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Abstract

We introduce a complete many-valued seman-
tics for two normal lattice-based modal logics.
This semantics is based on reflexive many-valued
graphs. We discuss an interpretation and possi-
ble applications of this logical framework in the
context of the formal analysis of the interaction
between (competing) scientific theories.
Keywords: Non distributive modal logic,
Graph-based semantics, Competing theories.

1 Introduction

The contributions of this paper lie at the intersection of sev-
eral strands of research. They are rooted in the general-
ized Sahlqvist theory for normal LE-logics [9, 8], i.e. those
logics algebraically captured by varieties of normal lattice
expansions (LEs) [16]. Via canonical extensions and dis-
crete duality, basic normal LE-logics of arbitrary signa-
tures and a large class of their axiomatic extensions can
be uniformly endowed with complete relational semantics
of different kinds, of which those of interest to the present
paper are relational structures based on formal contexts
[15, 13, 6, 7, 17] and reflexive graphs [3, 4]. In a math-
ematical setting in which the original discrete duality for
perfect normal LEs has been relaxed to a discrete adjunc-
tion for complete normal LEs, these semantic structures
have yielded uniform theoretical developments in the al-
gebraic proof theory [17] and in the model theory [11] of
LE-logics, and also insights on possible interpretations of
LE-logics which have generated new opportunities for ap-
plications. In particular, via polarity-based semantics, in
[6], the basic non-distributive modal logic and some of
its axiomatic extensions are interpreted as epistemic logics
of categories and concepts, and in [7], the corresponding
‘common knowledge’-type construction is used to give an
epistemic-logical formalization of the notion of prototype
of a category; in [5, 18], polarity-based semantics for non-
distributive modal logic is proposed as an encompassing

framework for the integration of rough set theory [20] and
formal concept analysis [14], and in this context, the ba-
sic non-distributive modal logic is interpreted as the logic
of rough concepts; via graph-based semantics, in [4], the
same logic is interpreted as the logic of informational en-
tropy, i.e. an inherent boundary to knowability due e.g. to
perceptual, theoretical, evidential or linguistic limits. In the
graphs (Z,E) on which the relational structures are based,
the relation E is interpreted as the indiscernibility rela-
tion induced by informational entropy, much in the same
style as Pawlak’s approximation spaces in rough set theory.
However, the key difference is that, rather than generating
modal operators which associate any subset of Z with its
definable E-approximations, E generates a complete lat-
tice (i.e. the lattice of Ec-concepts). In this approach, con-
cepts are not definable approximations of predicates, but
rather they represent ‘all there is to know’, i.e. the theoreti-
cal horizon to knowability, given the inherent boundary en-
coded into E (in their turn, Ec-concepts are approximated
by means of the additional relations of the graph-based re-
lational structures from which the semantic modal opera-
tors arise). Interestingly, E is required to be reflexive but
in general neither transitive nor symmetric, which is in line
with proposals in rough set theory [22, 23, 21] that indis-
cernibility does not need to give rise to equivalence rela-
tions.

In this paper, we start exploring the many-valued version
of the graph-based semantics of [4] for two axiomatic ex-
tensions of the basic normal non-distributive modal logic,
and in particular their potential for modelling situations in
which informational entropy derives from the theoretical
frameworks under which empirical studies are conducted.

2 Preliminaries

This section is based on [4, Section 2.1] and [5, Section
7.2].
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2.1 Basic normal nondistributive modal logic

Let Prop be a (countable or finite) set of atomic proposi-
tions. The language L of the basic normal nondistributive
modal logic is defined as follows:

ϕ := ⊥ | > | p | ϕ∧ϕ | ϕ∨ϕ | �ϕ | ^ϕ,

where p ∈ Prop. The basic, or minimal normal L-logic
is a set L of sequents ϕ ` ψ with ϕ,ψ ∈ L, containing the
following axioms:

p ` p, ⊥ ` p, p ` >,

p ` p∨q, q ` p∨q, p∧q ` p,

p∧q ` q, > ` �>, �p∧�q ` �(p∧q),

^⊥ ` ⊥, ^p∨^q ` ^(p∨q)

and closed under the following inference rules:
ϕ ` χ χ ` ψ

ϕ ` ψ

ϕ ` ψ

ϕ (χ/p) ` ψ (χ/p)

χ ` ϕ χ ` ψ

χ ` ϕ∧ψ

ϕ ` χ ψ ` χ

ϕ∨ψ ` χ

ϕ ` ψ

�ϕ ` �ψ

ϕ ` ψ

^ϕ ` ^ψ

An L-logic is any extension of L with L-axioms ϕ ` ψ.
Relevant to what follows are the axiomatic extensions of L
generated by �⊥ ` ⊥ and > ` ^>, and by �ϕ ` ϕ and ϕ `
^ϕ. Let L0 (resp. L1) be the axiomatic extension obtained
by adding �⊥ ` ⊥ (resp. �p ` p) to L. Notice that L1 is an
extension of L0.

2.2 Many-valued enriched formal contexts

Throughout this paper, we let A = (D,1,0,∨,∧,⊗,→) de-
note an arbitrary but fixed complete frame-distributive
and dually frame-distributive, commutative and associa-
tive residuated lattice (understood as the algebra of truth-
values) such that 1→ α = α for every α ∈ D. For every set
W, an A-valued subset (or A-subset) of W is a map u : W→
A. We let AW denote the set of all A-subsets. Clearly, AW

inherits the algebraic structure of A by defining the opera-
tions and the order pointwise. The A-subsethood relation
between elements of AW is the map S W : AW ×AW → A
defined as S W ( f ,g) :=

∧
z∈W ( f (z)→ g(z)). For every α ∈A,

let {α/w} : W→A be defined by v 7→ α if v = w and v 7→ ⊥A

if v , w. Then, for every f ∈ AW ,

f =
∨
w∈W

{ f (w)/w}. (1)

When u,v : W → A and u ≤ v w.r.t. the pointwise order, we
write u ⊆ v. An A-valued relation (or A-relation) is a map
R : U×W→A. Two-valued relations can be regarded as A-
relations. In particular for any set Z, we let ∆Z : Z×Z→ A
be defined by ∆Z(z,z′) = > if z = z′ and ∆Z(z,z′) = ⊥ if z ,
z′. An A-relation R : Z ×Z→ A is reflexive if ∆Z ⊆ R. Any
A-valued relation R : U ×W → A induces maps R(0)[−] :
AW → AU and R(1)[−] : AU → AW defined as follows: for
every f : U → A and every u : W → A,

R(1)[ f ] : W → A
x 7→

∧
a∈U ( f (a)→ R(a, x))

R(0)[u] : U → A
a 7→

∧
x∈W (u(x)→ R(a, x))

A formal A-context1 or A-polarity (cf. [1]) is a structure
P = (A,X, I) such that A and X are sets and I : A×X→ A.
Any formal A-context induces maps (·)↑ : AA → AX and
(·)↓ : AX→AA given by (·)↑ = I(1)[·] and (·)↓ = I(0)[·]. These
maps are such that, for every f ∈ AA and every u ∈ AX ,

S A( f ,u↓) = S X(u, f ↑),

that is, the pair of maps (·)↑ and (·)↓ form an A-Galois con-
nection. In [1, Lemma 5], it is shown that every A-Galois
connection arises from some formal A-context. A formal
A-concept of P is a pair ( f ,u) ∈ AA ×AX such that f ↑ = u
and u↓ = f . It follows immediately from this definition that
if ( f ,u) is a formal A-concept, then f ↑↓ = f and u↓↑ = u,
that is, f and u are stable. The set of formal A-concepts
can be partially ordered as follows:

( f ,u) ≤ (g,v) iff f ⊆ g iff v ⊆ u.

Ordered in this way, the set of the formal A-concepts of P
is a complete lattice, which we denote P+.

An enriched formal A-context (cf. [5, Section 7.2]) is a
structure F = (P,R�,R^) such that P = (A,X, I) is a for-
mal A-context and R� : A× X → A and R^ : X × A → A
are I-compatible, i.e. R(0)

� [{α/x}], R(1)
� [{α/a}], R(0)

^ [{α/a}]
and R(1)

^ [{α/x}] are stable for every α ∈ A, a ∈ A and x ∈
X. The complex algebra of an enriched formal A-context
F = (P,R�,R^) is the algebra F+ = (P+, [R�], 〈R^〉) where
[R�], 〈R^〉 : P+ → P+ are defined by the following assign-
ments: for every c = ([[c]], ([c])) ∈ P+,

[R�]c = (R(0)
� [([c])], (R(0)

� [([c])])↑)
〈R^〉c = ((R(0)

^ [[[c]]])↓,R(0)
^ [[[c]]]).

Lemma 2.1. (cf. [5, Lemma 15]) If F = (X,R�,R^) is an
enriched formal A-context, F+ = (X+, [R�], 〈R^〉) is a com-
plete normal lattice expansion such that [R�] is completely
meet-preserving and 〈R^〉 is completely join-preserving.

1 In the crisp setting, a formal context [14], or polarity, is a
structure P = (A,X, I) such that A and X are sets, and I ⊆ A×X is
a binary relation. Every such P induces maps (·)↑ : P(A)→P(X)
and (·)↓ : P(X)→ P(A), respectively defined by the assignments
B↑ := I(1)[B] and Y↓ := I(0)[Y]. A formal concept of P is a pair
c = ([[c]], ([c])) such that [[c]] ⊆ A, ([c]) ⊆ X, and [[c]]↑ = ([c]) and
([c])↓ = [[c]]. The set L(P) of the formal concepts of P can be
partially ordered as follows: for any c,d ∈ L(P),

c ≤ d iff [[c]] ⊆ [[d]] iff ([d]) ⊆ ([c]).

With this order, L(P) is a complete lattice, the concept lattice P+

of P. Any complete lattice L is isomorphic to the concept lattice
P+ of some polarity P.
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3 Many-valued graph-based frames

A reflexive A-graph is a structure X = (Z,E) such that Z
is a nonempty set, and E : Z × Z → A is reflexive. From
now on, we will assume that all A-graphs we consider are
reflexive even when we drop the adjective.

Definition 3.1. For any reflexive A-graph X = (Z,E), the
formal A-context associated with X is

PX := (ZA,ZX , IE),

where ZA := A× Z and ZX := Z, and IE : ZA × ZX → A is
defined by IE((α,z),z′) = E(z,z′)→ α. We let X+ := PX+.

Any R : Z×Z→ A admits the following liftings:

IR : ZA×ZX → A
((α,z),z′) 7→ R(z,z′)→ α

JR : ZX ×ZA→ A
(z, (α,z′)) 7→ R(z,z′)→ α

Recall that for all f : A×Z→ A, and u : Z→ A, the maps2

f ↑ : Z→ A and u↓ : A×Z→ A are respectively defined by
the assignments

z 7→
∧

(α,z′)∈ZA

[ f (α,z′)→ (E(z′,z)→ α)]

(α,z) 7→
∧

z′∈ZX

[u(z′)→ (E(z,z′)→ α)].

Definition 3.2. A graph-based A-frame is a structure G =

(X,R^,R�) where X = (Z,E) is a reflexive A-graph, and R^
and R� are binary A-relations on Z such that the structure
FG := (PX, IR� , JR^ ) is an enriched formal A-context. That
is, R^ and R� satisfy the following E-compatibility condi-
tions: for any z ∈ Z and α,β ∈ A,

(R[0]
� [{β/z}])[10] ⊆ R[0]

� [{β/z}]

(R[1]
� [{β/(α,z)}])[01] ⊆ R[1]

� [{β/(α,z)}]

(R[1]
^ [{β/z}])[10] ⊆ R[1]

^ [{β/z}]

(R[0]
^ [{β/(α,z)}])[01] ⊆ R[0]

^ [{β/(α,z)}].

where for all f : A×Z→ A and u : Z→ A,

u[0] = E[0][u] : A×Z→ A
(α,z) 7→ I(0)

E [u](α,z) = u↓(α,z)

f [1] = E[1][ f ] : Z→ A
z 7→ I(1)

E [ f ](z) = f ↑(z)
2 Applying this notation to a graphX= (Z,E), we will abbrevi-

ate E[0][u] and E[1][ f ] as u[0] and f [1], respectively, for each u, f
as above, and write u[01] and f [10] for (u[0])[1] and ( f [1])[0], re-
spectively. Then u[0] = I(0)

E [u] = u↓ and f [1] = I(1)
E [ f ] = f ↑, where

the maps (·)↓ and (·)↑ are those associated with the polarity PX.

R[0]
� [u] : A×Z→ A

(α,z) 7→ I(0)
R�

[u](α,z)

R[1]
� [ f ] : Z→ A

z 7→ I(1)
R�

[ f ](z)

R[0]
^ [ f ] : Z→ A

z 7→ J(0)
R^

[ f ](z)

R[1]
^ [u] : A×Z→ A

(α,z) 7→ J(1)
R^

[u](α,z).

Hence, for any z ∈ Z and α ∈ A,

E[0][u](α,z) :=
∧

z′∈ZX [u(z′)→ (E(z,z′)→ α)]
E[1][ f ](z) :=

∧
(α,z′)∈ZA [ f (α,z′)→ (E(z′,z)→ α)].

R[0]
� [u](α,z) :=

∧
z′∈ZX [u(z′)→ (R�(z,z′)→ α)]

R[1]
� [ f ](z) :=

∧
(α,z′)∈ZA [ f (α,z′)→ (R�(z′,z)→ α)]

R[0]
^ [ f ](z) :=

∧
(α,z′)∈ZA [ f (α,z′)→ (R^(z,z′)→ α)]

R[1]
^ [u](α,z) :=

∧
z′∈ZX [u(z′)→ (R^(z′,z)→ α)].

The complex algebra of a graph-based A-frame G =

(X,R^,R�) is the algebra G+ = (X+, [R�], 〈R^〉), where
X+ := PX

+, and [R�] and 〈R^〉 are unary operations on
X+ defined as follows: for every c = ([[c]], ([c])) ∈ X+,

[R�]c = (R[0]
� [([c])], (R[0]

� [([c])])[1])
〈R^〉c = ((R[0]

^ [[[c]]])[0],R[0]
^ [[[c]]]).

By definition, it immediately follows that

Lemma 3.3. If G is a graph-based A-frame, G+ = FG
+.

Hence, by the lemma above and Lemma 2.1,

Lemma 3.4. If G = (X,R�,R^) is a graph-based A-frame,
G+ = (X+, [R�], 〈R^〉) is a complete normal lattice expan-
sion such that [R�] is completely meet-preserving and 〈R^〉
is completely join-preserving.

The following lemma is an immediate consequence of [5,
Lemma 14] applied to FG.

Lemma 3.5. For every graph-based A-graph G =

(X,R�,R^),

1. the following are equivalent:

(i) (R[0]
� [{α/z}])[10] ⊆ R[0]

� [{α/z}] for every z ∈ Z and
α ∈ A;

(ii) (R[0]
� [u])[10] ⊆ R[0]

� [u] for every u : ZX → A;

(iii) R[1]
� [ f [10]] ⊆ R[1]

� [ f ] for every f : ZA→ A.

2. the following are equivalent:

(i) (R[1]
� [{α/(β,z)}])[01] ⊆ R[1]

� [{α/(β,z)}] for every
z ∈ Z and α,β ∈ A;

(ii) (R[1]
� [ f ])[01] ⊆ R[1]

� [ f ] for every f : ZA→ A;
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(iii) R[0]
� [u[01]] ⊆ R[0]

� [u] for every u : ZX → A.

3. the following are equivalent:

(i) (R[0]
^ [{α/(β,z)}])[01] ⊆ R[0]

^ [{α/(β,z)}] for every
z ∈ Z and α,β ∈ A;

(ii) (R[0]
^ [ f ])[01] ⊆ R[0]

^ [ f ] for every f : ZA→ A;

(iii) R[1]
^ [u[01]] ⊆ R[1]

^ [u] for every u : ZX → A.

4. the following are equivalent :

(i) (R[1]
^ [{α/z}])[10] ⊆ R[1]

^ [{α/z}] for every z ∈ Z and
α ∈ A;

(ii) (R[1]
^ [u])[10] ⊆ R[1]

^ [u] for every u : ZX → A;

(iii) R[0]
^ [ f [10]] ⊆ R[0]

^ [ f ] for every f : ZA→ A.

4 Many-valued graph-based models

Let L be the language of Section 2.1.

Definition 4.1. A graph-based A-model ofL is a tupleM=

(G,V) such that G = (X,R�,R^) is a graph-based A-frame
and V : L→ G+ is a homomorphism. For every ϕ ∈ L, let
V(ϕ) := ([[ϕ]], ([ϕ])), where [[ϕ]] : ZA→A and ([ϕ]) : ZX→A
are s.t. [[ϕ]][1] = ([ϕ]) and ([ϕ])[0] = [[ϕ]]. Hence:

V(p) = ([[p]], ([p]))
V(>) = (1AZA , (1AZA )[1])
V(⊥) = ((1AZX )[0],1AZX )

V(ϕ∧ψ) = ([[ϕ]]∧ [[ψ]], ([[ϕ]]∧ [[ψ]])[1])
V(ϕ∨ψ) = ((([ϕ])∧ ([ψ]))[0], ([ϕ])∧ ([ψ]))

V(�ϕ) = (R[0]
� [([ϕ])], (R[0]

� [([ϕ])])[1])
V(^ϕ) = ((R[0]

^ [[[ϕ]]])[0],R[0]
^ [[[ϕ]]]).

Valuations induce α-support relations between value-state
pairs and formulas for each α ∈A (in symbols: M, (β,z) α

ϕ), and α-refutation relations between states of models and
formulas for each α ∈ A (in symbols: M,z �α ϕ) such that
for every ϕ ∈ L, all z ∈ Zand all β ∈ A,

M, (β,z) α ϕ iff α ≤ [[ϕ]](β,z),
M,z �α ϕ iff α ≤ ([ϕ])(z).

This can be equivalently expressed as follows:

M, (β,z) α p iff α ≤ [[p]](β,z);
M, (β,z) α > iff α ≤ 1AZA (β,z) i.e. always;
M, (β,z) α ⊥ iff α ≤ (1AZX )[0](β,z)

=
∧

z′∈ZX [1AZX (z′)→ (E(z,z′)→ β)]
=

∧
z′∈ZX [E(z,z′)→ β]

= β;
M, (β,z) α ϕ∧ψ iff M, (β,z) α ϕ and M, (β,z) α ψ;
M, (β,z) α ϕ∨ψ iff α ≤ (([ϕ])∧ ([ψ]))[0](β,z)

=
∧

z′∈ZX [(([ϕ])∧ ([ψ]))(z′)
→ (E(z,z′)→ β)];

M, (β,z) α �ϕ iff α ≤ (R[0]
� [([ϕ])])(β,z)

=
∧

z′∈ZX [([ϕ])(z′)→ (R�(z,z′)
→ β)];

M, (β,z) α ^ϕ iff α ≤ ((R[0]
^ [[[ϕ]]])[0])(β,z)

=
∧

z′∈ZX [R[0]
^ [[[ϕ]]](z′)→ (E(z,z′)

→ β)];

M,z �α p iff α ≤ ([p])(z);
M,z �α ⊥ iff α ≤ 1AZX (z) i.e. always;
M,z �α > iff α ≤ (1AZA )[1](z)

=
∧

(β,z′)∈ZA [1(β,z′)→ (E(z′,z)→ β)]
=

∧
(β,z′)∈ZA [E(z′,z)→ β]

= β;
M,z �α ϕ∨ψ iff M,z �α ϕ and M,z �α ψ;
M,z �α ϕ∧ψ iff α ≤ ([[ϕ]]∧ [[ψ]])[1](z)

=
∧

(β,z′)∈ZA [([[ϕ]]∧ [[ψ]])(β,z′)
→ (E(z′,z)→ β)];

M,z �α ^ϕ iff α ≤ (R[0]
^ [[[ϕ]]])(z)

=
∧

(β,z′)∈ZA [[[ϕ]](β,z′)
→ (R^(z,z′)→ β)];

M,z �α �ϕ iff α ≤ ((R[0]
� [([ϕ])])[1])(z)

=
∧

(β,z′)∈ZA [R[0]
� [([ϕ])](β,z′)

→ (E(z′,z)→ β)].

Definition 4.2. A sequent ϕ ` ψ is true in a model M =

(G,V) (notation: M |= ϕ ` ψ) if [[ϕ]] ⊆ [[ψ]], or equivalently,
if ([ψ]) ⊆ ([ϕ]). A sequent ϕ ` ψ is valid on a graph-based
frame G (notation: G |= ϕ ` ψ) if ϕ ` ψ is true in every
model M = (G,V) based on G.

Remark 4.3. It is not difficult to see that for all stable val-
uations, if p ∈ Prop and β,β′ ∈ A such that β ≤ β′, then
[[p]](β,z) ≤ [[p]](β′,z) for every z ∈ Z, and one can readily
verify that this condition extends compositionally to every
ϕ ∈ L.

Before moving on to the case study, let us expand on
how to understand informally the notion of α-support at
value-state pairs. To this end, it is perhaps useful to start
analysing M, (β,z) α ⊥. By definition, this is the case iff
α ≤ β. Hence, the role of β in the pair (β,z) is to indicate
the maximum extent α to which the ‘state’ (β,z) is allowed
to α-support a false statement. Equivalently, (β,z) does not
α-support the falsehood for any α � β. Hence, when A is
linearly ordered, β indicates the ‘threshold’ beyond which
(i.e. overcoming which by going up) α-support becomes
meaningful at the given ‘state’ (β,z). These observations
open the way to the possibility of imposing extra conditions
on the extension functions [[ϕ]] : A×Z→ A, depending on
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the given situation to be modelled. These extra conditions
are not required by the general semantic environment, but
are accommodated by it. For instance, if considering this
threshold β is not relevant to the given case at hand, then
one can choose to restrict oneself to valuations such that,
if p ∈ Prop, then [[p]](β,z) = [[p]](β′,z) for every z ∈ Z and
every β,β′ ∈ A. One can readily verify that this condition
extends compositionally to every ϕ ∈ L.

5 Case study: competing theories

In the previous sections, we have illustrated how many-
valued semantics for modal logic [12, 2] can be general-
ized from Kripke frames to graph-based structures. This
generalization is the parametric version (where A is the pa-
rameter) of the graph-based semantics of [4], and the main
motivation for introducing it is that it allows for a rich de-
scription of certain essentials (in the present case, of the
role of theories in the practice of empirical sciences), while
still using basic intuitions from the crisp setting. For in-
stance, in the many-valued setting, the basic intuition still
holds that the generalization from classical Kripke frame
semantics to graph-based semantics consists in thinking of
the graph-relation E as encoding an inherent boundary to
knowability (referred to as informational entropy) which
disappears in the classical setting (in which E coincides
with the identity relation). Informational entropy can be
due to many factors (e.g. technological, theoretical, lin-
guistic, perceptual, cognitive), and in [4], examples are dis-
cussed in which the nature of these limits is perceptual and
linguistic. In the present section, we discuss how the theo-
retical frameworks adopted by empirical scientists can be a
source of informational entropy.

For the purpose of this analysis, we consider graph-based
structures (Z,E, {RXi | Xi ⊆ Var,0 ≤ i ≤ n}) in which X =

(Z,E) represents a network of databases, and Var is a set
of variables which includes the variables structuring the in-
formation contained in the databases of Z. In this context,
L-formulas can be thought of as hypotheses which will be
assigned truth values (more specifically, truth-degrees) at
value-state pairs of models based on these frames. We will
refer to any such pair (β,z) as a situation, the β component
of which is understood as the maximum degree of flexi-
bility in operationalizing variables in that given situation.
This truth value assignment of a formula (hypothesis) at a
value-state pair (situation) is then intended to represent the
significance of the correlation posited by the hypothesis,
when tested in the given database according to the degree
of flexibility allowed at that situation, with higher truth val-
ues indicating higher levels of significance.3 This interpre-
tation is coherent with the property mentioned in Remark

3However, in this paper we do not intend to set up a system-
atic correlation between significance levels and truth values. The
values chosen in the example below are only supposed to be intu-
itively plausible.

4.3: indeed, the higher the flexibility in operationalizing
variables, the more leeway to obtain a higher α-support of
hypotheses at situations.

Moreover, in the context of the graph-based structures
above, an empirical theory is characterized by (and here
identified with) a certain subset X of variables which are
relevant to the given theory; also, in what follows, for all
databases z j ∈ Z, we let X j denote the set of variables struc-
turing the data contained in z j.4 Hence, the A-relation E
encodes to what extent database z2 is similar to z1 (e.g. by
letting E(z1,z2) record the percentage of variables of z1
that also occur in z2), while the relations RX encode to
what extent one database is similar to another, relative to
X (e.g. by letting RX(z1,z2) record the percentage of vari-
ables of X1 ∩ X that also occur in X2). Below, we give a
more concrete illustration of this environment by means of
an example about dietary theories.

The first theory, known since antiquity, is that body-fat loss
of individuals depends on what they ate and how much ex-
ercise they did. We refer to it as the ancient theory (A), on
the basis of which Aretaeus the Cappadocian might have
created a database zA recording how many kochliaria of
olive oil and of honey, how many minas of bread, of olives,
of lamb, and how many kyathoi of wine a group of ath-
letes and a group of rhetoric students ate each day, and how
many stadia they walked or ran each day, and how many
minas each individual weighed each day.

The second one, the modern theory (M), was developed
in Victorian times by Wilbur Olin Atwater.5 In line with
the Taylorist view on labour efficiency, the modern theory
explains body-fat loss in terms of a negative balance be-
tween the daily caloric intake of individuals provided by
food and their daily caloric expenditure, due e.g. to main-
taining body temperature or to exercise. The modern the-
ory improves over the ancient in that it provides a common
ground of commensurability, which was absent in the an-
cient theory, between the variables relative to food intake
and those relative to exercise, by reducing all of them to
their energetic import, measured in calories. Hence, an
imaginary database zM built by Atwater on the basis of
this theory would record how many calories individuals got
from food and how many calories they spent per day, and
their mass in kilograms measured each day.

The third theory, referred to as the hormonal response the-
ory (H),6 postulates that body-fat loss is governed by a hor-
mone, insulin, which is released in response to the intake

4It is interesting to notice that this basic environment naturally
captures the idea that evidence is laden with theory: that is, we
can think of each database z j as being constructed on the basis of
the theory corresponding to set of variables X j associated with z j.

5Source: https://www.sciencehistory.org/
distillations/magazine/counting-calories

6Source: https://idmprogram.com/
can-make-thininsulin-hormonal-obesity-v/
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of certain macronutrients: namely, it is maximally released
in response to intake of carbohydrates, less so but still sig-
nificantly released in response to protein intake, while fat
intake does not trigger any significant insulin response.7

This theory posits that as long as insulin values are high, the
body cannot access its own fat and use it as energy source,
no matter how severe the caloric restriction. An imaginary
database zH built by Banting and Best (who famously dis-
covered insulin and its function) on the basis of this theory
would record how many calories from carbohydrates, how
many calories from proteins, how many calories from fat
individuals got from food, how many calories they spent
per day, and their mass in kilograms measured each day.

This scenario can be modelled as the graph-based A-frame
(Z,E,RA,RM ,RH), where A is the 11-element Łukasiewicz
chain, Z := {zA,zM ,zH}, and E : Z ×Z → A is as indicated
in the following diagram:

zA zM zH
1 1

0.2 0.4

1

1 1

0.6

1

For any arrow in the diagram above, its value (i.e. the sim-
ilarity degree of the target to the source) intuitively rep-
resents to which extent the target database provides infor-
mation about variables relevant to the theory according to
which the source database has been built. This similar-
ity relation is reflexive by definition. Moreover, all ar-
rows have non-zero values because the three databases con-
structed on the basis of the three different theories have
a minimal common ground, namely they all include the
weight of individuals (which, as we will see, is the depen-
dent variable in the hypotheses tested on them). We assign
value 1 to all the arrows which have zM as source or zA as
target, since the information relevant to the modern theory
can be fully retrieved from all databases, and the informa-
tion relevant to the modern and hormonal response theories
can be fully retrieved from the variables in zA. The arrow
from zA to zM is assigned the lowest non-zero value, since
from the information about the caloric intake and expendi-
ture contained in zM one cannot retrieve the actual types of
food the individuals ingested or the exercise they did.

For X ∈ {A,M,H}, and for any z,z′ ∈ Z, the value of the RX-
arrow from z to z′ represents the similarity degree of z′ to
z relative to X. A concrete way to picture this is the fol-
lowing: assume that a scientist adopting theory X is asked

7Proviso: for the purpose of keeping this example simple, we
are oversimplifying the hormonal response theory.

to which extent s/he would swap database z for database
z′. If the scientist in question is Aretaeus, and he is asked
e.g. to give up zH for zM , he would not be very happy, for
although zH is not particularly good for his purposes and
requires a substantial guesswork from him, he would be
even worse off with zM , and he would suffer the same loss
of information captured by the value E(zH ,zM). This jus-
tifies letting RA(zH ,zM) := E(zH ,zM) = 0.4. However, Are-
taeus would certainly be willing to swap zM for zH , since
whatever little he can do with zM can be certainly done
with zH , and in fact possibly more. Hence we let again
RA(zM ,zH) := E(zM ,zH) = 1, and so on. Hence, RA := E.
If the scientist in question is Atwater, and he was asked to
give up zA for zH , he would be fine with it, because both
databases provide all the information relevant to the theo-
retical framework he has adopted. In fact, he would be fine
with swapping any database for any other database: that is,
the relation RM : Z ×Z→ A maps every tuple of databases
to 1. An analogous reasoning justifies the following defini-
tion for the relation RH : Z×Z→ A:

zA zM zH
1 1

0.3 0.5

1

1 1

0.9

1

where RH and E only differ in the value of the arrow
from zA to zH . The relations above are E-compatible
(cf. Definition 3.2), and E-reflexive (i.e. E ⊆ R for any R ∈
{RA,RM ,RH}, see [4] Definition 6) hence (Z,E,RA,RM ,RH)
is a graph-based A-frame for a multi-modal language with
modalities �A,�M ,�H and ^A,^M ,^H , in which the ax-
ioms �iϕ ` ϕ and ϕ ` ^iϕ are valid for every i ∈ {A,M,H}
(cf. Proposition A.1).8

Let the formula ϕ be the hypothesis stating that individuals
who restrict their daily caloric intake to less than 20 calo-
ries per kilogram of body mass will lose weight over time.
This hypothesis is phrased in terms of the variables rele-
vant to the modern theory, and hence it can be tested on
all databases in Z. Let us assume that the results of the
tests of ϕ do not vary from one situation to another situa-
tion with the same degree of flexibility β, and it turns out
that, though 80% of the individuals restricting their daily
caloric intake to less than 20 calories per kilogram of body
mass indeed lost a bit of weight, generally not too much,

8Notice that, although the setting of [4] is crisp, the corre-
spondence results in [4] Proposition 4 remain verbatim the same
when passing to the many-valued setting. This is a phenomenon
already observed in the correspondence theory for many-valued
logics [19].
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10% of individuals remained at the same weight, and 10%
even gained weight. Let us assume that in the statistical
model this results in moderate effect size, but a p-value of
0.1, which is considered to yield too low a level of signif-
icance to reject the null-hypothesis (that caloric restriction
has no effect). So we propose, for the sake of this example,
to assign [[ϕ]] : ZA→ A according to the following table9:

β zA zM zH
0.0 0.5 0.5 0.5
0.1 0.6 0.6 0.6
0.2 0.7 0.7 0.7
0.3 0.8 0.8 0.8
0.4 0.9 0.9 0.9
0.5 1.0 1.0 1.0
0.6 1.0 1.0 1.0
0.7 1.0 1.0 1.0
0.8 1.0 1.0 1.0
0.9 1.0 1.0 1.0
1.0 1.0 1.0 1.0

Let the formula ψ be the hypothesis stating that individ-
uals who restrict their daily caloric intake to less than 20
calories per kilogram of body mass and who let at least
80% of their caloric intake come from fat will lose more
weight than individuals on the same daily caloric regime
but getting less than 80% of their calories from fat. This
hypothesis is phrased in terms of the variables relevant to
the hormonal response theory, and hence it can certainly be
tested on zA and zH . We wish to make a case that, modulo
some guesswork that of course will make the results less
reliable, the hypothesis ψ can be tested on zM as well. For
instance, if the database zM built by Atwater was based on
a group of individuals living in Connecticut in the years
1890-1895, and for some fortuitous circumstances an inde-
pendent database exists about their eating habits (e.g. the
list of customers of the local grocer’s and their weekly or-
ders, and by chance these customers also include the peo-
ple in zM), then it would be possible to make some esti-
mates about which individuals in the sample of zM let at
least 80% of their daily caloric intake come from fat. This
is of course an easy way out in our fictitious example, but
it reflects a very common situation in the practice of em-
pirical research, that databases do not perfectly match the
hypotheses that scientists wish to test on them, and that
some guesswork is needed to a greater or lesser extent.

Notice that the imperfect match between the observations
in databases and variables in hypotheses is independent
from the (maximum) degree of flexibility in operationalis-
ing variables (formally encoded in the value β of the pairs
which we refer to as ‘situations’). Specifically, the degree
of flexibility in operationalising any variables is an a priori
parameter that we fix for each ‘situation’, independently of
the hypotheses tested in the given situation. In contrast, the

9It can be checked that this valuation is stable.

discussion in the paragraph above is relative to the test of
a specific hypothesis on a database, and hence depends in-
herently on the given hypothesis. Furthermore, once such
a suitable translation is found, its suitability will not de-
pend on how the target variable is operationalised in each
situation, but will depend only on the match between the
theory according to which the database has been built and
the theory to which the hypothesis pertains.

Let us imagine that ψ is confirmed for 95% of the individ-
uals in the samples of all databases. Let us assume that
in the statistical model this results in a high effect size for
coefficient of the (dummy) variable recording whether the
high-fat diet was followed or not and a p-value of 0.01,
which corresponds to a level of significance generally con-
sidered to be high enough to reject the null-hypothesis (that
the type of macronutrients from which restricted caloric in-
take proceeds has no effect on weight loss). In short, the
results in respect to this hypothesis seem very strong and
credible. So we propose, for β = 0, to assign a truth-value
of 0.8 to ψ at zA and zH , and a truth-value of 0.4 to ψ at zM ,
a strong discount due to the guesswork needed to accom-
modate the testing of ψ on zM .10 The following table gives
the complete specification of [[ψ]]:

β zA zM zH
0.0 0.8 0.4 0.8
0.1 0.9 0.5 0.9
0.2 1.0 0.6 1.0
0.3 1.0 0.7 1.0
0.4 1.0 0.8 1.0
0.5 1.0 0.9 1.0
0.6 1.0 1.0 1.0
0.7 1.0 1.0 1.0
0.8 1.0 1.0 1.0
0.9 1.0 1.0 1.0
1.0 1.0 1.0 1.0

We are now in a position to compute the extensions of �Mϕ,
�Hϕ, �Mψ and �Hψ.11 Intuitively, �Xχ can be understood
as what becomes of hypothesis χ when ‘seen through the
lenses’ of theory X.12

It can be verified that:

10For higher values of β, these values increase accordingly. It
can be checked that the valuation as specified in the table, is sta-
ble.

11Since RA := E, the modal operators �A and ^A coincide with
the identity on X+.

12These modal operators can be used to reason about “compar-
ative studies” which span across all databases and establish the
degree of similarity between each databases and the focal one.
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[[�Mψ]]

=



β zA zM zH
0.0 0.4 0.4 0.4
0.1 0.5 0.5 0.5
0.2 0.6 0.6 0.6
0.3 0.7 0.7 0.7
0.4 0.8 0.8 0.8
0.5 0.9 0.9 0.9
0.6 1.0 1.0 1.0
0.7 1.0 1.0 1.0
0.8 1.0 1.0 1.0
0.9 1.0 1.0 1.0
1.0 1.0 1.0 1.0



≤



β zA zM zH
0.0 0.5 0.5 0.5
0.1 0.6 0.6 0.6
0.2 0.7 0.7 0.7
0.3 0.8 0.8 0.8
0.4 0.9 0.9 0.9
0.5 1.0 1.0 1.0
0.6 1.0 1.0 1.0
0.7 1.0 1.0 1.0
0.8 1.0 1.0 1.0
0.9 1.0 1.0 1.0
1.0 1.0 1.0 1.0


= [[ϕ]]

and

[[�Mψ]]

=



β zA zM zH
0.0 0.4 0.4 0.4
0.1 0.5 0.5 0.5
0.2 0.6 0.6 0.6
0.3 0.7 0.7 0.7
0.4 0.8 0.8 0.8
0.5 0.9 0.9 0.9
0.6 1.0 1.0 1.0
0.7 1.0 1.0 1.0
0.8 1.0 1.0 1.0
0.9 1.0 1.0 1.0
1.0 1.0 1.0 1.0



≤



β zA zM zH
0.0 0.8 0.4 0.8
0.1 0.9 0.5 0.9
0.2 1.0 0.6 1.0
0.3 1.0 0.7 1.0
0.4 1.0 0.8 1.0
0.5 1.0 0.9 1.0
0.6 1.0 1.0 1.0
0.7 1.0 1.0 1.0
0.8 1.0 1.0 1.0
0.9 1.0 1.0 1.0
1.0 1.0 1.0 1.0


= [[ψ]]

It can also be checked that [[�Hϕ]] = [[ϕ]], [[�Hψ]] = [[ψ]]
and [[�Mϕ]] = [[ϕ]].

These identities and inequalities can be interpreted as fol-
lows: each theory leaves unchanged the hypotheses for-
mulated in terms of its own variables, or proper subsets
thereof; however, if a hypothesis formulated according to a
more expressive theory is ‘seen through the lenses’ of a less
expressive theory (this is the case of �Mψ), it is expected to
score worse. Finally, ϕ and ψ are prima facie incomparable.
But is it really so?

6 Epilogue

Although very stylised and simplified, the scenario above
illuminates a number of interesting notions and their inter-
relations. First, we have identified each theory with the set
of its relevant variables. This move naturally provides a
connection with a strand of research we have been recently

developing, based on the idea that lattice-based modal log-
ics can be interpreted as the logics of categories or formal
concepts [6, 7, 5]. This connection can be articulated in
general terms by modelling theories as categories, exten-
sionally captured by sets of hypotheses, and intensionally
captured by their relevant variables.

Having identified theories with sets of variables has al-
lowed us to associate states of the models (understood
as databases) with theories, thereby giving a very simple
and concrete representation of the otherwise abstract idea
that ‘observations are theory-laden’, and that this theory-
ladennes lays at the core of the informational entropy that
this paper sets out to studying. In the toy example of the
previous section, states (databases) bijectively correspond
to theories, but this does not need to be the case in general.

Related to this, we have captured a local and a global
way in which similarity ensues from theory-driven infor-
mational entropy. Specifically, the relation E captures the
local perspective, in which a given database z′ is similar to
a database z to the extent to which z′ is amenable to test
hypotheses formulated using the variables of the theory as-
sociated with z, that is, to the extent to which z′ is suitable
to answer questions pertaining to ‘the theory of z’, while
the relations RX capture the global perspective; i.e., RX en-
codes information on how similar any one database is to
another in respect to their relative performances in testing
hypotheses formulated using variables of X.

These formal tools can be used to illuminate a very com-
mon situation in the practice of empirical research, namely
that databases do not perfectly match the hypotheses that
scientists wish to test on them, and that a key underlying
aspect in empirical research concerns precisely how to ad-
dress this imperfect match. In this paper, we have laid the
groundwork for addressing this issue with bespoke logi-
cal tools, by means of the modal operators interpreted us-
ing the relations RX , which, as discussed above, translate
hypotheses from the ‘language’ (variables) of one theory
to the ‘language’ (variables) of another, and what is lost
in translation depends on the relationship between the two
theories.

Finally, we can try and discuss whether the formalization
above throws light on the following two questions: what
does it mean for theories to compete? And how do we as-
sess whether one theory has outcompeted the other?

We propose the following view: theories can compete,
most obviously when hypotheses that belong to different
theories (as ϕ and ψ in our example belong to M and H
respectively) predict the same dependent variable (weight
loss in our example). The most direct way in which two
theories (e.g. M and H) can compete is when their respec-
tive hypotheses (ϕ and ψ) are tested on each member of
a set of databases. Each of these databases will be more
or less suitable to test a given hypothesis. In particular, any
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hypothesis is expected to get its best scores13 if tested either
on databases which are constructed in accordance with the
theory in the variables of which the hypothesis is formu-
lated, or on databases that are maximally similar to those.
We refer to all these databases as being ‘home-ground’ to
that given hypothesis. For instance, in the case study of
the previous section, every database is ‘home-ground’ to
ϕ, while only zA and zH are ‘home-ground’ to ψ. When
a hypothesis is tested on a database that is not its ‘home-
ground’, it will typically find no or less adequate values
for its variables. The solution, as in our example of test-
ing ψ on the database zM , is to look for proxies that rep-
resent to some extent the missing variable (or recover the
values of the missing variables by some motivated guess-
work). These proxies are often second-best or worse, mak-
ing the results of the test less credible, even if they lead
to accepting the hypotheses. This results in assigning the
hypothesis a lower truth value at the database where prox-
ies/guesswork were needed to test the hypothesis. How-
ever, precisely due to the disadvantage of not being on
‘home-ground’, if a hypothesis pertaining to theory X is
tested on a database z which is not ‘home-ground’ to it
and gets more than half as good results as the competing
hypothesis, pertaining to theory Y , to which z is ‘home-
ground’, this should be considered an impressive victory of
theory X and its hypothesis, just as is the effect of the rule
that goals scored by soccer teams (in e.g. the Champions
League) in away matches count double.

Applying this view to the case of ϕ and ψ, we can hence
argue that ψ outcompetes ϕ, since, as discussed above, ev-
ery database is ‘home-ground’ to ϕ, while only zA and zH
are ‘home-ground’ to ψ, and moreover, ψ scores systemat-
ically better than ϕ on each database that is ‘home-ground’
to both and, even when β = 0, the lower score of ψ on zM
(0.4) is very close to the score of ϕ on zM (0.5).

7 Conclusions

In this paper, we have introduced a complete many-valued
semantic environment for (multi) modal languages based
on the logic of general (i.e. not necessarily distributive) lat-
tices, and, by means of a toy example, we have illustrated
its potential as a tool for the formal analysis of situations
arising in the theory and practice of empirical science. As
this is only a preliminary exploration, many questions arise,
both technical and conceptual, of which here we list a few.

A range of protocols for comparing theories. As dis-
cussed in Sections 5 and 6 hypotheses that look prima facie
incomparable can become comparable through the lenses

13We do not mean ‘best scores’ in absolute terms, but in relative
terms: that is, a bad hypothesis will score low on every database,
but it will still get its higher scores on databases that are max-
imally compatible with the theory in the language of which the
hypothesis is formulated.

of the modal operators. In this paper we do not insist on
a specific protocol to establish a winner among competing
theories. However, we wish to highlight that the framework
introduced can accommodate a wide range of possible pro-
tocols, including those involving common-knowledge-type
constructions.

More expressive languages. We conjecture that the
proof of completeness of the logic of Section 2.1 given in
Appendix B can be extended modularly to more expressive
languages that display essentially “many valued” features
in analogy with those considered in [2]. This is current
work in progress.

Sahlqvist theory for many-valued non-distributive log-
ics. A natural direction of research is to develop the gen-
eralized Sahlqvist theory for the logics of graph-based A-
frames, by extending the results of [19] on Sahlqvist theory
for many-valued logics on a distributive base.

Towards an analysis theory dynamics. We have shown
that using the many-valued environment allows us to dis-
cuss competition between theories in an intuitively appeal-
ing and formally sound manner. This lays the basis for a
host of further developments to model the dynamics of the-
ories and databases, to better understand what distance be-
tween theories means, as well as studying the hierarchical
relations between theories, in analogy with the hierarchical
structure of categories.

Socio-political theories and scientific theories. The
present semantic environment naturally lends itself not
only to the analysis of competition of scientific theories but
also to the analysis of a wide spectrum of phenomena in
which theories, broadly construed, play a key role. For
instance, building on the present work, in [10], a formal
environment is introduced in which the similarities can be
analysed between the competition among political theories
(both in their institutional incarnations as political parties,
and in their social incarnations as social blocks or groups)
and the competition between scientific theories.
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[1] R. Bêlohlávek, Fuzzy galois connections, Mathemat-
ical Logic Quarterly 45 (4) (1999) 497–504.

[2] F. Bou, F. Esteva, L. Godo, R. O. Rodrı́guez, On
the minimum many-valued modal logic over a finite
residuated lattice, Journal of Logic and Computation
21 (5) (2011) 739–790.

729



[3] W. Conradie, A. Craig, Relational semantics via TiRS
graphs, TACL 2015.

[4] W. Conradie, A. Craig, A. Palmigiano, N. Wijnberg,
Modelling informational entropy, in: Proc. WoLLIC
2019, Vol. 11541 of LNCS, 2019, pp. 140–160.

[5] W. Conradie, S. Frittella, K. Manoorkar, S. Nazari,
A. Palmigiano, A. Tzimoulis, N. Wijnberg, Rough
concepts, Submitted.

[6] W. Conradie, S. Frittella, A. Palmigiano, M. Piaz-
zai, A. Tzimoulis, N. Wijnberg, Categories: How I
Learned to Stop Worrying and Love Two Sorts, in:
Proc. WoLLIC 2016, Vol. 9803 of LNCS, 2016, pp.
145–164.

[7] W. Conradie, S. Frittella, A. Palmigiano, M. Piaz-
zai, A. Tzimoulis, N. Wijnberg, Toward an epistemic-
logical theory of categorization, in: Proc. TARK
2017, Vol. 251 of EPTCS, 2017, pp. 167–186.

[8] W. Conradie, A. Palmigiano, Constructive canon-
icity of inductive inequalities, arXiv preprint
arXiv:1603.08341.

[9] W. Conradie, A. Palmigiano, Algorithmic correspon-
dence and canonicity for non-distributive logics, An-
nals of Pure and Applied Logic 170(9) (2019) 923–
974.

[10] W. Conradie, A. Palmigiano, C. Robinson, A. Tzi-
moulis, N. Wijnberg, Modelling socio-political com-
petition, Submitted.

[11] W. Conradie, A. Palmigiano, A. Tzimoulis,
Goldblatt-Thomason for LE-logics, arXiv preprint
arXiv:1809.08225.

[12] M. Fitting, Many-valued modal logics, Fundam. In-
form. 15 (3-4) (1991) 235–254.

[13] N. Galatos, P. Jipsen, Residuated frames with appli-
cations to decidability, Transactions of the American
Mathematical Society 365 (3) (2013) 1219–1249.

[14] B. Ganter, R. Wille, Formal concept analysis: mathe-
matical foundations, Springer, 2012.

[15] M. Gehrke, Generalized Kripke frames, Studia Log-
ica 84 (2) (2006) 241–275.

[16] M. Gehrke, J. Harding, Bounded lattice expansions,
Journal of Algebra 238 (1) (2001) 345–371.

[17] G. Greco, P. Jipsen, F. Liang, A. Palmigiano, A. Tz-
imoulis, Algebraic proof theory for LE-logics, arXiv
preprint arXiv:1808.04642.

[18] G. Greco, P. Jipsen, K. Manoorkar, A. Palmigiano,
A. Tzimoulis, Logics for rough concept analysis, in:
Proc. ICLA 2019, Vol. 11600 of LNCS, 2019, pp.
144–159.

[19] C. le Roux, Correspondence theory in many-valued
modal logics, Master’s thesis, University of Johannes-
burg, South Africa (2016).

[20] Z. Pawlak, Rough set theory and its applications to
data analysis, Cybernetics & Systems 29 (7) (1998)
661–688.

[21] D. Vakarelov, A modal characterization of indiscerni-
bility and similarity relations in Pawlak’s information
systems, in: International Workshop on Rough Sets,
Fuzzy Sets, Data Mining, and Granular-Soft Comput-
ing, Springer, 2005, pp. 12–22.

[22] U. Wybraniec-Skardowska, On a generalization of
approximation space, Bulletin of the Polish Academy
of Sciences. Mathematics 37 (1-6) (1989) 51–62.

[23] Y. Yao, T. Y. Lin, Generalization of rough sets using
modal logics, Intelligent Automation & Soft Comput-
ing 2 (2) (1996) 103–119.

A Correspondence results

In what follows, for every graph-based L-frame G, we
let R� : Z ×Z → A be defined by the assignment (z,z′) 7→
R^(z′,z).
Proposition A.1. The following are equivalent for every
graph-based L-frame G:

1. G |= �⊥ ` ⊥ iff for any (β,z) ∈ ZA,∧
z′∈ZX

[R�(z,z′)→ β] ≤
∧

z′∈ZX

[E(z,z′)→ β].

2. G |= > ` ^> iff for any z ∈ ZX ,∧
(α,z′)∈ZA

[R^(z,z′)→ α] ≤
∧

(α,z′)∈ZA

[E(z′,z)→ α].

3. G |= �p ` p iff E ⊆ R�.

4. G |= p ` ^p iff E ⊆ R�.

Proof. 1.

�⊥ ≤ ⊥

iff R[0]
� [([⊥])] ≤ [[⊥]]

iff R[0]
� [1AZX ] ≤ (1AZX )[0]

iff R[0]
� [1AZX ](β,z) ≤ (1AZX )[0](β,z) ∀(β,z) ∈ ZA

iff
∧

z′∈ZX [1(z′)→ (R�(z,z′)→ β)]
≤

∧
z′∈ZX [1(z′)→ (E(z,z′)→ β)] ∀(β,z) ∈ ZA

iff
∧

z′∈ZX [R�(z,z′)→ β]
≤

∧
z′∈ZX [E(z,z′)→ β] for any (β,z) ∈ ZA.
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2.

> ≤ ^>

iff R[0]
^ [[[>]]] ≤ ([>])

iff R[0]
^ [1AZA ] ≤ (1AZA )[1]

iff R[0]
^ [1AZA ](z) ≤ (1AZA )[0](z) for any z ∈ ZX

iff
∧

(α,z′)∈ZA [1(α,z′)→ (R^(z,z′)→ α)]
≤

∧
(α,z′)′∈ZA [1(α,z′)→ (E(z′,z)→ α)] ∀z ∈ ZX

iff
∧

(α,z′)∈ZA [R^(z,z′)→ α]
≤

∧
(α,z′)∈ZA [E(z′,z)→ α] for any z ∈ ZX .

3.

∀p[�p ≤ p]
iff ∀m[�m ≤m] (ALBA [9])
iff ∀α∀z[R[0]

� [{α/z}[01]] ≤ {α/z}[0]] (m := {α/z})
iff ∀α∀z[R[0]

� [{α/z}] ≤ {α/z}[0]] (Lemma 3.5)
iff ∀α,β∀z,w[α→ (R�(w,z)→ β)

≤ α→ (E(w,z)→ β) (∗)
iff E ⊆ R�. (∗∗)

To justify the equivalence to (∗) we note that
R[0]
� [{α/z}](β,w) =

∧
z′∈ZX [{α/z}(z′) → (R�(w,z′) →

β)] = α → (R�(w,z) → β), and moreover {α/z}[0](β,w) =∧
z′∈ZX ({α/z}(z′) → (E(w,z′) → β)) = α → (E(w,z) → β).

For the equivalence to (∗∗), note that instantiating α := 1
and β := R�(w,z) in (∗) yields 1 ≤ E(w,z) → R�(w,z)
which, by residuation, is equivalent to (∗∗). The converse
direction is immediate by the monotonicity of → in
the second coordinate and its antitonicity in the first
coordinate.

4.

p ≤ ^p
iff ∀j[j ≤ ^j]
iff ∀α,β∀z[R[0]

^ [{α/(β,z)}[01]] ≤ {α/(β,z)}[1]]
iff ∀α,β∀z[R[0]

^ [{α/(β,z)}] ≤ {α/(β,z)}[1]]
iff ∀α,β∀z,w[α→ (R^(w,z)→ β)

≤ α→ (E(z,w)→ β) (∗)
iff E ⊆ R�. (∗∗)

As to the equivalence to (∗), note that R[0]
^ [{α/(β,z)}](w) =∧

(γ,z′)∈ZA [{α/(β,z)}(γ,z′) → (R^(w,z′) → γ)] =

α → (R^(w,z) → β), and that {α/(β,z)}[1](w) =∧
(γ,z′)∈ZA ({α/(β,z)}(γ,z′) → (E(z′,w) → γ)) = α →

(E(z,w) → β). For the equivalence to (∗∗) note that
instantiating α := 1 and β := R^(w,z) = R�(z,w) in (∗)
yields 1 ≤ E(z,w) → R�(z,w) which, by residuation, is
equivalent to (∗∗). The converse direction is immediate
by the monotonicity of→ in the second coordinate and its
antitonicity in the first coordinate. �

Remark A.2. Clearly, E-reflexivity (i.e. condition E ⊆ R�
in Proposition A.1.3) implies the inequality in Proposi-
tion A.1.1; however, this inequality is also verified under

weaker but practically relevant assumptions. For instance,
if A is a finite chain, the inequality in Proposition A.1.1 is
equivalent to min{R�(z,z′)→ β | z′ ∈ ZX} ≤ min{E(z,z′)→
β | z′ ∈ ZX} = E(z,z)→ β = 1→ β = β. Hence, this condi-
tion is equivalent to the condition that for every β ∈ A and
z ∈ Z, some z′ ∈ Z exists such that R�(z,z′)→ β ≤ β. This
condition is satisfied if for every z ∈ Z some z′ ∈ Z exists
such that R�(z,z′) = 1. Similar considerations apply to the
remaining items of the proposition above.

B Completeness

This section is an adaptation and expansion of the com-
pleteness result of [10, Appendix B], of which Apostolos
Tzimoulis and Claudette Robinson are prime contributors.
We will use the validity of �⊥ ` ⊥ in the proof of the �
case in Lemma B.7. As discussed in Section 5, this axiom
is valid in the model of our case study.

For the sake of uniformity with previous settings
(cf. e.g. [5, Section 7.2]) in this section, we work with
graph-based frames G = (X,R�,R^) the associated com-
plex algebras of which are order-dual to the one in Def-
inition 3.2. That is, for the sake of this section, we de-
fine the enriched formal context PG := (ZA,ZX , IE , IR� , JR^ )
by setting ZA := Z, ZX := A × Z and IE : ZA × ZX → A
and IR� : ZA ×ZX → A and JR^ : ZX ×ZA → A be defined
by the assignments (z, (α,z′)) 7→ E(z,z′)→ α, (z, (α,z′)) 7→
R�(z,z′)→ α and ((α,z),z′) 7→ R^(z,z′)→ α, respectively.

For any lattice L, an A-filter is an A-subset of L, i.e. a map
f : L→A, which is both ∧- and >-preserving, i.e. f (>) = 1
and f (a ∧ b) = f (a) ∧ f (b) for any a,b ∈ L. Intuitively,
the ∧-preservation encodes a many-valued version of clo-
sure under ∧ of filters. An A-filter is proper if it is also
⊥-preserving, i.e. f (⊥) = 0. Dually, an A-ideal is a map
i : L→ A which is both ∨- and ⊥-reversing, i.e. i(⊥) = >

and i(a∨ b) = i(a)∧ i(b) for any a,b ∈ L, and is proper if
in addition i(>) = 0. The complement of a (proper) A-ideal
is a map u : L → A which is both ∨- and ⊥-preserving,
i.e. u(⊥) = 0 and u(a∨b) = u(a)∨u(b) for any a,b ∈ L (and
in addition u(>) = 1). Intuitively, u(a) encodes the extent
to which a does not belong to the ideal of which u is the
many-valued complement. We let FA(L), IA(L) and CA(L)
respectively denote the set of proper A-filters, proper A-
ideals, and the complements of proper A-ideals of L. For
any L-algebra (L,�,^), and any A-subset k : L→ A, let
k−^ : L→ A be defined as k−^(a) =

∨
{k(b) | ^b ≤ a} and

let k−� : L→A be defined as k−�(a) =
∧
{k(b) | a ≤ �b}. By

definition one can see that k(a) ≤ k−^(^a) and k−�(�a) ≤
k(a) for every a ∈ L. Let Fm (resp. Fm0, Fm1) be the
Lindenbaum-Tarski algebra of the basic L-logic L (resp.
L0, L1). Moreover, in what follows we write Fm∗ for the
Lindenbaum-Tarski algebra of an arbitrary (not necessarily
proper) extension L∗ of L. In the remainder of this section,
we abuse notation and identify formulas with their equiva-
lence class in Fm∗.
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Lemma B.1.

1. If f : L→ A is an A-filter, then so is f −^.

2. If f : Fm∗→ A is a proper A-filter, then so is f −^.

3. If u : L→ A is the complement of an A-ideal, then so
is u−�.

4. If u : Fm∗→A is the complement of a proper A-ideal,
then so is u−�.

5. If ϕ,ψ ∈ Fm∗, then ϕ∨ψ = > implies that ϕ = > or
ψ = >.

6. If ϕ,ψ ∈ Fm∗, then ϕ 0 ⊥ and ψ 0 ⊥ imply that ϕ∧ψ 0
⊥.

Proof. 1. For all a,b ∈ L,

f −^(>) =
∨
{ f (b) | ^b ≤ >}

=
∨
{ f (b) | b ∈ L}

= f (>)
= 1

f −^(a)∧ f −^(b)
=

∨
{ f (c1) | ^c1 ≤ a}∧

∨
{ f (c2) | ^c2 ≤ b}

=
∨
{ f (c1)∧ f (c2) | ^c1 ≤ a and ^c2 ≤ b} (?)

=
∨
{ f (c1∧ c2) | ^c1 ≤ a and ^c2 ≤ b} (])

=
∨
{ f (c) | ^c ≤ a and ^c ≤ b} (∗)

=
∨
{ f (c) | ^c ≤ a∧b}

= f −^(a∧b),

the equivalence marked with (?) being due to frame dis-
tributivity, the one marked with (]) to the fact that f is
and A-filter, and the one marked with (∗) to the fact that
^(c1∧ c2) ≤ ^c1∧^c2.

2. In general, f −^ need not be a proper filter, even if f
is. However, let us show that this is the case when f is
a proper filter of Fm. Indeed, in this algebra, f −^(⊥) =∨
{ f ([ϕ]) | [^ϕ] ≤ [⊥]} =

∨
{ f ([ϕ]) | ^ϕ ` ⊥} =

∨
{ f ([ϕ]) |

ϕ ` ⊥} = f ([⊥]) = 0. The crucial inequality is the third to
last, which holds since ^ϕ ` ⊥ iff ϕ ` ⊥. The right to left
implication can be easily derived in L. For the sake of the
left to right implication we appeal to the completeness of L
with respect to the class of all normal lattice expansions of
the appropriate signature [9] and reason contrapositively.
Suppose ϕ 0 ⊥. Then, by this completeness theorem, there
is a lattice expansion C and assignment v on C such that
v(ϕ) , 0. Now consider the algebra C′ obtained from C
by adding a new least element 0′ and extending the ^-
operation by declaring ^0′ = 0′. We keep the assignment
v unchanged. It is easy to check that C′ is a normal lattice
expansion, and that v(^ϕ) ≥ 0 > 0′ and hence ^ϕ 0 ⊥.

Items 3 and 4 are proven by arguments which are dual to
the ones above.

5. As to proving item 5, we reason contrapositively. Sup-
pose > 0 ϕ and > 0 ψ. By the completeness theorem to
which we have appealed in the proof of item 2, there are
lattice expansions C1 and C2 and corresponding assign-
ments vi on Ci such that v1(ϕ) , >C1 and v2(ψ) , >C2 .
Consider the algebra C′ obtained by adding a new top el-
ement >′ to C1 ×C2, defining the operation ^′ = ^C

′

by
the same assignment of ^C1×C2 on C1 ×C2 and mapping
>′ to (^>)C1×C2 , and the operation �′ = �C

′

by the same
assignment of �C1×C2 on C1×C2, and mapping >′ to itself.
The normality (i.e. finite meet-preservation) of �′ and the
monotonicity of ^′ follow immediately by construction.
The normality (i.e. finite join-preservation) of^′ is verified
by cases: if a∨b,>′, then it immediately follows from the
normality of^C1×C2 . If a∨b =>′, then by construction, ei-
ther a =>′ or b =>′ (i.e. >′ is join-irreducible), and hence,
the join-preservation of ^′ is a consequence of its mono-
tonicity. Consider the valuation v′ : Prop→ C′ defined by
the assignment p 7→ e(v1(p),v2(p)), where e : C1×C1→ C′

is the natural embedding.

Let us show, for all χ ∈ L, that if (v1(χ),v2(χ)) , >C1×C2 ,
then v′(χ) , >′. We proceed by induction on χ. The
cases for atomic propositions and conjunction are imme-
diate. The case for disjunction uses the join-irreducibility
of >′. When χ :=^θ, then v′(^θ) =^′v′(θ) ,>′, since, by
construction, >′ is not in the range of ^′.

If χ := �θ, then v′(χ) = v′(�θ) = �′v′(θ). Then the as-
sumption that (v1(χ),v2(χ)) , >C1×C2 implies that v′(θ) ,
>′. Indeed, if v′(θ) = >′, then, by induction hypothe-
sis, (v1(θ),v2(θ)) = (>C1 ,>C2 ) and hence (v1(�θ),v2(�θ)) =

>C1×C2 . Therefore, from v′(θ),>′, it follows from the def-
inition of �′ that v′(�θ) =�′v′(θ),>′, which concludes the
proof of the claim.

Clearly, v1(ϕ) , >C1 and v2(ψ) , >C2 imply that
(v1(ϕ),v2(ϕ)) ,>C1×C2 and (v1(ψ),v2(ψ)) ,>C1×C2 . So, by
the above claim, v′(ϕ),>′ and v′(ψ),>′, and hence, since
>′ is join-irreducible, v′(ϕ∨ψ) , >′.

The proof of item 6 is dual to the one above. �

Lemma B.2. For any f ∈ FA(L) and any u ∈ CA(L),

1.
∧

b∈L( f −^(b)→ u(b)) =
∧

a∈L( f (a)→ u(^a));

2.
∧

b∈L( f (b)→ u−�(b)) =
∧

a∈L( f (�a)→ u(a)).

Proof. For (1) we use the fact that f (a) ≤ f −^(^a) im-
plies that f −^(^a) → u(^a) ≤ f (a) → u(^a) for every
a ∈L, which is enough to show that

∧
b∈L( f −^(b)→ u(b))≤∧

a∈L( f (a)→ u(^a)). Conversely, to show that∧
a∈L

( f (a)→ u(^a)) ≤
∧
b∈L

( f −^(b)→ u(b)),

it is enough to show that, for every b ∈ L,∧
a∈L

( f (a)→ u(^a)) ≤ f −^(b)→ u(b),
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i.e. by definition of f −^(b) and the fact that → is com-
pletely join-reversing in its first coordinate,∧

a∈L

( f (a)→ u(^a)) ≤
∧
^c≤b

( f (c)→ u(b)).

Hence, let c ∈ L such that ^c ≤ b, and let us show that∧
a∈L

( f (a)→ u(^a)) ≤ f (c)→ u(b).

Since u is∨-preserving, hence order-preserving,^c≤ b im-
plies u(^c) ≤ u(b), hence∧

a∈L

( f (a)→ u(^a)) ≤ f (c)→ u(^c) ≤ f (c)→ u(b),

as required. For (2), we use u−�(�a)≤ u(a) and the fact that
→ is order-preserving in the second coordinate to show the
inequality

∧
b∈L( f (b)→ u−�(b))≤

∧
a∈L( f (�a)→ u(a)). To

show ∧
a∈L

( f (�a)→ u(a)) ≤
∧
b∈L

( f (b)→ u−�(b))

we can show that for any b ∈ L∧
a∈L

( f (�a)→ u(a)) ≤ f (b)→ u−�(b).

After applying the definition of u−�(b) and the fact that→
is completely meet-preserving in its second coordinate, the
above inequality is equivalent to∧

a∈L

( f (�a)→ u(a)) ≤
∧

b≤�c

( f (b)→ u(c)).

Let c ∈ L with b ≤ �c. Since f is order-preserving we get∧
a∈L

( f (�a)→ u(a)) ≤ f (�c)→ u(c) ≤ f (b)→ u(c).

�

Definition B.3. The canonical graph-based A-frame asso-
ciated with any Fm∗ is the structure GFm∗ = (Z,E,R^,R�)
defined as follows:14

Z := {( f ,u) ∈ FA(Fm∗)×CA(Fm∗) |
∧

ϕ∈Fm∗

( f (ϕ)→ u(ϕ)) = 1}.

For any z ∈ Z as above, we let fz and uz denote the first
and the second coordinate of z, respectively. Then E : Z ×
Z→ A, R^ : Z ×Z→ A and R� : Z ×Z→ A are defined as
follows:

E(z,z′) :=
∧

ϕ∈Fm∗

( fz(ϕ)→ uz′ (ϕ));

14Recall that for any set W, the A-subsethood relation between
elements of A-subsets of W is the map S W : AW ×AW → A de-
fined as S W ( f ,g) :=

∧
w∈W ( f (w)→ g(w)). If S W ( f ,g) = 1 we also

write f ⊆ g.

R^(z,z′) :=
∧

ϕ∈Fm∗

( f−^z′ (ϕ)→ uz(ϕ)) =
∧

ϕ∈Fm∗

( fz′ (ϕ)→ uz(^ϕ));

R�(z,z′) :=
∧

ϕ∈Fm∗

( fz(ϕ)→ u−�z′ (ϕ)) =
∧

ϕ∈Fm∗

( fz(�ϕ)→ uz′ (ϕ)).

We will write G = (Z,E,R^,R�) for GFm∗ = (Z,E,R^,R�)
whenever Fm∗ is clear from the context.

Lemma B.4. The structure GFm∗ of Definition B.3 is a
graph-based A-frame, in the sense specified at the begin-
ning of the present section.

Proof. We need to show that R^ is E-compatible, i.e.,

(R[1]
^ [{β/(α,z)}])[10] ⊆ R[1]

^ [{β/(α,z)}]

(R[0]
^ [{β/z}])[01] ⊆ R[0]

^ [{β/z}],

and that R� is E-compatible, i.e.,

(R[0]
� [{β/(α,z)}])[10] ⊆ R[0]

� [{β/(α,z)}]

(R[1]
� [{β/z}])[01] ⊆ R[1]

� [{β/z}].

Considering the second inclusion for R^, by definition, for
any (α,w) ∈ ZX ,

R[0]
^ [{β/z}](α,w)

=
∧

z′∈ZA [{β/z}(z′)→ (R^(w,z′)→ α)]
= β→ (R^(w,z)→ α)

(R[0]
^ [{β/z}])[01](α,w)

=
∧

z′∈ZA [(R[0]
^ [{β/z}])[0](z′)→ (E(z′,w)→ α)],

and hence it is enough to find some z′ ∈ Z such that

(R[0]
^ [{β/z}])[0](z′)→ (E(z′,w)→ α) ≤ β→ (R^(w,z)→ α),

i.e. (∧
(γ,v)∈ZX [β→ (R^(v,z)→ γ)]→ (E(z′,v)→ γ)

)
→ (E(z′,w)→ α) ≤ β→ (R^(w,z)→ α) (∗)

Let z′ ∈ Z such that uz′ : Fm∗ → A maps ⊥ to 0 and every
other ϕ ∈ Fm∗ to 1, and fz′ := f −^z (cf. Lemma B.1.2). Then

E(z′,w) =
∧
ϕ∈Fm f −^z (ϕ)→ uw(ϕ)

= R^(w,z),

and likewise E(z′,v) = R^(v,z). Therefore, for this choice
of z′, inequality (∗) can be rewritten as follows:(∧

(γ,v)∈ZX [β→ (R^(v,z)→ γ)]→ (R^(v,z)→ γ)
)

→ (R^(w,z)→ α) ≤ β→ (R^(w,z)→ α)

The inequality above is true if

β ≤
∧

(γ,v)∈ZX

[β→ (R^(v,z)→ γ)]→ (R^(v,z)→ γ),
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i.e. if for every (γ,v) ∈ ZX ,

β ≤ [β→ (R^(v,z)→ γ)]→ (R^(v,z)→ γ),

which is an instance of a tautology in residuated lattices.

Let us show that (R[1]
^ [{β/(α,z)}])[10] ⊆ R[1]

^ [{β/(α,z)}]. By
definition, for every w ∈ ZA,

R[1]
^ [{β/(α,z)}](w)

=
∧

(γ,z′)∈ZX [{β/(α,z)}(γ,z′)→ (R^(z′,w)→ γ)]
= β→ (R^(z,w)→ α)

(R[1]
^ [{β/(α,z)}])[10](w)

=
∧

(γ,z′)∈ZX [(R[1]
^ [{β/(α,z)}])[1](γ,z′)→ (E(w,z′)→ γ)].

Hence it is enough to find some (γ,z′) ∈ ZX such that

(R[1]
^ [{β/(α,z)}])[1](γ,z′)→ (E(w,z′)→ γ)

≤ β→ (R^(z,w)→ α),

i.e. (∧
v∈Z(β→ (R^(z,v)→ α))→ (E(v,z′)→ γ)

)
→ (E(w,z′)→ γ) ≤ β→ (R^(z,w)→ α) (∗)

Let (γ,z′) := (α,z′) such that fz′ : Fm∗ → A maps > to 1
and every other ϕ ∈ Fm∗ to 0, and uz′ : Fm∗→A is defined
by the assignment

uz′ (ϕ) =

{
1 if > ` ϕ
uz(^ϕ) otherwise.

by definition, uz′ maps > to 1 and ⊥ to 0; moreover, us-
ing Lemma B.1.5, it can be readily verified that uz′ is ∨-
preserving. Then

E(v,z′) =
∧
ϕ∈Fm∗ ( fv(ϕ)→ uz′ (ϕ))

=
∧
ϕ∈Fm∗ ( fv(ϕ)→ uz(^ϕ))

=
∧
ϕ∈Fm∗ ( f −^v (ϕ)→ uz(ϕ))

= R^(z,v),

and likewise E(w,z′) = R^(z,w). Therefore, for this choice
of z′, inequality (∗) can be rewritten as follows:(∧

v∈Z(β→ R^(z,v)→ α)→ (R^(z,v)→ α)
)

→ (R^(z,w)→ α) ≤ β→ (R^(z,w)→ α) (∗)

which is shown to be true by the same argument as the one
concluding the verification of the previous inclusion.

Let us show that (R[0]
� [{β/(α,z)}])[10] ⊆ R[0]

� [{β/(α,z)}]. For
any w ∈ ZA,

R[0]
� [{β/(α,z)}](w)

=
∧

(γ,z′)∈ZX [{β/(α,z)}(γ,z′)→ (R�(w,z′)→ γ)]
= β→ (R�(w,z)→ α),

(R[0]
� [{β/(α,z)}])[10](w)

=
∧

(γ,z′)∈ZX [(R[0]
� [{β/(α,z)}])[1](γ,z′)→ (E(w,z′)→ γ)].

Hence, it is enough to find some (γ,z′) ∈ ZX such that

(R[0]
� [{β/(α,z)}])[1](γ,z′)→ (E(w,z′)→ γ)

≤ β→ (R�(w,z)→ α),

i.e. (∧
v∈Z(β→ (R�(v,z)→ α))→ (E(v,z′)→ γ)

)
→ (E(w,z′)→ γ) ≤ β→ (R�(w,z)→ α) (∗)

Let (γ,z′) := (α,z′) such that fz′ : Fm∗ → A maps > to 1
and every other ϕ ∈ Fm∗ to 0, and uz′ := u−�z (cf. Lemma
B.1.4). Then

E(v,z′) =
∧
ϕ∈Fm[ fv(ϕ)→ u−�z (ϕ)]

= R�(v,z),

and likewise E(w,z′) = R�(w,z). Therefore, for this choice
of z′, inequality (∗) can be rewritten as follows:(∧

v∈Z(β→ (R�(v,z)→ α))→ (R�(v,z)→ α)
)

→ (R�(w,z)→ α) ≤ β→ (R�(w,z)→ α).

The inequality above is true if

β ≤
∧
v∈Z

(β→ (R�(v,z)→ α))→ (R�(v,z)→ α),

i.e. if for every v ∈ ZA,

β ≤ (β→ (R�(v,z)→ α))→ (R�(v,z)→ α),

which is an instance of a tautology in residuated lattices.

For the last inclusion, for any (α,w) ∈ ZX ,

R[1]
� [{β/z}](α,w)

=
∧

z′∈ZA [{β/z}(z′)→ (R�(z′,w)→ α)]
= β→ (R�(z,w)→ α),

(R[1]
� [{β/z}])[01](α,w)

=
∧

z′∈ZA [(R[1]
� [{β/z}])[0](z′)→ (E(z′,w)→ α)],

and hence it is enough to find some z′ ∈ ZA such that

(R[1]
� [{β/z}])[0](z′)→ (E(z′,w)→ α) ≤ β→ (R�(z,w)→ α),

i.e. (∧
(γ,v)∈ZX [β→ (R�(z,v)→ γ)]→ (E(z′,v)→ γ)

)
→ (E(z′,w)→ α) ≤ β→ (R�(z,w)→ α) (∗)

Let z′ ∈ ZA such that uz′ : Fm∗→ A maps ⊥ to 0 and every
other ϕ ∈ Fm∗ to 1, and fz′ : Fm∗ → A is defined by the
assignment

fz′ (ϕ) =

{
0 if ϕ ` ⊥
fz(�ϕ) otherwise.
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by definition, fz′ maps > to 1 and ⊥ to 0; moreover, us-
ing Lemma B.1.6, it can be readily verified that fz′ is ∧-
preserving. Then

E(z′,w) =
∧
ϕ∈Fm∗ ( fz′ (ϕ)→ uw(ϕ))

=
∧
ϕ∈Fm∗ ( fz(�ϕ)→ uw(ϕ))

=
∧
ϕ∈Fm∗ ( fz(ϕ)→ u−�w (ϕ))

= R�(z,w),

and likewise E(z′,v) = R�(z,v). Therefore, for this choice
of z′, inequality (∗) can be rewritten as follows:(∧

(γ,v)∈ZX [β→ (R�(z,v)→ γ)]→ (R�(z,v)→ γ)
)

→ (R�(z,w)→ α) ≤ β→ (R�(z,w)→ α).

The inequality above is true if

β ≤
∧

(γ,v)∈ZX

[β→ (R�(z,v)→ γ)]→ (R�(z,v)→ γ),

i.e. if for every (γ,v) ∈ ZX ,

β ≤ [β→ (R�(z,v)→ γ)]→ (R�(z,v)→ γ),

which is an instance of a tautology in residuated lattices.
�

Definition B.5. The canonical graph-based A-model asso-
ciated with Fm∗ is the structure MFm∗ = (GFm∗ ,V) such
that GFm∗ is the canonical graph-based A-frame of Defi-
nition B.3, and if p ∈ Prop, then V(p) = ([[p]], ([p])) with
[[p]] : ZA→ A and ([p]) : ZX → A defined by z 7→ fz(p) and
(α,z) 7→ uz(p)→ α, respectively.15

Lemma B.6. The structure GFm∗ of Definition B.5 is a
graph-based A-model.

Proof. It is enough to show that [[p]][1] = ([p]) and [[p]] =

([p])[0] for any p ∈ Prop. To show that ([p])(α,z) ≤
[[p]][1](α,z) for any (α,z) ∈ ZX , by definition, we need to
show that

uz(p)→ α ≤
∧

z′∈ZA

([[p]](z′)→ (E(z′,z)→ α)),

i.e. that for every z′ ∈ ZA,

uz(p)→ α ≤ [[p]](z′)→ (E(z′,z)→ α).

By definition, the inequality above is equivalent to

uz(p)→ α ≤ fz′ (p)→ (
∧

ϕ∈Fm∗

[ fz′ (ϕ)→ uz(ϕ)]→ α).

Since
∧
ϕ∈Fm∗ [ fz′ (ϕ)→ uz(ϕ)] ≤ fz′ (p)→ uz(p) and → is

order-reversing in its first coordinate, it is enough to show
that

uz(p)→ α ≤ fz′ (p)→ [( fz′ (p)→ uz(p))→ α].

15We write M for MFm∗ when Fm∗ is clear from the context.

By residuation the inequality above is equivalent to

uz(p)→ α ≤ [ fz′ (p)⊗ ( fz′ (p)→ uz(p))]→ α,

which is equivalent to

[ fz′ (p)⊗ ( fz′ (p)→ uz(p))]⊗ [uz(p)→ α] ≤ α,

which is the instance of a tautology in residuated lattices.
Conversely, to show that [[p]][1](α,z) ≤ ([p])(α,z), i.e.∧

z′∈ZA

([[p]](z′)→ (E(z′,z)→ α)) ≤ uz(p)→ α,

it is enough to show that

[[p]](z′)→ (E(z′,z)→ α)) ≤ uz(p)→ α (2)

for some z′ ∈ Z. Let z′ := ( fp,u) such that u : Fm∗ → A
maps ⊥ to 0 and every other element of Fm∗ to 1, and fp :
Fm∗→ A is defined by the assignment

fp(ϕ) =

{
1 if p ` ϕ
0 otherwise.

Hence, E(z′,z) =
∧
ϕ∈Fm∗ ( fp(ϕ) → uz(ϕ)) =

∧
p`ϕ uz(ϕ) =

uz(p), the last identity holding since uz is order-preserving.
Therefore, [[p]](z′)→ (E(z′,z)→ α)) = fp(p)→ (uz(p)→
α) = 1→ (uz(p)→ α) = uz(p)→ α, which shows (2).

By adjunction, the inequality ([p]) ≤ [[p]][1] proven above
implies that [[p]] ≤ ([p])[0]. Hence, to show that [[p]] =

([p])[0], it is enough to show ([p])[0](z) ≤ [[p]](z) for every
z ∈ Z, i.e. ∧

(α,z′)∈ZX

([p])(α,z′)→ (E(z,z′)→ α) ≤ fz(p),

and to show the inequality above, it is enough to show that

([p])(α,z′)→ (E(z,z′)→ α) ≤ fz(p) (3)

for some (α,z′) ∈ ZX . Let α := fz(p) and z′ := ( fz′ ,up) be
such that uz′ = up : Fm∗ → A is defined by the following
assignment:

up(ϕ) =


0 if ϕ ` ⊥
fz(p) if ϕ ` p and ϕ 0 ⊥
1 if ϕ 0 p.

By construction, uz′ is ∨-, ⊥- and >-preserving. Moreover,
([p])(α,z′) = uz′ (p)→ α = fz(p)→ fz(p) = 1, and E(z,z′) =∧
ϕ∈Fm∗ ( fz(ϕ)→ uz′ (ϕ)) =

∧
ϕ`p( fz(ϕ)→ fz(p)) = 1. Hence,

the left-hand side of (3) can be equivalently rewritten as
1→ (1→ fz(p)) = fz(p), which shows (3) and concludes
the proof. �

Recall that Fm0 is the Lindenbaum-Tarski algebra of the
logic L0 which is the axiomatic extension of L with the ax-
iom �⊥ ` ⊥. We write L0∗ to denote an arbitrary (possible
non-proper) extension of L0 and Fm0∗ for the correspond-
ing Lindenbaum-Tarski algebra. The axiom �⊥ ` ⊥ is re-
quired only in the inductive step for �-formulas in the fol-
lowing lemma. To emphasise this, we work mostly in the
context of Fm∗ and switch to Fm0∗ only when required.
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Lemma B.7 (Truth Lemma). For every ϕ ∈Fm0∗, the maps
[[ϕ]] : ZA → A and ([ϕ]) : ZX → A coincide with those de-
fined by the assignments z 7→ fz(ϕ) and (α,z) 7→ uz(ϕ)→ α,
respectively.

Proof. We proceed by induction on ϕ. If ϕ := p ∈ Prop, the
statement follows immediately from Definition B.5.

If ϕ := >, then [[>]](z) = 1 = fz(>) since A-filters are >-
preserving. Moreover,

([>])(α,z) = [[>]][1](α,z)
=

∧
z′∈ZA [[[>]](z′)→ (E(z′,z)→ α)]

=
∧

z′∈ZA [ fz′ (>)→ (E(z′,z)→ α)]
=

∧
z′∈ZA [E(z′,z)→ α].

So, to show that uz(>)→ α ≤ ([>])(α,z), we need to show
that for every z′ ∈ Z,

uz(>)→ α ≤ E(z′,z)→ α,

and for this, it is enough to show that∧
ψ∈Fm∗

[ fz′ (ψ)→ uz(ψ)] ≤ uz(>),

which is true, since by definition, uz(>) = 1. To show that
([>])(α,z) ≤ uz(>)→ α, i.e. that∧

z′∈ZA

[E(z′,z)→ α] ≤ uz(>)→ α,

it is enough to find some z′ ∈ Z such that E(z′,z)→ α ≤
uz(>)→ α. Let z′ := ( f>,u) such that u : Fm∗→ A maps >
to 1 and every other element of Fm∗ to 0, and f> : Fm∗→A
is defined by the assignment

f>(ϕ) =

{
1 if > ` ϕ
0 otherwise.

By definition, E(z′,z) =
∧
ψ∈Fm∗ [ fz′ (ψ) → uz(ψ)] =∧

>`ψ[1 → uz(ψ)] =
∧
>`ψ uz(ψ) ≥ uz(>), the last inequal-

ity being due to the fact that uz is order-preserving. Hence,
E(z′,z)→ α ≤ uz(>)→ α, as required.

If ϕ := ⊥, then ([⊥])(α,z) = 1 = uz(⊥) → α since com-
plements of A-ideals are ⊥-preserving. Let us show that
[[⊥]](z) = fz(⊥). The inequality fz(⊥) ≤ [[⊥]](z) follows
immediately from the fact that fz is proper and hence
fz(⊥) = 0. To show that [[⊥]](z) ≤ fz(⊥), by definition
[[⊥]](z) = ([⊥])[0](z) =

∧
(α,z′)∈ZX [(uz′ (⊥)→ α)→ (E(z,z′)→

α)], hence, it is enough to find some (α,z′) ∈ ZX such that

(uz′ (⊥)→ α)→ (E(z,z′)→ α) ≤ fz(⊥). (4)

Let α := fz(⊥) and let z′ := ( f>,u⊥) such that f> : Fm∗→A
is defined as indicated above in the base case for ϕ := >,
and u⊥ : Fm∗→ A is defined by the assignment

u⊥(ψ) =

{
0 if ψ ` ⊥
1 if ψ 0 ⊥.

By definition and since fz is order-preserving and ⊥-
preserving, E(z,z′) =

∧
ψ∈Fm∗ [ fz(ψ)→ u⊥(ψ)] = 1. Hence,

(4) can be rewritten as follows:

( fz(⊥)→ fz(⊥))→ fz(⊥) ≤ fz(⊥),

which is true since fz(⊥) → fz(⊥) = 1 and 1 → fz(⊥) =

fz(⊥).

If ϕ := ϕ1 ∧ ϕ2, then [[ϕ1∧ϕ2]](z) = ([[ϕ1]] ∧ [[ϕ2]])(z) =

[[ϕ1]](z)∧ [[ϕ2]](z) = fz(ϕ1)∧ fz(ϕ2) = fz(ϕ1 ∧ ϕ2). Let us
show that ([ϕ1∧ϕ2])(α,z) = uz(ϕ1∧ϕ2)→ α. By definition,

([ϕ1∧ϕ2])(α,z)
= [[ϕ1∧ϕ2]][1](α,z)
=

∧
z′∈Z[[[ϕ1∧ϕ2]](z′)→ (E(z′,z)→ α)]

=
∧

z′∈Z[ fz′ (ϕ1∧ϕ2)→ (E(z′,z)→ α)].

Hence, to show that uz(ϕ1∧ϕ2)→ α ≤ ([ϕ1∧ϕ2])(α,z), we
need to show that for every z′ ∈ Z,

uz(ϕ1∧ϕ2)→ α ≤ fz′ (ϕ1∧ϕ2)→ (E(z′,z)→ α).

Since by definition E(z′,z) =
∧
ϕ∈Fm∗ [ fz′ (ϕ) → uz(ϕ)] ≤

fz′ (ϕ1 ∧ϕ2)→ uz(ϕ1 ∧ϕ2) and → is order-reversing in the
first coordinate and order-preserving in the second one, it
is enough to show that for every z′ ∈ Z,

uz(ϕ1∧ϕ2)→ α
≤ fz′ (ϕ1∧ϕ2)→ (( fz′ (ϕ1∧ϕ2)→ uz(ϕ1∧ϕ2))→ α).

By residuation, the above inequality is equivalent to

uz(ϕ1∧ϕ2)→ α
≤ [ fz′ (ϕ1∧ϕ2)⊗ ( fz′ (ϕ1∧ϕ2)→ uz(ϕ1∧ϕ2))]→ α.

The above inequality is true if

fz′ (ϕ1∧ϕ2)⊗ ( fz′ (ϕ1∧ϕ2)→ uz(ϕ1∧ϕ2)) ≤ uz(ϕ1∧ϕ2),

which is an instance of a tautology in residuated lattices.

To show that ([ϕ1∧ϕ2])(α,z)≤ uz(ϕ1∧ϕ2)→α, it is enough
to find some z′ ∈ Z such that

fz′ (ϕ1∧ϕ2)→ (E(z′,z)→ α) ≤ uz(ϕ1∧ϕ2)→ α.

Let z′ := ( fϕ1∧ϕ2 ,u⊥) such that u⊥ : Fm∗→ A is defined as
indicated above in the base case for ϕ := ⊥, and fϕ1∧ϕ2 :
Fm∗→ A is defined by the assignment

fϕ1∧ϕ2 (ψ) =

{
1 if ϕ1∧ϕ2 ` ψ
0 otherwise.

For z′ := z, since fz′ (ϕ1 ∧ϕ2) = 1 and 1→ (E(z′,z)→ α) =

E(z′,z)→ α, the inequality above becomes

E(z′,z)→ α ≤ uz(ϕ1∧ϕ2)→ α,
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to verify which, it is enough to show that uz(ϕ1 ∧ ϕ2) ≤
E(z′,z). Indeed, by definition, E(z′,z) =

∧
ψ∈Fm∗ [ fz′ (ψ)→

uz(ψ)] =
∧
ϕ1∧ϕ2`ψ[1→ uz(ψ)] =

∧
ϕ1∧ϕ2`ψ uz(ψ) ≥ uz(ϕ1 ∧

ϕ2), the last inequality being due to the fact that uz is order-
preserving.

If ϕ := ϕ1∨ϕ2, then ([ϕ1∨ϕ2])(α,z) = (([ϕ1])∧([ϕ2]))(α,z) =

([ϕ1])(α,z) ∧ ([ϕ2])(α,z) = (uz(ϕ1) → α) ∧ (uz(ϕ2) → α) =

(uz(ϕ1)∨uz(ϕ2))→ α) = uz(ϕ1∨ϕ2)→ α. Let us show that
[[ϕ1∨ϕ2]](z) = fz(ϕ1∨ϕ2). By definition,

[[ϕ1∨ϕ2]](z)
= ([ϕ1∨ϕ2])[0](z)
=

∧
(α,z′)∈ZX [([ϕ1∨ϕ2])(α,z′)→ (E(z,z′)→ α)]

=
∧

(α,z′)∈ZX [(uz′ (ϕ1∨ϕ2)→ α)→ (E(z,z′)→ α)].

Hence, to show that fz(ϕ1∨ϕ2) ≤ [[ϕ1∨ϕ2]](z), we need to
show that for every (α,z′) ∈ ZX ,

fz(ϕ1∨ϕ2) ≤ (uz′ (ϕ1∨ϕ2)→ α)→ (E(z,z′)→ α).

Since by definition E(z,z′) =
∧
ψ∈Fm∗ [ fz(ψ) → uz′ (ψ)] ≤

fz(ϕ1 ∨ϕ2)→ uz′ (ϕ1 ∨ϕ2) and → is order-reversing in the
first coordinate and order-preserving in the second one, it
is enough to show that for every (α,z′) ∈ ZX ,

fz(ϕ1∨ϕ2) ≤
(uz′ (ϕ1∨ϕ2)→ α)→ (( fz(ϕ1∨ϕ2)→ uz′ (ϕ1∨ϕ2))→ α).

By residuation, associativity and commutativity of ⊗, the
inequality above is equivalent to

fz(ϕ1∨ϕ2)⊗ ( fz(ϕ1∨ϕ2)→ uz′ (ϕ1∨ϕ2))
⊗(uz′ (ϕ1∨ϕ2)→ α) ≤ α,

which is a tautology in residuated lattices.

To show that [[ϕ1∨ϕ2]](z)≤ fz(ϕ1∨ϕ2), it is enough to find
some (α,z′) ∈ ZX such that

(uz′ (ϕ1∨ϕ2)→ α)→ (E(z′,z)→ α) ≤ fz(ϕ1∨ϕ2). (5)

Let α := fz(ϕ1∨ϕ2) and let z′ := ( f>,uϕ1∨ϕ2 ) such that f> :
Fm∗→A is defined as indicated above in the base case for
ϕ :=>, and uϕ1∨ϕ2 : Fm∗→A is defined by the assignment

uϕ1∨ϕ2 (ψ) =


0 if ψ ` ⊥
fz(ϕ1∨ϕ2) if ψ 0 ⊥ and ψ ` ϕ1∨ϕ2
1 if ψ 0 ϕ1∨ϕ2.

By definition and since fz is order-preserving and
proper, E(z,z′) =

∧
ψ∈Fm∗ [ fz(ψ) → uϕ1∨ϕ2 (ψ)] =∧

⊥6aψ`ϕ1∨ϕ2 [ fz(ψ) → fz(ϕ1 ∨ ϕ2)] = 1. Hence, (5) can
be rewritten as follows:

( fz(ϕ1∨ϕ2)→ fz(ϕ1∨ϕ2))→ fz(ϕ1∨ϕ2) ≤ fz(ϕ1∨ϕ2),

which is true since fz(ϕ1 ∨ϕ2)→ fz(ϕ1 ∨ϕ2) = 1 and 1→
fz(ϕ1∨ϕ2) = fz(ϕ1∨ϕ2).

If ϕ := ^ψ, let us show that ([^ψ])(α,z) = uz(^ψ)→ α. By
definition,

([^ψ])(α,z) = R[0]
^ [[[ψ]]](α,z)

=
∧

z′∈ZA [[[ψ]](z′)→ (R^(z,z′)→ α)]
=

∧
z′∈ZA [ fz′ (ψ)→ (R^(z,z′)→ α)],

Hence, to show that uz(^ψ)→ α ≤ ([^ψ])(α,z), we need to
show that for every z′ ∈ Z,

uz(^ψ)→ α ≤ fz′ (ψ)→ (R^(z,z′)→ α).

By definition we have R^(z,z′) =
∧
ϕ∈Fm∗ ( fz′ (ϕ) →

uz(^ϕ)) ≤ fz′ (ψ)→ uz(^ψ), and since→ is order-reversing
in the first coordinate and order-preserving in the second
one, it is enough to show that for every z′ ∈ Z,

uz(^ψ)→ α ≤ fz′ (ψ)→ (( fz′ (ψ)→ uz(^ψ))→ α).

By residuation, associativity and commutativity of ⊗, the
inequality above is equivalent to

[ fz′ (ψ)⊗ ( fz′ (ψ)→ uz(^ψ))]⊗ (uz(^ψ)→ α) ≤ α

which is a tautology in residuated lattices.

To show that ([^ψ])(α,z) ≤ uz(^ψ)→ α, it is enough to find
some z′ ∈ Z such that

fz′ (ψ)→ (R^(z,z′)→ α) ≤ uz(^ψ)→ α. (6)

Let z′ := ( fψ,u⊥) such that u⊥ : Fm∗→A is defined as indi-
cated above in the base case for ϕ := ⊥, and fψ : Fm∗→ A
is defined by the assignment

fψ(ϕ) =

{
1 if ψ ` ϕ
0 otherwise.

By definition and Lemma B.2,

R^(z,z′) =
∧
ϕ∈Fm∗ ( f −^z′ (ϕ)→ uz(ϕ))

=
∧
ϕ∈Fm∗ ( fz′ (ϕ)→ uz(^ϕ))

=
∧
ψ`ϕ uz(^ϕ)

≥ uz(^ψ),

the last inequality being due to the fact that uz and ^ are
order-preserving. Since → is order reversing in the first
coordinate and order-preserving in the second one, to show
(6) it is enough to show that

fz′ (ψ)→ (uz(^ψ)→ α) ≤ uz(^ψ)→ α.

This immediately follows from the fact that, by construc-
tion, fz′ (ψ) = 1.

Let us show that [[^ψ]](z) = fz(^ψ). By definition,

[[^ψ]](z)
= ([^ψ])[0](z)
=

∧
(α,z′)∈ZX [([^ψ])(α,z′)→ (E(z,z′)→ α)]

=
∧

(α,z′)∈ZX [(uz′ (^ψ)→ α)→ (E(z,z′)→ α)].
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Hence, to show that fz(^ψ) ≤ [[^ψ]](z), we need to show
that for every (α,z′) ∈ ZX ,

fz(^ψ) ≤ (uz′ (^ψ)→ α)→ (E(z,z′)→ α).

Since by definition E(z,z′) =
∧
ϕ∈Fm∗ [ fz(ϕ) → uz′ (ϕ)] ≤

fz(^ψ) → uz′ (^ψ) and → is order-reversing in the first
coordinate and order-preserving in the second one, it is
enough to show that for every (α,z′) ∈ ZX ,

fz(^ψ) ≤ (uz′ (^ψ)→ α)→ (( fz(^ψ)→ uz′ (^ψ))→ α).

By residuation, associativity and commutativity of ⊗, the
inequality above is equivalent to

[ fz(^ψ)⊗ ( fz(^ψ)→ uz′ (^ψ))]⊗ (uz′ (^ψ)→ α) ≤ α

which is a tautology in residuated lattices.

To show that [[^ψ]](z) ≤ fz(^ψ), it is enough to find some
(α,z′) ∈ ZX such that

(uz′ (^ψ)→ α)→ (E(z,z′)→ α) ≤ fz(^ψ). (7)

Let α := fz(^ψ) and let z′ := ( f>,u^ψ) such that f> : Fm∗→
A is defined as indicated above in the base case for ϕ := >,
and u^ψ : Fm∗→ A is defined by the assignment

u^ψ(ϕ) =


0 if ϕ ` ⊥
fz(^ψ) if ϕ 0 ⊥ and ϕ ` ^ψ
1 if ϕ 0 ^ψ.

By definition and since fz is order-preserving and proper,
E(z,z′) =

∧
ϕ∈Fm∗ [ fz(ϕ) → u^ψ(ϕ)] =

∧
ϕ`^ψ[ fz(ϕ) →

fz(^ψ)] = 1. Hence, (7) can be rewritten as follows:

( fz(^ψ)→ fz(^ψ))→ fz(^ψ) ≤ fz(^ψ),

which is true since fz(^ψ)→ fz(^ψ) = 1 and 1→ fz(^ψ) =

fz(^ψ).

If ϕ := �ψ we will show that [[�ψ]](z) = fz(�ψ). By defini-
tion:

[[�ψ]](z) = R[0]
� [([ψ])](z)

=
∧

(α,z′)∈ZX [([ψ])(α,z′)→ (R�(z,z′)→ α)]
=

∧
(α,z′)∈ZX [(uz′ (ψ)→ α)→ (R�(z,z′)→ α)]

Hence to show that fz(�ψ) ≤ [[�ψ]](z) we must show that
for every (α,z′) ∈ ZX we have

fz(�ψ) ≤ (uz′ (ψ)→ α)→ (R�(z,z′)→ α).

We have R�(z,z′) =
∧
ϕ∈Fm0∗ ( fz(�ϕ)→ uz′ (ϕ)) so R�(z,z′)≤

fz(�ψ) → uz′ (ψ). Since → is order-reversing in the first
coordinate and order-preserving in the second coordinate,
it will be enough to show that

fz(�ψ) ≤ (uz′ (ψ)→ α)→ (( fz(�ψ)→ uz′ (ψ))→ α).

Using residuation, and associativity and commutativty of ⊗
we can see that this is an instance of a tautology in residu-
ated lattices.

To show [[�ψ]](z) ≤ fz(�ψ) we must find (α,z′) ∈ ZX such
that

(uz′ (ψ)→ α)→ (R�(z,z′)→ α) ≤ fz(�ψ). (8)

Let α := fz(�ψ) and let z′ := ( f>,uψ) such that f> : Fm0∗→

A is defined as indicated above in the base case for ϕ := >,
and uψ : Fm0∗→ A is defined by the assignment

uψ(χ) =


0 if χ ` ⊥
fz(�ψ) if χ 0 ⊥ and χ ` ψ
1 if χ 0 ψ.

By definition, and since fz is order-preserving and �⊥ ≤ ⊥
is valid,16 R�(z,z′) =

∧
χ∈Fm0∗ ( fz(�χ)→ uz′ (χ)) = 1. Hence,

(8) can be rewritten as follows:

( fz(�ψ)→ fz(�ψ))→ (1→ fz(�ψ)) ≤ fz(�ψ),

which is a tautology. Next, we want to show that
([�ψ])(α,z) = uz(�ψ)→ α. By definition

([�ψ])(α,z) = [[�ψ]][1](α,z)
=

∧
z′∈ZA [[[�ψ]](z′)→ (E(z′,z)→ α)]

=
∧

z′∈ZA [ fz′ (�ψ)→ (E(z′,z)→ α)]

To show that ([�ψ])(α,z) ≤ uz(�ψ)→ α we just need to find
z′ ∈ ZA such that fz′ (�ψ)→ (E(z′,z)→ α) ≤ uz(�ψ)→ α.
Define f�ψ : Fm0∗→ A by

f�ψ(χ) =

1 if �ψ ` χ
0 otherwise.

Now let z′ = ( f�ψ,u⊥) where u⊥ is as defined in the base
case. Clearly fz′ (�ψ) = 1 and so fz′ (�ψ)→ (E(z′,z)→ α) =

E(z′,z)→ α. Now

E(z′,z) =
∧
ϕ∈Fm0∗ ( fz′ (ϕ)→ uz(ϕ))

=
∧
�ψ`χ( fz′ (χ)→ uz(χ))

=
∧
�ψ`χ(1→ uz(χ))

=
∧
�ψ`χ uz(χ)

≥ uz(�ψ).

The last inequality follows from the fact that uz is order-
preserving. Since → is order-reversing in the first coordi-
nate we have

fz′ (�ψ)→ (E(z′,z)→ α) = E(z′,z)→ α ≤ uz(�ψ)→ α.

To show that uz(�ψ)→ α ≤ ([�ψ])(α,z), we must show that
for all z′ ∈ ZA we have uz(�ψ)→ α ≤ fz′ (�ψ)→ (E(z′,z)→

16This is the only place in the completeness proof where we are
using an extra assumption.
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α). By definition we have E(z′,z) =
∧
ϕ∈Fm0∗ ( fz′ (ϕ) →

uz(ϕ)) ≤ fz′ (�ψ)→ uz(�ψ). Therefore the desired inequal-
ity will follow if we can show

uz(�ψ)→ α ≤ fz′ (�ψ)→ (( fz′ (�ψ)→ uz(�ψ))→ α).

By residuation, the above inequality is equivalent to

uz(�ψ)→ α ≤ [ fz′ (�ψ)⊗ ( fz′ (�ψ)→ uz(�ψ))]→ α.

This last inequality is true if

fz′ (�ψ)⊗ ( fz′ (�ψ)→ uz(�ψ)) ≤ uz(�ψ),

which is an instance of a tautology in residuated lattices.
�

As a consequence of the truth lemma we get:

Corollary B.8. 1. The axiom �⊥ ` ⊥ is valid in GFm0∗ .

2. The axiom �p ` p is valid in GFm1∗ .

Proof. 1. Clearly, since the axiom above does not con-
tain atomic propositions, its validity on GFm0∗ coincides
with its satisfaction on MFm0∗ . Hence, MFm0∗ |= �⊥ `
⊥ iff ([⊥]) ⊆ ([�⊥]) iff ([⊥])(α,z) ≤ ([�⊥])(α,z) for every
(α,z) ∈ ZX , iff (by Lemma B.7) uz(⊥)→ α ≤ uz(�⊥)→ α,
iff uz(�⊥) ≤ uz(⊥), which is true, since uz : Fm0∗ → A is
order-preserving.

2. By Proposition A.1.3 it is enough to show that E ⊆ RBox
in GFm1∗ , i.e. that E(z,z′) ≤ R�(z,z′) for all z,z′ ∈ Z.17 Re-
call that

E(z,z′) =
∧

ϕ∈Fm∗

( fz(ϕ)→ uz′ (ϕ))

and
R�(z,z′) =

∧
ϕ∈Fm∗

( fz(ϕ)→ u−�z′ (ϕ)).

Hence it is enough to show that uz′ (ϕ) ≤ u−�z′ (ϕ) :=∧
{uz′ (ψ) | ϕ ` �ψ}, i.e. that if ϕ ` �ψ, then uz′ (ϕ) ≤ uz′ (ψ).

Indeed, ϕ ` �ψ and �ψ ` ψ imply ϕ ` ψ and hence uz′ (ϕ) ≤
uz′ (ψ) follows from the monotonicity of uz′ . �

Theorem B.9. For i ∈ {0,1}, the normalL-logic Li is sound
and complete w.r.t. its corresponding class of graph-based
A-frames.

Proof. Consider an L-sequent ϕ ` ψ that is not derivable in
Li. In order to show that MFmi 6|= ϕ ` ψ (Definition 4.2), we
need to show that [[ϕ]](z) � [[ψ]](z) = ([ψ])[0](z) for some z ∈

17Recall the setting of the present section is different from that
in Appendix A (cf. the discussion at the beginning of the present
section). However, it is not difficult to verify that Proposition
A.1.3 holds verbatim also in the present setting, by suitably adapt-
ing the chains of equivalences used in the proof.

Z. Consider the proper filter fϕ and complement of proper
ideal uψ given by

fϕ(χ) =

{
1 if ϕ ` χ
0 if ϕ 0 χ

and

uψ(χ) =

{
0 if χ ` ψ
1 if χ 0 ψ

Then
∧
χ∈Fmi ( fϕ(χ)→ uψ(χ)) = 1, for else there would have

to be a χ ∈ Fmi such that fϕ(χ) = 1 and uψ(χ) = 0, which
would mean that ϕ ` χ and χ ` ψ and hence that ϕ ` ψ, in
contradiction with the assumption that ϕ ` ψ is not deriv-
able. It follows that z := ( fϕ,uψ) is a state in the canonical
modelMFmi . By the Truth Lemma, [[ϕ]](z) = fϕ(ϕ) = 1, and
moreover

([ψ])[0](z)
=

∧
(α,z′)∈ZX ([ψ])(α,z′)→ (E(z,z′)→ α)

≤ ([ψ])(0,z)→ (E(z,z)→ 0)
= (uψ(ψ)→ 0)→ (E(z,z)→ 0)
= (0→ 0)→ (1→ 0)
= 0,

which proves the claim. �
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