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Prediction of matrix crack initiation and evolution and their effect on the 
stiffness of laminates with off-axis plies under in-plane loading 

Carlo Alberto Socci, Christos Kassapoglou * 

Chair of Aerospace Structures and Computational Mechanics, Department of Aerospace Engineering, Delft University of Technology, Delft, Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

A model is described which allows the exact calculation of stresses in a cracked ply under combined state of 
strain. Closed form expressions for the stresses in each ply are combined in an energy density-based criterion to 
predict crack spacing and the resulting transverse modulus and shear modulus. Inelastic effects due to non- 
linearities of the ply-level shear stress-strain curve are accounted for through computation of the permanent 
shear strain in the ply. The model accounts for ply thickness, stacking sequence and load redistribution effects of 
a relatively broad class of laminates. Comparisons with test results for a variety of laminates and materials show 
very good to excellent agreement. The approach developed is extremely efficient and can easily be incorporated 
in numerical progressive failure analysis, where the stiffness properties of each element can be updated every 
time the crack pattern changes and in fatigue analysis where the stiffness of a ply or a laminate can be deter-
mined during every load cycle.   

1. Introduction 

Given that damage will occur during the life of a composite structure, 
it is important to predict its effect on structural performance. This re-
quires accurate calculation of basic properties such as stiffness and 
strength. In broad terms, damage in composite laminates takes the form 
of matrix cracking, fiber fractures and delaminations. Of these, matrix 
cracking can occur at relatively low loads, well within a structure’s 
“design envelope” [1]. Matrix cracking can significantly reduce the 
effective transverse and shear stiffnesses of a ply, which, in turn, can 
cause degradation of the laminate’s overall stiffness and Poisson’s ratio 
[2,3]. 

Highsmith and Reifsnider [4] were among the first who worked on 
rigorously modeling stiffness degradation due to matrix cracking in 
off-axis plies. Through a 1D shear lag analysis, the deformation of 
cracked plies was tied to matrix crack density. Agreement with experi-
mental results was good for cross-ply laminates under uniaxial tension. 
Laws, Dvorak and Hejazi [1,5] followed by modeling the cracked ply 
material as a two-phase medium where the stiffness matrix of a ply was 
expressed as a function of matrix crack density. However, as Hashin 
pointed out [6], this approach does not account accurately for the 
constraints imposed on a matrix crack by adjacent plies. Stiffness 
degradation due to matrix cracking in cross-ply laminates was also 

treated by Hashin [6,7] using a variational approach. He found that, for 
a cross-ply laminate under uniaxial tension, accounting for cracks in the 
0◦ plies has almost no effect on the longitudinal stiffness, and a strong 
effect on the major Poisson’s ratio. Caslini, Zanotti and O’Brien [2], used 
a shear lag analysis proposed by Ogin et al. [3] to relate matrix crack 
density to stiffness degradation. At about the same time, Nuismer and 
Tan [8] used a simplified shear lag problem to solve for the stresses in a 
cracked laminate. 

Varna, Joffe et al. [9,10] have made considerable contributions in 
this field. Their work drew on and complemented Talreja’s work 
[11–13], who developed a synergistic approach to damage modeling 
combining micromechanics with continuum damage mechanics. The 
models by Varna, Joffe et al. [9,10] give good predictions for the effect 
of cracks in any off-axis ply but require tests on laminates with 90◦ plies 
in every location through the thickness where an off-axis ply is required. 

Van Paepegem, De Baere and Degriek modelled the nonlinear shear 
stress-strain response of GFRP laminates [14,15]. Their approach uses 
continuum damage mechanics and requires experimental data from the 
shear stress-strain response of a [±45]2s laminate under tensile loading. 
The model can predict the shear modulus degradation and permanent 
shear strain due to static loads, regardless of ply orientation. As long as 
damage is shear dominated, the match with experimental data is 
excellent. In follow-on work Ahmadi, Hajikazemi and van Paepegem 

* Corresponding author. 
E-mail address: c.kassapoglou@tudelft.nl (C. Kassapoglou).  

Contents lists available at ScienceDirect 

Composites Science and Technology 

journal homepage: http://www.elsevier.com/locate/compscitech 

https://doi.org/10.1016/j.compscitech.2020.108427 
Received 14 July 2020; Received in revised form 14 August 2020; Accepted 24 August 2020   

mailto:c.kassapoglou@tudelft.nl
www.sciencedirect.com/science/journal/02663538
https://http://www.elsevier.com/locate/compscitech
https://doi.org/10.1016/j.compscitech.2020.108427
https://doi.org/10.1016/j.compscitech.2020.108427
https://doi.org/10.1016/j.compscitech.2020.108427
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compscitech.2020.108427&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Composites Science and Technology 200 (2020) 108427

2

[16], have used three dimensional finite element models and least 
square fits of numerical results from conservative RVEs to develop 
closed form expressions for laminate stiffnesses as a function of crack 
density. This approach requires a priori knowledge of crack density and 
relies on curve fitting to obtain the parameters in the stiffness equations. 

Singh and Talreja [17], dealt with the problem of new crack creation 
in off-axis plies given an existing matrix crack pattern. They used test 
data of a reference laminate to obtain a parameter used in predicting 
new crack formation and a finite element model to determine 
crack-surface displacements. Varna further continued his contributions 
in this area by using a global-local approach combined with a 
stress-based approach for thick plies and a fracture mechanics approach 
for thin plies to model mechanical properties of laminates with matrix 
cracks [18]. Singh and Talreja [19], combined continuum damage me-
chanics with micromechanics while McCartney [20] used energy 
methods to model the stiffness of cracked plies. 

Kashtalyan and Soutis [21] used a two dimensional shear lag model 
and equivalent constraints on the laminate to determine stiffness 
degradation for a given crack distribution accounting for longitudinal, 
transverse cracks and delaminations. The method requires knowledge of 
the location and size of cracks and solves iteratively a set of simulta-
neous non-linear equations. The required number of iterations increases 
with matrix crack density and delamination area. 

In this paper a model is presented which attempts to combine ac-
curacy with efficiency while accounting for the basic damage mecha-
nisms which lead to stiffness degradation. Stresses in a cracked ply under 
in-plane loading are obtained exactly and in closed form including in-
elastic effects due to a non-linear shear stress-strain curve. An energy 
criterion is used to determine when the next crack appears. Ply and 
laminate-level elastic constants are obtained also in closed-form. 

2. Approach 

2.1. Ply under transverse tension 

The cracks are assumed to be inside a laminate fully contained in the 
ply of interest. Such would be the case of a 90◦ ply surrounded by 
0◦ plies but other ply orientations are possible. The laminate is under 
tension by an applied deflection ua. It is also assumed that when the 
transverse in-situ strength is reached in the ply, a crack develops, that is, 
for matrix material under transverse tension, there is no inelastic 

behaviour prior to cracking. The situation is shown in Fig. 1 with three 
representative cracks spaced at a distance d. 

It can be seen from Fig. 1 that the quadrant ABCD is a repeating unit 
within the cracked ply. Every portion of the cracked ply is either a mirror 
image or a parallel transposition of this quadrant with appropriate 
deflection and stress boundary conditions. Therefore, it suffices to solve 
the problem within this quadrant. The situation is shown in Fig. 2. 

It is assumed that the structure in Fig. 2 is long in the x direction 
(perpendicular to the page) so there is no dependence of stresses on the x 
coordinate. As a result, the only stresses present are σy, τyz and σz. In the 
plane of Fig. 2, the cracked ply is isotropic. The stiffness is the same in all 
directions. As a result, using the equations of elasticity to eliminate 
strains and displacements leads to the well-known bi-harmonic 
equation: 

∂4σy

∂y4 + 2
∂4σy

∂y2∂z2 +
∂4σy

∂z4 = 0 (1) 

with the boundary conditions: 

σy = 0 at y = 0 (crack surface)
τyz = 0 at y = 0 (crack surface)
τyz = 0 at y = d

/
2 (symmetry)

τyz = 0 at z = 0 (antisymmetry)
u = uo at y = d/2

(2a-2e) 

Note that the applied displacement uo on face BC in Fig. 1 can be 
obtained as a function of the overall applied deflection ua in Fig. 1, or the 
applied strain εa to the structure. The strain in each repeating unit is the 
same as the strain on the structure: 

uo
(d/2)

= εa = > uo =
εad
2

(3) 

Equation (1) subject to boundary conditions (2a-2e) can be solved 
exactly. The solution is: 

σy =
∑

(A1neφny +A2nyeφny +A3ne− φny +A4nye− φny)cos
nπz
t2

+ K (4) 

with n odd, and: 

φn =
nπ
t2

(5) 

The constants K, A1n, A2n, A3n and A4n in eq (4) are obtained by first 
determining the remaining stresses through equilibrium and using the 
stress-strain and strain-displacement equations to determine the 
displacement u in the y direction so that eq. (3) can be applied. It can be 
shown that:   

Fig. 1. Ply under transverse tension with matrix cracks at spacing d. Fibers in 
the cracked ply are perpendicular to the page. 

Fig. 2. Domain of the problem (fibers are perpendicular to the page).  

τyz =
∑

(A1nφneφny +A2n(1+φny)eφny − A3nφne− φny +A4nφn(1 − φny)e− φny)
t2
nπ sin

nπz
t2

(6)  

σz = −
∑( (

A1nφ2
n + 2A2nφn

)
eφny +A2nφ2

nye
φny +

(
A3nφ2

n − 2A4nφn
)
e− φny +A4nφ2

nye
− φny

)( t2
nπ

)2
cos

nπz
t2

(7)   
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Also, applying conditions (2a)-(2e) gives: 

K=
2uo
d

Ey = εaEy (8)  

where Ey is the ply Young’s modulus perpendicular to the fibers, and: 

A1n = −
(e− φnd − 1 − φnd)

(e− φnd − eφnd − 2φnd)
4K
nπ sin

nπ
2

(9)  

A2n =

φn

⎡

⎢
⎢
⎣e

−
φnd

2 − e
φnd

2
2

(

1 +
φnd

2

)

− e
− 3φnd

2
2

(

1 −
φnd

2

)

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

e
φnd

2
2

(

1 +
φnd

2

)

− e
− φnd

2
2

(

1 −
φnd

2

)

⎞

⎟
⎟
⎠(e− φnd − eφnd − 2φnd)

4K
nπ sin

nπ
2

(10)  

A3n =
(eφnd − 1 + φnd)

(e− φnd − eφnd − 2φnd)
4K
nπ sin

nπ
2

(11)  

A4n =

φn

⎡

⎢
⎢
⎣ − e

φnd
2 + e

− φnd
2
2

(

1 −
φnd

2

)

+ e
3φnd

2
2

(

1 +
φnd

2

)

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

e
φnd

2
2

(

1 +
φnd

2

)

− e
− φnd

2
2

(

1 −
φnd

2

)

⎞

⎟
⎟
⎠(e− φnd − eφnd − 2φnd)

4K
nπ sin

nπ
2

(12) 

It is interesting to note that the solution presented here does not 
require any assumption on the z dependence of the stresses as is typically 
done with some energy minimization solutions [6,22]. The actual z 
dependence of the stresses is a natural outcome of the solution process. 
For large d spacing, the in-plane stress σy is constant with z in each ply. 
For smaller d spacings this changes from nearly linear to very steep 
gradients as a function of z for very small d values. This change in z 

Fig. 3. Stresses at y = d/2 as a function of out-of-plane coordinate z in a cracked ply under (a) transverse tension or (b) shear.  
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dependence is shown in Fig. 3a for various d values. 
The stress distribution in Fig. 3a is for the stress at d/2 (half-way 

between cracks) and was obtained for an applied transverse strain εy =

0.006. The plot in that Figure covers half of the thickness of the 90◦ ply 
(see Fig. 2) because of symmetry. The σy stress is lower everywhere else 
in the region between two successive cracks. The material properties 
used were Ey = 12.76 GPa and total thickness of 90◦ ply t2 = 1.12 mm. It 
is interesting to note that for very short crack spacings, d = 0.625 mm for 
example, the σy stress becomes negative. This is necessary in order to 
generate the applied uniform deflection uo at y = d/2. 

Another interesting observation which sheds some light to crack 
saturation is the change of the average stress at y = d/2 as d becomes 
smaller. The average σy stress at d/2 is obtained from eq. (4) as:   

For large values of d, the σy stress as a function of y rises from 0 to the 
value it would attain if there were no cracks present. Thus, for large 
d values, σy departs from the value a pristine ply would have only near 
the matrix cracks. This means there is a region between cracks of con-
stant σy stress. As a result, the next crack would appear anywhere in that 
region of constant stress and originating at locations where defects (resin 
rich regions, voids) are present. This means that as new cracks are 
created the spacing will be random. If, however, the crack spacing is 
short enough, the region of maximum σy stress degenerates to a point, 
the mid-point between two successive cracks. Then the crack spacing 
becomes uniform and every time a crack appears it will be at y = d/2 
half-way between cracks. 

If the σy stress at d/2 is uniform with z, which is the case for large d, a 
crack will appear at that location when σy (y = d/2) = Yt

is with Yt
is the 

in-situ transverse tension strength of the material. In-situ strength here 
refers to the stress at which a ply will first crack. This stress changes with 
location of the ply (inside the laminate or on the surface) and with ply 
thickness. If the σy stress at d/2 is not uniform with z (d is small) a simple 
maximum stress criterion is no longer accurate enough in predicting 
when the next full-depth crack will appear. A crack may start when 
σy(d/2,z)> Yt

is but if there is not enough energy available, it may not 
extend through the thickness of the 90◦ ply [23]. An energy criterion is 
used instead: If, at a specific location, the difference of the (average) 
energy density right after a crack is formed and the energy density right 
before crack formation reaches a critical value, a new crack will appear. 
The strain energy density is used instead of strain energy because the 
crack formation is a localized problem and the energy per unit volume is 
expected to be a better indicator of when the material reaches a critical 
state locally. This difference in energy density is evaluated at the point of 
maximum σy stress after crack formation as shown in Fig. 4. That point is 
at d/4 before the new crack appears at d/2. This same location after the 
crack appears is still at d/4, if the old crack spacing is used, but it will be 
the mid-point of the new crack spacing, which is now d/2. Using the 
average stress at that location, the condition for new crack formation is: 
[

Udav

(
d
4
, z
)]

before
−

[

Udav

(
d
4
, z
)]

after
=ΔUdavcrit (14)  

where Udav denotes the energy density per unit width (width measured 
along the x axis in Figs. 1 and 2) evaluated using average stress values 

and the subscripts “before” and “after” refer to crack formation. The 

crack spacing d in eq. (14) refers to the original crack spacing before the 
new crack was created. The location d/4 is chosen because, after crack 
formation at d/2 it will have the highest stress σy and no shear stress τyz. 
Note that only half of the thickness t2 of the 90◦ ply is used because of 
symmetry. 

At the location of interest, y = d/2, the shear stress τyz is zero by 
symmetry or by substituting in eq. (6). Therefore, it does not directly 
contribute to crack formation at that location. Furthermore, σz, even if 
tensile in that region, will also not contribute to crack formation with 
cracks oriented as shown in Fig. 4. If anything, cracks caused by high 
tensile σz stress would be perpendicular to the ones shown in the Figure. 
As a result, the thickness-averaged energy density is given by: 

Udav =
σ2
yav

2Ey
(15) 

Note that the transverse Young’s modulus Ey is always a constant 
between cracks and does not change. The presence of the cracks causes 
the ply to behave within the laminate with a different transverse 
modulus as will be shown below. Substituting in eq. (14) leads to: 

1
2Ey

[(
σ2
yav

)

before
−
(
σ2
yav

)

after

]
=ΔUdavcrit (16)  

where, σyav before crack formation is evaluated at d/4 using eq. (18) and 
σyav after crack formation is evaluated using eq. (13) and d equal to half 
the value before crack formation. Recognizing that Ey is fixed for a given 
problem, eq. (16) becomes: 
(
σ2
yav

)

before
−
(
σ2
yav

)

after
=Δσ2

crit = 2EyΔUdavcrit (17) 

The right hand side of eq. (17) can be determined by requiring that 
eq. (17) give the same prediction as a maximum stress criterion when 
cracks first appear in a pristine ply. This happens when the transverse 
stress in the ply equals the in-situ transverse strength of the material Yt

is. 
Using equations (9)–(12) to substitute in eq. (13) it can be shown, after 
some manipulation, that: 

(
σyav

)

before =
(
σyav

)

d/4 =K +
8K
π2

∑ Tn

Bn
(18)  

with n odd, K given by eq. (8) and,   

Fig. 4. Location for critical energy difference evaluation before and after crack 
creation at d/2. 

σyav =
2
t2

∫t2/2

0

σy

(

y=
d
2

)

dz=
∑

(

A1neφnd/2 +A2n
d
2
eφnd/2 +A3ne− φnd/2 +A4n

d
2
e− φnd/2

)
2
nπ sin

nπ
2
+ K (13)   
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Bn =

⎡

⎢
⎢
⎣
e
φnd

2

2

(

1+
φnd

2

)

−
e
− φnd

2

2

(

1 −
φnd

2

)

⎤

⎥
⎥
⎦

(
e− φnd − eφnd − 2φnd

)
(20) 

Similarly, it can be shown that: 

(
σyav

)

after =K +
8K
π2

∑ 1
n2

2e
φnd

4 − 2e
− φnd

4 +
φnd

2

⎛

⎝e
φnd

4 + e
− φnd

4

⎞

⎠

⎛

⎝e−
φnd

2 − e
φnd

2 − φnd

⎞

⎠

(21) 

Using equations (18)–(21) to substitute in eq. (17), the normalized 
quantity Δσ2/K2 can be determined for a range of values of the 
parameter r = πd/t2 (note: φnd = nr). A plot of Δσ2/K2 as a function of r 
is shown as a continuous line in Fig. 5. 

The curve in Fig. 5 has a maximum at rm = 9.3167 with a value (Δσ2/ 
K2)max = 0.27024. This curve is independent of material and its basic 
shape will be the same for different values of the transverse strain 
applied to a ply. As the strain increases the curve would shift up and the 
maximum will still occur at the same rm value. Therefore, when cracking 
first starts, the critical value of Δσ2/K2 corresponding to a transverse 
stress of Yt

is acting in the ply will be given by the value of the maximum 
of the Δσ2/K2 curve when the applied strain causes a transverse stress 
equal to Yt

is: 

Δσ2
crit = 0.27024

(
Eyεcrit

)2
= 0.27024

(
Yt
is

)2 (22)  

where eq. (8) was used to substitute for K and the fact that at the critical 
strain causing the first cracks, Yt

is = Eyεcrit. 
If the applied strain is increased beyond εcrit to a value εa, using the 

in-situ strength is no longer a reliable way to predict further matrix 
cracking. The critical energy density, however, can be used for any 
applied strain. And since the Young’s modulus between cracks remains 

the same, the quantity Δσ2
crit determined in eq. (22) can be used. For a 

given applied strain εa, the continuous line in Fig. 5 is multiplied by the 
square of the ratio εa/εcrit. This gives the dashed curve in Fig. 5 which 
intersects a horizontal line at Δσ2/K2 = 0.27024 at a point. The ordinate 
ro corresponding to this intersection defines the new crack spacing do =

rot2/π caused by applied strain εa. The determination of ro and, through 
it, the new crack spacing do can be done in general for any material. By 
changing the ratio εa/εcrit successive points ro as described in Fig. 5 can 
be found. Thus, the dependence of ro to the applied strain can be found 
as a single master curve independent of material, surrounding layup and 
thickness of the cracked ply. This d/t2 dependence is shown in Fig. 6. 

The cracked ply inside a laminate will behave as if its Young’s 
modulus perpendicular to the fibers Eyr is obtained by dividing the 
average stress at do/2 by εa: 

Eyr=

(
σyav

)

do/2

εya
=

1
εya

⎛

⎜
⎜
⎝K+

8K
π2

∑ 1
n2

2e
φndo

2 − 2e
− φndo

2 +φndo

⎛

⎝e
φndo

2 + e
− φndo

2

⎞

⎠

(e− φndo − eφndo − 2φndo)

⎞

⎟
⎟
⎠

(23) 

Substituting for K from equation (8) it can be shown that the reduced 
Young’s modulus due to the presence of cracks, normalized by the 
pristine Young’s modulus is given by: 

Eyr

Ey
=

⎛

⎜
⎜
⎝1+

8
π2

∑ 1
n2

2e
φndo

2 − 2e
− φndo

2 + φndo

⎛

⎝e
φndo

2 + e
− φndo

2

⎞

⎠

(e− φndo − eφndo − 2φndo)

⎞

⎟
⎟
⎠ (24) 

Fig. 5. Normalized average energy density Δσ2/K2 as a function of normalized 
crack spacing πd/t2. 

Fig. 6. Crack spacing and transverse Young’s modulus as a function of strain 
for any material. 

Tn =
1
n2

⎡

⎢
⎢
⎣
e

5φnd
4

2

(

1+
3φnd

4
+
φ2

nd2

8

)

− e
− φnd

4

(

1+
φnd

4
−
φ2

nd2

4

)

+
e

3φnd
4

2

(

1+
5φnd

4
+

3φ2
nd2

8

)

− e
φnd

4

(

1 −
φnd

4
−
φ2

nd2

4

)

+
e
− 5φnd

4

2

(

1 −
3φnd

4
+
φ2

nd2

8

)

+
e
− 3φnd

4

2

(

1 −
5φnd

4
+

3φ2
nd2

8

)

⎤

⎥
⎥
⎦

(19)   
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Knowing do through ro in Fig. 5, allows determination of the ratio of 
the transverse Young’s modulus of the cracked ply to the pristine 
modulus through equation (24). A master curve, independent of mate-
rial and stacking sequence of surrounding plies can thus be obtained and 
is also shown in Fig. 6. 

The two curves in Fig. 6 give the crack spacing and transverse 
Young’s modulus of a cracked ply for any material. It should be noted 
that for comparisons with crack spacing measured from test, twice the 
value from Fig. 6 should be used because, for a given strain, d corre-
sponds to the moment new cracks will be created and it is unlikely test 
measurements capture exactly that moment. More likely, each crack 
density measurement captures the crack state prior to the next crack 
creation. One of the advantages of the present approach is that these 
quantities are obtained essentially in closed form for any material. Thus, 
the method can be easily used in numerical simulations to track and 
update local stiffness by determining local strains and applying equa-
tions (18)–(21) and (24) to almost instantaneously update stiffness at a 

given load level. 
One interesting conclusion from Figs. 5 and 6 is what happens right 

after the first cracks are created. According to Fig. 5, cracks will be 
randomly distributed until r = 9.3167. This corresponds to a crack 
spacing d = 2.966t2. Beyond that point, new cracks will appear at the 
mid-point of the previous crack spacing. This is in agreement with the 
observation made earlier that the first few cracks will be widely spaced 
allowing the σy stress to rise to the value it would have if there were no 
cracks, i.e. Yt

is, thus causing more cracks until the spacing is short 
enough such that the maximum σy stress between cracks is now less than 
Yt

is and crack creation stops. 
Further implications can be seen through an example. Consider a 

typical glass/epoxy material such as the one used in Ref. [9,10] with 
properties given in Table 1. In this case, eq. (22) gives Δσ2

crit = 1360.7 
× 1012 MPa2 and εcrit = 0.00556 microstrain. The response of a ply 
under transverse strain εa>εcrit (or multiple consecutive plies of the same 
orientation) can be obtained by applying equations (18)–(21) to find the 
ro value shown in Fig. 5 for each value of εa. The results are shown in 
Fig. 7a for a total thickness of 90◦ plies of 1.12 mm (8-ply stack). 

The graph of Fig. 7a consists of linear segments interrupted every 
time a new crack forms. The values of d after each crack formation are 
included in Fig. 7a next to the bottom end of each inclined continuous 
line. After a crack forms, the strain is increased and a new continuous 
line is traced until the next crack is created at the mid-point of the 
previous crack spacing. It can be shown that all the inclined portions of 
the graph, when extended as indicated by the dashed lines, go through 
the origin. This means that if the ply were completely unloaded (applied 
strain εy = 0), the strain anywhere between cracks would go to zero. 
This, as will be shown later, is different than what happens for shear 
loading where the ply may have inelastic behaviour prior to cracking. 

Therefore, the average stress σy at any point between cracks is lin-
early related to the applied strain with a slope equal to the slope of the 
inclined portion of the curve in Fig. 7a connecting the origin with the 
point where a crack occurs for a given strain. This is in agreement with 
eq. (23) which assumed linear stress-strain behaviour as stress is raised 
from 0 to the stress which would cause a new crack to form. Note that 
the maximum stress at which new cracks form, the upper end of each 
inclined segment, is not equal to Yt

is but a lower value. Only for strains 
very close to 0.00556, when the first cracks appear, will the maximum 
stress equal Yt

is. If the crack spacing is small, there is not enough dis-
tance between cracks for the shear lag problem to fully develop. The 
cracked ply partially “unloads” to the adjacent uncracked plies and the 
maximum stress at d/2, when averaged over the ply thickness, is lower 
than what it would be for large crack spacing. This does not mean that 
the point stress as a function of the out-of-plane coordinate z is lower 
than Yt

is. As shown in Fig. 3a, the stress as a function of z is very non- 
linear for short crack spacings. In fact, it can exceed Yt

is near the 
interface with the uncracked plies. The maximum stress averaged with 
respect to z, however, will not exceed Yt

is and for short crack spacings 
will even be lower. The maximum (average) stress values in Fig. 7a are, 
for the different segments: 70.96, 70.96, 65.15, 67.37 and 67.36 MPa. 

There is a short horizontal portion at the end of the first inclined 

Table 1 
Material properties used for comparisons to test results.   

Fig. 8a–c, 13-15 Figs. 11a and 12 Fig. 11c Fig. 11b 

Property Value Source Value Source Value Source Value Source 

Ex (GPa) 44.73 [24] 38.9 [14] 138.0 [31] 138.0 [30] 
Ey (GPa) 12.76 [24] 13.3 [14] 10.3 [31] 11.0 [30] 
Gxy (GPa) 5.83 [24] 5.13 [14] 6.5 [29] 5.52 [29] 
νxy 0.297 [24] 0.258 [14] 0.3 [31] 0.28 [30] 
τy (MPa)a 56.09 [30] 45.18 [15] 56.78 [29] 62.56 [29] 
Yt

is (MPa)a 70.96 [10] 36.5 [14] 25.58 [29] 38.78 [29] 
k (GPa)a 0.556 [30] 0.127 [15] 0.332 [29] 0.343 [29] 
Sis (GPa)a 73.0 [30] 70.1 [15] 146.53 [29] 90.25 [29]  

a Value derived from data within given reference. 

Fig. 7. Maximum stress at mid-point between cracks as a function of 
applied strain. 
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Fig. 8. Comparison of present model to experimental results.  
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segment in Fig. 7a. This is because the crack spacing is large enough in 
this region for the maximum stress between cracks to reach Yt

is. It should 
be emphasized that each inclined segment in Fig. 7a corresponds to a 
different point in the ply, the location where a new crack will appear. 
For this reason, the inclined lines are not connected with vertical 
segments. 

Once the material properties in Table 1 are fixed, the reduced 
Young’s modulus in the transverse direction will not change with layup. 
The layup factors in only indirectly if the laminate is under generalized 
loading where it will be used in order to obtain the transverse strain εya 

in the ply of interest. In a sense, for a given material and ply thickness, 
which largely fix Yis

t , and through it ΔUdavcrit, one can use the curve of 
Fig. 6 to generate a line of reduced Young’s modulus Eyr as a function of 
εya and, for a given strain value, read off the value of Eyr. This means that 
once matrix cracks appear the reduced stiffness is not a constant value as 
is often assumed in numerical progressive failure analyses, but is a 
function of the local transverse strain εya. 

An interesting observation can be made here about crack saturation. 
If crack saturation is defined as the crack density beyond which a 
cracked ply cannot transfer any load, then the present approach suggests 
that this point will be reached only when the crack opening displace-
ment at the middle of the ply, at y = 0 and z = 0 in Fig. 2, equals half the 
crack spacing d/2. This can be calculated in closed form with the present 
model and, for the case of Fig. 7a, this would occur for an approximate 
crack spacing d = 0.04 mm. The smallest d value in Fig. 7a is 0.22 mm 
corresponding to an approximate applied strain of 0.048. Clearly, the 
ply or the laminate will have failed before this point is reached. As is 
seen in Fig. 7a, as the applied strain increases, it takes a much higher 
strain to cause the next crack to form. For example, if an applied strain of 
0.022 is reached, corresponding to a crack spacing of 0.43 mm, no more 
cracks would appear until the strain increased to 0.048 (to get a value of 
d = 0.22 mm). Usually, in tests like this, either the test is stopped before 
such high strains are reached or other failure modes appear (e.g. de-
laminations and fiber breakage) leading to final specimen failure before 
such high strains are reached. As a result, the relatively large strain 
range over which no more cracks appear tends to be interpreted as crack 
saturation. Based on this argument, it would appear in Fig. 7a that crack 
saturation has been reached in the range d = 0.87–1.73 mm which is in 
line with the high end of crack densities reported by Ryder and Cross-
man [25] for Graphite/Epoxy and Varna and Berglund [26] for 
Glass/Epoxy and Graphite/Epoxy. 

The value of Eyr obtained by eq. (24) can be used in classical lami-
nated plate theory to obtain the reduced laminate stiffness for a given 

Fig. 9. Young’s modulus and Poisson’s ratio for [02/904]s laminate as a function of crack density (test results from Ref. [10]).  

Fig. 10. Matrix cracks forming in a ply under pure shear.  

Fig. 11. Shear stress-strain curve approximated by bi-linear curve.  
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material. Furthermore, by solving for the minor Poisson’s ratio of the 
cracked ply: 

νyx =
Eyr

Ex
νxy (25)  

and using classical laminated plate theory, the laminate major Poisson’s 
ratio can be obtained. 

For the materials in Table 1, the predictions of the present method 
are compared to test results from Ref. [4,9,10] in Fig. 8. 

It is seen from Fig. 8 that the predictions of the present method are in 
very good to excellent agreement with test results. In addition, the 
predictions by Varna et al. [10] are also shown in Fig. 8a and b showing 
somewhat higher accuracy in Fig. 8a but the present method is more 
accurate in Fig. 8b, in particular at higher applied strains. Small dis-
crepancies between the present method and test results could be due to 
several issues: The value of Yt

is used may not be sufficiently accurate. A 
modified criterion accounting for the delaying effect of compressive 
stresses could be more accurate. It should also be noted that comparisons 
of Young’s modulus and Poisson’s ratio versus crack density plots 
showed similar degree of accuracy except for a couple of cases where it 
was not clear at what strain level some cracks appeared during test. An 
example is shown in Fig. 9. 

2.2. Ply under shear 

As for the case under transverse tension, the matrix cracks created 
under shear are assumed to be confined in the ply in question. However, 
unlike the transverse shear case where the stress-strain curve is linear to 
failure, the shear stress-strain curve is assumed to be non-linear. The 
situation is shown in Fig. 10. 

As before, there is no dependence on the x coordinate and the iso-
lated quadrant repeats throughout the cracked ply and this allows the 
problem to be solved only within each quadrant. In general, the shear 
stress-strain relations are: 

τxy = Gxyγxy
τxz = Gxzγxz

(26a-b) 

For most composite materials, the two shear moduli Gxy and Gxz are 
equal. Combining the two stress-strain equations with one equilibrium 
equation: 

∂τxy
∂y +

∂τyz
∂z = 0 (27) 

and the compatibility equation: 

∂γxy
∂z =

∂γyz
∂y (28) 

leads to the following governing equation for τxy: 

Fig. 12. Comparison of predicted permanent shear strain to test results in 
Ref. [14,29]. 

Fig. 13. Normalized shear modulus predictions compared to tests in Ref. [14].  
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∂2τxy
∂y2 +

∂2τxy
∂z2 = 0 (29) 

This equation is to be solved subject to the boundary conditions: 

τxy(y = 0) = 0
τxz(z = 0) = 0
v = vo at y = d/2

(30a-c) 

The prescribed deflection vo at d/2 can be determined as a function 
of the applied shear strain γa: 

vo =
γad
2

(31) 

The solution can be shown to be: 

τxy = −
8voGxy

d

∑ sin nπ
2

(1 + eknd)nπ
(
ekny + eknde− kny

)
cos

nπz
t2

+
2vo
d
Gxy (32)  

τxz =
8voGxy

d

∑ t2
(nπ)2kn

sin nπ
2

(1 + eknd)
(
ekny − eknde− kny

)
sin

nπz
t2

(33)  

where n is odd and: 

kn =
nπ
t2

(34) 

The distribution of τxy as a function of z for different values of the 
crack spacing d is shown in Fig. 3b. As for the case of the transverse 
stress, for large values of d the shear stress is constant through the 
thickness. For smaller d values the distribution is very non-linear. One 
important difference, compared to the case of transverse stress, is that 
the shear stress-strain curve may be non-linear. This means that, for 
sufficiently high loads, permanent shear strains are present in the ply 
[27–29]. The permanent strain must be known so that the new shear 
modulus, the slope of the line AB in Fig. 11, can be determined. Point A 
defines the permanent strain γm left in the structure if it were unloaded 
from point B down to zero stress. In what follows, it will be assumed that 
the shear stress-strain curve can be approximated by a bi-linear curve 
with initial slope Gxy and final slope k (see Fig. 11). The final slope k is 
obtained by ensuring that the areas under the bi-linear curve and the 
experimentally obtained stress-strain curve are the same. 

Two quantities are now defined. The first is the “unavailable” elastic 
energy which is not available because of the non-linearity of the stress- 
strain curve. For an applied strain γxy, this is the area of the triangle 
DEB1 in Fig. 11. Note that B1 is on the bilinear approximation to the 
actual shear stress strain curve while B is on the actual stress-strain 
curve, both corresponding to the applied shear strain γxy. The second 
quantity is the ‘non-recoverable” strain energy because unloading from 
point B does not go to zero strain but to the permanent strain γm. This is 

Fig. 14. Laminate modulus and Poisson’s ratio predictions compared to test results for a [±30/904]s laminate from Ref. [10].  

Fig. 15. Laminate stiffness predictions compared to test results from Ref. [10] for [±40/904]s.  
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the area of the polygon CAB1D. 
The permanent shear strain γm is obtained by requiring that the ratio 

of the “unavailable” elastic energy to the total elastic energy (area CEF) 
is the same as the ratio of the “non-recoverable” energy to the total 
elastic-plastic energy (area CFB1D). Substituting and solving for γm leads 
to: 

DEB1

CEF
=
CAB1D
CFB1D

= > γm =
(
Gxyγxy − τxy

)(
γxy − γy

)[
τxy

(
γxy − γy

)
+ Gxyγxyγy

]

Gxyγ2
xy

(
τxy + Gxyγy

)

(35) 

In eq. (35), γxy is the applied strain and γy is the yield strain in shear 
for the ply material (see Fig. 11). The stress τxy corresponds to γxy and is 
obtained from the bi-linear stress-strain curve: 

τxy =Gxyγy + k
(
γxy − γy

)
(36) 

Then, the shear modulus due to the non-linearity of the stress-strain 
curve is the slope of line AB1: 

Gxyr =
τxy(

γxy − γm
) (37) 

An indication of the accuracy of eq. (37) can be obtained by 
comparing the predictions of this method to test results by van Paepe-
gem et al. [14] and Lafarie-Frenot and Touchard [29]. These compari-
sons are shown in Fig. 12. The agreement with tests from Ref. [14] is 
very good and with tests from Ref. [29] it is excellent. 

In addition to the inelastic behaviour just discussed, matrix cracks 
will appear if the shear stress is sufficiently high. In a manner analogous 
to the case of transverse tension in the previous section, a crack would 
appear when: 
[
τ2
xyavbefore − τ2

xyavafter

]

2Gxy
=

Δτ2

2Gxy
=ΔUdavcrit (38)  

where the average shear stress is evaluated at its maximum location 
after a crack appears, at y = d/4. The subscripts “before” and “after” 
refer to the stresses before and after a crack is created at the location of 
interest. Note that, unlike the case of transverse tension where Ey is 
constant, Gxy in eq. (38) is not and will be given by eq. (37) to reflect 
non-linearities in the shear stress-strain response. In a manner analogous 
to the case of transverse strain, the value of ΔUdavcrit is obtained by 
finding the maximum of the Δτ2 curve as a function of d/t2 when the 
applied shear strain causes a shear stress equal to the in situ shear 
strength Sis of the material. From equation (30) the average shear stress 
value over z used in equation (38) is obtained as: 

τxyav = −
16vo
d

Gxy

∑ (ekny + eknde− kny)

(1 + eknd)(nπ)2 +
2vo
d
Gxy (39) 

if the shear stress is elastic for all z at the y location of interest, and   

if the shear stress becomes non-linear for the portion zo ≤ z ≤ t2/2. 
The value of zo is found as the value of z for which the right hand side of 
equation (32) equals the “yield” shear stress Gxyγy. Equations (39) or 
(40) are evaluated at the value of y of interest. 

The average shear stress for a ply with matrix cracks is shown in 
Fig. 7b. As for the transverse strain, the vertical discontinuities 

correspond to crack creation. Because of the non-linear behaviour of the 
shear stress-strain curve, the magnitude of strain required to cause a new 
crack is greater than in the case of transverse strain. As a result, typi-
cally, the crack spacing corresponding to a shear strain is greater than 
for transverse strain of the same magnitude. The shear modulus Gxy in a 
cracked ply is given by equation (37) but now using the average shear 
stress at d/2 right before cracking: 

Gxyr =
τxyav

(
γxy − γm

) (41) 

The presence of cracks, in general, reduces the shear stress to below 
the value it would attain if cracks were not present. This can be seen by 
substituting in equation (32). This means that the value of permanent 
strain γm in eq. (41) must correspond to the τxyavg of interest and it 
would be different than the value used in eq. (37). As a result, a new 
shear stress-strain curve must be generated every time cracks appear in a 
ply. This is obtained by drawing a line parallel to the initial linear 
portion of the curve and a line of slope k going through the current value 
of τxyav at d/2. Note that if cracks are created in a ply due to shear 
strains, the transverse modulus Eyr must also be obtained following the 
procedure outlined in the previous section. 

An important question is how the shear stress non-linearity interacts 
with matrix cracks. Typically, the non-linearities happen first, at least 
when a ply is under pure shear. If the shear strain in the ply increases 
sufficiently, matrix cracks will appear and they will affect or modify the 
non-linear behaviour. Several possibilities exist for modeling this 
interaction. At one extreme, neglecting the creation of matrix cracks will 
over-predict the actual shear modulus in the ply. At the other extreme, 
combining the two in sequence without interaction will compound their 
effect and is expected to under-predict the shear modulus. This can be 
seen in Fig. 13 where predictions from the two approaches are compared 
to test results from van Paepegem et al. [14]. As suggested, the two 
extreme approaches for predicting the shear modulus bracket the test 
data. In subsequent sections, wherever shear strains are present, first the 
complete inelastic behaviour is assumed by calculating the permanent 
shear strain corresponding to the applied laminate strains and then the 
effects of matrix cracking, if present, are accounted for. This is arbitrary 
and a better approach for the interaction of the two phenomena is 
needed where, for example, the applied strains are increased incre-
mentally and both effects are included to determine the new moduli for 
each ply and continue increasing the applied strains. However, as will be 
shown, this approach captures the response quite accurately. 

2.3. Ply under combined shear and transverse tension 

Equations (16) and (38) are now combined to predict when a crack 
will be created at the location of maximum transverse and shear stresses 
which is at d/2: 

[
σ2
yavbefore − σ2

yavafter

]

2Ey
+

[
τ2
xyavbefore − τ2

xyavafter

]

2Gxy
=ΔUdavcrit (42) 

The value of ΔUdavcrit will be different for different combinations of 
transverse and shear strains applied to the ply in question. If the ply- 
level load combination and thickness t2 are fixed, ΔUdavcrit will not 

τxyav = −
16vo
d

∑ (ekny + eknde− kny)

(1 + eknd)(nπ)2

(

k+
(
Gxy − k

)
sin

nπ
2
sin

nπzo
t2

)

+
2vo
d
Gxy

(
2zo
t2

+
k
Gxy

(

1 −
2zo
t2

))

+ Gxyγy

(

1 −
k
Gxy

)(

1 −
2zo
t2

)

(40)   
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change with load intensity. The value of ΔUdavcrit for a given load ratio 
of εy/γxy and t2 is obtained as the value of ΔUdav corresponding to the 
case where, for large d when the stresses through the thickness are 
(nearly) uniform, a Hashin-type failure criterion [23] would predict 
local failure: 

σ2
yav

(
Yt
is
)2 +

τ2
xyav

(Sis)
2 = 1 (43) 

At this point, the use of this criterion is a matter of convenience. 
Other criteria, stress, or energy-based, which may be more representa-
tive of the mechanism of crack initiation, can be used. The stiffness of a 
laminate with plies under combined transverse (perpendicular to the 
fibers) and shear strains is obtained by using Classical Laminated-Plate 
Theory but modifying Ey, νyx and Gxy of each ply as necessary, accord-
ing to eqs (24), (25) and (37). 

The approach can be demonstrated better through an example. A 
[±30/904]s fiberglass laminate under tension is used as the example. 
The material properties are the same as in Table 1. The applied axial 
strain εa is the same as the transverse strain in the 90◦ plies. As the 
applied strain increases, nothing happens until it reaches the value 
0.00556 calculated in section 2.1. At that point the first cracks appear in 
the 90◦ plies. From then on, the laminate as a whole behaves as if the Ey 
value for the 90◦ plies is given by eq. (24). 

The transverse and shear strains in the ply axes in the 30◦ and − 30◦

plies are given by transforming the strains in the laminate axes which, in 
turn, are obtained from Classical Laminated Plate Theory: 

εy(θ)=
[

sin2θ+
α12

α11
cos2θ − 2

α16

α11
sinθcosθ

]

εa (44)  

γxy(θ) =
[

− 2sinθcosθ+ 2sinθcosθ
α12

α11
+
(
cos2θ − sin2θ

) α16

α11

]

εa (45)  

where α11, α12, and α16 are the corresponding entries of the inverse of the 

ABD matrix (with α16 = 0 for a balanced laminate as in the present 
example) and θ the angle of the ply in question (30 or − 30 in the present 
example). 

As εa increases, a point is reached where γxy(30) and γxy(-30) reach, 
in absolute value, τy/Gxy = 0.01015. At that point, the shear stress-strain 
response of the ±30 plies becomes non-linear and eq. (37) is used to 
update Gxy. Whenever Ey in the 90 plies or Gxy in the ±30 plies are 
updated, α11, α12, and α16 in eqs (44) and (45) must also be updated to 
get the “current” εy and γxy values in the ±30 plies. This means that an 
iteration is necessary. As long as no cracks appear in the ±30 plies, the 
laminate Young’s modulus can be obtained via Classical Laminated- 
Plate Theory using the current values of Ey in the 90 plies and Gxy in 
the ±30 plies. It should be noted that the presence of cracks in the 90 
plies means the value of Gxy in these plies has also changed. This can be 
calculated following the approach described below but it is not needed 
for calculating the axial modulus of this particular laminate. As εa is 
increased further, a point is reached when eq. (43) is satisfied. This 
means matrix cracks appear in the ±30 plies. To use eq. (43), the in-situ 
strength Sis of the material is needed. For the present material, this is 
calculated as the shear stress that the bi-linear curve described by Gxy 
and k gives for the failure strain of 0.04. The result is Sis = 73 MPa. 

The predictions of the present method are compared to test results by 
Varna et al. [10] in Fig. 14. Material properties are the same as in Table 1 
with Sis as calculated above. In the strain range AB (0.00556–0.01015) 
only the 90◦ plies crack and the 30◦ plies have linear response. Beyond 
point B, the 30◦ plies behave non-linearly but have no matrix cracks. 
Excellent agreement is observed for the Young’s modulus but the Pois-
son’s ratio prediction stops following the trend of the tests when the 30◦

plies start having non-linear behaviour. At that point, the non-linear 
behaviour of the 30◦ plies offsets decrease in Poisson’s ratio caused by 
the cracks in the 90◦ plies and the prediction becomes almost horizontal. 
Predictions by Varna et al. are also shown in Fig. 14 showing higher 
accuracy than the present method for low strains but lower accuracy for 
higher strains. 

Fig. 16. Laminate stiffness predictions compared to test results from Ref. [9] for [0/(±θ)4/0]s.  

C.A. Socci and C. Kassapoglou                                                                                                                                                                                                              



Composites Science and Technology 200 (2020) 108427

13

Further comparisons are shown in Figs. 15–16. The predictions by 
Varna et al. [10] are also shown in Fig. 15 showing less accuracy than 
the present method at higher strains. For the present method, there is 
excellent agreement in the Young’s modulus. For the Poisson’s ratio, the 
predictions capture the trends quite well. It is interesting to note that the 
predictions for the [±40/904]s laminate show two kinks, one when the 
40◦ plies become non-linear at an approximate applied axial strain of 
0.0085 and one when matrix cracks appear in the 40◦ plies at an 
approximate applied strain of 0.0105. Even though there is scatter in the 
test data, it appears that these kinks, in particular the second one in the 
Poisson’s ratio plot, capture the trend of the data with a sharp drop quite 
accurately. 

Comparisons with several other laminates from Ref. [4,9,10], and 
[29] showed similar or better accuracy than that shown in Figs. 15 and 
16, with one exception. The predictions for a [0/(±55)4/0]s laminate 
did not match the test results from Ref. [9]. It is believed that the 
discrepancy may be due to some of the approximations made and the 
issue is under investigation. 

3. Discussion and conclusions 

The approach presented solves the local problem of matrix cracking 
in a ply under any combination of in-plane strains. It can determine the 
crack density and the local change in stiffness properties as a result of 
crack creation allowing a direct link between applied load and stiffness 
reduction. In addition, for cases containing shear loading, a bi-linear 
shear stress-strain approximation of the material shear stress-strain 
curve is combined with the stress solution to determine permanent 
shear strains in the ply as a function of strain level and crack spacing if 
cracks are present. 

The method presented has several advantages: The stresses are ob-
tained in closed form and the criterion for cracking based on average 
energy density is also in closed form. A minimum number of iterations 
may be needed when cracks or non-linearities cause load redistribution 
among plies and when checking for crack creations when shear strains 
are present. In a sense, the cracking criterion makes use of an average 
quantity that is analogous to the (average) energy release rate for the 
loading in question. A different criterion with experimentally measured 
critical energy release rate values can be used provided mode mixity is 
properly accounted for when different combinations of transverse and 
shear strain are applied. The proposed criterion accounts for different 
loading combinations by ensuring that the first cracks in a ply appear at 
the same time as a Hashin-type stress criterion would predict. Beyond 
first cracks, the stress criterion is no longer used. 

The comparisons with published experimental data show good to 
excellent agreement for different materials and laminates. Being essen-
tially in closed form, other than summing infinite series which converge 
rapidly, it can be used in progressive damage analysis to (almost) 
instantaneously update local stiffness at any location in a laminate under 
any in-plane loading. This eliminates the need for arbitrary assumption 
on stiffness knockdowns when cracks appear or use of models where 
damage variables must be estimated and/or inferred from additional 
tests. Furthermore, load redistribution between plies is accounted for as 
well as stacking sequence effects. This is done by updating the local 
strains in any ply by equations (44) and (45) which include any changes 
in the laminate compliance matrix a caused by crack creation and in-
elastic shear response. The efficiency and flexibility of the method 
makes it ideally suited for applications to fatigue analysis. Very good 
results obtained under fatigue loads will be presented in a future 
communication. 

For a ply under transverse strain, the crack spacing and associated 
transverse stiffness change can be obtained through the creation of two 
master curves which are independent of material and surrounding layup 
(see Fig. 6). Thickness effects are accounted for by changing the in-situ 
transverse and/or shear strengths as necessary. In the laminate examples 
examined here, a factor of 8 change in thickness, from the 90◦ plies to 

the θ plies (θ∕=0) in [±θ/904]s showed that the sensitivity to the in-situ 
strength values used, at least for this range of thicknesses, is rather small. 
Nevertheless, accurate knowledge of the transverse and shear in-situ 
strengths as a function of ply thickness and location in the layup, ac-
counting for the relevant fracture phenomena, is necessary. 

The method gives the crack-opening displacement for each matrix 
crack through exact calculation of the deflected shape of each crack 
surface formed. This suggests a definition of crack saturation as the point 
where the crack opening half way through the thickness of the ply equals 
half the crack spacing. Then, adjacent cracks touch each other and there 
is no more room for crack formation. However, calculations for typical 
materials showed that this is never reached. As crack density increases, 
the extra strain required to create the next crack increases rapidly 
leading to very high strains. At such strain levels other failure modes, 
including fiber failure in other plies will occur. 

Results are load history-dependent. The crack creation history and 
the associated changes in ply stiffness will depend on the sequence with 
which strains are applied to a given ply. As cracks are created and/or a 
ply exhibits inelastic shear stresses, the strains through a laminate are 
redistributed leading to different cracking histories. For example, if a ply 
is under combined transverse and shear strains, applying each of them 
individually to obtain the final crack pattern and stiffness values will not 
give the same answer as proportionately increasing strains 
simultaneously. 

By construction, the method presented predicts that the next crack 
will always be at the mid-point between cracks. While this is true for 
small crack spacings where the stresses reach their maximum value at 
the mid-point between cracks, it is not necessarily true for large crack 
spacings. Stresses reach their maximum values and remain constant over 
a portion of the region between cracks. Therefore, the next crack will 
appear at a random location within this region of uniform stresses and its 
creation depends on local defects the distribution of which is unknown. 
This means the crack spacing predicted by the method when cracks are 
far apart will be uniform and not necessarily accurate. This, however, 
does not affect the accuracy of the stiffness calculations. 
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