process 

 

85 

 

7 

ANHHSMM is defined and dynamically adapts the parameters θ*
AE to θ**

AE, following the 

process which described in Section 4.3. 

 

Based on Figure 7.6 (Specimen10) the ANHHSMM Weibull pdfs are shifted to the left side 

as it was desired since specimen10 is the left outlier, while the NHHSMM Weibull pdfs 

don’t manage to capture the swift properly. In this direction the ANHHSMM prognostic 

estimations are expected to be more accurate, comparing with the NHHSMM estimations 

since the mean sojourn time values are getting shorter. 

 

Figure 7.6 presents the adaptation output for the right outlier (Specimen11) and the inlier 

case (Specimen09) too. Based on Figure 7.6 (Specimen11) the ANHHSMM Weibull pdfs 

are shifted to the right side as it is desired since Specimen11 is a right outlier, while for the 

inlier case the Weibull pdfs are not shifted significantly as Figure 7.6 (Specimen09) presents. 

 

Figure 7.7. DIC1 sojourn time Weibull distributions utilizing the Γ* and Γ** parameters. 
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Figure 7.8. DIC2 sojourn time Weibull distributions utilizing the Γ* and Γ** parameters. 

Figures 7.7 and 7.8 present the adaptation process utilizing DIC1 and DIC2 features 

accordingly. Based on these features the ANHHSMM Weibull pdfs are shifted to the desired 

side in almost all cases except DIC1 Specimen09 and DIC1 Specimen11. In these two cases 

the Weibull pdfs are shifted to the left side, however Specimen09 is an inlier and 

Specimen11 is a right outlier. Therefore, the prognostics of these two specimen is expected 

to be less accurate. This undesirable behaviour of the proposed adaptive approach has 

probably occurred due to the third ANHHSMM’s extra assumption that dictates the ratios 

between the training and testing sojourn times of hidden states i and i+1 should be constant. 

This undesirable behaviour will be further discussed in the next chapter so as to identify the 

limitations of the proposed adaptive model. 

 

7.4. Validation of the adaptive model 

Following the aforementioned adaptive framework, three four-state (N=4) models, allowing 

soft and hard state transitions, were developed and θ*={ θ*
AE, θ*

DIC1, θ*
DIC2}, θ**={ θ**

AE, 

θ**
DIC1, θ**

DIC2} parameters were estimated according to the training and testing AE, DIC1 

and DIC2 features accordingly. Through Equation (4.4), the conditional RUL CDF is 

calculated at each time point and feature utilizing all the testing CM data up to that time 

point. The mean RUL and the 2.5% and 97.5% percentiles that define a 95% CI are also 

highlighted. Figures 7.9-7.11 present the prognostic results of the ANHHSMM and the 

NHHSMM for all the testing specimen and features. As already mentioned previously, each 

testing degradation history was unseen, that is, they did not participate in the training 

process. For example in case of Specimen10, the minimum failure time of the training data 

set is 49000 sec, while the Specimen10's failure time is 38000 sec, see Table 6.1.  
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Figure 7.9. AE RUL predictions. 

Based on Figure 7.9 the ANHHSMM provides better prognostics in comparison with the 

NHHSMM for left outliers (Specimen10 and Specimen12) and the inlier case (Specimen09), 

since the mean ANHHSMM RUL predictions are able to approach more satisfactorily the 

actual RUL predictions. Furthermore, it can identify at the very early stage the right outlier, 

i.e. Specimen11, since the initial RUL predictions are closer to the actual ones, than the 

NHHSMM’s RUL predictions. However, the NHHSMM provides more accurate RUL 

predictions towards the end of life for the right outlier. Probably, the main reason is that the 

fatigue life of the right outlier is relatively close to the maximum failure time of the training 

data set.  
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Figure 7.10. DIC1 RUL predictions. 

As mentioned in Subsection 7.2, the DIC1 ANHHSMM prognostics of Specimen09 and 

Specimen11 are not accurate because their adapted Weibull pdfs (Figure 7.7) didn’t shift 

towards the correct side. Regarding the left outlier cases, the performance of the proposed 

model can are accepted because RUL predictions can follow the trend of the actual RUL and 

they are conservative during the whole lifetime of these two specimens. However, based on 

Figure 7.10 the ANHHSMM cannot provide better prognostics than the NHHSMM for all 

cases. But even the NHHSMM’s RUL predictions cannot characterized accurate enough. As 

a result the proposed feature, i.e. DIC1, has limited prognostic capabilities.  

 

Figure 7.11. DIC2 RUL predictions. 

Based on Figure 7.11 the ANHHSMM provides clearly better prognostics in comparison 

with the NHHSMM for all cases.  

 

The outstanding performance of the ANHHSMM utilizing the AE and DIC2 features 

demonstrates that the proposed adaptive framework has succeed its objective; the mean 

ANHHSMM RUL predictions are satisfactorily close to the real RUL predictions and the 
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confidence intervals contain the real RUL curve during the entire lifetime of the testing 

specimens. Furthermore, the ANHHSMM can identify at a very early stage an outlier and 

adapt the RUL predictions in an efficient and accurate way since it succeeds the initial RUL 

predictions to be closer to the actual values than the NHHSMM’s RUL predictions.  

 

7.5. Prognostic performance metrics 

Seven prognostic performance metric are utilized in order to conclude which feature can 

provide the best RUL predictions and to quantify the aforementioned observations. In 

Figures 7.12-7.19 the results of the performance metrics, defined in Subection 3.3.2, are 

presented. The optimum values of the prognostic performance metrics are following: 

 

Table 7.4. Optimum values of the suggested prognostic performance metrics. 

Precision: minimum value 

MSE: minimum value 

MAPE: minimum value  

CRA: maximum value 

Monotonicity: minimum value 

CEm: minimum value 

CIDC: minimum value 

 

 

 

Figure 7.12. Precision prognostic performance metric of each specimen, feature and model. 
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Figure 7.13. MSE prognostic performance metric of each specimen, feature and model. 

 

Figure 7.14. Zoomed MSE prognostic performance metric of each specimen, feature and model. 
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Figure 7.15. MAPE prognostic performance metric of each specimen, feature and model. 

Figure 7.16. CRA prognostic performance metric of each specimen, feature and model. 
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Figure 7.17. Monotonicity prognostic performance metric of each specimen, feature and model. 

Figure 7.18. CEM prognostic performance metric of each specimen, feature and model.
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Figure 7.19. CIDC prognostic performance metric of each specimen, feature and model. 

Based on these results, it is confirmed that:  

 

 The ANHHSMM provides the best RUL estimations since ANHHSMM’s RUL 

predictions score better than the NHHSMM’s RUL predictions in the majority of 

the prognostic performance metrics. 

 

 The DIC2 feature provides the best RUL predictions since DIC2 RUL predictions 

score better in prognostic performance metrics. A random example based on Figure 

7.12 is given so as to illustrate the ascendance of DIC2 feature. DIC2-ANHHSMM 

predictions of Specimen12 excel at precision metric since the precision of the 

DIC2-ANHHSMM RUL predictions are lower than the precision of the AE and 

DIC1 RUL estimations, similar results can be obtained for the most of the available 

prognostic performance metrics. 
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8.1. Introduction 

This chapter summarises the main conclusions and contributions from each of the 

interconnected topics studied in this thesis. At the end, it provides some recommendations 

for further research regarding the topic of prognostics. 

 

8.2. Conclusions 

The aim of this thesis was to develop a new adaptive prognostic model that is able to predict 

more accurately than the current models the RUL of outliers; engineering systems which 

either under- or outperform. Based on the relevant literature this adaptive model has to be a 

frequentist DDM in case of composite structures. Furthermore, an adaptive extension of the 

NHHSMM seems to be very promising in order to predict more accurately the RUL of 

outlier composite structures.  

 

The first step was to design the adaptive extension of the NHHSMM, i.e. ANHHSMM, and 

verified its correctness utilizing simulated MC data. Simulated MC data are needed so as to 

be sure that the model’s algorithm does not contain computational bugs since the algorithm 

consists of thousands of code lines. Furthermore, a case-study was performed in order to 

validate the efficiency of the new adaptive data-driven model utilizing real data. Open-hole 

carbon/epoxy specimens were subjected to constant amplitude fatigue loading up to failure 

while in-situ impact and a drilling defect were used in order to demonstrate unexpected 

phenomena. AE and DIC techniques were employed so as to record CM data for the training 

and testing process. In addition, a new data fusion methodology, on a feature-level, was 

presented utilizing the CM features, i.e. AE, DIC1 and DIC2 features, and three design 

indexes i.e. monotonicity, prognosability and trendability. Eight specimens were used for 

training purposes, these specimens were subjected only to fatigue loading. Four specimens 

were used for testing the proposed adaptive model. Three of them were subjected to fatigue 

and in-situ impact, and created a left, a right outlier and an inlier case respectively to the 

training specimens. The last one was subjected just to fatigue loading but created one more 

left outlier case since it has an artificial drilling defect on it. Furthermore, five prognostic 

performance metrics, found in literature, were employed and two new were introduced, in 

order to compare the performance of the RUL predictions. 

 

The main conclusions of the thesis can be listed as follows: 

 

 Monotonicity, prognosability and trendability can be used as feature design 

properties for combining different CM features (data fusion) so as to involve a new 

hyper-feature with higher monotonicity, prognosability and trendability index than 

the initial CM features. 

 

 Prognostic performance metrics should always be used in order to quantify the 

performance of different prognostic models, even when the difference is self-

evident by just observing RUL figures, as in the case-study of this thesis. 

  

 A new data fusion approach was developed. The main objective was to produce a 

hyper-feature with higher trendability than the trendability of AE and DIC2 
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features. The main reason for utilizing a data fusion approach was the expectation 

that a feature with higher trendability index can enhance the prognostic 

performance. In order to draw conclusions for the above expectation, quantitative 

and not just qualitative evidences have to be provided. Firstly, the trendability index 

of the four features are: TrendabilityAE=0.78247, TrendabilityDIC1=0.92705, 

TrendabilityDIC2 =0.99971 and TrendabilityFUSION =0.99971. Secondly, based on the 

seven prognostic performance metrics the Fusion feature (same prognostics with 

DIC2 feature) provides better RUL predictions than the AE and DIC1 features, thus 

the aforementioned expectation seems to be valid. However, the AE feature 

provides better predictions than the DIC1 feature and at the same time the 

trendability index of DIC1 is higher than the trendability index of AE. These are 

two contrasting evidences and as a result it is not valid to conclude that higher 

trendability leads to more accurate prognostics.  

 

 The AE and DIC2 RUL predictions demonstrate clearly that the ANHHSMM 

provides better prognostics than the state-of-the-art NHHSMM. Consequently, 

adapting the NHHSMM’s parameters utilizing the MLS diagnostic measure has the 

potential to predict the RUL of outlier and inlier cases more efficiently and 

accurately. The above conclusion was verified via the seven proposed prognostic 

performance metrics. It was observed that the mean RUL predictions by NHHSMM 

converge to the actual RUL only towards the end of life. On the other hand, mean 

ANHHSMM RUL predictions converge to the actual RUL from the beginning of 

the composite specimen’s lifetime. Moreover, in all cases as the composite 

specimen ages the percentile interval for the RUL becomes narrower, that is, the 

prediction uncertainty decreases since more data become available. Also, the 

provided ANHHSMM percentile intervals cover the actual RUL in almost all cases. 

Furthermore, the ANHHSMM RUL predictions are conservative regarding the 

actual failure time. This is generally better than the case in which the estimated 

RUL is higher than the actual RUL because underestimating the failure time can 

cause unexpected failures. 

 

 The NHHSMM performed better than ANHHSMM when the DIC1 data were used. 

The DIC1 ANHHSMM RUL predictions are too conservative and as a result the 

estimated failure time is much earlier than the actual one. This undesirable 

behaviour of the proposed adaptive approach has probably occurred due to the XII 

ANHHSMM’s assumption that dictates the ratios between the training and testing 

sojourn times of hidden states i and i+1 should be constant. This assumption holds 

for cases that one unexpected phenomenon occurs and it alters the sojourn times 

proportionally. However, this assumption is not valid in DIC1 case since the 

unexpected phenomenon has an impact only to the current hidden state. Therefore, 

the XII assumption is valid when an unexpected event has an impact to the 

forthcoming hidden states too, not only to the current one. In order to tackle this 

undesirable behaviour, the impact of an unexpected event to each hidden state has 

to be identified in real-time. But first it is mandatory to understand the physical 

meaning of each hidden state so as to identify the impact of an unexpected 

phenomenon. As a result, the main conclusion is that a hybrid version of the 

ANHHSMM should be involved so as to tackle the aforementioned limitation. 
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 The feature extraction process for the strain data was straightforward, as after the 

determination of the critical specimen's point, the axial strain data was extracted 

via the DIC technique. The well-established analytical model of Lekhnitskii 

enhanced the feature performance indicating that mechanics can play an 

informative role on the feature selection process. In contrast, extensive AE signal 

processing was performed in order to identify monotonic histories that could 

describe sufficiently the damage accumulation process, but a potential feature 

candidate could not be identified. As a result, the solution of normalized cumulative 

energy, as a feature, was selected, compromising the applicability of real-time 

implementation. Consequently, the DIC2 feature was characterized as the optimum 

prognostic performance feature, compare it with the AE and DIC1 feature.  

 

 With reference to the DIC technique two different features, the DIC1 and DIC2, 

were utilized for prognostic purposes. It should be pointed out that the DIC1 feature 

can be characterized as the best one in terms of diagnostics performance, since MLS 

predictions are closer to impact time points than the AE and DIC2 MLS predictions. 

Also, the DIC1 and DIC2 features provided the worst and the best RUL estimations 

accordingly, based on the prognostic performance metrics. As a consequence, a 

feature that provides excellent diagnostic results, might fail to fulfil the prognostics 

requirements and vice versa. Therefore, a feature extraction process should be 

always designed based on case-study’s requirements, should serve the case study 

goal and if the output is more than one (diagnostics and prognostics), more feature 

extraction processes can be designed and used.  

 

8.3. Recommendations 

Although this thesis addressed important challenges and limitations of the current prognostic 

models, there are still challenges and limitations that need to be further addressed.  

 ANHHSMM’s assumptions 

As already mentioned, the ANHHSMM provides better prognostics than the state-of-the-art 

NHHSMM. Nevertheless, the applicability of the methodology should be further explored 

and future work should focus on the improvement of ANHHSMM’s capabilities and the 

relaxation of the assumptions as presented in Chapter 4.  

 

In particular, emphasis should be given in the XII assumption that dictates the ratios between 

the training and testing sojourn times of hidden states i and i+1 should be constant. This 

assumption holds for cases that one unexpected phenomenon occurs and it alters the sojourn 

times proportionally. However, this assumption is not valid for cases where this 

phenomenon is severe enough to force the model to overpass a hidden state and move to the 

next one, i.e. from hidden state i to i+2 or when multiple unexpected phenomena occur over 

the lifetime of the system where the ratio cannot be constant anymore. In that direction, a 

new version of the ANHHSMM should allow multi-step transitions too, so as to be possible 

for example to transit from hidden state i to i+2. In addition, as mentioned in the previous 

subsection, a hybrid version of the ANHHSMM can help to overcome the XII assumption’s 

limitation. 
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Furthermore, the final state N is not hidden but self-announcing and always corresponds to 

the failure state. As a result, the last observation of the available training data should be 

unique dictating a common failure threshold in the training data. However, it is really 

difficult task to define in every case-study a common failure threshold for the whole training 

set without normalizing and/or accumulating the training data. Therefore, next 

ANHHSMM’s versions should be capable of modeling the relationship between the failure 

state and CM data in an indirectly way such as a nonparametric discrete probability 

distribution. As a result the last row and column of the emission matrix B will not be 

predefined so as to fulfill the assumption II and the elements of the emission matrix will be 

estimated via the training CM data. 

 

Finally, in the context of CBM (condition based maintenance) where the entire life cycle of 

a structure should be considered, when repair actions will be taking place, some engineering 

properties will be retrieved back –although not to 100%- and thus new versions of the 

ANHHSMM have to allow backward transitions (right-to-left transitions) too.  

 Condition monitoring data 

In the case-study presented in this thesis, it was not possible to identify any AE feature with 

high monotonicity and prognosability index and as a result the proposed health indicator is 

the normalized cumulative energy feature. However, by normalizing the feature with the 

maximum value, compromises the RUL prediction in real-time, because prior knowledge of 

the maximum AE energy is not available. In general, extensive signal processing is required 

in order to identify features, which can describe sufficiently the damage evolution process 

of composite structures in real time. As a result, a really interesting research topic is to 

develop a feature extraction framework able to overcome the above challenges. In that 

direction, data fusion approaches can be used so as to design features that can enhance the 

prognostic performance and can be used in real-time. These data fusion approaches should 

take into consideration the studied engineering system, the selected RUL model and an 

expectation regarding how an ideal feature in terms of prognostics’ accuracy should be.  

 

Another issue is that the proposed prognostic approach in this thesis is applicable to a single 

CM feature. However, it has been long known that various CM techniques have different 

sensitivities to different composite structures’ failure mechanisms. Therefore, it is extremely 

important to develop a prognostic approach, which can utilize more than one CM feature. In 

order to achieve that the likelihood function should be expanded so as to take into account 

more than one features.  

 

Future work should also include data, which are extracted from more representative 

operating conditions, e.g. variable amplitude fatigue, generic element geometries, so as to 

get closer to real applications. Additional CM techniques such as distributed optical fiber 

sensors should be used, as this technique can provide axial strain data, which already has 

been proven to provide more accurate prognostics, but also this CM technique can be easier 

utilized in real applications. 

 Towards hybrid models 

In this thesis the initialization process is a user-defined process except the parameter N 

(number of hidden states). The N is determined by using a simple enumerative approach, the 

BIC criterion, in order to compare several alternative N numbers and select the optimum 
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one. However, this initialization approach is subjected to several challenges. For instance, 

the number of alternative models can be very large, resulting to a very time-consuming 

process and at the same time there is no guarantee that the final initialization parameters will 

be the optimal in terms of prognostic performance. Additionally, the initialization approach 

requires a large amount of data for training and validation, which may not be available for 

real applications. In order to overcome the above limitations hybrid RUL models should be 

developed. Hybrid models are able to take into account the physical behaviour of the studied 

system and as a result it will be possible to define some model’s parameters based on their 

physical meaning, not based on enumerative approaches.  

 

Therefore the advantages of using a hybrid model can be withdrawn as follows: 

 

 The required amount of CM data for training and validation can be reduced since 

some model’s parameters will be defined based on their physical meaning. 

 

 The computational time will be reduced since less parameters will be estimated via 

the MLE. 

 

 It will enhance the process for selecting the initial prognostic performance 

parameters. 

 

 Limitations such as the XII ANHHSMM’s assumption can be tackled more 

efficiently. 
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Structures,” Drexel, Philadelphia, USA; 09/2018. 
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