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SUMMARY

Because of fundamental limitations of CMOS technology, computing researchers and
the computing industry are focusing on using transistors in integrated circuits more
efficiently towards obtaining a computational goal. At the architectural level, this has led
to an era of heterogeneous computing, where various types of computational components
are used to solve problems. In this dissertation, we focus on the integration of one
such heterogeneous component; the FPGA accelerator, with one of the main drivers
behind the increasing need of computational performance; big data systems. With the
increased availability of these FPGA accelerators in data centers and clouds, and with an
increasing amount of I/O bandwidth between accelerated systems and their host, the
industry is trying to push these components into more widespread usage in big data
applications. For big data systems, three related challenges are observed. First, the
software systems consist of many layered run-time systems that have often been designed
to raise the level of abstraction, often at the cost of potential performance. Second,
hardware-unfriendly in-memory data structures, and (to the accelerator) uninteresting
metadata may convolute designs required to integrate FPGA accelerators with big data
systems software. Last, serialization is applied to face the second challenge, but the rate
at which serialization is performed is much lower than the rate at which accelerators
may absorb data. For FPGA accelerators, we also observe three challenges. First, highly
vendor-specific styles of designing hardware accelerators hampers the widespread reuse
of existing solutions. Second, developers spend a lot of time on designing interfaces
appropriate for their data structure, since they are typically provided with just a byte-
addressable memory interface. Third, developers spend a lot of time on the infrastructure
or ‘plumbing’ around their computational kernels, while their focus should be the kernel
itself. We describe a toolchain named Fletcher, based on the Apache Arrow in-memory
format for tabular data structures, that uses Arrow to deal with the challenges on the big
data systems software side, and also deals with the challenges on the FPGA accelerator
development side. The toolchain allows to rapidly generate platform-agnostic FPGA
accelerator designs where kernels operate on tabular data sets, requiring the developer to
only implement the kernel, automating all other aspects of the design, including hardware
interfaces, hardware infrastructure, and software integration. We describe applications in
regular expression matching, k-means clustering, Hidden Markov Models with the posit
numeric format, and decoding Parquet files. We finally apply the lessons learned on the
work of the Fletcher framework in a new interface specification for streaming dataflow
designs, named Tydi. We introduce a hardware-oriented type system that allows to
express complex, dynamically sized data structures often found in the domain of big data
analytics. The type system helps to increase the productivity when designing hardware
transporting such data structures over streams, abstracting their use in hardware without
losing the ability to make common design trade-offs.
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SAMENVATTING

Omdat fundamentele limieten van CMOS technologie in zicht zijn, richten onderzoekers
naar computertechniek en de computerindustrie zich op het efficiënter gebruiken van
transistoren in geïntegreerde circuits, zodanig dat de transistoren beter gebruikt worden
om het rekenkundige doel te bereiken. Op het niveau van de architectuur heeft dit geleid
tot het tijdperk van heterogene computers, waarbij verschillende soorten componenten
gebruikt worden om problemen op te lossen. In deze uiteenzetting beschouwen we
de integratie van één soort heterogeen onderdeel; de FPGA-versneller, met één van de
grootste afnemers van computercapaciteit; big data systemen. Nu dat meer van deze
FPGA-versnellers beschikbaar zijn in datacentrums en clouds, en met een stijgende hoe-
veelheid invoer- en uitvoerbandbreedte tussen versnelleronderdelen en hun gastheer,
lijkt het erop dat de industrie probeert deze onderdelen beschikbaar te maken voor een
breder publiek dat werkt aan big data toepassingen. Aan de kant van big data systemen
observeren we drie uitdagingen. Ten eerste bestaan de softwaresystemen uit vele lagen
die ontworpen zijn om het niveau van abstractie te verhogen, vaak ten koste van prestatie-
vermogen. Ten tweede, door hardware-onvriendelijke opmaak van datastructuren in het
geheugen, en door (voor de versneller) oninteressante metadata wordt het ontwerpen van
FPGA versnellers die geïntegreerd zijn met de software van big data systemen bemoeilijkt.
Als laatste wordt serialisatie vaak toegepast om de voorgaande uitdaging aan te gaan,
maar de snelheid waarmee serialisatie plaats kan vinden is veel lager dan de snelheid
waarmee versnellers data kunnen absorberen. Aan de kant van FPGA-versnellers observe-
ren we ook drie uitdagingen. Ten eerste is de ontwikkelstijl vaak in hoge mate toegespitst
op specifieke technieken van bedrijven, wat het hergebruik van bestaande oplossingen
tegenhoudt. Ten tweede spenderen ontwikkelaars veel tijd aan het ontwerpen van de
juiste koppelstukken die overeenkomen met hun datastructuren, omdat ze typisch alleen
bytegeaddresseerde geheugenkoppelstukken aangeboden krijgen. Ten derde spenderen
ontwikkelaars veel tijd aan het ontwerpen van de infrastructuur of ’pijpwerk’ rondom de
rekenkundige kernen, terwijl hun focus moet liggen op de rekenkundige kernen zelf. We
beschrijven een verzameling van gereedschappen, genaamd Fletcher, gebaseerd op de
opmaak voor tabulaire datastructuren van het Apache Arrow project. Hierbij gaat Arrow
de uitdagingen met betrekking tot de big data systemen aan, en Fletcher de uitdagin-
gen met betrekking tot de FPGA-versnellers aan. De verzameling van gereedschappen
staat toe om snel platformonafhankelijke ontwerpen te genereren voor FPGA-versnellers,
waarbij kernen opereren op tabulaire datasets. Hierdoor hoeft de ontwikkelaar alleen
de kernen te ontwerpen, en worden alle overige aspecten van het ontwerp geautomati-
seerd, inclusief de hardwarematige koppelstukken, hardwarematige infrastructuur en
software-integratie. We beschrijven toepassingen in reguliere uitdrukkingen, het algo-
rithme van k-gemiddelden, verborgen Markov modellen met het posit nummerformaat,
en het ontleden van Parquet-bestanden. Als laatste passen we de lessen die geleerd zijn
tijdens het werken aan Fletcher toe in een nieuwe koppelstukspecificatie voor stromende
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xii SAMENVATTING

data-ontwerpen, genaamd Tydi. We introduceren hierbij een typesysteem georiënteerd
op hardware, dat toestaat om complexe datastructuren van dynamische afmetingen
uit te drukken, zoals deze vaak in het domein van big data analyse te vinden zijn. Het
typesysteem helpt met het verhogen van de productiviteit bij het ontwerpen van hard-
ware waarbij zulke datastructuren over stromen vloeien. Hierbij wordt het niveau van
abstractie verhoogd zonder de mogelijkheid te verliezen om de gebruikelijke afwegingen
te maken in het ontwerp.



1
INTRODUCTION

It was certainly rather attractive, and though he was wisely cautious of most new things, he
did not hesitate for long before sidling up to it.

Arthur C. Clarke, from “2001: A Space Odyssey”

This thesis describes methods to efficiently integrate FPGA accelerators with contemporary
software systems found in the domain of big data analytics. The topic encompasses a very
broad set of related technologies that are to be taken into consideration. In this chapter, we
will give a historical perspective on the technologies to explain how the desire to combine
them came to be. We briefly touch on general-purpose processors, heterogeneous computing,
field-programmable gate arrays, high-performance computing, and big data analytics
frameworks. We then continue to describe problems in this context, and pose several
research questions that this thesis aims to answer, with the main question being: how can
FPGA accelerators be integrated efficiently with contemporary big data systems software?

1
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2 1. INTRODUCTION

1.1. A PERSPECTIVE ON COMPUTING

1.1.1. DIGITAL INFORMATION IN SOCIETY

P RESENT-DAY society is ever more dependent on information technology. Before the
Digital Revolution that brought humanity into the Information Age, it was once hard

to imagine that computers would have a place in every household, let alone that not just
every family would have one, but that every person would have several — sometimes
even carrying them on or inside their bodies! It is easier than ever to gather and distribute
digital information, due to increased connectivity and computational capability of these
computing devices of all shapes and sizes used by people, companies, institutions and
governments.

Many decisions in society, politics, companies, and the daily lives of humans are
increasingly based on the result of analysis of very large amounts of shared and stored
digital information. The success stories of the so called field of big data [1] are many.

Outcomes of analyzing big data influence our daily lives in a positive manner. For
example, through analysis of large DNA databases, a better understanding of human
and plant diseases is made possible, allowing us to develop new medicines, design new
treatments, and rapidly breed resilient crops. Machine learning systems trained on
terabytes of images can now detect specific tumors based on just a single image, with
higher precision and do so much faster than experienced surgeons. Petabytes of sensory
data from around the globe help to understand major challenges of the new century, such
as climate change. Hundreds of petabytes of sensory data from the Large Hadron Collider
help us understand the fundamentals of our universe.

More worrisome outcomes exist as well. Privacy-invading technologies to construct
extensive psychological profiles of billions of potential customers browsing the internet re-
sults in increased brand exposure and company revenue through targeted advertisements.
The analysis of thousands of camera feeds with face recognition tracks the everyday
movement of unsuspecting citizens, and allows building up automated population con-
trol systems. Mass surveillance and spreading of digital misinformation to influence
the outcomes of elections in rivaling countries headlines news bulletins every day. The
famous saying scientia potentia est (knowledge is power) easily comes to mind.

1.1.2. TIME IS OF THE ESSENCE

Analyzing large volumes of digital information requires computers. It is not surprising
that those that design solutions (software and hardware developers) to big data problems
want these computers to be both fast and easy to use. After all, within a given budget, it
is the total time spent to come up with a solution that often matters most. The sooner
a new medicine is developed, the sooner people can start getting cured. The sooner
psychological profiles of potential customers are analysed, the sooner an advertisement
company will have the competitive edge.

Often very consciously (but sometimes rather unconsciously), an application devel-
oper therefore attempts to minimize the time to solution; they prefer the most productive
approach where the solution to their problem appears as fast as possible, within their
budget. But what are the factors that contribute to this total time spent on solving a
computational problem? This question is not easy to answer, since the parameters that
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Figure 1.1: Breakdown of time to solution

contribute to it are virtually infinite, especially if the political, economic and human
dimensions are taken into account. Considering the question from a more technical
perspective, a very high-level breakdown is less difficult to construct, as seen in Figure 1.1.
Here, we discern two major components; the design time and the run time.

The design time is the time spent on describing a solution that connects and instructs
our computational platform in such a way that it solves a problem; e.g. writing a computer
program or designing a circuit. The run time is the time spent by the computer to solve
the problem according to the design.

We may break the design time up into the time used to capture the description of the
solution, fix human errors in the description through debugging or simulation, and finally
synthesize or compile the often abstracted description into something that physically maps
onto a specific computing platform. The run time may be broken up into the time spent
on moving the data from wherever they are stored into (or between) the computational
elements of the platform, and the time spent on doing the actual computation.

To design a computer system that provides the best time-to-solution within a given
budget (be it of monetary nature or energy) is a balancing act. Where some platform
A may be easier to program at the cost of lower performance, some platform B may
perform better at the cost of a higher design time. When the time-to-solution and other
economical factors for both platforms break even, we could speculate that in most cases,
platform A will still be selected, since machine labor is often preferable to human labor.

1.1.3. SINGLE AND MULTICORE PROCESSORS
What platforms and tools are available to developers to minimize the time-to-solution in
the context of analysing large volumes of digital information with computers? Answering
this question requires a dive into the past.

Today, virtually every computing platform is implemented with complementary
metal–oxide–semiconductor (CMOS) technology. (C)MOS technology is the main driver
behind the success of computers in general over the past half century. Over several
decades following the 1970’s, the mainstream computational platform used by most
developers were integrated circuits (IC’s) created using the (C)MOS fabrication process.
These IC’s typically held a single-core general-purpose processor, also seen, greatly sim-
plified, in Figure 1.2. One could program it to perform any computational task through a
fixed set of simple (and later more complex) instructions. First helped by assemblers and
later compilers, the tools and the platform provided the developers with a low time-to-
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Single-core
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Figure 1.2: A single-core processor. P: Processor core. Implementing applications involves creating the correct,
single stream of instructions alongside the data.

solution to computational problems, especially compared to creating custom computers
with register-transfer level designs out of discrete digital circuit components. The com-
puter industry matured, and by the grace of their main product, the single-core platform,
the Information Age was spawned, producing some of the now-largest companies in the
world.

Although a large variety of single-core processors are available, the degree of freedom
a developer has when implementing applications on such a platform is relatively low,
since they ‘only’ have to decide what the correct sequence of instructions must be to
produce the desired output. The developer does not care much about the details of the
architecture of the digital circuit, merely selects a chip that adheres to some more macro-
scopic requirements, such as the instruction set architecture, potential computational
performance, power usage, and cost.

Having relatively little freedom of only being able to define the instruction sequence,
compared to designing a chip from the ground up, may seem limiting. It can also be
seen as empowering, since no more time has to be spent on the many of the decisions
required to design the processor — work typically done by large teams of engineers with
the associated risks and investments already taken by the companies developing the
chips. The decreased design time, at the potential loss of performance from the ability to
customize the architecture of the chip, is in the vast majority of the cases beneficial to the
time-to-solution. The single-core processor reigned supreme for many years.

However, around the turn of the century, it became apparent that there were physical
limitations to scaling down CMOS technology to make the single core more powerful
(specifically, unmanageable levels of power density; the Power Wall). Furthermore, im-
proving single cores by ‘throwing more transistors at it’ is subject to Pollack’s rule [2],
stating that the performance improvement one gets is approximately only the square root
of the number of transistors added, making it less interesting to improve the single-core
processor itself. This caused a move to multicore designs in the decade following, with
core counts slowly but steadily increasing. This type of processor is now the mainstream
type of integrated circuit in big data systems, and is shown in Figure 1.3.

A lot can (and has) been said about how, from an architectural perspective, multicore
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Figure 1.3: A multi-core processor. P: Processor core. Implementing applications involves creating multiple
sequences of instructions alongside the data, while making sure no conflicts occur when sharing resources.

processors decrease the run time in the total time to solution. But for humans to capture a
description of a solution based on these new platforms (e.g. to write concurrent programs)
appears less trivial, and initially it can be argued that whomever (from a pool of main-
stream developers) tried to use this platform, experienced a higher design time. It is much
more complicated to describe and debug a solution based on multiple (but still identical)
components working together that share information and resources among each other,
rather than for a single component that doesn’t share information with peers and has
all available resources for itself. This is illustrated by two instruction and data streams
entering the processor cores in Figure 1.3; rather than having to define one sequence of
instructions, a developer needs to define multiple that operate concurrently, sharing the
same resources.

It took some time following the introduction of multicore processors for highly produc-
tive tools to become available; tools that inherently expose and abstract the concurrent
capabilities of the platform. These tools often appear in the form of programming lan-
guages or extensions thereof. For example, parallel programs can be written relatively
easily in the C language using the OpenMP extension. OpenMP abstracts platform-
specific details when multiple cores work on the same problem in parallel threads (e.g.
how to schedule the threads and how to communicate between threads). OpenMP is a
pragmatic solution, and is not inherent to the C language. Using its constructs requires to
literally prefix them in code with the #pragma directive.

More elegant tools came into existence over time, taking concurrent and parallel
programming into consideration from the drawing board. For example, the Scala language
knows a strong notion of immutability, data-parallel collections, provides the means to
express functional transformations without side-effects, and more features to enable
developers to capture parallel programs more efficiently. When transforming a data-
parallel collection by mapping a function onto every element, this can automatically be
done in parallel, leveraging the multicore processor’s computational power with negligible
impact on design time. Another relatively young language named Rust, provides explicit
ownership semantics and an extensive type system to guarantee safe (i.e. less error-prone)
concurrent and parallel programming. Incorrect concurrent or parallel code can simply
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not be compiled, resulting in useful error messages for the developer to fix problems
before they even arise during run time. These modern and highly productive tools have
drastically reduced the design time for applications on a multicore platform.

From the shift to multicore systems we may learn that mature, paradigm-fitting tools
take some time to age. New technologies arise that attempt to overcome limitations of
older paradigms. New platforms are introduced by industry based on this new paradigm,
and new tools are developed. This is initially done in a pragmatic way, causing a relatively
high design time still, perhaps worth the improved performance. Only after mapping old
and new applications to the new platform is extensively explored does it become clear
what sort of tools are needed and how humans may interact more efficiently with them.

1.1.4. HETEROGENEOUS COMPUTING

While the need to analyse more data in less time steadily increases, fundamental limits
in the backbone of the world of computing — the semiconductor industry — are in
sight. Today, CMOS technology is burdened by the slowdown of Moore’s law and the
failure of Dennard scaling, causing chips to easily approach the limits of the power [3]
and transistor budgets. The amount of data humanity gathers, and the computational
resources required to process it, keeps increasing. Unless better techniques to produce
integrated circuits are found, this provides an ill omen to satisfy the computational needs
of big data analytics applications in the future.

However, at the level of the digital circuit architecture, there still seems to be some
room to play. For example, it has been theoretically shown that depending on the amount
of exploitable parallelism in a workload, given the same budget, a combination of a large,
fast processor core, with many slower but less costly processor cores can be more effective
than several large processor cores [4]. Digital circuits can furthermore be specialized
to more specific tasks rather than be organized for general-purpose computing in its
broadest sense. Through specialization, every transistor and unit of energy can be used
more effectively towards a more specific computational goal. With this perspective, it
is not surprising that an often mentioned successor to the multicore platform — the
heterogeneous computing platform — has arisen.

In heterogeneous computing, the computing platform exists not just of multiple
identical computational cores, but also of different types of cores, adding more perfor-
mance not only through numbers but also through specialization. Commercial examples
started with the Cell Broadband Engine, found in the PlayStation 3. Here, apart from
a general-purpose processor, also smaller but more specialized computational cores
were present that perform well in areas such as e.g. physics simulation and multimedia
workloads. While these specialized computational cores may reside on the same CMOS
IC as in the Cell, in data centers today, they are commonly found on a different chip and
integrated through the use of high-bandwidth interconnections. They typically reside on
a printed-circuit board that is connected to the main board of a host processor, connected
through a peripheral bus, such as PCIe. This style of component is today often called an
accelerator.

The most prominent contemporary example of such an accelerator is the graphics
processing unit (GPU), also shown in Figure 1.4. Around the end of the previous decade,
the instructions that the tiny but incredibly numerous cores of a GPU could perform
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were generalized, allowing to perform any sort of computation rather than having many
different types of tiny cores that could only perform very specific functions. Therefore,
GPUs, were made more efficient to not just perform graphics rendering related tasks, but
also to do more general-purpose highly parallel computations. Companies then offered
their so called general-purpose GPUs (GPGPUs) to all developers, not just developers that
were solving graphics rendering problems.

Heterogeneous systems using accelerators are more complex, as developers must
make more decisions. This is illustrated in the case of a GPGPU-accelerated system
in Figure 1.4. When the system architecture changes, all components of the time-to-
solutions must be reconsidered.

Since data to be operated on traditionally resides in the memory of the host system of
some accelerator, it must be moved over a relatively large distance to the accelerator to
be operated on. Therefore, while accelerators are designed to decrease the computation
time, the time spent on data movement may increase. The exploration of this problem has
led to the well-known Roofline model, providing an intuitive means of making trade-offs
as to whether it is worthwhile to off-load some part of the program to an accelerator [5].

Luckily, while the performance of CPUs or even GPGPUs does not increase as fast as
it used to, due to the limitations of CMOS technology described at the beginning of this
section, the performance of interconnect, network and storage technologies has increased
over recent years (and at the time of writing still is increasing). A traditional assumption
that was sometimes made, that CPUs are fast and I/O is slow, often does not hold any
more [6]. Applying the lessons learned from the Roofline model, this means we obtain
a steeper slope towards saturation of computational throughput for accelerators, not
requiring a tremendous amount of computations per byte (arithmetic intensity) to make
moving the data worthwhile. This paves the way for more workloads to be off-loaded to
accelerators efficiently, since the overhead of data movement is being lowered relative to
the computation.
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Another aspect of the time-to-solution of the heterogeneous computing system is
the design time. At the time of writing, the tools for GPGPU programming are in their
adolescence, as they usually still require pragmatic solutions to expose their functionality
to the designer, e.g. through pragmatic constructs in languages from an older paradigm
(OpenACC), by specializing existing languages (e.g. C++ on the host CPU with CUDA
flavored C/C++ kernels for the GPGPU), or through libraries greatly abstracting their use
for specific application domains only (e.g. TensorFlow for machine learning). Luckily,
there are already some new languages that take GPGPUs into consideration as mainstream
components, and have included syntactically and semantically pleasing abstractions and
constructs into their design from scratch (e.g. Halide [7]).

1.2. FIELD-PROGRAMMABLE GATE ARRAYS
Within the context of heterogeneous computing with accelerators, a component that
may be experienced (from a mainstream software developer point of view) as radically
different is getting an increased amount of interest: the Field Programmable Gate Array
(FPGA), also shown in Figure 1.5.

FPGA devices allow the implementation of an arbitrary digital circuit, by appropriately
configuring an immense amount of fine-grained customizable logic blocks, arithmetic
units, memories, input/output blocks, and on-chip interconnect resources. As such, a
developer can completely specialize the digital circuit to perform exactly (and perhaps
only) the desired function. Through specialization, it is possible to achieve decent perfor-
mance, even though because of the underlying technology, the clock rates of FPGAs are
an order of magnitude lower than CPUs and they may use between two to over a hundred
times more transistors to implement the same function, depending on the resource [8].
The FPGA may shine in applications that were not (yet) economically viable to include
dedicated circuits in CPUs, GPGPUs or application-specific integrated circuits (ASICs).
For example, this dissertation will describe several such applications in Chapter 4, where
e.g. a new type of floating-point arithmetic is explored, that can on CPUs or GPGPUs
—for now— only be emulated through software.

Originally used for rapid prototyping of digital circuits, FPGAs have proven to be useful
components in the embedded systems domain, where they are often used as a highly
connective and flexible solution for timing-critical or performance-critical applications.
With the release of datacenter-oriented accelerator cards by major FPGA companies such
as Xilinx and Intel, and the offering of FPGA-enabled instances by cloud providers such
as Amazon, Nimbix and Microsoft, however, it seems that the industry is trying to push
these components into the data center and cloud, allowing the broader audience to make
use of them.

As with the introduction of multicore processors and GPGPUs, we must carefully con-
sider the time-to-solution for the FPGA accelerator platform. Implementing applications
on FPGAs is not a matter of using the right pre-defined instructions to let the circuits
found in one’s CPU do its job in such a way that the correct output is produced. Rather, it
is a matter of coming up with the most effective circuit such that the correct output is pro-
duced. The platform is readily available today, but leveraging its capabilities efficiently is
still left to a small set of expert developers, typically with a hardware-oriented background.
Although its performance can be very good in some cases, contemporary tools to program
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Figure 1.5: A typical field-programmable gate array (FPGA) connected to a multicore processor. IO:
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registers. M: memory blocks to implement relatively large on-chip memories. D: DSP blocks with complete
arithmetic units for integer and floating-point computation. Implementing applications involves configuring
and connecting the aforementioned blocks in the right way, allowing any sort of digital circuit to be mimicked,
even processors themselves. This gives the developer a great amount of freedom, but also requires a specific set
of skills and a great amount of low-level architectural choices to make. This contributes to a high design time

component in the time-to-solution.

the platform are still quite hard to use. Thus, even if the platform itself can provide high
computational performance, the time-to-solution (for the mainstream developer) is still
larger than for other platforms with more matured tooling, simply because the design
time is very high. The high design time is tightly related to the radical difference between
FPGAs and GPGPUs and CPUs.

To understand why the difference is described as radical, we need to know how
the mainstream software developer in the big data domain designs solutions for the
components found in the data center. Today, this component is still predominantly a
general-purpose processor. Virtually every commercially successful mainstream general-
purpose processor works by processing a sequence of instructions as shown in Figures 1.2,
1.3 and even for the GPGPU of Figure 1.4, the same could be said, with the appropriate
nuances. The available functions in the hardware of the processor are fixed, but it may be
made to do different things by correctly feeding different instructions. Thus, the developer
‘simply’ needs to properly place instructions from the instruction-set in the right order
and feed them to the processor, alongside the data to operate on. The instruction-set
abstracts the underlying hardware mechanism by which the sequence of instructions are
executed.

Determining the bits and bytes that represent the stream of instructions by hand is
not productive — the design time is too high. More abstraction is required to decrease
the design-time; assemblers abstract the instruction bits to somewhat human-readable
assembly languages, where one can define the sequence of instructions more easily.
Compilers abstract the assembly language to human-readable programming languages,
where we still (although somewhat indirectly) define the sequence(s) of instructions.

But there is a lot of commonality amongst solutions using computers; they all require
some input/output, management of memory, a means of starting up and shutting down,
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interfacing with the human, etcetera. This is provided by another layer of abstraction; the
operating system. Now there are many different types of platforms and operating systems
that solutions could run on. If they are different, developers have to write the programs
for each platform separately, leading to increased design times. Therefore, language
run-time engines have been created that mimic processors on processors (e.g. virtual
machines, such as the Java Virtual Machine). They map an intermediate instruction set
to the platform-specific bare-metal instruction set. Now the time to solution decreases
when multiple different platforms exist as an implementation target.

Still, the developer yearns for more abstraction. Language run-times exist that even go
as far as to not even compile the source code to a sequence of instructions anymore. One
can now simply provide the sequence of strings that is the description of the program,
and it only gets interpreted as the program runs (through interpreters, such as CPython).
The interpreters call the appropriate pre-compiled instruction sequences such that the
desired functionality is eventually materialized many layers down in the hardware. Envi-
ronments with many dependencies may differ between various systems that a developer
will potentially use. So called containers package whole application environments so they
may be easily installed and run on any sort of system. The use of such virtual machines,
interpreters and containers is commonplace in the field of big data analytics today, with
good reasons. This will be discussed in more detail in Section 1.3.

The bottom line is that it seems that before the end of Moore’s Law, there was a lot
of space to provide sometimes costly abstractions in the field of computer science and
engineering (although this space is decreasing). The many innovations have added so
many layers of abstraction that developers now use computing platforms without thinking
about currents, transistors, bits, gates, bytes, memories, instructions, operating systems,
or user-space environments.

Back to the world of FPGAs. These components do not implement a common in-
struction set that can easily be made human readable through an assembly language.
The programming languages used for FPGA designs are inherently concurrent, where a
sequence of statements cannot be read like some causal ‘story’ where first a thing happens
followed by the next, sequentially changing the state of the system. The source code must
be written, read and interpreted like a circuit diagram, where everything happens at the
same time. FPGAs allow to implement arbitrary digital circuits by combining lookup
tables (LUTs) for boolean functions, flip-flops to hold state, and extensive interconnection
networks for arbitrary connections between the previous. There are no equivalents of
mainstream operating systems managing memory, I/O devices, and security. There are
no equivalents of mainstream virtual machines, interpreters or containers to abstract the
wide variety of platforms and environments.

Therefore, the level of abstraction that a developer typically sees when attempting
to design an application with an FPGA is that of the digital circuit. While designing an
application at the level of the digital circuit provides a massive amount of freedom, it also
requires a massive amount of choices to make as well; difficult architectural choices that
were made for the developer already when working with mainstream a general-purpose
processor and the whole stack of software built on top of it.

To make effective choices in FPGA design, a very specific set of skills is required,
related to digital circuit design, computer architecture and system integration. It would
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be safe to assume that the mainstream software developer found in the big data ecosystem
does (understandably) often not possess this skill set. They are trained to work on top
of the many layers of abstractions that have been developed over the course of many
decades, and for good reason; the layers are many and complicated, and every person,
team or even company has limits to the amount of layers of abstractions at which they
can develop applications.

There is a large body of work in research and industry trying to coerce descriptions
of software programs written in traditional software languages (such as C/C++) into
automatically synthesized hardware designs, through a technique often called High-
Level Synthesis (HLS). Unfortunately an extensive amount of vendor-specific hardware-
oriented pragmatisms are still required to be added to the code to produce functional
and, with considerable effort, performant designs, hampering both the time to design
and the time to run solutions. HLS seems interesting for those developers trained in both
hardware and software development and want to rapidly create functioning hardware
implementations, not caring too much about performance. It is, however, still unlikely
that the mainstream software developer (nowadays not caring about bits, bytes, or even
managing memory anymore) would be drawn to this approach. It arguably seems that
the rate at which the level of abstractions in mainstream software languages rises is
much higher than the rate at which HLS tools improve, creating an increasing gap in
productivity. Furthermore, the arguably awkward abstractions from software-oriented
languages applied to digital circuit design often cause a loss of performance compared
to hand-coded hardware designs [9]. In an ecosystem where the direct competitors are
highly optimized CPUs and GPGPUs, not burdened by low clock rates and circuit overhead
like FPGAs, the loss of performance versus decreased development time is a trade-off
again concerning the total time-to-solution.

In general we therefore argue that in the near term, it is more likely that as FPGA
accelerators become widely available in cloud infrastructures, experienced hardware de-
velopers will provide well-engineered high-performance solutions for common problems
in data centers and big data analytics, with useful application programming interfaces
(APIs). When the tools to engineer high-performance FPGA solutions become more pro-
ductive, the widespread acceptance and use of FPGA accelerators in big data systems
will be accelerated, as more efficient solutions can be produced in a lower amount of
time by the experts. Not only ’hyperscalers’ with enough resources to hire large teams
of hardware engineers would be able to rapidly produce high performance solutions on
heterogeneous systems with FPGA accelerators, but also smaller companies that are ten-
ants of cloud-based FPGA infrastructures could consider hiring smaller teams to improve
performance-critical parts of their pipeline.

Because of the vast amount of choices available when working with the FPGA accel-
erator platform, abstracting the choices to more productive constructs is more easily
done in a domain-specific context. We will demonstrate an example of a tool providing
such abstractions in the context of big data analytics systems working on tabular data
structures in this dissertation, especially in Chapter 3.

To embrace FPGA accelerators in big data analytics, interfaces must be provided in
the languages used and loved by the existing community, with APIs that match the level
of abstraction of the existing ecosystem in which they should be integrated, something
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we heavily focus on in this dissertation in general. The recently released Xilinx’ Vitis
framework also moves in that direction quite well, by providing interfaces for languages
heavily used in the big data ecosystem, such as Python.

Also, for data-intensive workloads, data should be able to move over these interfaces
at high bandwidth to match the increasing I/O bandwidth of contemporary and upcom-
ing accelerator systems, otherwise the accelerators will not be able to live up to often
advertised performance metrics derived only from their computational performance, due
to the implications of the Roofline model. The ability of such interfaces to achieve system
bandwidth in the order of tens of gigabytes per second is a central theme in this work.

To summarize, the time-to-solution is still rather high for FPGA accelerated platforms.
The community should strive to:

• Provide better hardware design tools with proper hardware-oriented abstractions
that do not hamper the means to obtain the intended performance by leveraging
FPGA technology as well as possible.

• Match the level of abstraction of the interfaces to the accelerated solution with
those of the ecosystem they are to be integrated in.

• Provide integral solutions that take into account all aspects of the platform archi-
tecture and time-to-solution.

1.3. BIG DATA ANALYTICS
To progress towards explaining the relation between FPGA accelerators and big data
analytics in more detail, we must also consider the historical perspective of the field of
big data analytics. Besides considering the computational components of the several
hardware layers of big data systems, we must also consider the numerous layers with the
software components of these systems.

Over the course of the last two decades, it became increasingly evident that data sets
grew so large that no single traditional computing system (e.g. a single data center node)
could be reasonably equipped with enough resources to store and process the data set.
Therefore, it was required to create a network of multiple nodes allowing to scale out the
computational platform.

Scaling out was already applied to supercomputers in the domain of High-Performance
Computing (HPC). Then why is big data not considered the same as HPC? The distinc-
tion between HPC and big data has been (and probably still is) a hot topic of debate.
The discussion could be summarized by saying HPC systems are more centered around
achieving as high as possible computational throughput for mainly scientifically-oriented
simulations, while big data systems are more centred around quickly extracting value
from massive amounts of existing data. HPC technologies were typically designed to
work in specially engineered on-premise compute clusters, that have a team of dedicated
engineers managing the clusters and the software running on them. HPC-oriented soft-
ware typically leans heavily on the MPI library for low-level languages such as C, C++
and Fortran. On the other hand, big data systems are much easier to use for developers,
typically designed to work on commodity hardware, and integrate well with existing
database systems and cloud infrastructures without the need to drastically redesign the
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1 val textFile = sc.textFile("hdfs://...")

2 val counts = textFile.flatMap(line => line.split(" "))

3 .map(word => (word, 1))

4 .reduceByKey(_ + _)

5 counts.saveAsTextFile("hdfs://...")

Figure 1.6: Counting words with Apache Spark and Scala [https://spark.apache.org/]

implementation when switching between various clusters. Most applications are written
in high-level languages with highly automated run-time engines such as Java, Scala or
Python.

To demonstrate how easy it is to program on top of a framework for cluster compu-
tation geared towards big data analytics, consider the canonical code snippet shown in
Figure 1.6, taken from the website of a well-known cluster computing framework called
Apache Spark. This snippet implements a program that counts the occurrences of every
word in a text. In this figure, we observe a mere 5 lines of code, allowing the developer to
express that they want to load a file (line 1), split every line of the file into separate words
(2), construct a tuple of the word with the value 1 (3) and consider the word as a unique
key to aggregate all values for each key by summing them (4), finally saving the file to
persistent storage (5).

Not even taking into considering the layers of abstraction discussed in the previous
section, behind the scenes of these five lines of code running on a cluster, a large amount
of domain-specific features are in play. Under many layers of abstraction, these features
are ‘hidden’ from (i.e. not explicitly exposed to) the developer, allowing them to relatively
easily develop big data analytics applications that scale well. In this example alone,
behind the scenes, we may observe the following:

• The text file may be in the order of many terabytes in size, distributed over the
storage resources of thousands of nodes.

• The construction of a lazily evaluated Directed Acyclic Graph describing the steps of
computation and dependencies, that is optimized, planned, scheduled, distributed,
and executed in parallel on the cluster automatically.

• In the reduction step, the tuples are automatically shuffled across multiple nodes in
the cluster, such that the same keys end up in the same place to be able to perform
the reduction.

• The implementation is resilient to node failure, such that when nodes fail, their
work is redone elsewhere, providing a certain level of fault-tolerance.

The many layers of abstraction provided by the big data analytics frameworks such as
Spark are made possible through highly productive programming languages and their
underlying infrastructure
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Continuing with the example of Apache Spark, its main goal is to provide a scalable
environment on top of clusters of commodity hardware, customized hardware, cloud
infrastructures or a mix of the previous. It is therefore unsurprising that, initially (and
perhaps still), it seemed a good idea to program Spark in a language running on virtual
machines, such as the Java Virtual Machine (JVM), in order to make the framework
platform-agnostic. Designed long before the dawn of the big data era, the technological
choices in the JVM were not driven by data-intensive workloads, but by the ability to be
platform-agnostic, and allow for more productive programming languages.

However, it has become evident that some of the default techniques used by virtual
machines or interpreters (such as CPython) do not favor the run time component of
data-intensive workloads. Garbage Collection (GC) to provide automated memory man-
agement is one example. The JVM automatically manages objects that are dynamically
created during the execution of a program. While they are explicitly created by the pro-
grammer, they do not have to be explicitly deleted from the memory by the programmer
anymore, such as in C++. The GC mechanism will keep track of all unreferenced objects,
and will automatically delete them periodically or when running out of memory. It will
also move objects to prevent fragmentation of the memory assigned to the JVM. However,
for large data sets with sizes in the order of the available system memory, moving the data
around frequently seems rather wasteful of time and energy.

GC technology spawned a massive amount of research trying to decrease its cost
by obtaining deeper understanding of program behavior, and applying various flavors
of the GC technique corresponding to the specific behavior. Despite these valuable
contributions, the limits of GC seem so fundamental in data-intensive applications,
including those often programmed on top of Spark, that programmers have ironically
decided to circumvent the automated memory management system by storing the bulk
of the data outside the memory heap managed by the JVM.

This is not an argument against the use of the JVM in general, rather an argument
to not forget the lessons learned from Figure 1.1. Since when we look back at the com-
ponents of the time-to-solution in that figure, the languages that are used on top of it
provide benefits that cause the decrease in design time to outweigh the increase in run
time. Developers don’t (theoretically) have to re-capture and debug their code when
switching to different hardware or operating systems that may be found e.g. over various
cloud infrastructure offerings. A relevant quote is from one of the original developers of
Spark, Mattei Zaharia: “Even though I like performance [...] ease of use matters more. [...]
The biggest performance improvement is when you go from not working to working” [10].
With the Spark project nearing a million lines of (non blank, non commented) code, its
sheer complexity also favors this choice. It would be a challenge to just imagine the
amount of code that had to be written, verified, and maintained, were this project imple-
mented in a language typically more performant but less productive towards achieving
functional programs as quickly as possible, like C.

At the same time, without going into too much detail yet, more technological trade-
offs in high-level language run-time engines were made in a time where big data was
not a dominant use case for these engines. We stipulate two more aspects that are of
specific interest to this dissertation, that of in-memory layout of the data sets and the
presence of language/run-time specific metadata. Modern high-level languages typically
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also automate the design of the in-memory layout of objects, which may not correspond
well to how data-intensive workloads may make more efficient use of the underlying
hardware. Also, language/run-time specific metadata is present that may not be of
interest to components designed in other languages, or even other sorts of computational
components. Thus, this metadata must be removed and the data must often restructured
into a more usable format when passing data sets between heterogeneous processes,
such as e.g. between Python and Java, or between Java and some hardware accelerator.
As we will demonstrate in this dissertation in Chapter 2, the time to restructure the data
before being able to communicate it, a process called serialization, can furthermore cause
serious performance bottlenecks in the path from the software process to accelerator.

1.4. PROBLEM DESCRIPTION AND SCOPE
We summarize the discussion of the previous sections with the following points, with the
latter two providing a problem description that this dissertation aims to explore.

• To keep providing society with answers sourced from the vast amounts of digital
information, there is a need for more computational performance to be able to
process larger volumes of data with a reasonable time-to-solution.

• Fundamental limits of CMOS technology have caused a slowdown in the perfor-
mance increase of general-purpose processors. Heterogeneous components, such
as GPGPUs and FPGA accelerators provide alternatives for more computational per-
formance through architectural specializations geared towards a specific domain of
problems. The throughput of interconnections, storage and network is increasing,
thereby also increasing the value accelerators can provide.

• FPGAs have recently become publicly available in offerings of cloud infrastructures
and data centers, where a significant portion of the desired computational work
will be performed in the foreseeable future.

• Problem 1: For the intended use case of FPGA accelerator systems in existing big
data analytics systems, there is a high mismatch in the level of abstraction at which
both systems are programmed and operated. Data must pass through numerous
layers of abstractions that may be detrimental to the performance.

• Problem 2: Developing FPGA-accelerated implementations of big data applica-
tions has a high time-to-solution, because a developer must make many low-level
architectural decisions, and there is little standardization at a high level of abstrac-
tion.

• Problem 3: FPGA tools are highly vendor-specific, hampering the growth of an
open-source community around the technology, which is favored by the existing
big data ecosystem.

Since this dissertation encompasses a wide amount of topics and technologies, we
continue to scope the topics of interest as shown in Figure 1.7. While all topics are of
immediate interest to the general theme of this dissertation, we find it useful to explicitly
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Figure 1.7: Related topics and scope of this dissertation.

declare what topics enjoy a heavy focus and are explicitly contributed to. We also declare
what topics are related and somehow impact this work, but that we do not explicitly
contribute to. Finally, there are topics of general interest, but they are not of immediate
impact to this work, and are typically briefly mentioned and discussed only.

We focus on FPGA accelerators and their integration in big data systems software.
We focus on how data structures in the context of big data system are currently repre-
sented in the software components and their high-level language run-time engines. We
focus on how transporting data structures between FPGA accelerators and the run-time
engines can be made efficient. We focus on how the hardware structure to efficiently
transport such data structures into FPGA accelerator kernels may be automatically gen-
erated through domain-specific design tools, but we do not focus on behavioral kernel
implementation. We focus on open-source and freely available tools that support a
hardware-description language design flow, but do not focus on vendor-specific tools or
components that are vendor-specific IP.

To integrate FPGA accelerators with big data systems software, we must take into
consideration FPGA accelerator cards, their drivers, their top-level shell designs, the host-
to-accelerator interface systems through which they are typically connected. GPGPUs
and ASIC accelerators are outside the scope of this dissertation, although we present
hardware design methodologies that may be applied in ASIC design as well.

We do not focus on any front-ends, business intelligence, or end-user applications.
We do not focus on how FPGA devices may be clustered for big data applications, e.g.
such as in [11]. We do not focus on how FPGAs may be virtualized and shared among
multiple tenants of the cloud infrastructure. We do not focus on scheduling for FPGA-
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accelerated applications on top of big data cluster computing frameworks. We briefly
deal with storage, but only in the context of an accelerator to decode a storage format.

1.5. CONTRIBUTIONS AND OUTLINE
Related to the problems and scope described in the previous sections, the main research
question that this dissertation aims to shed light on is as follows:

How can FPGA accelerators be efficiently integrated with contemporary big data sys-
tems software?

Because the word efficiently may be considered ambiguous, we explicitly mention that it
relates to the time-to-solution as a whole as described in Section 1.1.2. With this question
in mind, the outline of the remainder of this dissertation is as follows, where we pose
several related questions:

• Chapter 2: To answer the main question we first analyze the underlying technolo-
gies of big data systems software to expand on Problem 1. In Chapter 2, we explore
the question: What challenges arise from the desired merger of big data systems
software and FPGA accelerators? We explain that many of the software systems
depend on virtual machines and interpreters, and discuss in detail some of the
techniques that impact the time-to-solution, especially on the side of the run time.
A specific challenge of serialization overhead was tackled by the community along-
side the work of this thesis. The project that addresses this problem, named Apache
Arrow, is widely used in this dissertation. We also discuss the relevant details of that
project.

• Chapter 3: We furthermore deal with the design time aspect of the time-to-solution
as described in Problem 2. Because of the vast amount of choices that have to
be made when designing FPGA accelerated systems, we find it useful to ask the
question: What of an FPGA accelerator design and software interface can be au-
tomated in the context of big data systems? This has led to the development of
an extensive toolchain called Fletcher, helping to automate FPGA accelerator de-
sign an integration in the domain of big data applications working on tabular data
sets, presented in Chapter 3. To address the large mismatch in level of freedom
and available open source tooling in the big data analytics ecosystem and FPGA
accelerator design as mentioned in Problem 3, we furthermore ask the question:
(How) can a platform-agnostic environment be created in the currently highly
vendor-specific context of FPGA accelerator design?

• Chapter 4: Various big data analytics applications were implemented to exploring
and expanding the implementation of the Fletcher toolchain, to answer the ques-
tion: What applications can benefit from the features of the Fletcher framework?
These applications are presented in Chapter 4. Some applications furthermore
demonstrate the particular merit of FPGA accelerators in general, achieving higher
performance through specialization than contemporary CPU systems. We have
developed applications using the contributions of Fletcher in various sub-fields of
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big data analytics, including text analytics (regular expression matching), genomics
(variant calling), machine learning (clustering), and storage (file decoding).

• Chapter 5: Based on the contributions in the Fletcher toolchain, we have continued
to explore Problem 2. More specifically, we explored the possibility to decrease the
design time for hardware designs working on complex data structures, as are com-
monly found in big data analytics. This has raised the question: Can we decrease
the complexity of describing interfaces between hardware components that ex-
change complex data structures? The final contribution presented in this thesis
in Chapter 5 is an answer to this question in the form of an interface specification
for streaming dataflow designs transporting complex and dynamically sized data
structures.

• Chapter 6: In the final chapter, we summarize the answers to the specific questions
raised by the previous points, stipulate various directions for future research, and
conclude this dissertation.
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2
ANALYSIS OF BIG DATA SYSTEMS

SOFTWARE

For accelerators such as GPGPUs or FPGAs to be integrated with big data systems software, it
is necessary to study the extensive open source ecosystem on which many big data analytics
applications are built. In this chapter, we first give an overview of the general challenges
related to FPGA accelerator integration. We then analyze the software technologies used to
implement the many components of the ecosystem. We find that the large majority of the
software components are written in programming languages that run on virtual machines
and interpreters. While such systems support highly productive software languages and
provide transparent cross-platform portability for applications, they often do so at the cost
of efficiency and memory space. In the context of integrating FPGA accelerators, we observe
that significant bottlenecks arise when preparing large amounts of data to be exchanged
between such software processes and FPGA accelerators. This observation was also made
in the context of exchanging data between software processes of different languages, and
from attempts to prevent overhead from non-functional data movement during data
serialization, the Apache Arrow project was initiated by the community. Arrow provides a
common in-memory format such that serialization may be prevented when passing data
between heterogeneous processes. We study the format for applicability in the case of FPGA
accelerators, and find it highly suitable to be able to saturate contemporary and future
accelerator interfaces.
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2.1. OVERVIEW OF FPGA INTEGRATION CHALLENGES
Big data system are reaching maturity in terms of squeezing out the last bits of perfor-
mance of CPUs or even GPUs. The next near-term and widely available alternative for
higher performance in the data center and cloud may be the FPGA accelerator.

Coming from an embedded systems and prototyping-oriented market, FPGA vendors
have broadened their focus towards the data center by releasing accelerator cards with
similar form factors and interfaces as GPGPUs. Various commercial parties offer cloud
infrastructure nodes with FPGA accelerator cards attached. FPGA accelerators have also
been successfully deployed at a large scale in commercial clusters of large companies (e.g.
[1]).

Whether the FPGA accelerator will become as common an implementation platform
as GPGPUs in the data center is still an open question. The answer will depend on the
economic advantages that these systems will offer; will they provide a lower cost per
query? Will they provide more performance per dollar?

In an attempt to answer these questions, valid reasons to be sceptical about embracing
FPGA accelerators in the data center exist. We stipulate three disadvantages within this
context:

1. Technological disadvantage: FPGAs run at relatively low clock frequencies and re-
quire more silicon to implement the same operation compared to a CPU or GPGPU,
requiring the specialized circuits they implement to be orders of magnitude more ef-
ficient at whatever computation they perform before they provide an economically
viable alternative.

2. Hard to program: A notorious property of FPGAs is that they are hard to program,
incurring high non-recurring engineering costs; a higher cost per query or more
dollars to achieve decent performance.

3. Vendor-specific: Relative to the software ecosystem in the field of big data analytics,
one could observe a lack of reusable, vendor-agnostic, open-source tooling and
standardization. The big data analytics community has shown to thrive and rely
specifically on open-source frameworks, as this provides more control over their
systems and prevents vendor lock-in.

On the other hand, valid reasons to be optimistic exist as well, because of the following
advantages.

1. Specialization: FPGAs are able to implement specialized data flow architectures
that, contrary to load-store architecture-based machines, do not always require
intermediate results of fine-grained computations to spill to memory, but rather
pass them to the next computational stage immediately. This often leads to either
increased performance or to increased energy efficiency, both of which may provide
an economic advantage.

2. Hardware integration: FGPAs have excellent I/O capabilities that help to integrate
them in places the GPGPU can not (yet) go, e.g. between the host CPU and network
and storage resources. This can help to build solutions with very low latency
compared to CPUs and GPGPUs.
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2.1.1. HARDWARE DESIGN CHALLENGES
The two mentioned advantages have the potential to mitigate the first disadvantage in
specific cases, which leads us to mainly worry about the problem of productivity. One
branch of approaches that the research and industrial community takes to increase
productivity is to say: hardware is hard to design while software is easy to program,
therefore we should be able to write software resulting in a hardware design. While the
term has become somewhat ambiguous, this approach is called High-Level Synthesis
(HLS), which we interpret here as; using a description of a software program to generate
a hardware circuit performing the same function, hopefully with better performance. A
thorough overview of HLS tools can be found in [2].

The HLS approach can (arguably) lead to disappointment on the side of the developer,
since it is easy to enter a state of cognitive dissonance during programming. A user with
a software design background may find many constructs and libraries not applicable
or synthesizable in a language that s(he) thought to understand. Hardware-specific
knowledge must be acquired, and often non-portable pragmatism must be applied to
end up with a working implementation. A user with a hardware design background
may experience a lack of control that may result in sub-optimal designs, hampering the
intended performance that they know could be achieved using a HDL. Software languages
are designed with the intent to abstract CPU instructions, memories and I/O, but not the
gates, connections, and registers that hardware-oriented users desire to express more
explicitly than what is allowed by most software-oriented languages. A recent meta-
analysis of academic literature in [3] shows that designs created with HLS techniques at a
reduced design effort of about 3× still show only half the performance compared to HDL
designs, although the meta-study includes designs in frameworks that would classify as
an HDL approach (e.g. Chisel) more than HLS, according to our definition. Since the
direct competitor is the server-grade CPU and the GPGPU, it is in many cases unlikely
that losing half the performance is acceptable.

For the reasons mentioned above, we argue (together with [4][5]) for a different
approach to attack the "hard-to-program" problem; hardware is hard to design, therefore
we need to provide hardware developers with abstractions that make it easier to design
hardware. Such abstractions are easier to provide when the context of the problem is
narrow, leading to domain-specific approaches. We must increasingly take care that these
abstractions incur zero overhead, since technologically, we are getting close to an era
where the added cost of abstractions cannot be mitigated by more transistors, due to the
slowdown of Moore’s law.

We stipulate three FPGA-specific challenges from the hardware development point of
view when designing FPGA-based hardware accelerators for big data systems, that cause
a substantial amount of development effort.

H1. Portability: Highly vendor-specific styles of designing hardware accelerators pre-
vents widespread reuse of existing solutions, often leading hardware developers to
‘roll their own’ implementations. It also makes it hard to switch implementations to
different FPGA accelerator platforms of different vendors.

H2. Interface design: developers spend a lot of time on designing interfaces appro-
priate for their data structure, since they are typically provided with just a byte-
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addressable memory interface. This involves the tedious work of designing ap-
propriate state machines to perform all the pointer arithmetic and handle all bus
requests.

H3. Infrastructure: hardware developers spend a lot of time on the infrastructure or
sometimes colloquially called ‘plumbing’ around their kernels, including buffers,
arbiters, etc., while their focus should be the kernel itself.

2.1.2. BIG DATA SYSTEM INTEGRATION
Not only FPGA-based designs themselves can be very complex — the big data analytics
frameworks in which they need to be integrated are very complex as well. For the sake of
the discussion in this dissertation, we are going to assume that there is a hardware devel-
oper wanting to alleviate some bottlenecks in a big data analytics pipeline implemented
in software through the use of an FPGA accelerator. In such a context, it is safe to assume
that there is a lot of data to be analyzed. The FPGA accelerator must have access to this
data. Where is the data?

Assuming the analytics pipeline to be implemented in the C programming language,
a programmer may point to their efficiently packed, hand-crafted structs, unions, ar-
rays, pointers to nested dynamically-sized data structures, and eventually the primitive
types of data that makes up the data structure of interest. Were this data structure to
be somewhat inefficiently laid out in memory in terms of feeding it to the accelerator,
the programmer would be able to easily modify the exact byte-level layout of the data
structure in memory, typically causing the data to reside in regions of memory that are
contiguous as possible, such that they can be loaded into the FPGA using large bursts,
preventing interface latency from becoming a bottleneck when many pointers need to be
traversed. These assumptions are reasonable and describe a common design pattern in
hardware acceleration of software written in low-level languages such as C. However, we
will show that for the domain of big data analytics, these assumptions usually do not hold.

WHERE IS THE DATA?
We have analyzed the code bases of many active and widely-used open-source projects
related to big data analytics. The goal is to answer the question: what languages are mostly
used in the big data ecosystem and how do they manage data in memory? While there are
hundreds of candidates in the open-source space alone, we have selected projects that
are commonly found in the middle-ware of the infrastructure. This is where accelerators
are most likely to be integrated. We therefore do not include frameworks focused on
specific applications or end-users (e.g. deep learning or business intelligence), since they
are often built on top of the middle-ware frameworks that we analyzed.

The overview of the analyzed frameworks is as follows:

• 8 query engines: PrestoDB, Cloudera Hue, Dremio, and Hive, Drill, Impala, Kylin,
Phoenix

• 7 stream processing engines: Heron, Samza, Beam, Storm, Kafka, Druid, Flink

• 15 (in-memory) data stores engines: MongoDB, CouchDB, Cassandra,
CockRoachDB, CouchDB, OpenTSDB, Accumulo, Riak, HBase, Kudu, Redis,
Memcached, Hadoop-HDFS, Sqoop, Arrow



2.1. OVERVIEW OF FPGA INTEGRATION CHALLENGES

2

25

Java 56.0%

Python

9.1%

C++
9.1%

JavaScript6.7%

C
5.6%

Scala

4.5%

Go

4.1%

Others

4.9%

28 576 274
total lines of

code analyzed

Figure 2.1: Language analysis of 52 open-source projects from the big data ecosystem.

• 9 management and security frameworks: Airflow, ZooKeeper, Helix, Atlas,
Prometheus, Knox, Metron, Ranger

• 6 hybrid general-purpose frameworks: Mesos, Hadoop, Tez, CDAP, Spark, Dask

• 4 logging frameworks: Flume, Fluent Bit, Fluentd, Logstash

• 2 search frameworks: ElasticSearch, Lucene-Solr

• 3 messaging / RPC frameworks: RocketMQ, Akka, Thrift

A pie chart of the analysis is shown in Figure 2.1. From the figure, we may find that the
vast majority of the code-base is written in Java, followed by Python, with C/C++ taking
up about 15% of the lines of code. This gives an indication of the run-time technology
used in big data analytics pipelines.

About 80% of the code found in the ecosystem is written in languages that typically
alleviate the burden of low-level memory management by various methods that cause
several problems. First, garbage collection (GC) is often applied to prevent memory leaks,
sometimes causing data to move around the memory, invalidating any pointers to the
data, causing the need to halt the software run-time when FPGA accelerators would be
operating on the data. Second, extensive standard libraries with containers for many
typical data structures (e.g. strings, dynamically sized arrays, hash maps) are commonly
used. This decreases the development effort and provides a form of standardization within
a language. However, the language-specific in-memory formats of these containers often
don’t correspond well to how it would be preferable for FPGA accelerators to access the
data. Finally, data is often wrapped into objects (e.g. in Python), even though the native
architecture supports a specific data type in hardware. What in C is a simple array of a
thousand integers would in Python look like an array with a thousand pointers to integer
objects, which is not very efficient to access with high throughput, as it is potentially
highly fragmented. Furthermore, these objects contain language and run-time specific
metadata that are of absolutely no use to an accelerator, such as, for example, pointers to
the class of the object in Java.
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Figure 2.2: Examples of in-memory formats of a collection of strings (a, b, c, d), and how a string could be
exchanged between components of a digital circuit in FPGA technology (e). The memory access style when

traversing through the collection is described above each layer of reference. Blue regions hold meta data about
the data structures, green regions hold the actual contents of the information (the characters).

MAKING THE DATA USABLE FOR ACCELERATORS

When processing a data set with an external accelerator, the data must be moved from
host memory to accelerator over its interface. The bandwidth of this data transfer is
maximized when the data resides in a large contiguous memory buffer (CMB) because it
may be transferred using large contiguous bursts. Thus, a developer who wants to use an
FPGA accelerator to speed up some application must first make sure the data resides in a
CMB, lest many short transfers with the associated overhead must be initiated. However,
most commonly used containers and objects in various languages do not store the data
in a CMB. The in-memory formats for such containers and objects are often designed for
efficient use within the language run-time itself, or to provide some sort of abstraction
that suits the language paradigm well. To prevent accelerators from having to traverse
objects graphs, possibly incurring memory latency several times per object, serialization
must be applied. However, serialization negatively impacts the effective bandwidth to the
accelerator.

Consider a seemingly simple collection of data objects of a string type. In Figure 2.2,
we show for specific software languages, run-time engines, and standard library versions,
what the in-memory format looks like. We will discuss some problems related to the
in-memory layout of strings in software systems. We focus on the example of a C++
Standard Template Library (STL) string, since the C++ language generally allows for the
greatest flexibility to mitigate the problems, compared to the other languages. While it
is possible to allocate the string in an STL vector such that the string objects themselves
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reside in a CMB, the string object constructor allocates memory for its character array
using malloc() separately for each string. Thus, the characters (data of interest) of the
string are not guaranteed to reside in a CMB. This is a general problem in case objects
hold variable length data that is allocated by the object itself.

To continue with the example of a C++ STL string object, STL constructors can (in
contemporary versions of the C++ language) be provided with custom allocators that
could (albeit in an arguably counter-productive manner) place them in a CMB. However, if
the strings are sufficiently short, the characters are actually placed in the string root object
space itself (by both the LLVM and GCC implementation of the STL). This is defined in
the behaviour of the constructor, and is an optimization that prevents a second memory
allocation from taking place. This effectively breaks up any CMB of characters. It is
therefore not possible to guarantee that the data is stored contiguously using an STL
string, as we can only dictate that, if it allocates, it should use our custom allocator.
Without rewriting the string implementation, we cannot change when it allocates. Thus,
a developer must create some custom representation and implementation of a string,
requiring extra effort.

A similar case can be made for even more abstract languages like Python or Java,
where this problem is generally worse and less trivial to mitigate for the programmer, as
no direct control exists over object layouts in memory. Even if this effort is spent, a data
set built up like this will still suffer from more drawbacks.

Even when objects with equivalent fields are stored in a CMB, their in-memory repre-
sentations are not equivalent among different language run-times, especially due to the
presence of run-time specific metadata (e.g. JVM: class references, C++: virtual function
tables, Python: reference counters), as can be seen in Figure 2.2. This (to an accelerator
useless) metadata may be of significant size, especially when objects are small and nu-
merous, as commonly seen in big data analytics. Therefore, even if the data may be stored
in a CMB, effective bandwidth is decreased. Furthermore, it is required for an accelerator
to implement a filtering step before processing, to make it a true CMB, i.e. not a CMB that
also contains language-specific meta-data. This filter step furthermore would depend on
the host-side language run-time used, while the function of the accelerator is essentially
not different.

Even worse, object layouts are not guaranteed to be consistent inside a language
itself. For example, both the Java Virtual Machine [6] and C++ [7] do not specify or restrict
how an object is laid out in memory—it is left to the implementation of the JVM and
the compiler, respectively. Especially in the case of strings, some run-time engines even
implement more advanced tricks to save memory space for often recurring strings, in a
technique called string interning. Also, compilers may choose to optimize the lay-out, e.g.
to improve alignment w.r.t. cache lines in different ways.

Thus, to effectively integrate an accelerator hardware design targeting a heterogeneous
environment, the design must:

• be adjusted for every host-side run-time language,

• be adjusted for every compiler implementation,

• put a restriction on the application compiler/run-time, and filter language-specific
metadata,
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• invent a custom in-memory format for every non-primitive data type, in every
language involved, or

• apply the costly act of serialization.

If one standardizes an as-contiguous-as-possible in-memory format and provides
interfaces to produce/consume this data in various languages, all these options become
unnecessary or irrelevant. As we will discuss in Section 2.3, the Apache Arrow project
provides such a solution.

SUMMARY

At a higher level, we summarize the discussion of this section to the following challenges
for developers wanting to integrate an FPGA accelerator solution into a software-oriented
big data analytics pipeline:

S1. Complex run-time systems: is is hard to get to the data, because it is hidden under
many layers of automated memory management.

S2. Hardware-unfriendly layout: the data is laid out in a way that is most practical for
the language run-time system, with a lot of additional bytes containing data that is
uninteresting to the FPGA accelerator. A more FPGA-friendly in-memory format
of the data structure must be designed, in order to make it accessible to the FPGA
accelerator.

S3. (De)serialization: Even if one would hand-craft such a format, one would have to
serialize the input data for the accelerator into that format, and then deserialize
the result back into a format that the language run-time would understand. The
throughput of (de)serialization is relatively low compared to modern accelerator
interfaces, and can easily lead to performance bottlenecks [8].

While a thorough discussion of automated memory management techniques is out-
side the scope of this dissertation, we may observe that in some big data systems software,
such as Apache Spark, challenge S1 is dealt with by storing bulk data outside of the auto-
matically managed memory heaps of the language run-time system. While challenge S2 is
related, in the next section, we will first focus and quantify the impact of the serialization
overhead mentioned in challenge S3 specifically in the context of the interface between
host memory and FPGA accelerators.

2.2. CAN THE JVM SATURATE OUR HARDWARE?
With the advance of the big data era, many different big data processing and storage
frameworks have been developed. Many of these frameworks are written in languages
that use a Java Virtual Machine (JVM) [6] as the underlying platform to execute compiled
programs. This allows a cluster to easily scale out, adding nodes of any type of hardware,
as long as they can run a JVM. A well known example is Apache Spark [9] which is written
in Scala and is generally run on the OpenJDK HotSpot virtual machine.

Although the performance of programs run on the JVM can (in very specific situa-
tions) come close to the performance of native implementations, the added layers of
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abstraction still impose limits [10]. Speeding up JVM applications beyond Just-In-Time
(JIT) compilation can be done using native libraries to squeeze out the last bits of perfor-
mance that the underlying platform has to offer, sacrificing some of the portability of the
application. While still a long way to go, the big data field is slowly catching up with the
performance known from the high-performance computing (HPC) domain [11]. However,
as the end of multicore scaling approaches, scaling up even native CPU performance will
be troublesome in the near future [12].

Thus, as big data problems become bigger, there is a need to go even beyond the
performance that traditional multicore systems can offer. For this reason, the research
and industrial community is looking at other paradigms, such as combining accelerators
or near-memory computing with big data platforms. In this section, the focus is on
accelerators.

GPGPU computing is currently the most popular method for accelerated comput-
ing. GPUs offer superior performance for tasks with a lot of thread-level parallelism and
floating-point calculations. Effort is also put in the more power-efficient FPGA acceler-
ators, suitable for deeply pipelined datapaths and other highly parallel algorithms. In
either case, there is little explicit support for accelerated computing in specifications or
implementations of major JVMs at the time of writing.

One of the major challenges during integration of JVM programs with accelerators is
transferring the data represented as objects in the JVM memory to the accelerator. The
interface between the data stored in objects managed by the JVM and an accelerator
incurs a specific amount of overhead. If this overhead is higher than the performance
gained from the accelerator, there is no point in investing effort to accelerate an algorithm.

Because we look at this matter within the context of big data frameworks, we assume
that there is an application that would like to perform a transformation on a parallel col-
lection of data items, represented as JVM objects. One example is a map transformation,
which is a common operation for big data applications. The goal of this paper is now to
give an overview of four different yet feasible approaches in transferring the object data
from the JVM to the accelerator. Furthermore we attempt to quantify the overhead of this
data transfer based on the layout of the object and the approach taken. This can help
future development and integration of accelerators with JVM-based big data frameworks.

The contributions of this section are:

• We give an overview of the most feasible approaches in transferring data between
JVM and accelerator.

• We present a benchmarking tool that quantifies the serialization throughput for
a given platform. This allows designers and researchers to get an estimation of
the performance of their accelerated implementation, when JVM objects hold
the source data. It will also give an indication on which approach will suit their
performance requirements. The tool can also be used as a static analysis tool on
custom object layouts.

• We measure the data transfer performance of each of the approaches on the Open-
JDK HotSpot VM running on a POWER8 system.
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The organization of the section is as follows. Section 2.2.1 will discuss related work. In
Section 2.2.2 a more thorough problem definition is given. In Section 2.2.3 we will give an
overview of four feasible approaches. Section 2.2.4 comprises the experimental setup. In
Section 2.2.5 the results are presented. A conclusion is given in Section 2.2.6.

2.2.1. RELATED WORK

When accelerators are controlled by and attached to a host system, it is assumed that
the accelerator interface partially consists of a native library. Therefore, the problem
of transferring object data from JVM to accelerator is initially similar to the problem of
native function access to JVM memory.

For this reason, the JVM implements the Java Native Interface (JNI). Many open-source
projects exist (e.g. JNA [13], JavaCPP [14]) that mainly attempt to simplify integration of
native libraries with Java programs through sugaring or abstraction of the JNI (which is
normally used by writing C or C++ code). We will measure the best case performance of
JNI without any of the overhead introduced by the frameworks.

Several researchers that attempt to integrate accelerators with JVM based big data
frameworks note that the JNI interface causes a major performance bottleneck for their
applications. In the work of [15][16], the massive latency that the JNI introduces is hidden
by task pipelining, effectively overlapping JNI access with accelerator execution. Also,
when a succession of transformations will take place on the accelerator, intermediate
data is cached in local memory and can also be broadcast to other nodes as is.

Another interesting scheme is described in [17], which uses direct ByteBuffers for
which the backing array is mapped to a region accessible through direct memory access
by an FPGA. The authors use the Xilinx Zynq system, in which the host CPU shares the
same physical memory as the FPGA. Such hardware setup enables easy access to the data
from the accelerators, although it is not yet common in today’s big data clusters.

In the Apache Spark project, with the introduction of the Tungsten engine, data
items can be stored in off-heap memory using DataFrames and Datasets. At the time
of writing, this is currently done mainly to prevent garbage collection overhead on the
large collections of data. The community has been discussing the possibility of feeding
data that is stored off-heap directly to native libraries, but any design, implementation
or measurements have not yet been presented [18]. Furthermore, objects are serialized
into the off-heap memory using serializers that in many cases will also introduce extra
overhead by e.g. compressing the data [19].

More recently, with TensorFrames [20], integration of GPGPU accelerated computing
in Spark using off-heap managed data is shown. However, when analysing the imple-
mentation in early 2017, internally the data is first deserialized back into the JVM and
then JavaCPP is used (which is JNI based) to transfer the data row-wise through a native
library to a GPGPU, which is rather inefficient. In the work on Spark-GPU [21], a similar
approach is seen. Data items first have to be transferred to some off-heap memory region,
before passing it to a GPGPU. In a specific case with string objects, the authors show that
reading back this data from a GPU-friendly projection in an off-heap structure incurs
significant overhead of between 10.5× to 18.3×.

Many of these previous works focus on accelerating a specific application, in which the
interface between JVM and accelerator is not the main point of thorough investigation. In
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this work, we aim to give an overview and quantify in detail the properties of this interface,
since it is one of the most critical components in such a system.

2.2.2. PROBLEM DEFINITION
In light of the advancing interest in accelerating JVM based big data applications and
frameworks, the main question that this section aims to address is as follows. Which
approaches exist to transfer data held by objects in a JVM to an accelerator, and how efficient
are they?

To scope the question, we assume that there is an application holding a collection of
objects that contain data of interest to be used in a transformation. The transformation is
implemented in an accelerator. This commonly means that each object in the collection
will be transformed to some new object, or it will be reduced to some final result. We also
assume the collection is parallel, thus the transformation may be applied to the objects in
parallel as well, i.e. the objects within a collection do not refer to each other.

The fields of an object that represent its state and data, can be of the following types:

• A primitive (e.g. an integer, float or character).

• A reference to a child object or a child array object.

One exception is the array object type; it can hold multiple primitives or references,
where each primitive or reference does not have a separate field identifier, merely an
index. For the sake of simplicity we will assume that there are no loops in the reference
graph of the object, i.e. all object reference graphs are trees.

The main problem within this scope is due to the fact that a programmer running
applications on a JVM has no explicit control over the location or the layout of the objects
in memory. In a system where one has control over both layout and location of objects,
one may choose to lay out the data in such a way that it is convenient for an accelerator
interface to access. This usually means that the data at least resides in a memory region
that is as contiguous as possible.

Thus, to perform the transformation on one object of the collection, all primitives
that reside in the object tree must first be obtained. This involves traversing the object
tree, accessing all the primitives, whether they are in fields or in arrays. When this
data is collected and saved in a contiguous memory region, this process is also known
as serialization. Serialization is used to store the object to disk or to transfer it over a
network, hence the object must usually be placed in a contiguous memory region so that
it may fit in a file or a message. Later on, the serialized object is deserialized into the
memory of another JVM. However, for a transformation to take place in an accelerator, the
primitives must merely be transported to the accelerator’s local memory; not necessarily
reconstructing it in such a way that a JVM program can access it again.

Accelerators are often controlled by a host CPU. In most cases this CPU will also run
the JVM. Controlling the accelerator from the application will therefore involve calling
at least one, but possibly multiple native functions. In major JVM implementations, this
can be done using the Java Native Interface (JNI). Therefore, there are two ways of where
object traversal could take place; either by bytecode running on the JVM itself or by a
native function invoked through the JNI.
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Figure 2.3: Four different approaches of transferring the object data to the native environment. The thick lines
represent the data path, and pointer/reference passing between different programs is shown with an asterisk.

Label numbers indicate data flow order.

To address the question posed at the beginning of this section, the next section will
give an overview of four feasible approaches to obtain the primitives and transfer them to
an accelerator.

2.2.3. OVERVIEW OF DATA TRANSFER APPROACHES
This section first discusses the approaches of accessing a single JVM object using a single
thread, and then how multiple objects can be accessed using multiple threads.

SINGLE-OBJECT, SINGLE-THREAD APPROACHES

There are four basic approaches by which the data of an object could be transferred to an
accelerator (also shown in Fig. 2.3), namely:

a) ByteBuffer approach — Using the JVM to traverse the object tree and write it into
a byte array using the java.nio.ByteBuffer or its derivatives like IntBuffer or
FloatBuffer. The byte array is then passed to the accelerator interface through
the JNI.

b) Unsafe approach — Using the JVM to traverse the object tree and write it directly
to off-heap memory using the sun.misc.Unsafe library. The address of off-heap
memory location of the object is then passed to the accelerator interface.

c) JNI approach — The object reference is passed as an argument through the JNI to a
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Table 2.1: Summary of characteristics of different approaches

Approach Tra
vers

al

Seria
liz

ed

Copie
s

Porta
bili

ty

Support

Seen
in

ByteBuffer bytecode yes 1-2 high high [19]
ByteBuffer (off-heap) bytecode yes 1 high high [17]
Unsafe bytecode yes 1 medium low [20][21]
JNI native yes 1-2 medium high [13][14][22]
Direct (copy) native yes 1 low low —
Direct (no-copy) native no 0 low low —

native function. Then, the native function uses JNI functions such as
Get<Primitive>Field or Get<Primitive>ArrayElements to obtain the primitives.

d) Direct approach—Traversing the object tree directly while it resides inside the JVM
memory. The accelerator interface may directly load the data or it may first be
serialized in some off-heap memory location.

The following subsections will discuss each approach in more detail. A summary can
be found in Table 2.1.

ByteBuffer approach: For this approach, the object tree is traversed using JVM byte-
code. Primitives and primitive arrays are copied to a ByteBuffer using its put and
get methods. ByteBuffers are objects that wrap around a byte array (called the back-
ing array). They allow an easy interface to load and store primitives from and to the
byte array. The reference to this byte array can be passed through the JNI to a native
function that interfaces with the accelerator. To obtain the actual array, the JNI func-
tion Get<Primitive>ArrayElements or GetPrimitiveArrayCritical can be used. This
may1 cause another copy (although less likely in the latter case) of the data, but in either
case it makes the array accessible to the native function. A variant to this approach is
where the ByteBuffers can also wrap around an off-heap byte array, if the byte array is
allocated using the allocateDirect method. In this case, the data only has to be copied
from VM memory to the byte array once. The address of the off-heap byte array can be
obtained in the native code by using the JNI function GetDirectBufferAddress.

Unsafe approach: The Unsafe approach uses the sun.misc.Unsafe library. This library
allows C-like memory operations such as allocation and freeing of off-heap memory.
Within the Java programming paradigm it is considered ‘unsafe’ because usually memory
management is not done explicitly by the programmer. The library is tightly coupled with
the HotSpot VM, but its interface is not officially supported or standardized. Traversal
of the tree is done using JVM bytecode. Primitives and primitive arrays are copied to an
off-heap allocated memory location using put and get methods. This makes the Unsafe
approach quite similar to the ByteBuffer Direct approach. To access the data, the memory

1this depends on whether the representation of the array in the VM is the same as the native representation,
and if the VM garbage collector supports "pinning"
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address of the off-heap structure can be simply passed to a native function interfacing
with the accelerator using the JNI.

JNI approach: The JNI approach is less straightforward, since traversing the object
tree is done through JNI calls in the native code. First, the references to the classes
of the objects in a tree must be obtained using FindClass. Then, the field IDs of the
classes must be obtained using GetFieldID. Object references can be traversed using
GetObjectField. Finally, with Get<Primitive>Field, primitive fields can be obtained.
The functions Get<Primitive>ArrayElements or GetPrimitiveArrayCritical can be
used to obtain array values, where both functions potentially copy the values into a newly
allocated region that must be released afterwards. Because an accelerator cannot call JNI
functions directly, it is assumed that when the JNI approach is used, the primitives are
stored in some memory allocated by the native code, and thus the object is serialized.
The serialized object is then passed to the accelerator interface.

Direct approach: The Direct approach involves traversing the object tree and obtaining
the values from the JVM memory itself. Traversing the object tree is done through calcu-
lating pointers to the objects from JVM references directly. Fields are taken from offsets on
the object pointers. This approach has low portability since the way in which references
are represented and translated to virtual memory addresses is not standardized across
implementations. For example, in the HotSpot VM, this depends on VM parameters and
platform address size. References (called ordinary object pointers or OOPs) can be 32-
or 64-bits, where the 64-bit representation is an actual native pointer, but the 32-bits
representation might be a compressed OOP [23]. Also, the offsets or implementation
of field storage is not specified. Therefore, this approach is not straightforward and is
extremely platform-dependent.

If the accelerator has an interface that allows to initiate loads/stores from/to the host
application memory that is running the JVM (e.g. CAPI [24], or with CPU + FPGA SoCs
where the acceleration fabric shares the data bus of the CPU [17], or with techniques such
as NVIDIA’s Unified Memory in CUDA), it is not required for the object to be serialized.
Instead, the actual object traversal may take place on the accelerator itself. Therefore,
the Direct approach allows serialized (copy) but also unserialized (no-copy) access to the
object, which is unique to this approach.

We have not found an accelerator interface leveraging this technique published in
literature. Note that for server-grade systems this technique seems yet unfeasible, since
the latency of contemporary accelerator interfaces is still in the order of microseconds.
When reference are traversed in large data structures with small objects, this will result in
poor performance, because the ratio of requests to data is high.

It might appear that proper functioning of this approach can be endangered by the
JVM garbage collection mechanism. However, when starting the Direct approach through
a single JNI invocation that uses an object reference as a parameter, this reference is made
a local reference. This means that as long as the JNI function has not yet returned, the
garbage collector will not move the object of this reference, or its children. The reference
could even be made global such that the object will not be garbage collected at all and
can be passed between different JNI invocations or threads.
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Figure 2.4: General flow of the benchmarking tool

PARALLEL ACCESS OF COLLECTIONS OF OBJECTS

When there is a collection of objects to be processed by an accelerator, and the objects
of the collection do not refer to other objects in the collection, the collection may also
be accessed in parallel. This can help to increase the throughput on multicore systems.
In case of the Direct approach with load/store capable accelerators, loads for data of
multiple objects could be pipelined.

To support parallel access for the ByteBuffer approaches, each thread gets its own
ByteBuffer object with backing array in order to prevent race conditions. The backing
arrays are obtained through the JNI and could be merged in the native code. They could
also be sent to the accelerator interface in sequence, thus from the accelerator point of
view, it will no longer be a single collection per se. This might introduce some overhead
or require a slightly more complex control structure for the ByteBuffer approach.

For the Unsafe approach, the memory is allocated once, then each thread gets its
own instance of sun.misc.Unsafe, again to prevent race conditions. Then, each thread
operates on a different offset of the destination memory.

For the JNI approach, parallel access is more complicated. Because references to
objects are only valid in the corresponding thread that obtained them through the JNI,
the reference to the array holding the collection must first be made global before it
is passed to each thread. New threads must also register with the JVM using the JNI
function AttachCurrentThread before they may call other JNI functions. After accessing
the values, the threads must detach and the global reference must be released to allow
garbage collection to take place on the objects.

For the Direct approach, parallel access is straightforward. Multiple threads may
have multiple outstanding accesses of JVM memory simultaneously, and store them on
different offsets of off-heap memory.

2.2.4. EXPERIMENTAL SETUP

To measure the access times of the different approaches, a benchmarking tool was im-
plemented (see also Fig. 2.4). As an input to the tool, a layout of an object tree is first
specified. From this specification, Scala sources and ultimately JVM bytecode is gener-
ated, containing the required object classes and an Instantiator class which contains
methods to instantiate the object tree and fill it with random data. Furthermore, for
each approach, in the top-level class, methods are generated to serialize the object to a
byte array or to off-heap memory corresponding to the description of the ByteBuffer and
Unsafe approach, respectively. These classes are then compiled to JVM bytecode. For the
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JNI and Direct approach, functions callable through the JNI are generated in C. They are
then also compiled to a shared library, together with functions that access the data for
the ByteBuffer and Unsafe approach. Finally, a second program (benchmark runner) can
take the class files and library as an input and run measurements of object access time.
The benchmarking tool is available as an open-source project[25].

Using this tool, it is possible to measure the access times of different types and sizes
of object trees. It is possible to generate two types of object layouts. One layout where
the root object does not contain any references, except to primitive arrays (a leaf object).
A leaf object contains only a variable amount of primitives and arrays of variable size.
Another layout where the object has a specified width W and depth D, such that at
the root level it contains W references to the second level, where each object contains
max(W −1,1) references, until the level equals D. Only at the last level, the primitives
and arrays are instantiated. This layout allows us to also make a linear object tree, by
setting W = 1 and D > 1. It is also possible to supply a custom class layout or object tree
to the tool, such that it may be used as a static analysis tool for existing applications.

By varying the parameters of the aforementioned object tree layouts, it is possible to
obtain the serialization throughput for a specific layout, and a specific platform and JVM
implementation. By varying the number of primitives in a leaf object, the average time to
copy a primitive can be measured. By increasing the array size of a leaf object, the average
array copy time per element can be measured. By varying the depth in a linear object tree,
the average time to traverse a reference can be measured.

Parallel collection serialization and parallel access performance is also measured to
get the peak performance for the platform. From the hardware point of view, when more
cores and hardware threads run in parallel, we may assume that the internal memory
infrastructure is at some point saturated, resulting in peak performance for that platform.
Thus, besides specifying the object tree layout for a benchmark, it is also possible to
generate a collection of N of these objects and specify with how many threads to access
the objects. Furthermore, because run-time measurements on the JVM are very noisy,
the experiments are repeated R times and averaged. These numbers are reported per
experiment in Section 2.2.5.

The benchmarking system consists of two POWER8 CPUs running at 3.42 GHz on an
IBM Power System S824L (8247-42L) with 256 GiB of total RAM. We confine our measure-
ments to one of the two CPUs only. Primitives used are 32-bit integers. Attaching an actual
accelerator is outside the scope of this paper, but by accumulating all serialized primitives
into a single value on the CPUs we can validate the correctness of each approach and we
can make a fair comparison for the Direct (no-copy) case. This is in theory the fastest
approach, because it does not copy at all. Without any operations on the data it would
otherwise only have to resolve all references without accessing the data itself. Native
threads are controlled through OpenMP and JVM threads are statically managed.

In a real application, more dimensions to the problem are relevant, such as how to lay
out the serialized objects in the memory such that its structure is convenient to process
in a specific accelerator, how to retain references within the serialized format, how to
deal with cyclic object graphs, how to deal with static fields of classes, and more detailed
problems which are commonly seen in serialization. However, because we are primarily
interested in the feasibility and best-case performance, these dimensions are also outside
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the scope of this work.

2.2.5. RESULTS

SINGLE OBJECT

In Fig. 2.5a, the access time of a leaf object with an increasing number of primitive fields is
shown. We found that the ByteBuffer, Unsafe and Direct approaches show a mainly linear
increase in access time, while the JNI approach shows a significant quadratic increase
when the number of fields increases in a leaf object. This is due to the use of the JNI
function GetFieldID for this particular experiment. This function looks up the field
identifier string in the HotSpot symbol table. Suppose the number of primitives is p.
We must search p symbols p times to access all primitives. Thus the time complexity to
access a field by using GetFieldID is O(p2).

In Fig. 2.5c the access time of a leaf object containing only an array is shown. Accessing
arrays of different sizes clearly shows the effect of the CPU cache hierarchy. The derivative
of the access time with respect to the array size is small in regions where the array still
fits in the cache. It becomes larger for array sizes that do not fit in the cache. Any initial
overhead of the copies becomes relatively small. For each approach that has the same
number of copies (see Table 2.1), for large arrays, their access times converge, because
internally array copies are usually performed by highly optimized memcpy calls (although
variants depending on the native platform exist, e.g. for the Unsafe and ByteBuffer
approaches).

In Fig. 2.5e, the access time of a linear object tree is shown. We found that the access
times increases in a mainly linear manner with respect to the number of references
traversed.

PARALLEL PERFORMANCE

In the case of a parallel collection, we first attempt to find a suitable number of threads.
For each approach we measuring three cases; 1. small objects (2 primitives and an array
with 16 primitives) 2. medium objects (8 primitives and an array of 1024 primitives) and
3. large objects (64 primitives and an array of 800×600 primitives. Reference traversal
performance is included in these measurements since a collection consists of many
references to all its objects. The collections are of such a size that their serialized rep-
resentation is over several hundred MiB, to make sure each thread has enough work to
justify the overhead from spawning it. The results of these three measurements are seen
in Fig. 2.6.

From these measurements, we found that for all approaches except the Direct ap-
proaches, the scalability is rather poor. This is most likely due to race conditions on
specific resources of the VM. These approaches scale very badly when the ratio of refer-
ence to data is high (small objects case). In the case of a high ratio of reference to data, the
maximum number of threads even gives the best performance for the Direct approaches.
In the medium and large object cases, the speedup increases all the way to the maximum
number of threads only for the Direct (no-copy) case. This approach only performs a sin-
gle load and accumulate on each data item. The gains from multi-threading are therefore
more significant than in the case of the Direct (copy) approach, because the computation
to communication ratio is three times higher. The Direct (copy) approach loads, stores
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(a) A leaf object with an increasing number of primitives.
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Figure 2.5: Average latency of accessing JVM objects.
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(b) Medium sized objects (p = 8, a = 1,e = 1024, N = 218)
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(c) Large objects (p = 64, a = 1,e = 800 × 600, N = 210).

Figure 2.6: Throughput and speedup of accessing collections of JVM objects.
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Table 2.2: Maximum throughput and corresponding number of threads for the small, medium and large
benchmark.

Approach Small
(threads)

MB/s Medium
(threads)

MB/s Large
(threads)

MB/s Threads
used

for
Fig. 2.5

ByteBuffer 4 1142 4 2159 10 3121 4
ByteBuffer (off-heap) 6 706 6 2231 4 3346 4
Unsafe 4 914 58 9080 62 16604 10
JNI 4 389 6 6094 78 12332 4
Direct (copy) 56 3232 80 16273 76 18788 80
Direct (no-copy) 78 7366 76 47064 80 67381 80

and then loads again and accumulates the data. The Unsafe approach also scales rather
well in the medium and large measurement, compared to the JNI approaches, which
scales only well for the large case. The ByteBuffer approach does not scale very well
beyond four threads. From these measurements we set a suitable number of threads for
each approach as shown in Table 2.2.

COLLECTION

In the case of a parallel collection, the same types of measurements are performed as
in the case for a single object, although on a collection of N of these objects. These
measurements are shown in Fig. 2.5.

From measurements shown in Fig. 2.5b, we found that the quadratic increase in access
time for the JNI approach is now relatively insignificant, because the field identifiers only
have to be looked up once for the whole collection. However, the JNI approach is still
slow, because for each field primitive, the function call Get<Primitive>Field JNI must
still be made.

Fig. 2.5d shows that after different initialization times, approaches with the same
number of copies converge towards the same access latency as the arrays get larger, as
was the case for the single-thread single-object measurements.

Lastly, for the measurement of reference traversal in a linear object graph (Fig. 2.5f),
the direct approaches show similar access time, followed by the Unsafe and ByteBuffer
approaches Theoretically, there should not be much difference between the Unsafe and
ByteBuffer approaches, because reference traversal is done in the JVM in the same way
for both approaches. The difference in average time for the ByteBuffer approach is due to
the overhead induced by spawning the threads and ByteBuffer objects. For the Unsafe
approach, this overhead is much lower. Again, the JNI approach shows an order of
magnitude worse performance.

DISCUSSION

Contemporary commercially available accelerator cards are often connected via PCI-e
GEN3 with peak bandwidths of almost 8 GB/s or 16 GB/s, depending on the configuration.
One example includes the POWER8 system where the CAPI interface can be used over
such a link. Newer interfaces such as OpenCAPI and NVIDIA NVLink are expected to
achieve up to 25 GB/s and 80 GB/s, respectively.
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From the measurements presented in this section, it can be seen that the ByteBuffer
approaches are generally unfavorable, because they cannot achieve near the bandwidths
of the PCIe range easily. They are only faster than using the JNI approach in the case of
accessing a collection of small objects. The JNI approach can be a feasible solution, but
only when the ratio of references-to-data is low (e.g. when there are few but large arrays
in the objects). At the same time, the Unsafe approach performs better in most cases
and it is much easier to program, because traversal of the object graph can be written or
generated in the JVM based source language, and calls to these functions may be inlined
during JIT compilation of the serialization function. If it is necessary to saturate the link,
with small objects (a high reference/data ratio) the only feasible solution is to take the
Direct approach.

A major drawback of this approach is that it is highly platform dependent and it could
even be considered more ’unsafe‘ than the Unsafe approach, since it accesses VM man-
aged memory without some sort of interface that was designed into the VM. To mitigate
this drawback, the VM could by design include some functionality to support fast object
graph traversal, serialization and data transfer to accelerator interfaces, implemented
with native code and tightly coupled with the VM as in the case of the Unsafe library.

2.2.6. CONCLUSION

In this section, an overview is given for four different approaches for accelerator interfaces
to obtain data from JVM managed objects; using ByteBuffers, the sun.misc.Unsafe
library, the Java Native Interface (JNI) and to directly obtain the data from JVM managed
memory (Direct).

A benchmarking tool was implemented that generates code to serialize the object or a
collection of objects for use in an accelerator, using these four different approaches (where
two approaches have two variants). By measuring the access times of single objects by a
single thread, and access times of a parallel collection of objects by multiple threads, the
performance of a POWER8 system with the HotSpot VM was measured. Furthermore, the
throughput of a collection of small, medium and large objects was measurement with
respect to the number of threads.

From the measurements we may conclude that the ByteBuffer approach does not
perform well in most cases (it can achieve between 0.7 and 3.3 GB/s of throughput).
Also, it does not scale well with the number of threads. The JNI approach can perform
well in situations where the ratio of references to data is low, but also scales poorly with
the number of threads (it can achieve between 0.9 and 12 GB/s of throughput). The
Unsafe approach scales slightly better, up to the number of physical cores of CPU, and
is also able to provide enough bandwidth to saturate common accelerator interfaces
such as PCIe gen. 3 (it can achieve between 0.8 and 16 GB/s of throughput) for large
objects, although for smaller objects, the performance is also limited. However, newer
and upcoming accelerator interfaces, such as OpenCAPI, NVLink, or CXL, cannot yet
be saturated through this method, and the scalability is poor. The best approach in
terms of performance is the Direct approach. It scales well and offers more than enough
bandwidth for common accelerator interfaces, but its portability and ease of use is poor
(it can achieve between 3 and 67 GB/s).

The measurements of the benchmarking tool can effectively be used to predict the
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interface bandwidth of accelerators attached to a JVM. This may help researchers and de-
velopers to obtain a good estimation of the maximum speedup they may get by combining
accelerators with JVM-based applications.

As new accelerator interfaces with higher bandwidths are introduced, the need for a
faster interface that is integrated into the HotSpot VM by design is high. This is especially
the case if users of big data frameworks based on the JVM want to make use of the
computational power of accelerators.

2.3. APACHE ARROW
Due to the nature of this dissertation, challenges S1, S2, and S3 from Section 2.1 were
described mainly from an FPGA acceleration developer point of view. We have thoroughly
quantified the limitations of serialization with respect to accelerator interfaces in the
previous section. Serialization is generally an unwanted necessity, as it merely transforms
the form rather than the contents of the data, and is therefore a non-functional aspect.

However, even within the software ecosystem of big data analytics pipelines, the
challenges related to hardware-unfriendly in-memory layouts and serialization exist.
When heterogeneous processes interact (e.g. when there is inter-process communication
between a pure Python program off-loading some computation to a very fast C library),
there needs to be one common (in-memory) format that both programs agree on. Several
projects have provided such a common format for generic types of data, such as Google’s
Protobuf [26]. The project provides a code generation step to automatically generate
serialization and deserialization functions that help produce and consume data in the
common format, turning it back into language-native in-memory objects. In this way,
programmers can continue to work with the objects in the fashion of their language.

Later, it was realized that serialization and deserialization itself can cause bottlenecks,
since copies have to be made twice; first when serializing the data to the common format
at the producer side, and again when deserializing it on the consumer side. In applications
built on top of these analytics frameworks, serialization may take up a large portion of
the run-time of the full application [27]. Examples of where serialization takes place
between components of a heterogeneous framework such as Apache Spark [9] can be
seen in Figure 2.7a.

In many cases, providing specialized functions to access the data in its common
format is faster than applying serialization and deserialization, since data may be passed
between processes without making any copies to restructure it into a language-specific
format. This has led to what is called a zero-copy approach to inter-process communica-
tion. Through the help of libraries such as Flatbuffers [28], such functions are provided to
several languages. Producing processes immediately use the common format for their
data structure, and then only share a pointer to the data with the consuming process. No
copies are made because both processes work with the common format as much as possi-
ble from the same location in memory. Programmers are provided with language-specific
libraries that make it easy for them to interact with the data structure according to the
fashion of their language.

An approach similar to Flatbuffers, but specifically tailored to big data analytics on
structured data, is found in the Apache Arrow project [29]. Apache Arrow is specifically
tailored to work with large tabular data structures that are stored in memory in a column-
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(a) Examples of where serialization can take place in
a typical big data system.
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(b) How Arrow attempts to prevent serialization through the
use of a common data layer. Fletcher is a contribution of this

dissertation based on Apache Arrow.

oriented fashion. While iterating over column entries in tables, the columnar format
allows more efficient use of CPU caches and vector instructions than a row-oriented
format. It also provides a memory management daemon utility called Plasma, that allows
to place the data structures outside the heaps of garbage collected run-time systems,
furthermore providing interfaces for zero-copy inter-process communication of Arrow
data sets.

Thus, Arrow specifically deals with the challenges S1, S2, and S3 by, respectively:

1. Allowing data to be stored off-heap, unburdened by GC.

2. Providing a common in-memory format and language-specific libraries to access
the data, preventing the need for serialization.

3. Tailoring the format to work well on modern CPUs, by being column-oriented and
as contiguous as possible.

As we have discussed in Section 2.1, the last point is especially important when moving
large amounts of data over relatively ‘long’ distances, e.g. over an accelerator interface
between host memory and accelerator on-board memory. When the data resides in large
contiguous buffers, we may transport the data with large bursts, increasing the throughput
by relatively decreasing the overhead of initiating new transfers. The Arrow in-memory
format dictates that data buffers must be very contiguous compared to commonly used,
language-specific container types. This is also shown in Figure 2.2d, on which we will
elaborate in the rest of this section.

2.3.1. IN-MEMORY FORMAT
Arrow data sets are typically tabular and stored in an abstraction called a RecordBatch. A
RecordBatch is accompanied by meta-data called a schema that specifies the types of the
fields of the objects/records stored in the table. A RecordBatch contains several columns
for each field of a record, that are in Arrow called arrays. These arrays can hold all sorts
of data types, from strings to lists of integers, to lists of lists of time-stamps, and others2.

2Therefore, Arrow Arrays are not to be confused with C-like arrays of fixed-size elements.
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(a) Schema:

Field A:
Float (nullable)
Field B:
List(Char)
Field C:
Struct(E: Int16, F: Double)

(b) RecordBatch:

A B C
0.5f "fpga" (42, 0.125)

0.25f "fun" (1337, 0.0)
; "!" (13, 2.7)

(c) Arrow buffers:

Buffers for:
Field A Field B Field C

Index
Validity

(bit)
Values
(float)

Offsets
(int32)

Values
(char)

Values E
(int16)

Values F
(double)

0 1 0.5f 0 f 42 0.125
1 1 0.25f 4 p 1337 0.0
2 0 × 7 g 13 2.7
3 8 a
4 f
5 u
6 n
7 !

Figure 2.8: An example schema (a) of a RecordBatch (b) and resulting Arrow buffers (c).

Arrow arrays consist of several contiguous Arrow buffers, that are related, to store the data
of a specific type. There are several types of buffers. In this work we consider validity
buffers, value buffers and offset buffers.

Validity buffers store a single bit to signify if a record (or deeper nested) element
is valid or null (i.e. there is no data). Value buffers store actual values of fixed-width
types, similar to C arrays. Offset buffers store offsets of variable length types, such as
strings (which are lists of characters), where an offset at some index points to where a
variable-length item starts in another buffer.

When a user wants to obtain (a subset of) a record from the RecordBatch, through the
schema, we may find out what buffers to load data from to obtain the records of interest.
An example of a schema, a corresponding RecordBatch (with three arrays and the resulting
buffers are seen in Figure 2.8.

2.3.2. FPGA INTEGRATION CONSIDERATIONS

Typically, an FPGA accelerator developer designs an accelerator kernel that has to request
access to the data sets through a byte-addressable memory interface. That means the
accelerator must typically request a bus word from a specific byte address. In relation
to the previously mentioned challenge H2, however, in the case of a tabular data set
stored in the Arrow format, it would be more convenient to express access to the data by
supplying a table index, or a range of table indices, and receiving streams of the data of
interest in the form of the types expressed through the schema, rather than as a bus word.
This is illustrated for the example of the strings in Figure 2.2e. Because schemas allow
the expression of a virtually infinite number of types through nested combinations, an
implementation of such a mechanism is challenging, and will be discussed thoroughly in
Chapter 3.

The fact that there is a higher level description of the data structure (the schema)
furthermore provides an advantage. While designing the functional aspects of an FPGA
accelerator can already be challenging, a significant portion of design time involves struc-
tural aspects of the infrastructure feeding such interfaces, as described in challenge H3.
Interface design often deals with converting data on very wide hardware buses (the
datacenter-grade platforms used in this dissertation use between 512 and 1024 bits) to
something more usable at the input of the accelerator. This includes pointer arithmetic
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to determine which bytes are the bytes of interest, parallelizing or serializing words into
larger or smaller chunks, and shifting them into the right positions before turning them
into data streams to be absorbed by some kernel.

The relation between the raw bytes of a RecordBatch are known from the schema and
the format specification. It is therefore possible to automatically generate circuits that
perform the required pointer arithmetic and pre-processing of raw bus words into streams
that are more meaningful and usable to an accelerator developer. More specifically, based
on the schema, an interface may be generated that as a command takes a range of
object/records indices of a RecordBatch and streams out the requested fields as exactly
the data types expressed in the schema. Furthermore, parts of the control and data flow
on the host-side may also be automated (e.g. passing buffers addresses and potentially
moving data to accelerator on-board memory).

With such a setup, would it possible to operate at system bandwidth using the Apache
Arrow in-memory format? In general, any serialized format suitable for FPGA processing
causes as few pointer traversals as possible, requires as little pre-processing or reordering
in the accelerator as possible and is streamable. With this in mind, we investigate two
forms of data that can be generalized to all data structures; fixed-width data fields and
variable-length data fields.

FIXED-WIDTH FIELDS

RecordBatch columns with fixed-width elements (e.g. floats, booleans or ints) are in
Arrow format stored in one contiguous values buffer, equivalent to a C-like buffer. Given
some index of data to obtain, an offset has to be calculated, the specific data word (or
words) have to be loaded. Upon receiving the raw bytes, the bus words have to be shaped
into the correct type, before they can be presented on a streaming output. If kernels
can absorb multiple elements per cycle, or if multiple kernels want to read from the
same column in parallel, it is possible to match system bandwidth on such an interface.
Assuming a kernel requests the full range of objects from the table, only one “pointer” is
traversed to read this field for all objects of interest with maximum size pipelined bursts
on the memory interface.

This is much more efficient than if the accelerator would have to traverse a pointer for
each fixed-width element. For a C programmer it may seem far fetched for a collection of
integers to be stored as a list of pointers to integers. However, some high-level languages
(such as Python and R) box every integer into an object (hence the need for e.g. Numpy
providing more efficient, native implementations to perform matrix operations on large
collections of integers, among others)). Any interface dealing with such an in-memory
lay-out will quickly be bounded by memory latency if such a collection of integers is to be
traversed through pointers to the integer objects.

VARIABLE-LENGTH FIELDS

More interesting are Arrow columns of variable length types (e.g. a UTF-8 string). They
are referred to as lists of some other type (e.g. a List<Char> or List<List<Int> >). They
contain at least two buffers, an offsets buffer and the values buffer. An offset at some
index in the offsets buffer corresponds to the index of the first element of the list in the
values buffer. The values buffer contiguously holds all primitive list elements. This format
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offers some advantages that an interface generation framework may exploit over what
HLS-compilers can assume about this data structure.

More formally, consider the case where a variable length object is represented through
two Arrow buffers; the offsets buffer O = {o1,o2, ...,oN } ∈ Z≥ and values buffer V =
{v1, v2, ..., vM }. O, in the C-language, will be represented as an unsigned integer array. A
C-based HLS compiler may not make assumptions about the values of oi , as they are
defined during run-time. More specifically, it cannot assume that in the case of an Arrow
offsets buffer, oi+1 −oi ∈Z≥; the outcome of this calculation might also yield a negative
integer. Therefore, not to lose generality it must request each run of value buffer elements
voi ...voi+1 separately, and any data path consuming the data is subject to memory latency.

Hardware pre-fetching (such as explored in [30]) or using spatial locality in caches may
improve this behavior, but these constructs are costly, especially when, in the case of the
Arrow format, they are not required. To elaborate, when requesting a range j ...k of variable
length objects, in fact the whole range of values of interest vo j ...vok+1 can be requested
from the contiguous buffer. This can be bursted into a FIFO, ready to be delivered on
the output stream synchronized with a length stream resulting from subtracting two
consecutive offsets. Thus, memory latency for pointer traversal is only paid three times
independent of the amount of variable length objects that are requested; once to obtain
ok+1 from the offsets buffer, once to obtain all offsets of interest o j ...ok+1, and once to
obtain all values of interest. No dynamic hardware pre-fetching or caches are required to
deliver throughput that is close to system bandwidth. This approach also generalizes to
nested lists.

Furthermore, with these assumptions, this interface can be generated automatically,
without the need to manually write an HDL-based interface or the need to write special
HLS functions that mimic this optimal behavior. HLS templates for transformation
functions used in higher-order functions such as map, filter and reduce, can immediately
be provided with length stream and value stream as arguments. Again, this approach
generalizes to nested types.

Arrow also supports other convenient data types such as structs, sparse and dense
unions and dictionaries, which are discussed in its format specification. Furthermore, a
special type of fixed-width field that contains a validity bit to allow entries to be nullable
is supported.

2.3.3. LIMITATIONS

Some limitations to the Arrow approach exist. First, once data sets have been built in
memory, it is not trivial to mutate them without breaking contiguousness. Therefore,
Arrow is best at storing immutable data sets in memory but less powerful when working
with algorithms that aim to mutate data sets in place.

Second, at the time of writing, no data format is specified for graph-based data sets, or
other more exotic non-tabular formats. Still, graphs can generally be represented through
tables, although there is, at the time of writing, no Arrow standard specification.

A final limitation is that because a different in-memory format is used than some
language run-time is used to, code that accesses data (accessors) must go through an
additional layer (e.g. some Arrow language specific library) rather than being able to
use default ways of accessing object or record fields. While investigating this drawback,
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we did not find any significant performance degradation. We have investigated C++ (a
case where code is compiled to native instructions), where the performance of accessing
Arrow based containers is similar and sometimes faster than accessing STL containers, as
Arrow exposes raw pointers to the data buffers. For Java (a case where code is compiled
to virtual machine bytecode), access to Arrow based data is done through calls to the
Unsafe library, as the data is stored outside the VM managed heap. Fortunately, widely-
used implementations of the JVM inline these calls during JIT compilation, providing
similar performance to normal object field accessors. In Python (a case where code is
interpreted), it is common for high performance libraries to use native code underneath
(e.g. NumPy) written in Cython. This involves extra developer effort but is a common
trade-off made in the Python ecosystem.

Establishing that besides these limitations, the Arrow in-memory format is indeed
suitable since it is highly contiguous and streamable, the next Chapter will discuss the
implementation of an interface generation framework called Fletcher, based on the Arrow
format. As shown in Figure 2.7b, this will add methods to supply FPGA accelerators to
operate on data sets in that format.

2.4. CONCLUSION

In this chapter, we have discussed challenges for FPGA accelerators to become widespread
alternatives to existing computational solutions in the domain of big data analytics.
We have stipulated three challenges from the software integration side; complex run-
time system, hardware-unfriendly in-memory layouts of data sets, and (de)serialization
overhead. On the side of designing FPGA accelerators, we discussed three challenges as
well; a relative lack of accelerator platform-agnostic open-source tooling geared towards
an HDL style flow, a high design effort because of a lack of interfaces tailored towards
the data structure needing to be accessed, and a high design effort because the need to
design a large amount of infrastructure.

We have quantitatively studied the widely used run-time system, the Java Virtual
Machine (specifically the OpenJDK HotSpot VM), with respect to attainable serialization
throughput. We have demonstrated that the attainable throughput does not match the
bandwidth of contemporary and upcoming accelerator interfaces.

Alternatives from the open source big data systems software ecosystem to deal with
the problems of complex run-time systems, hardware-unfriendly in memory layout, and
deserialization overhead, have come into existence alongside this dissertation, specifically
the Apache Arrow project. We have analyzed the merits of its in-memory format towards
solving the challenges on the side of FPGA accelerators as well, and have established that
it is a highly suitable format to transport large tabular data structures over accelerator
interfaces due to its property of being highly contiguous and hardware-friendly.
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3
THE FLETCHER FRAMEWORK

In the previous chapter, we have established that the Apache Arrow columnar in-memory
format is a suitable candidate for data exchange at the bandwidth of contemporary and fu-
ture FPGA accelerator interfaces. Besides the aspect of optimizing data movement between
big data systems software and FPGA accelerators, we are also interested to decrease the de-
sign time associated with implementing and integrating applications for such accelerators.
In this chapter, we propose a hardware interface generation framework based on Apache
Arrow, called Fletcher. Fletcher generates specialized easy-to-use, scalable, streaming DMA
engines for Arrow data structures. This prevents the need for hardware developers to deal
with the required memory interfacing control mechanisms emerging from the complex,
nested data types that may reside in the columns of tabular data sets. Fletcher further-
more generates all infrastructural logic required to access to multiple columns and tables,
providing the entirety of an accelerator design, excluding the computational kernel imple-
mentation. Also, the generated designs are vendor-agnostic and portable across multiple
data center grade accelerator cards.
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3.1. INTRODUCTION
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Figure 3.1: The Fletcher FPGA accelerator framework for big data systems, based on Apache Arrow

In terms of both hardware and software, the increasing heterogeneity in (cluster)
computing frameworks built for big data analytics causes major challenges [1]. One chal-
lenge is that different system components that consume the same data may use different
representation of that data in memory. This introduces a serialization requirement when-
ever data is passed from one component to another, if they are not implemented using
the same technology. We have explored this topic thoroughly in the previous chapter,
especially in the context of FPGA accelerators.

The Apache Arrow project was launched to (among other contributions) overcome
this bottleneck [2], and has already seen integration in several well known tools and frame-
works from the data analytics community, such as Dremio, Spark, Dask, and Pandas. The
Arrow project defines a common columnar in-memory format for data sets and provides
zero-copy inter-process communication libraries for various languages, including (at the
time of writing) C, C++, Java, Python, R, Matlab, Go, C#, JavaScript, Ruby and Rust. For a
schematic overview, recall Figure 2.7b.

In the previous chapter, we have established that the Apache Arrow format is usable
in the context of FPGA acceleration, where serialization bottlenecks can also be present.
With the help of Arrow, we can tremendously improve end-to-end accelerated application
throughput, because host-side serialization throughput from various high-level languages
can generally be several orders of magnitude lower than accelerator interface throughput
that contemporary or upcoming interfaces such as PCIe, CXL, CCIX, or OpenCAPI (intend
to) provide [3]. Therefore, the benefits of Apache Arrow may help alleviate bottlenecks in
the context of FPGA accelerators as well.

A second advantage to using Arrow’s standardized format exists. Because the in-
memory format is derived from meta-data about the data sets, called schemas, we may
also automatically derive a highly optimized hardware interfaces, (that could be con-
sidered as specialized DMA engines), from these schemas. From the perspective of an
accelerator developer, these interfaces provide an easier starting point to interface with
Arrow data sets, and in turn, to any of the languages supported by Arrow.

Access to objects/records and their fields can be expressed through tabular data set
indices rather than the usual byte addresses, preventing the need to manually design units
that perform tedious pointer arithmetic and perform the required requests on a memory
interface. After supplying an index range of objects or records to process, the interface
delivers streams of the exact data types expressed through the schema, rather than bus
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words. This allows the FPGA accelerator developer to fully focus on implementing the
actual computational path of the accelerator only, rather than having to bother with the
interface and the underlying infrastructure as well. This can normally be a cumbersome
exercise, especially for data sets that consist of not just primitives such as ints or floats,
but also contain more complex data types such as structure, lists and dictionaries (and
any nested combination thereof).

Additionally, an advantage from building on top of the Apache Arrow ecosystem is that
through Fletcher, high-performance FPGA accelerator integration is made available to all
supported languages. Finally, a resulting advantage from delivering object or record fields
as streams is that this integrates more naturally with dataflow oriented design styles, and
potentially HLS-tools supporting this style, without having to write code that is interface
specific.

We contribute the implementation of these ideas in the form of a fully open-sourced
(including experiments, see [4]), vendor agnostic FPGA acceleration framework called
Fletcher1. Fletcher is an FPGA accelerator framework specifically built on top of Apache
Arrow, with the intent to not only solve challenges S1, S2, and S3 on the big data analytics
framework integration side, but also to solve challenges H1, H2, and H3 on the hardware
development side. This is illustrated in Figure 3.1. As such, Fletcher aims to decrease the
integral time-to-solution for FPGA accelerated big data systems, as discussed in Chapter 1.

This chapter will describe the implementation of the Fletcher framework in detail. We
will first give a high-level overview and discuss some related work in Section 3.2. We then
describe some of the fundamental hardware components underlying the framework in
Section 3.3. A large portion of the infrastructure is generated through software tools, that
are described in Section 3.4. We give an example of how the software tools are used in
Section 3.5. Specific applications and real use cases are described in Chapter 4.

3.2. HIGH-LEVEL OVERVIEW
A high-level overview of Fletcher, is seen in Figure 3.2. In this figure, the general compile-
time and run-time flow is depicted, explained as follows:

DESIGN TIME OVERVIEW

At compile-time, a developer starts with an Arrow schema. From the schema, a template
for the accelerator kernel implementation, and a complete infrastructure with interfaces
to the kernel are generated. The interfaces provide high-performance, easy-to-use streams
of requested data from the Arrow tables, and are generated by a tool called Fletchgen.

The term easy-to-use requires some elaboration. When accessing tabular data, one
would prefer to do so through row indices rather than byte addresses. This has lead
the Fletcher project to construct hardware components with configurable, streamable
interfaces, that allow to provide a range of row indices, returning one or multiple streams
of data corresponding to the types of Arrow tables. In contrast to a byte-addressable
memory interface, this addresses challenge H2.

We briefly give an overview of the hardware structure, before diving into details in
the next section. The Fletcher project contains some basic components that match

1A frequently asked question about the origin of the name may be answered by saying it needed to be something
with an F for FPGA and it needed to have something to do with arrows.
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Figure 3.2: Architectural overview of Fletcher. Upper part of the figure shows the compile-time (development)
flow, lower part of the figure shows the run-time flow for host system (left) and accelerator (right).

the abstractions of Arrow data sets. Based on an extensive vendor-agnostic library of
streaming hardware primitives, Buffer Readers and Writers read/write from/to Arrow
buffers. Combined according to the Arrow schema, they form Array Readers/Writers
to read/write from/to Arrow arrays. This is more complicated than may seem initially
due to the fact that the data types of the arrays may be variable-length and nested.
It was still possible to capture the rather generative architecture in VHDL. Therefore,
the configuration is passed to the Array Readers/Writers through a configuration string
parameter, which is internally parsed and used to generate the appropriate structure
corresponding to the Arrow array type.

The translation from Arrow types to the appropriate configuration string for Array
Readers and Writers is done through a software tool called Fletchgen based on a hardware
construction library called Cerata. Fletchgen also structurally combines Array Readers
and Writers into RecordBatch Readers and Writers, to match the RecordBatch abstraction,
It furthermore provides syntactically pleasing interfaces to the kernel, matching the field
names of Arrow schemas, since VHDL does not allow to generatively change port names to
something meaningful for a specific application. It then combines RecordBatch Readers
and Writers into a full-fledged design. It finally generates the appropriate memory bus
infrastructure and the control path that matches how the run-time library (explained
next) automates most of the control flow.

Developers may add metadata to the Arrow schema and its fields to generate interfaces
that, e.g. deliver multiple elements per cycle, or ignore schema fields altogether if they
are not of interest. This allows the developer to make trade-offs between area, power and



3.2. HIGH-LEVEL OVERVIEW

3

55

performance.
Fletchgen allows conversion of existing Arrow RecordBatches to a memory model

for simulation that mimics a host interface and memory. In this way, a designer may
perform hardware/software co-design of the kernel in simulation, agnostic of the final
implementation platform.

To validate the correctness of the Array Readers themselves, schemas were generated
randomly, where at each schema nesting level (within structs and lists) the complexity
decreases on average such that eventually the nesting ends. Data sets based on this
schema were generated randomly and random ranges of data are requested. The resulting
stream outputs are checked with the expected outcome. Using this method, over ten
thousand generated interfaces are validated in simulation.

RUN TIME OVERVIEW

At run-time, the enumerated steps in Figure 3.2 are taken:

1. Starting with a data source (e.g. a Parquet [5] file on disk), the data is loaded into
memory.

2. Rather than loading the data set into a language native container (that would
incur serialization overhead as soon as the data is needed in the accelerator), the
application will ingest the data into memory formatted as an Arrow-based data set
(e.g. a RecordBatch). Arrow library functions will place the data in host memory
according to the schema and the format specification (if not already in the Arrow
format). Note that this approach is in general required to exploit the benefits of
Arrow as much as possible, irrespective of the use of Fletcher, and is in some big
data analytics frameworks key to high performance [6].

3. The application can request the Fletcher run-time libraries to prepare the Arrow
data set for processing on the accelerator. For some platforms this simply means
passing virtual addresses of the buffers [7], and for other platforms this means a
copy of the buffers must be made to accelerator on-board memory. This process is
fully automated in the Fletcher run-time libraries. Basic use requires the user to
only claim the platform / accelerator card, create a context in which the on-board
memory is managed by the run-time, bind a host-side abstract representation of
the kernel to a context, and provide the input RecordBatches as an argument to
the kernel. Advanced users may use lower-level API calls to the Fletcher run-time
system to e.g. place other data in the accelerator memory and control other data
paths not generated through Fletcher.

4. The application can now issue commands to the kernel component of the accelera-
tor. Commands include providing other types of arguments, reset, start, stop and
poll for completion.

5. After the kernel receives the commands from the application, it can request a row or
ranges of rows from the generated interface through a pipelined command stream.

6. The generated interface will request the desired data from the host memory or the
accelerator on-board memory.
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7. After receiving the data from the memory, the interface provides streams of data
back to the kernel, containing the data from the requested rows and fields, in the
form specified in the schema.

The last two steps can be reversed in case the kernel wants to write to an Arrow data
set in memory.

3.2.1. RELATED WORK
Before we take a deep dive into Fletcher’s internals in the next section, we will first consider
some related work on FPGA acceleration frameworks. Several solutions to abstract away
memory bus interfaces are commercially available and integrated into HLS tools (such
as Xilinx’ SDAccel and Intel’s FPGA SDK for OpenCL). However, they have no inherent
support for nested types that Arrow schemas can represent, and usually work well only
with simple, C-like primitive types and arrays. HLS tools are also known to have problems
dealing with dynamic data structures, as described in [8], that Arrow allows to express. At
the same time, after Fletcher generates an interface that delivers streams which HLS tools
can operate on very well.

Thus, while many commercial tools exist that automate infrastructure design, most of
them are geared towards the HLS approach, but provide little help to users that for reasons
mentioned above prefer to work with HDLs to describe their solution. Previous research
has extensively investigated hardware interfaces for more generic, C-style dynamic data-
structures through specialized DMA engines [9], but does not focus on integration with
modern software frameworks from the big data analytics ecosystem analysis. To the best
of our knowledge, Fletcher is the only open source FPGA accelerator framework that
deals with challenge regarding the design to generate hardware infrastructure (defined as
challenge H3 in Chapter 2) specifically in the context of big data analytics on tabular data
sets for those that prefer an HDL design flow.

A number of frameworks do exist that help deal with the challenge related to platform
portability (Chapter 2, challenge H1). We first give an overview of related work regard-
ing this challenge, also shown in Table 3.1. This helps us compare Fletcher to existing
frameworks, and stipulate the differences. We use the following criteria to include specific
frameworks in our comparison:

• The framework is active and publicly available open-source.

• The framework targets datacenter-grade accelerator cards/platforms.

• The framework provides abstractions that provide some form of portability between
such cards/platforms.

As shown in the table, there are currently a small number of other frameworks that
adhere to these criteria. TaPaSCo [11] allows designers to easily set up systems that per-
form several hardware accelerated tasks in parallel. It is in some sense complementary to
Fletcher, since (as will be discussed again later) Fletcher provides an AXI4 top-level for
memory access, alongside an AXI4-lite for the control path of kernel, exactly fitting the
integration style of TaPaSCo’s processing elements. TaPaSCo furthermore allows design-
space exploration to find optimal macroscopic configurations of the parallel kernels,
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Framework Focus Targets Ref.
Fletcher HLL software integration, tabular data AWS EC2 F1, OC-

Accel, Xilinx Alveo
[10]

TaPaSCo Parallel kernels, DSE AWS EC2 F1, Various
Xilinx-centric

[11]

Spatial HDL (eDSL), DSE AWS EC2 F1, Vari-
ous Xilinx-centric, In-
tel Arria 10, other
non-FPGA targets

[12]

OC-Accel OpenPOWER/OpenCAPI systems Alphadata 9V3, 9H3,
9H7

[13]

Table 3.1: Overview of open-source FPGA accelerator development frameworks

a feature that Fletcher does not have. It also allows to target a wide variety of (mainly
embedded-oriented, but some datacenter-grade) FPGA accelerator cards, although cur-
rently only those that contain Xilinx FPGAs. Spatial [12] is mainly a domain-specific
language embedded in Scala, tightly connected to the Chisel hardware description lan-
guage [14]. The language provides a very high level of abstraction to design accelerators,
and targets not only various FGPA accelerator platforms (of both Intel and Xilinx), but also
CGRA-like and ASIC targets. Aside from not being a language itself, Fletcher differs from
Spatial in the sense that it is less generic, and focuses only on abstractions to easily and
efficiently access tabular data structures described in Arrow. OC-Accel [13], the successor
of CAPI SNAP, does adhere to the criteria described, although it is still somewhat platform-
specific, since it allows to target FPGA accelerator systems that have an OpenCAPI [15]
enabled host system, typically found in contemporary POWER systems. OC-Accel is
a target for Fletcher, aside from AWS EC2 F1 and Xilinx Alveo cards. We conclude the
comparison by mentioning that Fletcher is a more domain-specific solution that only
works for the tabular data structures of Apache Arrow. This prevents Fletcher from being
used in other domains, although the lessons learned are of value when creating similar
frameworks for other domains.

While Arrow is not the only framework following the trend of in-memory computation
for big data frameworks (an overview can be found in [16]), it is a framework that is espe-
cially focused on providing efficient interoperability between different tools/languages.
This allows the eleven languages supported by Arrow to quickly and efficiently transfer
data to the FPGA accelator using Fletcher. State-of-the-art frameworks to integrate FPGA
accelerators with structured data exist [17], although interface generation specific to the
schema data types and serialization overhead are not discussed.

3.3. HARDWARE INTERNALS
Consider an accelerator to be the data sink in case an Arrow RecordBatch is being read.
From the description in the previous section, we summarize a set of requirements for the
generated interface:

1. Row indexing: The data sink is able to request table elements by using Arrow table
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row indices as a reference. In turn, the data sink will receive the requested elements
only.

2. Streaming: The elements will be received by the sink in an ordered stream.

3. Throughput: The interface can be configured to supply an arbitrary number of
elements in a valid transfer.

4. Bus interface: The host-memory side of the interface can be connected to a bus
interface of arbitrary power-of-two width.

The first requirement allows developers to work with row indices rather than having to
perform the tedious work of figuring out the byte addresses of data (including potentially
deeply nested schemas with multiple layers of offset buffers). Furthermore, it implies that
elements are received in the actual binary form of their type, and not, e.g., as a few bytes
in the middle of a host memory bus word (that are often 512 bits wide for contemporary
systems). This allows the developer to not have to worry about reordering, serializing or
parallelizing the data contained in one or multiple bus words.

The second requirement maps naturally to hardware designs that often involve data
paths with streams of data flowing between functional units.

The third requirement allows multiple elements of a specific data type to arrive per
clock cycle. For example, when a column contains elements of a small type (say a Boolean),
it is likely the accelerator can process more than one element in parallel. This differs from
Requirement 2 in the sense that the elements that will be delivered in parallel are part of
the same request mentioned in Requirement 1. Furthermore, it can be that the top level
element is a list of small primitive elements. Thus, one might want to absorb multiple of
the nested elements within a clock cycle.

The last requirements allows the interface to be connected to different platforms that
might have different memory bus widths. In the discussions of this work, we will generally
assume that this width is set to 512 bits, since the platforms that Fletcher currently
supports both provide memory bus interfaces of this size. However, Fletcher can also
operate on wider or narrower bus interfaces.

VENDOR-AGNOSTIC HARDWARE LIBARY

Fletcher aims to be vendor-agnostic in order to thrive in an open-source setting. All
designs are based on streaming interfaces, allowing for a natural dataflow-oriented style
of design, commonly seen in FPGA accelerator systems. This requires custom streaming
primitives that can perform the basic operations on streams. Commercial tools contain
IP cores to support some (but not all) of these operations as well. However, to engage
with an open-source oriented community, it is important to not force designs to use
vendor-specific solutions. This causes the need for a custom streaming operations library
that is maintained alongside Fletcher.

The most important streaming components are discussed in this subsection. The
most basic primitives on which all other components are built, are as follows:

Slice A component to break up any combinatorial paths in a stream, typically using
registers.
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FIFO A component to buffer stream contents, typically using RAM.

Sync A component to synchronize between an arbitrary number of input and output
streams.

The throughput requirement mentioned in the previous section dictates that streams
must be able to deliver multiple elements per cycle (MEPC). To support this, and other
operations, the previously mentioned primitives are extended by the set of following
stream operators:

Barrel A pipelined component to barrel rotate or shift MEPC streams at the element
level.

Reshaper A component that absorbs an arbitrary number of valid elements of an MEPC
stream and outputs another arbitrary number of elements. This element is use-
ful for serializing wide streams into narrow streams (or vice versa, parallelizing
narrow streams into wide streams). The element can also be used to reduce
elements per cycle in a single stream handshake or to increase (e.g. maximize)
them. The implementation of the Reshaper uses the Barrel component.

Arbiter A component to arbitrate multiple streams onto a single stream.

Buffer An abstraction over a FIFO and a sync with a variable depth.

On top of the streaming components (especially the Arbiter and Buffer), a light-
weight bus infrastructure has been developed to allow multiple masters to use the same
memory interface. This bus infrastracture is similar to (and includes wrappers for) AXI-4,
supporting independent read/write request and data channels and bursts.

Read/Write Arbiter Arbitrates multiple masters onto a single slave.

Read/Write Buffer Allows buffering of at least a full maximum sized burst to relieve the
arbiter of any back-pressure.

3.3.1. COMPONENTS TO MATCH ARROW ABSTRACTIONS

IMPLEMENTATION ALTERNATIVES

Designing an interface to Arrow data could follow different approaches. A flexible ap-
proach would have a small customized soft processor generate the requests based on a
schema or some bytecode that is compiled on the host. In this way, any schema (reason-
ably limited in size) could be requested, and schemas can be changed during run-time.

However, this approach would have several drawbacks. First of all, it would intro-
duce more latency as it takes multiple instructions to calculate addresses and generate
requests. Moreover, as developers can create schemas with fixed-width types of arbitrary
length, allocating streams for the “widest” case is impractical. If one would supply the
implementation with support for some very wide fixed-width type (effectively limiting
the schemas that can be expressed already), it would cause a relatively large amount of
area overhead for schemas with narrow primitives. For example, consider a hard-coded
1024-bit stream of which some schema only uses one bit. As schema data can be of many
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varieties, the streams would require run-time reordering of the elements coming from
bus words. This involves relatively expensive parametrizations of the Stream Reshaper to
support all possible cases of aligning arbitrary elements. Elements themselves must be
restricted to be smaller than 1024 bits and only a fraction of RAM spent on FIFOs in the
data paths is effectively used.

The aggregate of these drawbacks causes the proposed interface generation framework
to completely configure the generated interface during compile-time. For this purpose,
we introduce highly configurable components that correspond to abstractions seen in
the Arrow software-language specific counterparts.

BUFFERS

Readers: As explained in Section 2.3, Arrow buffers hold C-like arrays of fixed-width data.
We implement a component called a BufferReader (BR). The BR is a highly configurable
component to support turning host memory bus burst requests and responses into fixed-
width type MEPC streams. It performs the following functions:

• Based on the properties of the bus interface and the data type, perform the pointer
arithmetic to locate elements of interest in the Arrow buffer.

• Perform all the bus requests desired to obtain a range of elements.

• Align received bus words.

• Reshape aligned words into MEPC streams with fixed-width data types.

An architectural overview of the proposed implementation of two BRs (in combination
providing a setup to read variable-length types) is shown in Figure 3.3.

The top-level of a buffer reader contains the following interfaces, that are all pipelined
streams:

Command (in) Used to request a range of items to be obtained from host mem-
ory by the BR. Also contains the Arrow buffer address and a spe-
cial tag.

Unlock (out) Used to signal the completion of a command, handshaking back
the command’s original tag.

Bus read request (out) Used to request data from memory.

Bus read data (in) Used to receive data words from memory.

Data (out) A MEPC stream of data corresponding to an Arrow data type.

Reading from a values buffer, and reading from validity bitmap buffers (by instantiat-
ing a BR with element size one) is supported by the rightmost configuration of the BR as
shown in Figure 3.3.

Here, a command stream is absorbed by two units: a bus request generation unit and
an alignment and count controller. The bus request generator performs all pointer arith-
metic and generates bus burst requests. The alignment and count controller calculates,
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Figure 3.3: A BufferReader for an offsets buffer (left) and a values buffer (right)

based on the width of the bus and the type of elements, how much a bus word must be
shifted (especially for the first bus word received), since some first index in the command
stream might point to any element in a buffer. It also generates a count of valid items in
the MEPC stream resulting from alignment. This is also useful when last bus words in a
range contain less elements than requested.

Even though first and last bus words might not be aligned or do not contain all
requested elements, after aligning and augmenting the stream with a count, the reshaper
unit will shape a non-full MEPC stream into a full MEPC stream.

Furthermore, when the last bus word has been streamed to the aligner, an unlock
stream handshake is generated to notify the accelerator that the command has been
completed in terms of requests on the bus.

Offset buffers require the consumer of the data stream to turn an offset into a length. In
this way, the consumer (typically the accelerator core logic) can know the size of a variable
length item in a column. Therefore, for offset BRs, two consecutive offsets are subtracted
to generate a length. Furthermore, BRs support the generation of an output command
stream for a second BR. To generate this command stream, rather than generating a
command for the child buffer for each variable length item, the BR requests both the last
offset and the first offset in the range of the command first, before requesting all offsets in
a large burst. The first and last offset can then be sent as a single command to the child
BR, allowing it to request the data in the values buffer using large bursts.

Command (out) Used to generate commands for other buffers. This is useful
when this BR reads from an Arrow offsets buffer.
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Figure 3.4: A BufferWriter for an offsets buffer (left) and a values buffer (right)

Writers: Complementary to BRs, we also implement BufferWriters (BW) that, given
some index range can write to memory in the Arrow format. They contain the same
interface streams as BR, except the data flow is inverted. An architectural overview of
the proposed implementation of two BW is observed in Figure 3.4. Writing to a validity
bitmap buffer or a values buffers requires the buffer writer to operate as follows (as seen
on the right side of the figure).

When a command is given to the BW, the MEPC input stream is delivered to a unit that
pre- and post-pads the stream to force the stream to be aligned with a minimum bus burst
length parameter. Furthermore, it generates appropriate write strobes (only asserting
strobes for valid elements). The elements and strobes are then reshaped to fit into a full
bus word and sent to a bus write buffer. Note that sometimes it is unknown how long
an input stream will be when the command is given. Therefore the command to the BW
supports both no range or with range commands. At the same time this requires counting
accepted bus words into the BusBuffer. A bus request generation unit uses this count to
generate bus requests preferably when full bursts are ready, but if the input stream has
ended, bus words are bursted out with minimum burst steps until the buffer is empty.

If the BW writes to an offsets buffer, it can be configured to generate offsets from
a length input stream. This length input stream can optionally be used to generate
commands for a child buffer. To achieve maximum throughput, the child command
generation may be disabled, otherwise the child buffer writer will generate padding after
the ending of every list in an Arrow Array containing variable length types.

ARRAYS

To support Arrow arrays, that combine multiple buffers to deliver any field type that may
be found in an Arrow schema, we implement special components called Array Readers
and Writers.
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Figure 3.5: Resulting Array Reader configuration from the Schema in Figure 3.14

These Array Readers and Writers instantiate the BRs and BW resulting from a schema
field. They furthermore support:

• Attaching command outputs of offsets buffers to values or validity bitmap buffers.

• Arbitration of multiple buffer bus masters onto a single slave.

• Synchronization of unlock streams of all buffers in use.

• Recursive instantiations of themselves. This, in turn, supports:

– Nested types, such as Lists<List<Type».

– Adding an Arrow validity bit to the output stream.

– Support Arrow structs, such as Struct<List<Int16>, Float>.

The Array Readers and Writers are supplied with a configuration string that conveys
the same information as an Arrow schema. By parsing the configuration string, the
components are recursively instantiated according to the top level type of the field in a
schema. An example for the schema from Figure 3.14 is shown in Figure 3.5. Reading
from the example RecordBatch (corresponding to the schema) will require three Array
Readers. The manner in which they are recursively instantiated is shown in the figure.
Here one can discern four types of Array Reader configurations:

Default A default Array Reader only instantiates a specific Array Reader of the top-level
type of the corresponding schema field, but provides a bus arbiter to share the
memory interface amongst all BRs that are instantiated in all child Array Readers.

Prim An Array Reader instantiating a BR for fixed-width (primitive) types.

Null Used to add a validity (non-null) bitmap buffer and synchronize with the output
streams of a child Array Reader to append the validity bit.

List Used to add an offsets buffer that generates a length stream and provides a first
and last index for the command stream of a child Array Reader.
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Struct Used to instantiate multiple Array Readers, synchronizing their output streams to
couple the delivery of separate fields inside a struct into a single stream.

Through the List and Struct type Array Readers, nested schemas may be supported. On the
top level all streams that interface with the accelerator core are concatenated. A software
tool named Fletchgen generates top levels for various platforms (including AWS EC2 F1
and OpenPOWER CAPI SNAP) that wraps around the Array Readers and Array Writers
and splits the streams that are concatenated onto single signals vectors into something
readable (using the same field names as defined in the schema) for the developer. A
discussion of the inner workings of Fletchgen and the support for these platforms is
outside the scope of this paper but the implementation may be found in the repository
online [4]. The complement (in terms of data flow) of this structure is implemented for
Array Writers. One additional challenge to Array Writers is that they require dynamically
resizable Arrow Buffers in host memory, because it cannot always be assumed that the
size of the resulting Arrow Buffers is known at the start of some input stream. This is an
interesting challenge for future work.

Continuous integration All parts of Fletcher are open sourced. This allows all interested
parties to submit changes to the hardware design. Part of improving the maintainabil-
ity of the project includes bootstrapping of the build and test process in a continuous
integration framework, where the simulator used is also an open-source project [18]. By
using fully open-sourced tools in the collaborative development process, the threshold to
get started with FPGA accelerators and Fletcher is lowered.

3.3.2. RESULTS

FUNCTIONAL VALIDATION

Because the number of schema field type combinations is virtually infinite (due to nest-
ing), it is not trivial to validate the functionality of the framework. To obtain good coverage
in simulation, a Python script is used to generate random schemas with supported types.
The types decrease in complexity the deeper their nesting level, such that at some point
the nesting ends with a primitive type. The resulting buffers are deduced from the schema,
random content is generated and a host memory interface is mimicked. Random indices
are requested from the simulated Array Readers, and their output streams are compared
to the expected output. In this way, the correct functioning of over ten thousand different
generated structures was validated.

THROUGHPUT

Array Readers/Writers for fixed-width types The main goal of the hardware compo-
nents of Fletcher is to provide the output streams with the same bandwidth as the system
bandwidth, if the accelerator core can consume it. In other words, the generated inter-
faces should not throttle the system bandwidth because of a sub-optimal design choice
(like a sub-optimal in-memory format or a sub-optimal hardware component).

We simulate the throughput of Array Readers and Array Writers, assuming that we
have a perfect bus interconnect, i.e. the bus delivers/accepts the requested bursts imme-
diately and at every clock cycle a valid bus word can be produced. We measure the bus
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Figure 3.6: Utilization for an Array Reader for various fixed-width types versus command range (each line
represents a different fixed-width type).
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Figure 3.7: Utilization for an Array Writer for various fixed-width types versus command range.
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utilization and stream output utilization (in handshakes per cycle during the processing
of a command) for different fixed-width types, as a function of the range of Arrow array
entries requested through the command stream. We furthermore assume the accelerator
core can handshake the Array Reader output or Array Writer input stream every cycle.
The results of this simulation for a data bus width of 512 bits (as both platforms, AWS EC2
F1 and OpenPOWER CAPI SNAP, that Fletcher currently supports use this memory bus
width) are shown in Figure 3.6b and 3.6a, where the bus utilization and output stream
utilization is shown, respectively, for various fixed-width types. Similar measurements for
the Array Writers are seen in Figure 3.7.

Initialization overhead and latency of both the Array Reader and Array Writer is present
when the command only requests a short range of entries. However, once the range grows
larger (a likely scenario in most big data use cases where massively parallel operators on
data sets such as maps, reductions and filters are applied), the stream utilization becomes
near optimal. As long as the element width is smaller than the bus width, maximum
stream throughput is achieved, and as long as the element width is equal to the bus
width, maximum bus bandwidth is achieved. We may conclude that an Array Reader
for fixed-width types does not create a bottleneck if the accelerator core can absorb
data at the system bandwidth rate. A developer using an Array Reader can now express
access to an Arrow Array in terms of RecordBatch indices and will receive the exact data
type as specified through the schema on the stream, without degradation of the system
bandwidth.

Array Readers/Writers for variable-length types We simulate throughput of an Array
Reader/Writer for an Arrow Array where the items in the Array are lists of primitive types.
We choose the type to be a character (8 bits). We generate random lists between length 1
and 1024 and, in Figure 3.8, plot the utilization of the bus and the input/output streams
as function of the elements-per-cycle parameter of this Array Reader/Writer. From these
figures, we may observe that the value stream utilization is near-optimal, independent of
the number of elements per cycle that it is configured for; as long as the memory bus can
deliver the throughput, the accelerator core is fed at maximum throughput.

AREA UTILIZATION

For the same memory bus width as the supported platforms (512 bits), we synthesize
Array Readers and Array Writers for various fixed-width types (W=8,16,...,512) and for
various variable-length types (W=8 with EPC=64, W=16 with EPC=32, etc.) for a Xilinx
XCVU9P device (that used in AWS EC2 F1 instances). The area utilization statistics are
shown in Table 3.2.

The Array Readers/Writers require little area. Most configurations utilize less than one
percent of the resources. Interestingly, Array Readers/Writers for small elements require
more LUTs than wider elements on a wide bus. This is due to the reshaper and aligner units
discussed in Section 3.3.1, requiring aligning and reshaping more MEPC stream element
count combinations, increasing mux sizes. Designers may chose to reduce this number
in the Array Readers and Writers themselves, but this requires an asymmetric connection
to the memory bus interconnect, effectively moving the alignment functionality to the
interconnect. Register usage increases when element size increases, since register slices
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Figure 3.8: Bus and input/output stream utilization for an increasing elements-per-cycle parameter
demonstrating utilization near 100%.

Table 3.2: Area utilization statistics for a Xilinx XCVU9P device

Type Resource W=8 W=16 W=32 W=64 W=128 W=256 W=512

Array
Reader
Prim(W)

CLB LUTs 0.30% 0.28% 0.26% 0.24% 0.22% 0.20% 0.21%
CLB Registers 0.20% 0.20% 0.20% 0.20% 0.22% 0.24% 0.26%

Block RAM (B36) 0.65% 0.65% 0.65% 0.65% 0.65% 0.65% 0.65%
Block RAM (B18) 0.05% 0.05% 0.05% 0.05% 0.05% 0.05% 0.05%

Array
Reader
List of
Prim(W)

CLB LUTs 2.34% 1.81% 1.46% 1.32% 1.03% 1.04% 0.78%
CLB Registers 1.01% 1.01% 1.01% 1.01% 1.00% 1.00% 1.00%

Block RAM (B36) 1.30% 1.30% 1.30% 1.30% 1.30% 1.30% 1.30%
Block RAM (B18) 0.09% 0.09% 0.09% 0.09% 0.09% 0.09% 0.09%

Array
Writer
Prim(W)

CLB LUTs 0.20% 0.19% 0.19% 0.20% 0.20% 0.22% 0.23%
CLB Registers 0.28% 0.28% 0.28% 0.28% 0.29% 0.31% 0.33%

Block RAM (B36) 0.37% 0.37% 0.37% 0.37% 0.37% 0.37% 0.37%
Block RAM (B18) 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%

Array
Writer
List of
Prim(W)

CLB LUTs 1.03% 0.97% 0.91% 0.87% 0.80% 0.78% 0.52%
CLB Registers 1.18% 1.12% 1.11% 1.11% 1.06% 1.06% 0.73%

Block RAM (B36) 1.11% 1.11% 1.06% 1.06% 1.06% 1.06% 0.74%
Block RAM (B18) 0.07% 0.05% 0.07% 0.07% 0.07% 0.07% 0.05%
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on the path to the accelerator core match the width of the elements. Block RAM usage is
the same for all configurations, because this depends on the maximum burst length that
has been fixed to 32 beats for all configurations.

3.3.3. SUMMARY
The goal of the Fletcher framework is to ease integration of FPGA accelerators with data
analytics frameworks. To this end, Fletcher uses the Apache Arrow in-memory format to
leverage the advantages of the Arrow project, including no serialization overhead and
interfaces to 11 different high-level languages. To support the wide variety of data set
types that Arrow can represent, and to convert these data sets into hardware streams that
are desirable by an FPGA developer, this work has presented a bottom-up view of a library
of vendor-agnostic and open-source components. These components allow reading
from tabular Arrow data set columns, by providing a range of table indices, rather than
byte addresses, to refer to records stored in the tables. Fletcher is effective at generating
these interfaces without compromising performance. It takes very little area to create an
interface that provides an accelerator core with system bandwidth for any configuration
of the Arrow data set. Fletcher significantly simplifies the process of effectively designing
FPGA-based solutions for data analytics tools based on Arrow.

3.4. FLETCHER TOOLCHAIN

3.4.1. GENERIC FLETCHER HIGH-LEVEL ARCHITECTURE
We have so far described how Array Readers and Array Writers are generated, still using
VHDL only. Although the components can be rather complex in nature already, they allow
to merely access a single Arrow Array in a RecordBatch; one column in the tabular data
structure. However, many applications require access to multiple columns, as well as
multiple RecordBatches. Furthermore, accelerator kernels require a control path from
host software as well.

With these requirements, a generic architecture of a Fletcher-based accelerator de-
signs is presented in Figure 3.9. In this figure, the Array Readers/Writers (hereafter Ar-
rayR/Ws) as described in the previous section are shown. We continue to explain the new
components shown in the figure.

• RecordBatch Reader/Writer:
RecordBatch Readers and Writers (hereafter RecordBatchR/Ws) are components
that wrap around multiple ArrayR/Ws of a single RecordBatch. It may seem that the
level of hierarchy that the RecordBatchR/Ws introduce does not necessarily have to
exist, since the ArrayR/Ws can be operated independently of each other. However,
a user may not want to issue a separate command to each ArrayR/W, but rather a
single command to all ArrayR/Ws in a RecordBatch. The RecordBatchR/W allows
to duplicate a single command stream into multiple command streams for each
ArrayR/W, and allows to merge command responses into a single response stream
as well. This ultimately adds support to access multiple columns.

• Read/Write interconnect:
The Read/Write Interconnect components manage all memory interfaces coming
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Figure 3.9: Generic top-level architecture of Fletcher accelerator designs

from the ArrayR/Ws. Since the memory interfaces of ArrayR/Ws may have var-
ious configurations, but the top-level memory interface typically only supports
one configuration, serializers and parallelizers will automatically be inserted here.
Furthermore, round-robin arbiters and buffers are instantiated in this component.

• Nucleus:
The Nucleus component directly interfaces with the Arrow data streams, the com-
mand streams to the RecordBatchR/W, and with an AXI4-lite bus for memory-
mapped I/O. Users may choose to implement their kernel at this level of abstraction,
requiring them to insert their own MMIO controllers and fully manage the infor-
mation on the command streams to the RecordBatchR/Ws themselves, including
the addresses of the Arrow buffers in the memory. However, the philosophy of
the Fletcher framework is to allow developers to express access to their data in
terms of row indices, not having to worry about pointers (and pointer arithmetic).
Therefore, by default, the Nucleus level abstracts the command streams of the
RecordBatchR/Ws in such a way that the Arrow buffer addresses are hidden. To do
so, it instantiates an MMIO controller that is used to pass information about buffer
addresses from the host to the Nucleus. The MMIO controller is furthermore used
to pass metadata about the specified RecordBatches and run-time information
about the workload, such as the number of rows that a RecordBatch has, and a
range of row indices for the kernel to operate on. Users may also pass or return
application-specific information through these registers from/to the host machine.
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Figure 3.10: Overview of hardware generation components in the Fletcher tool-chain

• Mantle:
The Mantle component wraps around all the other components, resulting in a
top-level design that always has the same interface. In this way, supporting Fletcher
on a new FPGA acceleration platforms is a matter of integrating the Mantle with
the existing subsystems. Any generated Fletcher design can from that point onward
be mapped onto that platform.

Through specialization of the previously described generic architecture shown in
Figure 3.2, based on Arrow schemas, Fletcher faces challenge H3. However, to automate
the specialization itself is a challenge on its own. Because of the large number of varia-
tions of designs that may be generated to accommodate multiple Arrow Arrays, multiple
RecordBatches and the control path thereof, it is infeasible to implement a generic version
of the design shown in Figure 3.2 in HDLs that vendor tools support.

To provide an agile and open-source hardware development experience to the users
of Fletcher, a tool is required that is able to generate application-specific flavors of the
generic architecture. It must furthermore be able to generate a platform-agnostic sim-
ulation environment, such that kernel implementations can be functionally verified
independent of the target platform.

We therefore develop three new tools:

• Cerata; a generic hardware construction library providing high-level abstractions
for structural hardware design.

• Vhdmmio: a generic MMIO controller generation tool taking a simple description
of a register map, outputting VHDL sources with MMIO controller components that
that can be connected to an AXI4-lite bus.

• Fletchgen: an Arrow-specific tool built on top of Cerata, using the abstractions
provided to describe the generic architecture as shown in Figure 3.2, including the
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RecordBatchR/Ws, the Nucleus, the interconnect infrastructure and the Mantle.
It furthermore uses Vhdmmio for the control path from the host system through
memory-mapped I/O.

These tools are part of the Fletcher hardware generation tool-chain, which we will con-
tinue to explain in more detail. A high-level overview of the tool-chain is shown in
Figure 3.10.

3.4.2. CERATA
Cerata is an open source hardware construction library written in modern C++17. It is
intended to be used only for structural hardware design, providing many abstractions
for structural hardware generation. Structural designs can be described as a graph by
connecting nodes representing ports, signals, parameters, literals and expressions. The
graphs are hierarchical, such that they represent either components or instances. Cerata
allows the expression of advanced interface types, supporting in particular nested streams
that often emerge when converting nested Arrow data types into a form suitable for
hardware. These can be connected with single lines of code, similar to how Chisel and
SystemVerilog allow bulk connections.

Like Chisel that is hosted in Scala, Cerata allows already generated design to be
inspected programmatically through its host language C++, resulting in what could be
viewed as introspection. For example, it is possible to describe a component X, and
during generation of another component Y that uses X, to inspect what ports X has in
order to generate some structure that properly supports the instantiation of X. Note that
this allows for a bottom-up generation approach, which is practically not possible in
any traditional hardware description languages like VHDL2. There, all information has
to be known at the top-level, trickling down to the lower levels of the hierarchy. The
graph representations also allows for specific transformations to be implemented, one of
which is to insert stream profilers, as we will discuss later. Since the rest of the Fletcher
tool-chain is written in VHDL and C++ (the latter because the reference implementation
of Arrow, that contains the latest features in general, is also written in C++), we have not
used Chisel for this sort of introspective capability, since it outputs Verilog and is hosted
in Scala.

After constructing and transforming graphs according to the needs of the user, Cerata
can target two back-ends, a DOT [19] back-end to visualize the constructed graphs, and a
VHDL back-end to generate structural VHDL.

3.4.3. FLETCHGEN
The input of Fletchgen are Arrow schemas and RecordBatches (that contain their schema
plus data). All schemas are first checked for required metadata that is Fletcher-specific,
and optional metadata. An overview of all schema-level metadata that Fletchgen under-
stands is as follows:

• A schema name (required), used in the generation of HDL sources.

2Or is arguably incredibly esoteric in slightly more modern languages like SystemVerilog by writing low-level C
support functions against the Verilog Procedural Interface.
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• A schema access mode (required), specifying whether a user would like to read
from a RecordBatch, or write to a RecordBatch.

• Memory interface specification (optional). This defines the properties of the bus
infrastructure at the memory side of the interface. Properties include (amongst
others) data width, address width and maximum burst length.

Additionally, schema fields can be annotated with the following metadata attributes:

• Ignore (true/false); a user not interested in a specific column of the RecordBatch
can choose to ignore it. No hardware support or interface will be generated for this
column. Note that this is an advantage of a columnar data storage system. Columns
can be accessed completely independent of other columns.

• Elements per cycle; the maximum number of elements that can be handshaked in
a single cycle on the output stream of this field.

• Length elements per cycle; the maximum number of list lengths that can be hand-
shaked in a single cycle on the length stream of this field.

• Profile (true/false); a user may choose to insert stream profilers - units that gather
statistics about the handshaking mechanism of (multi-element-per-cycle) streams,
that can be translated into throughput. This helps users make performance/area
trade-offs.

• Tag width; the number of bits used to identify commands and command responses.

After analysis of the metadata and after verification that specific properties (such as
schema names) do not cause any conflicts, the hardware may be structurally described.
Fletchgen generates the design from the bottom-up, starting with the instantiation of all
the required ArrayR/Ws inside their corresponding RecordBatchR/Ws. In this step, the
configuration string for the ArrayR/Ws is derived from the Arrow schema, using API calls
provided by the Arrow library itself to traverse the tree of potentially nested field types.

The ArrayR/Ws are considered to be ‘primitive’ components as far as Fletchgen is con-
cerned, i.e. they do not consist of other components that have to be generated (although
their implementation is described with a very generative style of VHDL). ArrayR/Ws are
described with VHDL, but this language does not allow port names to be generated. The
data and control streaming interfaces therefore have nondescript names that are not easy
to recognize for kernel developers.

The ports would preferably be named after the Arrow schema fields such that they are
easy to recognize for kernel developers. Furthermore, because ArrowR/Ws can cause a
variable number of streams to appear, these streams are concatenated onto port vectors
for each type of stream, while it is more pleasing to get separate interface ports for
every stream related to a specific Arrow field. We have therefore equipped Cerata with
abstractions to concatenate multiple streams onto single ports and vice versa. These
abstractions are used to eventually generate streaming RecordBatchR/W interfaces that
have names corresponding to what Arrow field they were derived from, such that they
become easily recognizable by users.
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Also derived from the schema and its metadata is the memory-mapped I/O register
map. Furthermore, users may supply additional arguments to reserve more custom
registers in the register map through the command-line interface of the Fletchgen tool.
All registers are 32-bits, controlled over an AXI4-lite interface from the host-side. Four
categories of registers are mapped; default registers, schema-derived registers, custom
registers, and profiling registers, as follows:

• Default registers; control, status, and two return value registers for results up to
64-bits wide. Since most of the target platforms have 64-bit addresses, this allows to
pass a pointer to some resulting data structure, or a primitive return value. Resulting
data structures laid out in the Arrow format would typically be passed to Fletchgen
as a separate schema with access mode set to write.

• Schema-derived registers; the range of operation on each RecordBatch (first and
last row index), followed by all Arrow buffer addresses, which we will call Record-
Batch metadata. Because these registers are automatically set by the Fletcher
run-time library, it is imperative that there is a unique order to the metadata, that is
consistent between the hardware implementation and the software run-time. This
is done by first sorting all schemas by name, and then stable sorting them by access
mode. Since schema names must be unique for each access mode, the resulting
unique ordering will make sure the hardware implementation corresponds to how
the run-time library will set all metadata.

• Custom registers; the set of registers supplied by the user, for whatever purpose.

• Profiling registers; the registers that contain results of profiling Arrow data streams.
These include a control register to start and stop profiling, as well as six measure-
ment results; the number of elements transferred on the stream, the number of
cycles the stream valid signal was asserted, the number of cycles the stream ready
signal was asserted, the number of cycles both were asserted, the number of ’last’
signals handshaked (to count the number of stream packets transferred on variable-
length types such as strings) and the number of cycles the profiler was enabled.

After the whole register map is known, Fletchgen generates a human-readable YAML-
file that is passed to the Vhdmmio tool. This tool then generates an implementation of
an MMIO controller according to the register map described above, and also outputs
user-friendly documentation about the register map. Since the implementation of the
MMIO controller is generated by this external tool, inside Fletchgen, it is considered to be
a primitive component. Only a model of its interface is constructed, which is passed onto
the next generation step.

The generated RecordBatchR/Ws and the MMIO controller now contain all informa-
tion necessary to generate three more components. First, the memory bus infrastructure,
that has to connect to the memory interface side of the RecordBatchR/Ws. Second, the
Nucleus, that forwards the Arrow data and control streams to the third component; the
Kernel. Note that the Kernel component is not implemented by Fletchgen, but must be
implemented by the user.

The Nucleus is at first constructed without taking the stream profiler components
into account, since inserting stream profilers is one of the transformation functions
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Figure 3.11: Profiling transformation applied to the Nucleus

available in Cerata. As illustrated in Figure 3.11, after tagging streams with the profiling
option, the profiling transformation function may be called by supplying the component
implementation to transform. Optionally, references to signals where the stream profiler
measurement outputs need to be connected can be given. When they are not given, the
transformation will extend the component interface to contain the profiler measurement
output signals. In the case of Fletchgen, we tag the streams between the Nucleus external
interface and the Kernel corresponding to the field metadata supplied through the Arrow
schema, and we supply the MMIO controller’s profiling registers as output signals.

Now, a Nucleus instantiating the MMIO controller and the Kernel component with
profiling registers is constructed. Together with the bus infrastructure that was generated,
everything is tied together to form the Mantle — the Fletcher generic top-level.

Through the use of the Cerata hardware construction library, we have now imple-
mented everything as shown in Figure 3.9, apart from the Kernel, which is left to the user.
The design achieves the goal of the Fletcher framework; providing the user with hardware
interfaces that correspond to the abstractions of Apache Arrow. They may now access
RecordBatches through a command stream by only supplying row indices, and will read
or write data over streams that correspond with Arrow’s types.

3.4.4. RUN-TIME INTEGRATION

We continue describe how Fletcher is integrated during run-time, where challenge H1
related to portability must also be solved. An overview of the approach is shown in
Figure 3.12, where show the example for two of the supported platforms, AWS EC2 F1
and OC-Accel. Because the top-level component, the Mantle, has the same interface for
any Fletcher design, supporting multiple FPGA accelerator platforms is done creating
platform-specific wrappers for the Mantle that are maintained in a separate open-source
repository to prevent platform-specific code from contaminating the Fletcher code base.
The platform specific low-level drivers to interact with the accelerator framework are
abstracted, first through a low-level library in C, providing a common API for all platforms
to the higher-level Fletcher platform-agnostic run-time libraries that are intended for
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users. Fletcher run-time library dynamically searches and loads platform-specific versions
of its low-level drivers, depending on what platform is available.

The currently supported languages include C++ and Python. The language-specific
Fletcher libraries contain an API leaning heavily on Apache Arrow’s abstractions. An
example of how the accelerator is operated from Python is found in Figure 3.13.

During run-time, users only have to provide references to the RecordBatches of inter-
est. The users only need to manually start the kernel and write and read values to their
custom registers. These are placed into a queue, and automatically made available to the
FPGA accelerator.

3.4.5. SIMULATION

To support users of Fletchgen with functional verification through simulation, note that
in Figure 3.10, users may also supply Arrow RecordBatches. The Arrow schema that is
contained within the RecordBatch will handled like any other schema, except the data
in the RecordBatch will be used to produce a simulation top-level, wrapping the Mantle,
and instantiating simulation-only memories that contain the RecordBatch data. The
simulation top-level sets the buffer addresses and RecordBatch metadata automatically
through the MMIO interface. It continues to send the start signal to the kernel, such that
when the user is ready to debug the kernel, all data and control signals flowing in from
the upper layers of the hierarchy are already handled. Only the custom registers are to be
set appropriately by the user in the simulation top-level.
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1 import pyfletcher as pf
2

3 # Set up an auto-detected platform.
4 platform = pf.Platform()
5 platform.init()
6 # Create a Context for the data
7 context = pf.Context(platform)
8 # Queue input and output RecordBatches.
9 context.queue_record_batch(in_batch, out_batch)

10 # Enable the Context, causing data transfer
11 # and MMIO registers to be set appropriately
12 context.enable()
13 # Set up an interface to the Kernel,
14 # supplying the Context.
15 kernel = pf.Kernel(context)
16 # Start the kernel.
17 kernel.start()
18 # Wait for the kernel to finish.
19 kernel.wait_for_finish()

Figure 3.13: Example of using the Python run-time library to control the accelerator

3.5. USAGE EXAMPLES
To provide an example of the functionality described in the previous section, consider

the following example application. Suppose we have two tables, where one table called
people contains a unique key, names, ages and favorite food. The last item refers to a
second table named foods, containing a unique key and food names. Suppose dinner
must be cooked for all children based on their favorite food, we may query the tables for
the names of all people under 12, and look up their favorite food.

When using the Fletcher framework to set up an accelerator implementation to solve
this problem, we first have to define the Arrow schemas that describe the types of data
each table will hold. An example of how this is done in Python is shown in Figure 3.14a.
Note that one could use any language supported by Apache Arrow libraries to produce
the schema, but for this article we choose Python because it is relatively succinct. The 30
lines of Python code hold enough information to produce Arrow schemas for our example.
They can be passed to Fletchgen to generate a customized, application-specific version of
the architecture presented in Figure 3.2.

On lines 3-15, the developer does not only define a Schema for the ’foods’ table, but
also specifies some data it contains, and places the data inside an Arrow RecordBatch. As
explained in the previous section, the data can be used to generate simulation models.
The developer also supplies metadata on the names field, effectively tagging the resulting
hardware streams to be profiled. Finally, the mandatory metadata are added; the access
mode of the schema, in this case set to read from it, and the name of the schema to
generate appropriate component and interface names.

On lines 16-24, the developer defines a schema, but since the question does not
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1 import pyarrow as pa
2

3 # RecordBatch describing the 'foods' input table:
4 foods = pa.RecordBatch.from_arrays(
5 # RecordBatch data for simulation:
6 [pa.array([10, 31, 32, 70], pa.uint16()),
7 pa.array(['apple', 'pear', 'banana', 'melon'])],
8 # RecordBatch schema:
9 schema=pa.schema([

10 pa.field('id', pa.uint16()),
11 pa.field('name', pa.string())
12 .with_metadata({'fletcher_profile': 'true'}),
13 ]).with_metadata({'fletcher_mode': 'read',
14 'fletcher_name': 'foods'})
15 )
16 # Schema describing the 'people' input table:
17 people = pa.schema([
18 pa.field('id', pa.uint32())
19 .with_metadata({'fletcher_ignore': 'true'}),
20 pa.field('name', pa.string()),
21 pa.field('age', pa.uint8()),
22 pa.field('food_id', pa.uint16()),
23 ]).with_metadata({'fletcher_mode': 'read',
24 'fletcher_name': 'people'})
25 # Schema describing the 'dinner' output table:
26 dinner = pa.schema([
27 pa.field('name', pa.string()),
28 pa.field('food', pa.string()),
29 ]).with_metadata({'fletcher_mode': 'write',
30 'fletcher_name': 'dinner'})

(a) Schema definition example in Python

1 entity Kernel is
2 -- .. (generics omitted for brevity)
3 port (
4 -- The command stream to access the 'id'
5 -- column of the 'foods' table.
6 foods_id_cmd_valid : out std_logic;
7 foods_id_cmd_ready : in std_logic;
8 foods_id_cmd_firstIdx : out std_logic_v..
9 foods_id_cmd_lastIdx : out std_logic_v..

10 -- The incoming Arrow data stream for the
11 -- 'id' column of the 'foods' table.
12 foods_id_valid : in std_logic;
13 foods_id_ready : out std_logic;
14 foods_id_last : in std_logic;
15 foods_id : in std_logic_v..
16 -- .. (other streams omitted for brevity)
17 -- Kernel control signals:
18 start, stop, reset : in std_logic;
19 idle, busy, done : out std_logic;
20 -- Generic result signal going to the MMIO
21 -- controller:
22 result : out std_logic_v..
23 -- RecordBatch metadata coming from the
24 -- MMIO controller:
25 foods_firstidx : in std_logic_v..
26 foods_lastidx : in std_logic_v..
27 -- .. (other metadata omitted for brevity)
28 -- Custom MMIO register input
29 age_threshold : in std_logic_v..
30 );
31 end entity;

(b) HDL output example in VHDL

Figure 3.14: Examples of input and output of Fletchgen

involve returning the unique key of the people, merely their name, we have no use for this
field. By supplying Fletcher-specific metadata, we may ignore this field, and no hardware
will be generated to access this column.

Finally, on lines 25-30, the output schema is defined, with the access mode set to be
able to write to the RecordBatch. For brevity, we have omitted 5 more lines involving
saving the schema and RecordBatch to a file.

After providing Fletchgen with these schemas, we obtain many files that encompass
the whole design as described in the previous section, corresponding to Figure 3.9, but
specialized for the supplied schema. The only thing that the hardware developer has to
do now, is implement the kernel, for which a template was generated. For our example,
the template is shown in Figure 3.14b. Note that we have compacted the template for
reasons of brevity, leaving out several rather detailed signal, and only show code related
to the foods table’s id field. The interfaces provided on the template allow the hardware
developer to reason about the tabular data structures they are working with in terms of
row indices, easing the development process.

In Figure 3.15a and 3.15b, we find the graphical representation of the design that was
generated from the schemas in Figure 3.14a. This is the specialized version of the generic
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Figure 3.15: Graphical representation of example design in Cerata
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Figure 3.16: Streaming interface example, accessing the foods name field.

architecture presented in Figure 3.9.
To demonstrate the method of operation, suppose the kernel implementation requires

all food names from the table. Fletchgen will generate a streaming interface appropriate for
string data, using two streams; one for lengths, and another for the characters. We show
the simulation waveforms of the access mechanism in Figure 3.16. Note that for brevity
we have left out signals of the kernel component that are unrelated to the discussion, and
have highlighted the main points of interest in the figures.

The RecordBatch metadata is automatically supplied through the MMIO controller
before the kernel is given the start signal (A). The kernel can use the foods_lasttidx
input to know the total size of the RecordBatch, to prevent reading out of bounds. However,
if the developer wishes to parallelize the kernel, it is possible to also supply a foods_-
firstidx, such that each instance of this kernel can operate on its own part of the input
tables and output tables. The kernel may send a command on the foods_name_cmd
stream (B) to request the Arrow data, in this case all entries from the name column. Arrow
data will start flowing into the kernel through the foods_name stream, that supplies string
lengths (C), followed by the characters on foods_name_chars (D). Note that the first two
food names appear on the character stream.

Starting off with interfaces that make sense w.r.t. the data structures the developer
has to access contrasts heavily with the normal HDL-flow experience, where a developer
typically starts off with a byte-addressable memory interface and a memory-mapped I/O
interface. This demonstrates the Fletcher’s ability to face challenge H2 as described in
Chapter 2.

We finally demonstrate the ability to fine-tune the generated interface by making
simple modifications to the Arrow schema. As we can see from Figure 3.16, the throughput
of the character stream is relatively low, since only one character can be handshaked
per cycle. Fortunately, the developer has annotated the field, as shown in Figure 3.14a,
with the stream profiling option. After running simulation or the real implementation
of this kernel, the developer may study the stream profile to find that the character
stream provides a bottleneck to the whole system. In that case, the developer may
simply annotate the Arrow field with the previously described option to provide multiple
elements per handshake. Regenerating the design and making slight modifications to
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Figure 3.17: Accessing the foods name field with MEPH.

only the kernel will cause a count field to appear on the stream, as shown in Figure 3.17.
The stream now allows to handshake four elements per transfer, with the count field
indicating how many are valid. Note that the same amount of food names are handshaked
as in Figure 3.16, although rather than taking ten cycles, they are now handshaked over
three cycles, increasing the throughput of the stream at the cost of additional wires and
control logic to support the wider interface.

On a final note, it is hard to properly quantify the reduction in development effort
because of a large human dimension to such a measurement. To give a slight indication of
the development effort saved, we could still look at the lines of code that were generated.
From the thirty lines of Python seen in Figure 3.14a, Fletchgen and Vhdmmio generate
6304 lines of VHDL (not counting blank or comment lines), that are arguably human-
readable and modifiable. This excludes the components that as far as Cerata is concerned
are ‘primitive’. The support library of hardware primitives and ArrayR/W’s amounts to
approximately 30K lines of code. To test a more extensive design, we have also captured all
table schemas of the TPC-H benchmark suite in 120 lines of Python, resulting in Fletchgen
to generate 33K lines of code necessary to provide access to all its tables.

3.6. CONCLUSION

In the previous chapter, we have discussed six specific challenges for FPGA accelerators
to become widespread alternatives to existing computational solutions in the domain
of big data analytics. In this chapter, we have discussed the Fletcher framework that
aims to deal with these challenges with the help of Apache Arrow. Fletcher is built on top
of Apache Arrow, providing a common, hardware-friendly in-memory format, allowing
developers to communicate large tabular data sets between over eleven software lan-
guages without the need for copies, preventing (de)serialization overhead. Fletcher adds



REFERENCES

3

81

hardware accelerators to the list. Several low-level hardware components were designed
to deal with the mentioned challenges for table columns, providing easy-to-use, high-
performance interfaces to hardware accelerated kernels. The lower-level components are
combined into a larger design, based on a generic architecture for FPGA accelerators that
have tabular in- and outputs. Through an extensive infrastructure generation framework,
specialized, data type-driven specializations of the generic architecture are generated,
automating the tedious work of infrastructural design. The infrastructure generation
tool made specifically for Arrow is built on top of a generic C++17 structural hardware
construction library called Cerata, and on an MMIO controller generator framework
called Vhdmmio. Developers can focus on the design of their kernels that are supplied
with easy-to-use and high-performance hardware interfaces. The Fletcher tool-chain and
run-time libraries drastically reduce the design and integration effort of FPGA accelerators
into big data analytics pipelines while allowing the tabular data structures to be accessed
at interface bandwidth. In that respect, Fletcher provides an integral approach to reduce
the time-of-solution of FPGA accelerated system designs.

REFERENCES
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4
APPLICATIONS

In this chapter, we demonstrate various FPGA-accelerated applications developed with
the help of (components of) Fletcher. We first discuss an accelerator implementation
for regular expression matching, where we especially focus on the serialization overhead
associated with data exchange between host system software running in C++, Python and
Java. The use of Apache Arrow and Fletcher to prevent this overhead results in an increased
accelerated application throughput of between 1.3× and 49×, compared to running the
accelerated application with serialization from a traditional in-memory layout. Second,
we implement an accelerator for k-means clustering, showing a benefit of up to 2.7 ×,
even though this application is more computationally intensive, typically less impacted
by serialization overhead. Third, we demonstrate an accelerator writing strings from
FPGA into host memory. The design demonstrates the ability to scale up Fletcher data
streams to match system bandwidth, where we achieve a throughput of 12 GB/s. Fourth, we
briefly explore a simple HLS kernel attached to a Fletcher streaming interface. Fifth, we
extensively study the PairHMM algorithm that is applied in genomics, and accelerate the
algorithm with an FPGA accelerator, later using Fletcher to provide easy to use interfaces
to it, and modifying the arithmetic units to make use of the new posit floating-point
format, increasing numerical precision. This application demonstrates the specialization
advantage of FPGA accelerators achievable with a much better time-to-solution than would
be possible when designing an ASIC solution. The design provides a fifteen-thousand times
speedup over a CPU that is required to perform the arithmetic with software emulation.
Finally, we explore an FGPA-accelerated application for Apache Parquet to Apache Arrow
conversion using Fletcher. Since the bandwidth of storage systems is also rapidly increasing,
we find that CPUs can no longer keep up with the storage interface bandwidth, and we
off-load the conversion operation to an FPGA, that may be directly attached to storage in
the future. This results in a file decoding throughput of 6 GB/s for the FPGA accelerator
compared to 2 GB/s for an optimized CPU implementation.
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4.1. INTRODUCTION
In this chapter, we implement six applications with the help of (parts of) the features of
Fletcher described in the previous chapter. The first three applications, regular expres-
sion matching, k-means clustering, and writing strings to memory at high bandwidth,
specifically focus on the increased performance when serialization overhead is prevented
through the use of Arrow. This is described in Sections 4.2, 4.3, and 4.4, respectively. We
briefly explore integrating with a commercial HLS tool in Section 4.5.

The remainder of the chapter focuses more on applications themselves, where Fletcher
was used to decrease the design effort. We continue to describe the acceleration of a larger
application in genomics, called Variant Calling, in Section 4.6, that was later extended to
make use of Fletcher for easy integration, and posit arithmetic for increased arithmetic
precision. Up to Section 4.6.7, an in-depth application-specific discussion and kernel
design follow, somewhat orthogonal to the contributions related to Fletcher. From that
section onward, we introduce the Arrow schema and upgraded architecture to make use
of Fletcher and posit arithmetic.

Finally, in Section 4.7, we explore how a widely used file format in big data analytics,
called Apache Parquet, may be decoded in an FPGA and, through the use of components
from Fletcher, immediately written to host memory in the Apache Arrow format. The
contributions in that Section have been explored based on the increasing amount of I/O
bandwidth observed for non-volatile storage systems.

It must be mentioned that these applications were developed alongside the many
features of Fletcher described in Chapter 3, starting from the moment the Array Readers
were available. Therefore, not all previously presented features were used in each of the
presented accelerator designs.

We have used a variety of datacenter-grade systems, interfaces, and FPGA accelerator
cards to perform the experiments, of which an overview is shown in Table 4.1.

POWER8/ADM7V3
Node IBM Power System S824L (8247-42L)
Interface CAPI1.0 over PCIe3 x8
Card AlphaData ADM-PCIE-7V3
FPGA Xilinx XC7VX690

Amazon EC2 F1
Node EC2 F1 instance, Intel Xeon E5-2686 v4 CPU
Interface PCIe3
Card undisclosed
FPGA Xilinx XCVU9P

POWER9/ADM9V3
Node IBM POWER9 "Barreleye"
Interface CAPI2.0 over PCIe 3 x16
Card AlphaData ADM-9V3
FPGA Xilinx VU3P

POWER9/ADM9H7
Node Inspur FP5290G2, 2× POWER9 Lagrange 22-core CPU
Interface OpenCAPI
Card AlphaData ADM-PCIE-9H7
FPGA Xilinx XCVU37P

Table 4.1: Overview of the systems used in this chapter
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Figure 4.1: Architecture of the regular expression matching experiment. For AWS EC2 F1: N=16,
POWER9+CAPI2.0: N=8.

4.2. REGULAR EXPRESSION MATCHING

Consider a use case where the number of matches to a regular expression in a large
collection of strings is of interest. For example, one wants to know what the most talked-
about house pet on a social network is. To do this it is required to match a large collection

of strings to some regular expressions of the form .*(?i)kitten.* , .*(?i)puppy.* ,

etc., and count the number of matches ( "?i" stands for any case of the characters in the
expression). In this first application, a large collection of (tweet-sized) strings is matched
to a set of sixteen regular expressions.

The number of matches are counted for each regular expression. It is an application
that is fully streamable and generally performs extremely well on an FPGA — hence
any serialization overhead can penalize its potential performance tremendously. With
this example application, we can measure the performance of Array Readers that fetch
variable-length objects (UTF-8 strings). The software kernels use the fastest regex match-
ing libraries we could find. In C++ we use the RE2 library [1] and spread the workload
over all available CPU threads. We use the Python wrappers for the RE2 library as well and
the standard multiprocessing module to spread the workload over all hardware threads.
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Figure 4.2: Run-time components of regular expression matching accelerator

In Java the built-in regex matcher is fastest, and has also been parallelized over all CPU
threads.

In the FPGA implementation, for which the architecture is shown in Figure 4.1, we
place multiple streaming regex matching units in parallel where each unit has an Array
Reader configured to deliver four characters per cycle at 250 MHz. This setup matches the
peak theoretical throughput of 16 GB/s for the on-board DDR interface. A data set with
random length strings between 0-255 with a total size of 1 GiB is used as an input. Both
platforms are shown in Figure 4.1, where the upper part of the figure is divided and specific
to the corresponding platform, while the lower part is equal for both setups. Herein one
may note the advantage of Fletcher providing a platform-agnostic environment, with
respect to challenge H1.

VHDL implementations of the regular expression (regex) matchers are generated by
a tool that uses a non-deterministic finite automaton approach, which can be found
online [2]. All regex units operate their Array Readers in parallel to supply data streams
that are duplicated to perform sixteen different regexes in each unit. Thus we exploit
parallelism at the column level by working in different parts of the column at the same
time, and at the matching level by attempting multiple matches on the same data. For the
AWS EC2 F1 system, 16 Regex units are deployed (256 matchers in parallel), while for the
POWER9+CAPI system, 8 regex units are deployed (128 matchers in parallel).

From the run-time measurements, shown in Figure 4.2 and throughput measure-
ments, shown in Table 4.2, we find that the FPGA kernel vastly outperforms the CPU
implementation, as expected. However, to get the data set to the accelerator, in the tradi-
tional case, we must first serialize it. The serialization throughput for each language is
below 1 GB/s, while the EC2 F1 platform has a copy bandwidth of over 7 GB/s. Once the
data is on the on-board memory, the parallel Array Readers are able to stream the data to
the regex units at over 14 GB/s (achieving almost 90% of the peak bandwidth). Through
the use of the Arrow in-memory format and interfacing with the data through the use
of Fletcher, the end-to-end speedup improves by over 9×, up to 18×, depending on the
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AWS/F1

(16 regex

units)

C++ 0.08 0.55 7.13 14.27 6.18 59.73 9.67
Python 0.04 0.83 7.17 14.28 15.93 107.73 6.76

Java 0.03 0.27 7.13 14.27 8.24 152.91 18.56
P9/SNAP

(8 regex

units)

C++ 0.43 0.81 n/a 7.61 1.70 17.78 10.44
Python 0.11 0.81 n/a 7.61 6.77 70.72 10.45

Java 0.16 0.16 n/a 7.61 0.95 46.49 48.69

Table 4.2: Regular expression matching results

software run-time system. A similar advantage may be observed in the POWER9/SNAP
case. In the particular case of the Java implementation on this platform, serialization
dominates so much, that even though the accelerator exhibits an almost two orders of
magnitude higher throughput, it would not be worthwhile to use the accelerator when
serialization has to take place. This is mainly due to a very low serialization throughput,
and as a result, using Fletcher yields a very high improvement factor.

Additionally, we find the FPGA resource utilization of each Array Reader for this
example to be 1.45% CLBs and 0.21% BRAM tiles for the XCVU9P). Further details on
resource utilization of a wide variety of ArrayReader/Writer configurations are be found
in [3]. In summary, the CLB utilization ranges from 0.02% for primitive types with the
width of the data bus to 2.34% for Array Reader for lists of primitives able to deliver 64
elements per cycle.

4.3. K-MEANS CLUSTERING
We perform K-means clustering (only on AWS/F1) of a data set of integer feature vectors;
a common kernel in data analytics that is computationally intensive. The algorithm is of
a more iterative nature; it is not fully streamable and therefore the impact of serialization
is expected to be less dominant. At the same time, using Fletcher we may generate an
easy-to-use interface that delivers streams of vectors of which the lengths is defined
during run-time.

The C++ implementation uses a vector of feature vectors as input data and performs
the clustering using a parallelized implementation on all hardware threads. The Python
implementation wraps the C++ implementation through Cython. The Java implemen-
tation uses an ArrayList of ArrayLists as an input dataset and is also multithreaded.
The FPGA implementation processes one feature vector per clock cycle, where up to
16 features can be processed in parallel from the input stream received from the Array
Reader. For every iteration of the K-means algorithm, the whole data set is requested
through the Array Readers. For our dataset of aprox. 1 GiB of feature vectors, the number
of iterations was 25, and thus we may calculate the average bandwidth per iteration for all
implementations.



4

90 4. APPLICATIONS

Table 4.3: K-means clustering results

Avg. GB/s Total run-time (s)

Language CPU FPGA CPU
FPGA
(w/ ser)

FPGA
(w/o ser)

C++ 1.40 11.15 19.24 6.08 2.55
Python 1.29 11.15 20.77 8.07 3.03
Java 1.00 11.15 26.92 3.88 2.55

The results of this measurement are shown in Table 4.3. It can be seen that the
bandwidth of the Array Reader grows close to the peak bandwidth (delivering up to
70%, although computational aspects of the implementation are also included in this
measurement). The results show that even for a computational intensive algorithm like
K-means, the benefit can be substantial (up to 2.7× in this particular case).

4.4. STRING WRITER

In this example, we consider writing to Arrow RecordBatches from FPGA. Use cases in-
clude the FPGA being the data source or being in the data-path from another source to
host memory (e.g. data coming from a network interface or storage). The data source
contains a set of string lengths and a set of string characters (similar to e.g. how uncom-
pressed Parquet files store strings). Our intent is to measure how fast ColumnWriters
can write variable-length objects into a format that is usable by the software-language
run-times that Arrow supports.

Because connecting the FPGA to an actual flash drive or network interface is outside
the scope of this work, we mimic such an input in FPGA by generating a character stream
with 64 characters per cycle (at 250 MHz) and another stream with pseudo-random
lengths between 0-255, resulting in a total data size of approximately 1 GiB. The length
stream is generated uniformly random between 0-255. This results in the 64-character
input stream where every handshake on average only has 75% valid input data, resulting
in a peak input rate of 12 GB/s. In software, the time to deserialize the same data source
to a language native container (C++: vector<string>, Python: list of strings (using
Cython), Java: Array<String>, all pre-allocated where applicable) as well as to an Arrow
RecordBatch is measured (in the Python case by wrapping the C++ implementation).

From the measurement shown in Table 4.4, it can be concluded that the Arrow format
itself already gives a performance benefit because it does not require the need to allocate
memory for each string object separately. The Array Writers of the FPGA implementation
are able to generate the Arrow RecordBatch at an even higher throughput of almost 10
GB/s, slightly over 80% of the average input bandwidth of 12 GB/s. The device-to-host
bandwidth of the AWS/F1 system only delivers 2.53 GB/s at the time of performing the
experiment, causing a bottleneck for the FPGA implementation. This is expected to be
increased, while the AWS/F1 system is further developed. For the P9/SNAP system, a
more modest speedup of 1.3× is observed.



4.5. HLS-BASED FILTER

4

91

Table 4.4: String writer results

Throughput (GB/s)

System Language
To native

container

To Arrow

RecordBatch

FPGA

copy

Total (Arrow

RecordBatch)

AWS/F1

C++ 0.85 2.53 - 2.53
Python 0.96 2.60 - 2.60
Java 0.59 1.81 - 1.81
FPGA - 9.76 2.75 2.15

P9/SNAP

C++ 0.76 7.52 - 7.52
Python 1.60 7.68 - 7.68
Java 0.28 3.96 - 3.96
FPGA - 9.76 - 9.76

4.5. HLS-BASED FILTER
We have explored augmenting an existing commercial HLS tool (Vivado HLS) with
Fletcher. An Arrow RecordBatch was created with two columns containing a string and a
third column containing an integer. On this RecordBatch, an SQL-like query is be per-
formed that exactly matches the contents of one string and the integer, and returns the
other string column.

Initially, the kernel is described as a (HLS-oriented) C++ function that has pointer
arguments to the used Arrow buffers. The HLS tool initially cannot compile this kernel
as there is no static information about the size of the buffers. After adding a pragma for
each of the buffer pointers we are able to compile an implementation that communicates
with a memory bus. The code for this variant of the filter kernel is shown in Figure 4.3.
Assuming an off-chip memory latency in the order of a hundred nanoseconds (∼25 cycles
at 250MHz), this kernel incurs memory latency for the outer loop that iterates over all
strings. This results in an outer loop iteration latency of at least 49 cycles with an inner
loop iteration latency of two cycles. Only a fraction of the cycles are spent on actual
work; the kernel is memory latency bound. Additional pragmas and rewriting the kernel
in a specific way would allow to optimize this behavior, even as so far to possibly write
additional functions that mimic Fletcher’s approach. However, Fletcher helps automate
this process and overcomes the need for rewriting the kernel.

In a second implementation, using Fletchgen, an interface is automatically generated
based on an Arrow schema. The interface provides the ability to write the kernel as a C++
function with hls::stream<type> arguments, as shown in Figure 4.4. The input streams
provide the properties of the string; a length and character stream for each string, and
a stream with the integer. After the filter step has been performed, the kernel may push
characters and lengths into the output stream. Again an outer loop over all strings and an
inner loop over all characters is created. The HLS tool is immediately able to compile the
kernel without the use of any pragmas. Because there are no bus requests, the minimum
latency of the outer loop is much smaller; only 5 cycles. In this example, the iteration
latency is improved by almost 10×. This means that our approach enables users to skip
the tedious step of writing HLS-oriented C++ code to interface more efficiently with the
data, while providing better performance at the same time. Developers are allowed to
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immediately focus on the computational aspect of the kernel.

1 #include <cstring>
2 #include <ap_int.h>
3 #include <hls_stream.h>
4 int filter_hls_normal(const int num_entries,
5 const int *in_first_name_offsets,
6 const char *in_first_name_values,
7 const int *in_last_name_offsets,
8 const char *in_last_name_values,
9 const int *in_zipcode,

10 const char filter_name[64],
11 const int filter_zipcode,
12 int *out_first_name_offsets,
13 char *out_first_name_values) {
14 #pragma HLS INTERFACE ap_bus latency=25 port=in_first_name_offsets
15 #pragma HLS INTERFACE ap_bus latency=25 port=in_first_name_values
16 #pragma HLS INTERFACE ap_bus latency=25 port=in_last_name_offsets
17 #pragma HLS INTERFACE ap_bus latency=25 port=in_last_name_values
18 #pragma HLS INTERFACE ap_bus latency=25 port=out_first_name_offsets
19 #pragma HLS INTERFACE ap_bus latency=25 port=out_first_name_values
20 int matches = 0;
21 // Name length buffers:
22 int fn_strlen = 0; int ln_strlen = 0; int fn_offset = 0; int ln_offset = 0;
23 char fn_buffer[64]; char ln_buffer[64]; // Name buffers
24 int zip = 0; // Zip code buffer
25 int offset_index = 0; int offset_value = 0; // Output buffers
26 out_first_name_offsets[offset_index] = offset_value; // Write first offset
27 // Iterate over every entry:
28 for_each_entry: for (int e = 0; e < num_entries; e++) {
29 bool match = true; // Assume a match
30 // Get string lengths & zip
31 fn_strlen = in_first_name_offsets[e + 1] - in_first_name_offsets[e];
32 ln_strlen = in_last_name_offsets[e + 1] - in_last_name_offsets[e];
33 zip = in_zipcode[e];
34 // Copy over to buffers
35 memcpy(ln_buffer, in_last_name_values + ln_offset, ln_strlen);
36 memcpy(fn_buffer, in_first_name_values + fn_offset, fn_strlen);
37 // Check if the last name matches
38 match_last_name: for (int c = 0; c < ln_strlen; c++) {
39 if (ln_buffer[c] != filter_name[c]) { match = false; }
40 }
41 // If it matches, write back into the name buffer.
42 if_match: if (match) {
43 matches++;
44 memcpy(fn_buffer, out_first_name_values + offset_value, fn_strlen);
45 offset_value += fn_strlen;
46 offset_index++;
47 out_first_name_offsets[offset_index] = offset_value;
48 }
49 }
50 return matches;
51 }

Figure 4.3: Filter example in HLS not using streaming interfaces.
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1 #include <cstring>
2 #include <ap_int.h>
3 #include <hls_stream.h>
4 int filter_hls_fletcher(int num_entries,
5 hls::stream<int> &in_first_name_length,
6 hls::stream<char> &in_first_name_values,
7 hls::stream<int> &in_last_name_length,
8 hls::stream<char> &in_last_name_values,
9 hls::stream<int> &in_zipcode,

10 char filter_name[64],
11 int filter_zipcode,
12 hls::stream<int> &out_first_name_length,
13 hls::stream<char> &out_first_name_values) {
14 int matches = 0;
15 int fn_strlen = 0; int ln_strlen = 0; // Name length buffers
16 char fn_buffer[64]; char fn_char; // Name buffers
17 int zip; // Zip code buffer
18 // Iterate over each entry
19 for_each_entry: for (int e = 0; e < num_entries; e++) {
20 bool match = true; // Assume the filter matches
21 // Grab the lengths and zip code
22 in_first_name_length >> fn_strlen;
23 in_last_name_length >> ln_strlen;
24 in_zipcode >> zip;
25 // Buffer the names
26 int fc = 0;
27 for_get_fn: for (fc = 0; fc < fn_strlen; fc++) { in_first_name_values >> fn_buffer[fc]; }
28 // Make sure to terminate the string
29 if (fc != 63) { fn_buffer[fc + 1] = '\0'; }
30 for_get_ln: for (int c = 0; c < ln_strlen; c++) {
31 char lnc = '\1';
32 in_last_name_values >> lnc;
33 // As the characters stream in, check last name equal to filter name:
34 match_name: if (lnc != filter_name[c]) { match = false; }
35 }
36 // Check the second filter condition: zip code
37 match_zip: if (zip != filter_zipcode) { match = false; }
38 // Only output the first names if the match was true
39 if (match) {
40 matches++;
41 // Output the string length
42 out_first_name_length << fn_strlen;
43 // Output the characters
44 for_put_fn:
45 for (int c = 0; c < fn_strlen; c++) {
46 out_first_name_values << fn_buffer[c];
47 }
48 }
49 }
50 return matches;
51 }

Figure 4.4: Filter example in HLS using streaming interfaces supplied by Fletcher.

4.6. ACCELERATING THE PAIRHMM FORWARD ALGORITHM
Next-generation DNA sequencing methods allow cost-effective sampling of DNA [4].
This data is used e.g. to understand and treat human diseases. The analysis of the huge
amounts of data resulting from such samples is still a computational challenge today.
Hidden Markov Models (HMM) are used during analysis to find pairwise alignments of
DNA sequences. More specifically PairHMMs [5] can be used to calculate the probability
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that two sequences are related, which is called the overall alignment probability. In
this section, we consider the alignment probability of what is called a short-read to a
haplotype, both very small sequences of DNA, although the read is typically shorter than
the haplotype.

Because of the computational complexity and the data volume, PairHMM calculations
in genome analysis pipelines (such as Genome Analysis ToolKit or GATK [6]) take a long
time to complete on conventional machines. However, the PairHMM Forward Algorithm,
which is also used in the software implementation of the GATK HaplotypeCaller, is an
algorithm exhibiting a long datapath. Such algorithms are often good candidates for FPGA
implementation. An FPGA accelerator is often able to achieve a high throughput and
high power-efficiency. In other research, it has been shown that FPGAs can be suitable
candidates to implement the algorithm using Systolic Arrays (SAs). However, a drawback
of some architectures is that the computational resources are sometimes under-utilized
due to control issues or data padding.

In this section, we attempt to optimize SA utilization, allowing for near continuous
processing on all the computational elements of the SA. Our future aim is to implement
many small but efficient SAs instead of implementing one large but inefficient SA. Our
contributions are as follows:

• We provide a model to calculate the utilization of an SA.

• We analyze architectural alternatives allowing continuous processing of the PairHMM
Forward Algorithm.

• We implement one such architecture that is more than 2.5x faster than the state-of-
the-art FPGA implementation and 10x faster than a state-of-the-art CPU.

4.6.1. BACKGROUND

PAIRHMM FORWARD ALGORITHM

Algorithm 1 PairHMM Forward Algorithm used in the GATK HaplotypeCaller

M ← I ← D ← 0X+1,Y +1
D0,0...Y ←Ci ni t
for i ← 1, X do

for j ← 1,Y do
Mi , j ← αi , j · (βi ·Mi−1, j−1 +γi · Ii−1, j−1 +γi ·Di−1, j−1)

Ii , j ← δi ·Mi−1, j +εi · Ii−1, j
Di , j ← ηi ·Mi , j−1 +ζi ·Di , j−1

end for
end for
return

∑Y
j=0 MX , j + IX , j

The PairHMM Forward Algorithm as implemented in the HaplotypeCaller is seen in
Algorithm 1. M , I and D are the matrices for match, insertion and deletion probabilities.
αi , j is the emission probability: for each position in the read i it can have two different
values, depending on the bases of the read and haplotype at position i and j . β, γ, δ, ε,
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(a) One pass detail
(b) Multiple passes and potential

overhead

Figure 4.5: An example of how an SA can solve a PairHMM using the Forward Algorithm (Algorithm 1).

η and ζ are transmission probabilities that only depend on the read position i . In the
software implementation, all probabilities are floating-point values. We define X and Y
as the length of the read and haplotype, respectively.

When updating some cell (i , j ) of the matrices M , I and D, a dependency exists
on the values of cells (i −1, j −1), (i −1, j ) and (i , j −1). Thus, only matrix cells laying
on the anti-diagonals of the matrix can be updated in parallel. Therefore, Algorithm 1
is commonly implemented in hardware using a one-dimensional systolic array (SA)
consisting of a number of processing elements (PEs). Each PE implements the inner loop
in the algorithm, updating one cell in each of the matrices M , I , and D. During every
update cycle, the SA updates the cells on the anti-diagonal of the matrices (sometimes
called a ‘wavefront’). A simplified diagram of such an SA can be seen in Figure 4.5a. As
the anti-diagonal grows, the amount of exploitable parallelism grows as well.

When the length of the haplotype (or read) is larger than the number of elements in
the SA, the SA can compute the matrices by making multiple vertical (or horizontal) passes
through the matrix, processing only a subset of columns (or rows) and wrapping back
to the top (or side) of the matrix after completion of a pass. This can be seen in Figure
4.5b. The values in the last column (or row) in the pass are often stored in a FIFO buffer.
Whenever a pass is shorter than the amount of PEs in the SA, padded data is inserted
(Figure 4.5b case A).

RELATED WORK

Earlier research discussed using SAs to solve similar HMM-based algorithms in the field of
computational biology [7][8]. These proposed SA designs introduce overhead when model
parameters must be reconfigured between subsequent passes or workloads. Subsequent
research such as [9] and [10] show more advanced SA designs, deploying double buffering
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of model parameters of alternating passes and workloads, allowing for near continuous
processing.

More recent work implements the same PairHMM Forward Algorithm as this work in
FPGA on the Convey Computer platform, showing higher throughput than single threads
of the host processor[11]. However, the architecture introduces overhead when switching
between passes, as parameters are shifted into the PEs. In [12], which we consider as
the current state-of-the-art FPGA implementation, PEs are partially internally pipelined,
achieving a high throughput. This design uses the CAPI interface of the IBM POWER8
platform, which we will also use in this work.

In this paper, we introduce a new architecture that is able to continuously perform
useful calculations in the PEs of the SA. Once the first input data pair is loaded, our design
wastes virtually no cycles due to memory latency or parameter reconfiguration. Thus, the
design is able to achieve extremely close to the maximum theoretical performance of a
fixed-size SA.

4.6.2. PERFORMANCE MODEL
We define the length of the read and the haplotype as X and Y . The total amount of
cell updates required to process the Forward Algorithm is X ×Y . A useful measure of
performance for the Forward Algorithm is the throughput in number of cell updates per
second (CUP/s). In this paper, we will only count effective cell updates, which are cell
updates that contribute to the final result (i.e. not on padded data).

The throughput of an SA design is affected by the average utilization of the PEs. We
observe that while processing the Forward Algorithm with an SA, under-utilization of the
PEs may be introduced in several cases (also shown in Figure 4.5b):

(A) When data is padded if a pass is not as wide as the SA.

(B) If the PEs in the SA may only work on one pass at a time, under-utilization of the
PEs occurs at the start of a pass.

(C) Same as B, but at the bottom of a pass.

(D) When switching between passes, to update the model (α, β, etc.) in the PEs.

(E) When the height of the matrix is shorter than the number of PEs, and more than
one pass is required, the read must be padded. Otherwise, the feedback FIFO will
not contain any data yet for the first PE to work on in the next pass. (Not shown in
Figure 4.5b).

We consider an SA of fixed size, thus the overhead introduced in case A and E is inevitable.
However, we aim to eliminate the other causes of overhead.

FIXED-SIZE SYSTOLIC ARRAY PERFORMANCE

Consider the processing of the Forward Algorithm in an SA where; W is the width of the
matrix, H is the height of the matrix and E is the number of PEs in the SA. Also, assume
one cell update per clock cycle. In the ideal case, if we would process a large amount of
pairs (thereby ignoring initial and final latency), that are of similar size, and if the input
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(a) Architecture HS: haplotype data is streamed in horizontally,
read data is streamed in vertically.

(b) Architecture RS: read data is streamed in horizontally,
haplotype data is streamed in vertically.

Figure 4.6: Two SA architectures.

data is available at any time at the inputs of the PEs, the average utilization of the whole
SA for one pair is given by:

Avg. utilization = W H

EdW
E e ·max(E , H)

(4.1)

Eq. 4.1 takes the number of cells in the original matrices and divides this by the number
of cells in the padded matrices. This gives the ratio of effective cell updates verses all
cell updates (including padding). In the case of such a workload, we may obtain the
average number of effective cell updates Uav g per clock cycle by multiplying the average
utilization by the number of PEs in the SA:

Uav g (W, H ,E) = W H

dW
E e ·max(E , H)

(4.2)

Thus, cells padded to the bottom of the matrix (in each pass, only when H < E) and cells
padded to the right of the matrix in the final pass are also taken into account.

If the height of the matrix is equal or larger than the number of PEs (i.e. H ≥ E) and
the width of the matrix is an integer multiple of the number of PEs (i.e., W = nE ,n ∈Z>0),
all PEs perform useful work in every pass. In this case, maximum throughput is achieved
(U = E). This also shows an SA of length E = 1 is always maximally efficient (i.e. an SA of
this size needs no padding, since passes are of width 1).

Modern FPGAs contain enough computational fabric to implement a large number of
PEs. However, the number of SAs cannot be as high, since it quickly becomes bounded by
the available memory and interconnect. For example, the FPGA used for this work offers
enough resources to implement 112 PEs, but the FPGA lacks resources to implement 112
SAs in parallel, requiring 112 controllers, input buffers, feedback FIFOs and other items
in the data and control paths. A more feasible combination would be to have, e.g. 7 SAs
of 16 PEs each. This work focuses on implementing an architecture for a single SA, that
achieves as close to the maximum performance of Eq. 4.2 as possible.

4.6.3. ALTERNATIVE ARCHITECTURES
To achieve the maximum performance, the matrix can be mapped onto the SA in two ways.
In one, (HS in Figure 4.6a), the data that depends on the haplotype position (haplotype
bases) is streamed-in at the head of the SA. The data that depends on the read position
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(probabilities and read bases) is fed vertically into the PEs. In this approach, the matrix is
mapped to have the read on the horizontal axis, and the haplotype on the vertical axis
of the matrices. The other approach (RS, Figure 4.6b) has horizontal and vertical data
streams swapped.

All data that is fed horizontally can be streamed from input FIFOs into the head of
the SA. When reuse of this data is required in a new pass, the feedback FIFO will provide
this data and intermediate values that were streamed out of the SA after processing the
last column of the previous pass. All data that is fed vertically can be distributed to the
respective PEs using a bus connected to registers (or RAM).

Although architectures similar to HS are often used (with the exception of [9]), we
argue for the use of RS. The reason to select RS is related to the sizes of the read and
haplotype, X and Y . The haplotype is at least as long as the read, but often much longer.
Consider again Eq. 4.2. When the ratio between fully utilized passes and underutilized
passes is high (i.e. when Y is large) the efficiency is also high, since a relatively larger
number of passes will have full SA utilization.

Internally, the PEs are pipelined, such that the critical path in the circuit is reduced,
allowing higher clock frequencies for the whole SA. The throughput of the SA is directly
proportional to its clock frequency.

4.6.4. MAXIMIZING UTILIZATION
To achieve maximum utilization, overhead from the cases B, D and C described in Sec-
tion 4.6.2 must be prevented. This can be done by observing that, during one cell update
cycle, the vertical data of at most one PE needs to be updated, i.e. at most one PE in the SA
will enter a new pass in each cell update cycle. Therefore, a bus connected to the vertical
data registers needs to transfer the vertical data of only one PE per cycle.

In this way, any data that is still in the SA from a previous pass or pair does not have to
be completely streamed out, allowing cell updates between passes and pairs to take place
within the SA (solving case B and C). Furthermore, when the vertical data bus is able to
transfer all required data in one cycle, overhead caused by updating model parameters in
the PEs can be avoided (solving case D)

An example of continuous processing on the RS architecture is given for the following
case: The number of PEs, E = 4, the length of the read X = 6, the length of the haplotype:
Y = 6, the read is ’GTACAT’ and the haplotype is ’ACTGTC’.

As shown in Figure 4.7, on each anti-diagonal, the state of the complete SA is depicted
during one cell update cycle, and superimposed over the matrix cells of a pass. For each
cell update cycle, the vertical data of at most one PE must be updated. Similarly, the
output of at most one PE holds data contributing to the final result. Therefore, the M and
I output of each PE are logically OR-ed with each other and sent to an accumulator. This
implements the last line of the procedure in Algorithm 1. By setting the haplotype and
read base to a value called “Padding” (denoted by ‘P’ in the figure), the PEs output will be
invalidated.

CONTROL MECHANISM

Since PEs are internally pipelined (Section 4.6.3), to allow multiple PairHMMs to run in
each of the pipeline slots, one could use BRAM and allocate a specific region for each
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Figure 4.7: Example of processing a pair for which the read length X = 6, the haplotype length Y = 6 and the
number of PEs E = 4.
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of the N pairs that is active in an N stage pipeline. However, such a control mechanism
is complex, since it must track all SA control signals, as well as RAM addresses, for each
of the N pipeline slots independently. At the side of the memory interface, it must keep
track of N pointers, data counters, and other control information.

The control mechanism can be extremely simplified by allowing the smallest unit of
processing to be batches of N pairs. By implementing FIFOs for the input data, the host
can prepare a batch of N pairs to be processed, ordering the batch in memory in such a
way that the accelerator itself does not have to deal with ordering at all. The accelerator
keeps track of control signals of only one batch instead of keeping track of all control
signals for each of the N pairs.

Although simplifying control complexity, batches have a minor drawback in terms of
performance; if the pairs contained in the batch are of completely different sizes, smaller
pairs require a lot of padding, in turn decreasing SA efficiency.

Consider the processing of N pairs in a batch, where the n-th pair has read length
Xn and haplotype length Yn . The total amount of work required in cell updates Ur eq to
process the batch is given by:

Ur eq =
N−1∑
n=0

XnYn (4.3)

When the amount of work done on a batch Ubatch is determined by the largest read and
haplotype, it can be calculated (containing overhead due to padding) using Eq. 4.1 as
follows:

Ubatch = N ·max(max
n

Xn ,E) ·E
⌈maxn Yn

E

⌉
(4.4)

Dividing Eq. 4.3 by Eq. 4.4 gives the efficiency per batch.
When the read and haplotype lengths are different, the SA has low efficiency due to

abundant padding. A large portion of this drawback can be mitigated by sorting the pairs
by number of passes required, then sorting each list of pairs with the same number of
passes by read size. After sorting, the batches are created by the host and sent to the
accelerator. When the workload is very large, sorting makes it likely that haplotypes and
reads inside a batch share a similar number of passes and read size.

To reduce the sorting time, we sort only small subsets of the workload. For the
whole genome sequencing dataset we used for this work (see Section 4.6.6), we split
the workload into 1832 subsets of 214 pairs and sort them. In Figure 4.8, we compare
it to the SA utilization when using unsorted subsets and the ideal utilization given by
Eq. 4.2, in the case where we would not use batches, but are able to start working on pairs
in independent pipeline slots. We find that using sorted batches almost achieves ideal
performance.

4.6.5. IMPLEMENTATION
We implemented architecture RS using an AlphaData ADM-PCIE-7V3 FPGA accelerator
card, for which a POWER8 CPU on an IBM Power System S824L (8247-42L) serves as
a host. This system offers the Coherent Accelerator Processor Interface (CAPI) to the
accelerator through IBMs Power Service Layer (PSL) interface. The memory interface at
the host side is therefore similar to [12]. To abstract away the PSL interface, we use the
CAPI Streaming Framework from [13].
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Figure 4.8: Effect of sorting on the efficiency of the SA, with E=16.

The SA consists of E Pipelined Processing Elements (PPEs). Each PPE implements the
inner loop of Algorithm 1 as a 16-stage pipeline. The maximum number of PPEs we could
fit (using Vivado 2016.2) was 112. This bound is determined by the number of DSP blocks.
The DSP blocks are used by the floating-point units in the PPEs. The FPGA allows 3600
DSP blocks to be used, but the PSL is distributed as a pre-routed design and prevents the
use of a quarter of the DSP blocks. In this work, we implement the SA using E = 16 and
E = 32.

4.6.6. EXPERIMENTAL RESULTS

To measure the performance for different sizes, we generate workloads of increasing read
(X ) and haplotype (Y ) size, where Y ≥ X , in steps of 4. Each workload contains 214 pairs.
The performance for each workload is shown in Figure 4.9. Our SA runs at 166.7 MHz,
thus the maximum theoretical throughput is E · f in cell updates per second (CUP/s).

Padding in the horizontal direction (when X < E ), deteriorates the throughput, as the
utilization of the SA is very low. When there is no padding in the horizontal direction,
the throughput quickly grows towards the maximum theoretical throughput. Also, the
effect of having haplotype sizes of integer multiples of the number of PEs is clearly visible.
In this case, the performance nears the maximum theoretical throughput. The highest
throughput measured was 99.76% of the maximum. The last bit of overhead is introduced
by the memory latency at initialization and termination.

For a realistic benchmark, we use the same dataset as the work presented in [12]
(whole human genome dataset G 15512.HCCI954.1 mapped to chromosome 10). The
dataset contains over 30 million pairs. We split and sort the dataset in subsets of 214 pairs.
The results for sizes E = 16 and E = 32, the maximum theoretical throughput for each
SA, the reported throughput of [12] and [11] and the reported maximum for the POWER8
host CPU are shown in Figure 4.10.

For E = 32, we achieve a throughput of 84% of the maximum performance; for E = 16,
this is 93%. The lower throughput for E = 32 is caused by the large number of reads in
the dataset of which the size is smaller than E , resulting in much variation. However,
for the SA with E = 16, we observe that the utilization is higher, since padding occurs
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Figure 4.9: Synthetic benchmark. PEs: E = 16. Workload size: 214. Step size: 4. Read size: X . Theoretical
maximum throughput: 2667 MCUP/s. Max. measured: 2661 MCUP/s.

Table 4.5: FPGA post-routing power estimate and area

Part LUTs Registers RAM36 DSP Power(W)
Available: 7VX690 433200 866400 1470 3600
16 PEs + interfaces 119937 140397 473 378 11.212
16 PEs, this work only 47346 60525 181 354 2.721
32 PEs + interfaces 163450 189085 473 730 13.213
32 PEs, this work only 90862 109213 181 706 4.585
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Figure 4.10: SA throughput using a real dataset with E = 16 and E = 32. Subsets size 214

less. Although for E = 32, the SA is twice as long as for E = 16, the run-time is only 1.8x
lower. Furthermore, with the same amount of processing elements, our architecture
shows an average improvement of throughput of 2.5x over the state-of-the-art. With half
the processing elements, our implementation achieves a 1.4x higher throughput.

In Table 4.5 the area statistics of the SA design with 16 and 32 PEs are shown after
placing and routing. We show the logic available in the device, the logic utilization of our
system (including interfaces) and for our design only. Moreover, the power estimation of
Xilinx Vivado is included. From Table 4.5 and Figure 4.10, we estimate the power efficiency
to be 339 ·106 CUP/J.

4.6.7. PAIR-HMM POSIT ACCELERATOR

The architecture of the streaming-based pair-HMM accelerator described in [14] and the
previous section, is based on a widely-used software implementation in [15]. We improve
the design to make use of Arrow tabular data sets, leveraging interfaces generated through
Fletcher, and allowing the design to be integrated efficiently in all the supported software
languages.

We furthermore exploit the capabilities of the FPGA accelerator to implement the
arithmetic of the design using posit units rather than IEEE floating-point arithmetic. Posit
arithmetic can only be emulated on general purpose processors, since at the time of writ-
ing, no commercially available posit-enabled processors are available. Posit arithmetic is
floating-point arithmetic with a different type of lay-out, that in some cases may improve
numerical precision of results. By using posit arithmetic and by avoiding intermediate
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Haplotypes Reads
haplo (8-bit) read (8-bit) probabilities (256-bit)

0
base pair

0
base pair αdiff αsimi βγ δ ε η ζ

. . . . . . . . .
base pair base pair αdiff αsimi βγ δ ε η ζ

1
base pair

1
base pair αdiff αsimi βγ δ ε η ζ

. . . . . . . . .
base pair base pair αdiff αsimi βγ δ ε η ζ

... . . .
... . . . . . .

Table 4.6: Schematic overview of the Arrow schema for the Arrow pair-HMM Accelerator implementation,
consisting of the columns used to feed the pair-HMM accelerator.

rounding, the precision of the final results is improved. The details of the posit arithmetic
units that have been developed are described in more detail in [16].

As described in the previous section, the input to the accelerator consists of a set of
haplotype base pairs, read base pairs and the emission and transmission probabilities
related to these reads.

The Arrow data set designed for this implementation is depicted in Table 4.6. As can be
seen, the data set consists of two separate tables used to represent the haplotypes as well
as the reads for a specific batch. The haplotype and read base pairs are represented by an
8-bit wide field, being able to represent any ASCII character. For each read, the emission
and transmission probabilities for this read are located in the second column of this table
and are represented as a single columns but they are grouped through Arrow’s struct
type. The probability α can contain a penalty if the read and haplotype base pairs are
not equal during the pair-HMM forward algorithm evaluation. Hence, two values for this
probability are stored. As there are always eight emission and transmission probabilities
in total, the width of this column is equal to 256 bits, as each probability is represented
by a 32-bit posit number. The type of the column entries can therefore be chosen as a
fixed-size primitive.

The entry index indicated in the diagram represents the batch to be processed by the
accelerator. The accelerator is able to access specific batches based on this index, as will
be illustrated later. As the amount of base pairs inside one batch is variable, the length of
each entry is also variable. When an entry is read by the accelerator, it also receives the
length of this entry.

A schematic overview of the high-level components of this pair-HMM accelerator
design is depicted in Figure 4.11. For the input basepair reads, a Array Reader is used in
order to read the base pairs and emission/transmission probabilities from the data set.
A second Array Reader is instantiated to read the basepairs from the haplotype data set.
The incoming streams are controlled by a scheduler that makes sure the input data is
fed into the systolic array in the correct cycle. The posit fields of the input probabilities,
represented as 32-bit posit numbers, are extracted using the posit extraction unit as
described in [16].

The outgoing calculation results from the systolic array, being raw posit values with
unrounded fraction fields, are then normalized. The normalized 32-bit posit words are fed
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Figure 4.11: Schematic overview of the high-level components inside the pair-HMM accelerator core design,
interfacing with Apache Arrow.
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Figure 4.12: Schematic overview of the pair-HMM accumulation stage using posit wide accumulator units.

into a Column Writer in order to write the results into an Arrow data set in host memory.

ACCELERATOR MICROARCHITECTURE

The architecture proposed for this implementation is based on a fixed-size systolic array
design that is optimized for maximum pipeline utilization as described in the previous
section, although all arithmetic units are replaced by their posit counterpart. Quickly
specializing the PairHMM circuit to use an arbitrary type of numerical representation
leverages the reprogrammable capability of the FPGA accelerator, something unique to
this accelerator platform.

In contrast to the original design of the previous section, for the posit design, the
intermediate results of calculations performed inside a Processing Element (PE) are kept
unrounded whenever possible. The purpose is to improve the overall decimal accuracy of
the final likelihood computation results produced by the pair-HMM accelerator by means
of the forward algorithm. The elements of the last row in the M and I matrix are added
and accumulated for each column. These matrix elements are calculated by the last PE in
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Config Available Used (core) Used (total)

posit(32,2)

LUT 331680 185174 (55.83%) 264078 (79.62%)
Register 663360 179229 (27.02%) 271031 (40.86%)
BRAM 1080 99 (9.17%) 425 (39.35%)
DSP 2760 704 (25.51%) 723 (26.20%)
Power 18.299 W 25.379 W

Table 4.7: FPGA resource utilization and power consumption estimation of the pair-HMM posit accelerator
implementation for Apache Arrow, both for the accelerator core only and for the total implementation

including the Power Service Layer.

the systolic array design. In order to maintain as much accuracy as possible, our design
uses wide accumulators, also shown in Figure 4.12. For each matrix of the pair-HMM
forward algorithm a separate wide accumulator sums every column of its last row. The
latency of a posit accumulator unit in terms of number of cycles is equal to the depth
of the systolic array (16 PEs) because each matrix element is calculated per pair, thus
allowing up to 16 pairs to be computed per pass through the systolic array. Therefore, the
accumulated value for a given pair is updated every 16 cycles when new matrix elements
for this pair are computed.

The advantage of using wide accumulators is that more information is kept while
accumulating the matrix elements of the forward algorithm. Implementing this design in
the pair-HMM accelerator will result in a longer critical path in the internal circuit. Since
more logic is needed in order to process the wider fractions of accumulated values, this
affects either the clock frequency or latency of the design. Therefore, the decision whether
to integrate the wide accumulator design into an overall accelerator design depends on a
trade-off between performance and precision.

EVALUATION

An implementation of a single pair-HMM accelerator core has been generated and tested
for the posit(32,2) configuration. We analyze FPGA resource used, decimal accuracy [17] of
calculation results, and throughput performance as well as speedup compared to software
implementations of the pair-HMM algorithm. The machine used in these experiments
is the IBM Power Systems S822LC featuring two 10-core POWER8 CPUs running at 2.92
GHz. This machine is equipped with the Alpha Data ADM-PCIE-KU3 accelerator card
featuring the Xilinx Kintex UltraScale XCKU060 FPGA used for this design.

Table 4.7 shows the area utilization statistics for the posit dot product accelerator
implementations, along with estimated power consumptions. The power consumption
for only the accelerator core as well as for the total design is displayed. The overall design
includes the Fletcher-generated logic and the Power Service Layer (PSL), required for
interfacing with the host using CAPI.

Figure 4.13 shows the decimal accuracy of the calculation results produced based on
simulation of the proposed hardware pair-HMM accelerator. The decimal accuracy of the
posit(32,2) hardware implementations is evaluated, together with a software evaluation
of the pair-HMM forward algorithm using the float format.

The reference calculation for determining the decimal accuracy is performed in a 100-
decimal accuracy number format using the Boost Multi- precision C++ library, providing
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Figure 4.13: Decimal accuracy of the proposed pair-HMM hardware accelerator results, compared to traditional
float computation for posit(32,2) . X and Y denote the read and haplotype input sequence lengths respectively.

a number type with a customizable number of decimal digits of precision at compile-time
[18].

For the presented evaluations, different combinations of input sequence lengths X
and Y have been tested. The initial scaling constant is set at 210. For these conditions, both
the software and accelerator calculation results are performing better than the traditional
float format for nearly every test case, with an increase in decimal accuracy ranging
between approximately 0.5 and 2 decimals of accuracy.

Appropriate caution should be taken with regard to the presented results. All pair-
HMM forward algorithm calculations heavily depend on the initial conditions. These
conditions are, apart from the input read/haplotype bases and emission/transmission
probabilities, influenced by the chosen initial scaling constant. The comparison of differ-
ent initial scaling constants and their effect on the decimal accuracy of final calculation
results as depicted in Figure 4.14 shows this behavior, along with the proof that scaling
constants exist that result in better decimal accuracy compared to the best achievable
decimal accuracy for the float format.

The average performance for the pair-HMM hardware accelerator interfacing with
the Apache Arrow columnar memory format implementation in terms of MCUPS for
different combinations of sequence lengths X and Y is depicted in Figure 4.15a. This
performance benchmark is performed for 215 base pair comparisons. As can be seen,
the throughput decreases for any input sequence length X lower than the number of PEs
in the systolic array due to under-utilization of the overall accelerator. The theoretical
maximum throughput of 2000 MCUPS is not fully reached due to the present hardware
overhead. The explanation for this is that batch data is loaded into the accelerator buffers
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Figure 4.14: Decimal accuracy as a function of the initial scaling constant.

between batches, and the next batch will be loaded after finishing the previous batch.
The overhead between initiating the read request to the host and receiving the full data
set decreases the maximum achievable performance. The speedup of the pair-HMM
hardware accelerator calculations compared to calculation in software (using a posit
format emulation library) is depicted in Figure 4.15b for the same data sets. A significant
speedup is observed for all tested combinations of read and haplotype input sequence
lengths, ranging from a factor of approximately 105 to 106 times speedup.

4.6.8. SUMMARY

We analyzed the efficiency of systolic arrays that implement the PairHMM Forward Algo-
rithm to find the overall alignment probability of a read to a haplotype. We have showed
architectures that can implement fixed-size SAs in such a way that the overhead is mini-
mal. We implemented one of the architectures, where the data corresponding to the read
position is streamed through the systolic array. This implementation achieves 99.76% of
the theoretical maximum performance for a synthetic dataset, and around 90% for a real
dataset, depending on the size of the systolic array and the read-haplotype pairs. A systolic
array with 32 processing elements is able to calculate the overall alignment probabilities
of a whole genome dataset mapped to chromosome 10 in under 60 seconds, while only
using approximately one third of the FPGAs DSP resources. We have upgraded the design
to make use of Fletcher’s Array Readers and Writers and have described the Arrow Schema
that may be used to represent the structured data. This allows for efficient integration into
software that is supported by Arrow. We have also leveraged the reconfigurable nature
of the FPGA accelerator to drop-in replace the traditional floating point arithmetic units
with posit arithmetic units. We stipulate that the design and implementation of this
architecture is possible in a relatively short amount of time and low cost (compared to
e.g. ASIC), because of the great flexibility that FPGA accelerators provide to customize
the digital circuit according to the needs of the application. In future work, we aim to
implement several small SAs in parallel, such that each SA may achieve a high utilization,
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(b) Speedup of hardware versus software, based on total execution time.

Figure 4.15: Performance in terms of throughput (in MCUPS) and speedup compared to software calculation for
the proposed pair-HMM accelerator design. X and Y denote the read and haplotype input sequence lengths

respectively.
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(a) Because I/O bandwidth has drastically increased, ingesting Parquet files causes the CPU to
be the new bottleneck in big data processing pipelines.

(b) To alleviate the bottleneck, a heterogeneous system with an FPGA accelerator is proposed,
where the FPGA accelerator performs an ingress transform of the stored file.

Figure 4.16: FPGA acceleration of the Parquet-To-Arrow converter

increasing the overall throughput.

4.7. CONVERTING APACHE PARQUET TO ARROW
In the context of big data analytics, the bandwidth associated with reading data from
persistent storage is increasing rapidly due to the availability of non-volatile memory
solid-state drives (e.g. NVMe SSDs). In the past, database systems were often designed
with the assumption that CPUs are fast and I/O is slow. However, this relationship is
quickly turning around over recent years. CPUs are no longer able to parse, decompress,
and deserialize files at data rates close to I/O bandwidth, sometimes lacking over an order
of magnitude in performance. While new storage formats designed with contemporary
technology in mind may partially alleviate such bottlenecks, some fundamental limi-
tations of performing decompression and deserialization with general purpose CPU’s
remain.

In order to improve the performance of database systems, we propose performing
part of the decompression and deserialization of files to in-memory data structures with
an FPGA accelerator (as shown in a contextual overview of this work in Figure 4.16). FPGA
accelerators provide the following benefits within this context.

First, due to the excellent I/O capability of FPGA devices, it is possible to place the
FPGA on the data path from storage to memory. Commercial FPGA accelerator cards
with interfaces to SSDs are readily available today from various vendors. Second, because
they are not limited by the drawback of a CPU’s load-store architecture, FPGA systems
can implement specialized data-flow designs with long pipelined data paths to perform
the multitude of data movements required during the conversion. These are relatively
inexpensive to implement in FPGA fabrics.

In this section, we contribute a design of an FPGA accelerator that takes files with
large tabular data structures encoded in the well-known and widely-used Apache Parquet
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file format as input. The accelerator then converts these files into tables according to the
Apache Arrow format in memory. This allows the FPGA accelerator to be leveraged in
over 11 software languages. In Section 4.7.1, we describe related work and the Parquet
and Arrow formats. We present the design and implementation of the accelerator in Sec-
tion 4.7.2. Several performance and resource utilization characteristics of the accelerator
are described in Section 4.7.3. We conclude this contribution in Section 4.7.4.

4.7.1. BACKGROUND

In this section, we briefly discuss related work: the Parquet storage format used to convert
from, and the Arrow in-memory format used to convert to.

RELATED WORK

Previous research has acknowledged CPU processes to become the new bottleneck in
big data processing pipelines, because I/O bandwidth is increasing [19][20][21][22]. An
analysis of this problem specific to Parquet and ORC, and a proposal of an improved
format is presented in [23], although the format results in a lower compression rate, the
implementation is not freely available or widely used at the time of writing. In more
recent work [24], the bottleneck is acknowledged, and FPGA-based solutions are provided
at the level of the file system itself. The limitation also holds for network I/O, relevant
to this paper in case distributed file chunks are shuffled, which is discussed in [25].
Previous work on reducing data duplication explored a specific combination of FPGA
accelerators and Apache Parquet files [26]. Because the target throughput is still in the
order of what contemporary CPUs can deliver, only the duplication reduction algorithm,
but not the Parquet decompression and decoding itself are accelerated in an FPGA. At
higher I/O bandwidths, decompression and decoding will form a bottleneck, which we
will demonstrate and alleviate through the accelerator implementation of this work.

APACHE PARQUET

Parquet [27] is a storage format intended to store large tabular data structures in a column-
oriented format, often used in distributed environments. To provide support for its
multitude of features, each Parquet file has a complex hierarchical structure described by
metadata in the footer of the Parquet file. This metadata describes the data types of the
columns, and what compression and encoding schemes are used. The data itself is divided
over row groups, containing one chunk of each column in the table, useful for distributed
storage systems. The size of these row groups can be set when writing the Parquet file
to allow for longer sequential reads in the same column chunk. The columnar format
can be advantageous, e.g. only the relevant columns required by some computational
transformation need be accessed without having to decode irrelevant columns. Column
chunks are in turn divided into pages. Each page is compressed according to a specific
compression codec, and its values are encoded using a specific encoding scheme. The
locations of the pages and column chunks are found in the file footer. Every page can
be independently decompressed and decoded, such that every page can be randomly
accessed and processed in parallel.
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APACHE ARROW

Typical for the big data framework ecosystem, Parquet is used in the context of a wide
variety of software languages and run-times. When implementing a fast converter from
Parquet files to in-memory data structures, it must be decided what (software) language
and run-time engine will be at the consuming end of the data. The choice for a specific
language, e.g. C++, rules out immediate use in another language, e.g. Python, unless one
would perform the tedious work of implementing wrappers and/or serializers/deserial-
izers. Fortunately, the Apache Arrow project provides a common data layer, where the
in-memory representation of large tabular data structures is the same for any of the 11
supported languages. The project furthermore provides language-specific API’s to access
the data [28]. Applications in any of the supported languages may immediately benefit
from an accelerated implementation of the conversion when the output is in the Arrow
format.

Furthermore, we have created an FPGA accelerator framework built on top of Arrow,
called Fletcher [29], which is used in this work. Fletcher generates DMA engines with
streaming dataflow interfaces to and from Arrow in-memory data structures. The in-
terfaces are generated based on Arrow schemas — descriptions of the data types of the
values in the columns of the tabular data structures. The framework is more thoroughly
discussed in Chapter 3.

4.7.2. DESIGN AND IMPLEMENTATION

CHALLENGES

The complex dynamic structure of a Parquet file makes it challenging to implement in
hardware. Because the typical size of row groups is in the order of hundreds of MBs to
multiple GBs, the overhead of parsing row group or even column metadata on CPU and
performing host-to-accelerator communication is relatively small, and does not pose any
bottleneck so far. Pages, however, are in the order of megabytes (the default is one MiB,
although they can be chosen to be much larger). Therefore, we implement page metadata
parsing in hardware as well as decompressing and decoding values in pages.

Even at this level of the data structure, the Parquet format offers challenges. A Parquet
page itself consists of four distinct, variable-length, blocks of data. First, a header with
page metadata, serialized according to Apache Thrift’s Compact Protocol. Second and
third, blocks containing the so called repetition and definition levels. These blocks are the
result of Parquet optionally using Dremel encoding [30] (after Google’s first implemen-
tation of this technique). These are used for nested data types (e.g. lists of lists) and/or
nullable types. The last block contains the actual values. Because values of columns are
stored contiguously and have the same data type, encoding techniques such as (among
others) delta encoding with binary packing are used. They can also be compressed with
compression codecs such as (among others) Snappy [31] and gzip.

We also find the following tenets important during the design. First, the converter
should perform its function in a streaming fashion. This allows for an ingress-style
transformation as shown in Figure 4.16b and keeps latency low, since there are no copies
required on the on-board DDR memory of the accelerator card. Second, the converter
should perform its function at a throughput close to the I/O bandwidth on either side of
the accelerator. That is, either the SSD interface or accelerator to host memory interface.
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Figure 4.17: Architectural overview of the proposed accelerator. Control flow is omitted for clarity.

For contemporary and near-future systems, this is in the order of tens of GB/s.

ARCHITECTURE

To solve the aforementioned challenges, we propose the top-level architecture of the
Parquet-to-Arrow converter as shown in Figure 4.17.

It consists of the following components. The first three, Ingester, Aligner and Metadata
Intepreter are always the same and required to convert any Parquet file. The implementa-
tion of the Values Decoder, Repetition Level Decoder and the Definition Level Decoder,
depend on the compression and encoding scheme used by the file.

Ingester: At the request of the consuming software process, the Ingester initiates the
loading of pages from memory or storage in large bursts. It produces two streams with raw
bytes, and initial Parquet page alignment information within the raw byte stream, since
every page is not necessarily aligned to the start of the stream that transports multiple
bytes per transfer. These streams are fed into the Aligner component.

Aligner: Taking the streams from the Ingester, the Aligner implements a pipelined
barrel shifter to position the raw bytes for the next stages. Because one of the three
variable-length blocks within a page may be aligned differently, but could start within a
streamed word of the previous block, the Aligner holds the unaligned words in a history
buffer to be able to immediately restart the pipeline for the next page, without having to
request the data again from memory or storage. The downstream components report
back the amount of used bytes to provide the necessary control information for this
functionality.

Metadata Interpreter: Once the page has been aligned, its metadata must first be
interpreted. This is done by the Metadata Interpreter component. Parsing the metadata
involves a rather complex state machine, because it must implement the used features
of the Apache Thrift serialization protocol. This protocol uses rather dynamic features,
such as variable-length integers, causing the metadata interpreter to absorb one byte per
cycle. Because the page metadata is only a fraction of the total page data, the overhead
of this relatively low-throughput process is negligible. After interpreting the header, the
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compressed and uncompressed size of the page and the number of values are known and
streamed to the appropriate parts of the design.

Fletcher Array Writer: The Fletcher Array Writer is a component generated by the
Fletcher framework, serving as a DMA engine that can write from hardware streams to
in-memory arrays of complex data structures (e.g. nested lists) formatted by the Apache
Arrow format specification. It must be noted that in this context, Arrow arrays are not
C-like arrays, but can consist of multiple buffers holding data with specific relations
expressed through the Arrow type. We feed the various streams emerging from the
decoding of the values, and the repetition and definition levels, into the ArrayWriter. In
turn, it will write the data into memory in the Arrow format, and as such, the resulting
data structure could be used by any of the 11 software run-time environments supported
by the Arrow project, enabling the use of the accelerator in any of them.

Values Decoder: The internals of the Values Decoder depend on the data types used
in the column, since that influences what encoding schemes can be used. Furthermore,
the values can be compressed, and therefore must be decompressed for reading.

Decompressor: When compression is used, the Values Converter contains a Decom-
pressor component with a streaming interface. It can be replaced with decompressors
for any of the supported Parquet compression schemes, as long as they have a streaming
interface, such as e.g. can be found in an open-source implementations of Snappy [32]
(performing up to ≈ 8 GB/s) or GZip [33]. For files that are uncompressed, the decompres-
sor may simply pass through the data stream.

Decoders: For decoding, in the prototype implementation of this work, we require
that at least primitives (floats and ints) and variable-length arrays (including UTF8-
strings) can be decoded. More elaborate data types could be supported by implementing
different decoders, but this is kept for future work.

Parquet allows for various encoding schemes for various data types, of which we will
discuss three to meet the aforementioned requirements:

(A) Plain encoding of fixed-size primitives.
(B) Bit-packed delta encoding of fixed-size primitives.
(C) Mixed encoding of UTF8 strings.

In case A, the raw byte representation of the mentioned data types is used. This
implementation for primitives requires to simply pass-through the decompressed bytes,
but for variable-length arrays it depends on how their size is encoded.

In case B, an initial value is given. Then, for each value, only the difference (delta)
with respect to the previous value is stored. When the deviation between values is low,
bit-packing results in a small storage footprint for each value, as we can encode the delta
with a low number of bits.

In case C, there are several choices. A string can be formatted as a length followed
directly by its characters. However, this causes a potential throughput bottleneck, because
in this case consecutive strings must be de-interleaved, since the Fletcher Array Writer
interface uses a separate length and character stream for the UTF8 string type interface.
We found that de-interleaving requires an unacceptably large amount of FPGA resources,
because there are many possible combinations of how strings are packed into a single
stream word. Each of these combinations would require a separate parallel data path, as
the correct output can only be checked after the whole streamed word has been processed.
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Figure 4.18: Delta decoder

Fortunately, Parquet supports a string format that stores sequences of strings as (bit-
packed, delta encoded) lengths and (plain) characters separately within a page. However,
the Fletcher Array Writer interface only allows to stream in a single length per cycle1. To
prevent the Fletcher Array Writer to cause a bottleneck, we have improved the Fletcher
DMA engines to work with a parallel prefix sum adder to solve this issue.

Delta Decoder: To decode bit-packed delta-encoded values to raw values (used in
aforementioned cases B and C), we implement the Delta Decoder component, also shown
in Figure 4.18, to be used within the Values Decoder.

It consists of a Delta Header Reader, responsible to read metadata related to the delta
encoded values, such as the initial value. It also contains block sizes and number of
blocks, since even within the delta encoded values, yet another level of hierarchy exists,
that splits delta encoded value runs over multiple blocks. After parsing, the Delta Header
Reader aligns input stream to the start of a block. Each block contains more metadata
that is parsed by the Block Header Reader; a minimum delta that serves as an offset for
the Delta Accumulator. After parsing the Block Header Reader, the stream is again aligned
to the first delta encoded value. Through a component called Bit Unpacker, consisting
of several shift- and mask pipelines, delivering unpacked deltas, data is finally fed to the
Delta Accumulator in parallel. This unit performs the final parallel prefix sum on the
initial value, minimum delta and unpacked deltas to obtain the actual values.

4.7.3. RESULTS

We continue to describe measured results on the implementation of the proposed system.
We first describe the setup of our experiments, followed by performance measurements
and area statistics. We conclude this section with a discussion.
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Figure 4.19: AWS EC2 F1 throughput versus Arrow RecordBatch output size
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Figure 4.20: AWS EC2 F1 throughput versus Parquet page size

EXPERIMENT SETUP

The Parquet-To-Arrow converter is implemented on two platforms; the Amazon EC2 F1
platform using an Intel Xeon E5-2686 v4 CPU and a Xilinx XCVU9P FPGA (hereafter F1),
and an Inspur FP5290G2 with a dual-socket POWER9 Lagrange 22-core CPU and Open-
CAPI interface to an ADM-PCIE-9H7 with a Xilinx XCVU37P (hereafter OpenCAPI). The
FPGA implementation of the F1 system runs at 250 MHz, while the FPGA implementation
of the OpenCAPI system runs at 200 MHz. The implementation is publicly available, free,
and open-sourced, including all benchmarks performed to reproduce the result in this
section [34].

The FPGA implementation in the F1 system requires the Parquet file to be copied
from host memory to on-board memory, because it can only access the on-board DDR
memories of the accelerator card. During this transfer, the CPU may perform other tasks,
if they can be overlapped. We therefore present two flavors of measurements for the F1
system. In the first, denoted by F PG A, we measure the end-to-end solution, where the
Parquet file starts in host memory and ends up decoded as an Arrow RecordBatch in host
memory again (i.e. a full round-trip). In the second, we measure no copy time, denoted by

1Because Arrow stores strings as contiguous offsets into a character buffer in memory, rather than as contiguous
lengths and a character buffer. This makes the offsets buffer a prefix sum of all string lengths, for which Fletcher
only calculates one value per cycle.
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F PG ANC . Here, we measure only the FPGA processing time with the Parquet file already
in the on-board DDR memory and the Arrow RecordBatch ending up in the on-board
DDR memory as well.

For the FPGA implementation of the OpenCAPI system, we only have one flavor of
measurements, denoted by F PG A. This includes the whole round trip from host memory,
to FPGA, back to host memory. The OpenCAPI system is unique in this sense, since it
allows to load and store the data directly from host memory using virtual addresses of the
associated process controlling the FPGA accelerator.

To obtain the absolute best result on the CPU, it was necessary to re-implement
the Parquet subset supported by the FPGA implementation in C++ and compile it using
GCC with -Ofast. For the F1 system, -march=native was also used, but this flag is not
available for the POWER9 CPU of the OpenCAPI system. Existing implementations in Java
did not support the Arrow in-memory format yet, and existing implementations in C++
did not support the latest Parquet specification V2.0 yet, that is used in this work. Our
C++ implementation outperformed the existing software implementations for this subset,
providing us with the fastest CPU implementation. We make the same assumptions in
all implementations, most importantly that we pre-allocate the resulting Arrow buffers,
and do not grow them dynamically, which will involve copy overhead. This software
implementation is denoted as C PU .

We create a second C++ implementation where the virtual memory pages2 of the
Arrow buffers are touched, to make sure the TLB is ‘warm’, consequently removing the
overhead of a ‘cold’ TLB from the measurements. This is done to mimic the extreme best
case resulting from an often used construct in big data systems; memory pools. These
are relatively large and typically zero-initialized virtual memory allocations, that can be
rapidly freed when a process exits. Because they are zero-initialized, the pages of the
memory pool are already touched, resulting in a ‘warmer’ TLB on average. As such, the
best case for this behavior is mimicked, and the most optimistic (albeit less realistic)
scenario for the CPU implementations is measured. These measurements are denoted as
C PUPRE .

For both the CPU implementation and for the FPGA implementation, we measure the
performance of one thread and one kernel, respectively.

We measure three combinations of data types and encoding, from the cases described
in the previous section:

(A) plain encoded 64-bit integers, shown as int64 (plain)
(B) bit-packed delta encoded 64-bit integers, shown as int64 (delta)
(C) UTF8 strings where the lengths use delta encoding, shown as strings

Data for int64 (plain) was randomly generated. Data for int64 (delta) was randomly gener-
ated, but with a random modulo that changes every 256 elements. This modulo creates a
mix of data requiring different packing lengths, instead of almost always requiring the full
width as is expected for fully random data. The emphstrings were randomly generated
with random lengths between 1 and 12 characters. Note that the length of the strings
determines the mix between delta-packed and plain data, and very long strings will result
in behavior more similar to that of int (plain).

2Not to be confused with Parquet pages.
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Figure 4.21: POWER9/OpenCAPI/9H7 throughput versus Arrow RecordBatch output size
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Figure 4.22: POWER9/OpenCAPI/9H7 throughput versus Parquet page size

AWS EC2 F1 - Throughput vs. RecordBatch size For the F1 system, we first measure
the throughput versus the size of the resulting Arrow RecordBatch, shown in Figure 4.19.
The figures display two Parquet page sizes; small pages, prefixed with “S-”, where the
pages are approximately 1 kB in size, and large pages, prefixed with “L-”, where the pages
sizes are approximately 10 MB in size.

Since plain encoded 64-bit integers require no further decoding, they correspond to
performing a plain copy. Figure 4.19a therefore gives a good indication of the overhead
associated with processing the Parquet files on FPGA. When the output size is very small
(i.e. small Arrow RecordBatches), the overhead of initializing the FPGA to start operating
becomes evident. As the output size grows, we see that the FPGA accelerated solution
increases in bandwidth, since it has to spend relatively less time on initialization. Looking
at the F PG ANC curve, we furthermore observe that the proposed system can saturate
the on-board bandwidth of one of the DDR controllers of the F1 accelerator card. The
read and write interface use the same DDR controller. Since the interface operates in
half-duplex at 16 GB/s, and since we both read and write at the same time, the throughput
saturates just over 7 GB/s. The accelerator for this configuration does not outperform the
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CPU implementations because the round-trip throughput does not reach above 2 GB/s.
While this configuration is not typical for Parquet files (typically both delta encoding and
compression would be applied), it does reveal the overhead associated with initializing
the FPGA solution quite well. The CPU solutions initially increase in throughput, but later
decrease around the tens of megabytes range, most likely due to running out of cache
space to store the Arrow RecordBatch.

In the delta-encoded and bit-packed integer case (int64 (delta)), shown in Figure 4.19b,
there is some actual computation to perform next to decoding the page headers. In this
case, the integers also need to be unpacked, better revealing the value of the proposed
system. Now that calculations have to be performed, we quickly find the F PG ANC to
outperform the CPU implementation in terms of processing throughput, achieving close
to the available DDR interface bandwidth again. However, the end-to-end measurement
(F PG A) reveals that the overhead associated with making copies from and to the on-
board DDR memory still prevents the FPGA accelerated solution from achieving better
performance.

Finally, in the strings case, shown in Figure 4.19c, the same conclusions as for the
int64 (delta) case can be drawn.

AWS EC2 F1 - Throughput vs. Parquet page size Also for the F1 system, we measure the
throughput versus various Parquet page sizes, shown in Figure 4.20. For all measurements
in this figure, an output RecordBatch of 1 GB in size was chosen.

For all data types, around the default Parquet page size of 1 MiB, we observe that the
available DDR controller bandwidth can already be saturated. When the page sizes are
set to be much smaller, we observe that the overhead of decoding the pages becomes a
bottleneck. Only for the plain encoded integers, the processing throughput drops below
that of the CPU implementation, but for the other data types and encoding, even for
non-realistic page sizes of around one kB, the F PG ANC measurement throughput is
better. The curve for the F PG A measurement is lower for plain encoding, but roughly
the same as the C PU curve for the other data types, but still not better than the C PUPRE

implementation.

POWER9/OpenCAPI/9H7 - Throughput vs. RecordBatch size For the OpenCAPI sys-
tem, we also measure the throughput versus the size of the resulting Arrow RecordBatch,
shown in Figure 4.21. We do this in the same way as for the F1 system, using very small
(prefixed with “S-” at approximately 1 kB) and large pages (prefixed with “L-” at approxi-
mately 10 MB).

For all data types and encodings, the FPGA implementation is able to outperform the
CPU implementation when the page sizes are sufficiently large and the output size is large.
For the plain encoded integers, the benefit is rather small, but for configurations where
actual work has to be performed to decode the data, the FPGA implementation shows its
value, resulting in a speedup of around 3×. For the delta encoded integers and the strings,
the throughput of the FPGA implementation levels off at around 6 GB/s, while the CPU
reaches 1.5−2 GB/s. This is not due to the OpenCAPI interface, that allows bandwidths of
up to 25 GB/s, but due to the delta decoding step. The difference in throughput compared
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Data type Enco-ding Input
stream
width (bits)

LUTs (%) Regis-
ters
(%)

BRAM (%)

Int64 Plain 512 1.18 1.27 2.13
Int32 Delta 64 1.46 1.50 2.85
Int32 Delta 128 1.55 1.61 2.99
Int64 Delta 64 1.68 1.64 2.66
Int64 Delta 128 1.76 1.76 2.99
Int64 Delta 256 1.90 1.99 3.24
UTF8 Mixed 128 2.79 2.92 4.47

Table 4.8: Resource utilization. Device: Xilinx XCVU9P.

to the F PG ANC measurement of the F1 system is explained by the difference in clock
frequency.

POWER9/OpenCAPI/9H7 - Throughput vs. Parquet page size We also measure the
throughput versus various Parquet page sizes for the OpenCAPI system, shown in Fig-
ure 4.22. Around the default Parquet page size of 1 MiB, the FPGA throughput is already
saturated. Similar as in the discussion of the F1 system, the measurements of the smallest
(although rather unrealistic) page sizes reveal the overhead associated in decoding pages.

RESOURCE UTILIZATION

In Table 4.8, we find the resource utilization statistics of a single Parquet-to-Arrow con-
verter for the Xilinx XCVU9P. For clarity, this excludes the F1 platform-specific resources.
The area utilization is modest, with most resources staying under 5%. This allows for
multiple converter cores to be implemented in contemporary FPGAs, that could work
on converting the Parquet file in parallel, leveraging its parallel-friendly format. Timing
closure for all designs was reached for a 250 MHz clock rate.

DISCUSSION

From the results presented, we find the Parquet-to-Arrow converter accelerator to be
an interesting alternative to a CPU-only solution. We stipulate the following general
observations.

First, our measurements indicate that CPUs will become the bottleneck when loading
data from the Parquet file format, rather than I/O bandwidth, for modern storage systems
with increased I/O bandwidth. This is most pronounced by first looking at the difference
between the CPU measurements of plain encoded integers in Figures 4.19a and 4.21a.
Since the operation to decode the Parquet file only requires parsing page headers and
otherwise only performing memcpy, the CPUs are bottlenecked by memory I/O bandwidth,
achieving close to 7 GB/s and 12 GB/s when the output size is larger than the caches.
However, continuing to look at Figures 4.19b,4.19c and Figures 4.21b,4.21c, where actual
work on decoding has to take place, the CPU performance never reaches above 3 GB/s
anymore. The CPU has become the bottleneck.

Second, the main figure of merit being throughput, the FPGA accelerator always
outperforms the CPU implementations in terms of processing throughput. To increase
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the end-to-end bandwidth of the F1 system, it would be interesting to explore overlapping
data copy and FPGA computation, where a single instance of our proposed architecture is
already able to saturate a PCIe interface.

The OpenCAPI interface provides up to 25 GB/s of full-duplex bandwidth. Reaching
this bandwidth is not easy to achieve with a single kernel, since closing timing for the
delta decoding step is too hard when the interface is very wide. However, since various
parts of a Parquet file may be decoded in parallel, multiple instances of our proposed
design would be able to saturate the interface bandwidth with ease. Such a design is
very feasible since the area footprint is relatively small and could by estimation fit more
than sixteen times in the VU37P, where four instances should saturate the bandwidth in
practice.

Finally, as the Parquet format is of a very dynamic nature, it is challenging to support all
possible potential configurations. A Parquet file can only be converted by the accelerator if
the facilitated configurations of data type, decompressor and decoder match the columns
of interest in the file. If switching between different configurations is required, it is
required to extend the decoding components in such a way that the area overhead may
be rather large. It would be more beneficial to maintain a library of pre-synthesized
configurations that can be (partially) reconfigured into the converter depending on the
file. This would leverage the reconfigurability advantage of the FPGA while allowing a
Parquet-To-Arrow converter to maintain a relatively small footprint. At the same time,
performance implications of such a mechanism should first be evaluated, especially when
files are small, since in that case, the reconfiguration overhead may dominate.

4.7.4. CONCLUSION

As I/O bandwidth of storage and network continues to increase, the use of traditional
exchange formats for large data structures leaning on the premise of fast CPUs and
slow I/O will begin to see CPU bottlenecks. We observed that this bottleneck is also
present when loading data from Apache Parquet files into Apache Arrow in-memory data
structures at I/O bandwidths of modern storage and network solutions, where the CPUs
of our systems are only able to support a throughput in the order of several GB/s.

We proposed an FPGA accelerator design, in which the Parquet files are converted
to Apache in-memory data structures, only using the CPU to parse high-level metadata
that does not impact performance. We continued to provide a modular and extensible
architecture that is able to parse lower-level but more performance-critical metadata
about Parquet pages, in addition to being able to decompress and further decode stored
values. The architecture is designed in a modular way, allowing users to insert their own
decompressors and decoders, based on the many possible encodings that Parquet files
may employ. We present an implementation for three data types and encodings in this
paper, for plain encoding, and for bit-packed delta-encoded values for both integers and
UTF8 strings.

When using encoding schemes more complex than plain, results clearly show the
merit of using FPGAs. For a POWER9 system with an FPGA connected via OpenCAPI, a
single instance of the proposed architecture is able to process realistically configured
Parquet files at up to 6 GB/s versus just over 2 GB/s for an optimized CPU implementation.
On an Amazon EC2 F1 system, similar advantages are measured for cases where data
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transfer between host and FPGA can be overlapped. Otherwise, interface bandwidth
becomes a bottleneck and performance does not surpass the CPU. The implementations
use a small amount of resources (below 5%), which allows multiple instance of the Parquet-
To-Arrow converter to be instantiated. This will allow processing Parquet pages in parallel,
increasing throughput as long as there are resources and I/O bandwidth available.

When compression schemes such as GZip, Snappy or Brotli would be applied on top of
the presented delta encoding, the FPGA accelerator benefits are expected to become more
pronounced. These operations will only decrease CPU performance, while there are high-
throughput, fully streamable implementations with low resource utilization available for
FPGAs. Integration and evaluation of such designs are envisioned for future work. In
conclusion, the Parquet-To-Arrow converter is a promising heterogeneous alternative to
CPU-only based processing of Parquet files into Arrow in-memory data structures.

4.8. CONCLUSION
In this chapter, we have demonstrated six applications with the help of (parts of) the
features of Fletcher described in the previous chapter. The first three applications, regular
expression matching, k-means clustering, and writing strings to memory at high band-
width, specifically focus on the increased performance when serialization overhead is
prevented through the use of Arrow. We briefly explored integrating with a commercial
HLS tool. Three use-cases show that the combination of Arrow and Fletcher can be benefi-
cial to the end-to-end throughput of an FPGA accelerated application, especially when the
accelerated operation is streamable. For these cases, the benefit was shown to range from
1.3× - 49×, depending on the characteristics of the applications and the implementation
platform. For a fourth use case that uses an HLS-based design flow, Fletcher allows the
kernel to be expressed using stream arguments rather than buffer pointer arguments,
increasing the ease of use and integrated performance of a commercial HLS tool.

We have described the acceleration of Variant Calling in genomics, more specifically
we analyzed the efficiency of systolic arrays that implement the PairHMM Forward Algo-
rithm to find the overall alignment probability of a read to a haplotype. We have shown
architectures that can implement fixed-size systolic arrays in such a way that on average
around 90% of the circuit is effectively used when processing a real dataset, We have
described the Arrow Schema that may be used to represent the structured data, and
have upgraded the design to make use of Fletcher’s Array Readers and Writers and posit
arithmetic, increasing the benefit over CPU computations by more than three orders of
magnitude, as posit arithmetic can only be emulated in software. This shows furthermore
the short-term specialization advantage of FPGA accelerators.

Finally, as I/O bandwidth of storage and network continue to increase, the use of
traditional exchange formats for large data structures leaning on the premise of fast CPUs
and slow I/O will begin to see CPU bottlenecks. We observed that this bottleneck is also
present when loading data from Apache Parquet files into Apache Arrow in-memory
data structures at I/O bandwidths of modern storage and network solutions, where
the CPUs of our systems are only able to support a throughput in the order of several
GB/s. We proposed an FPGA accelerator design using Fletcher, in which the Parquet
files are converted to Apache in-memory data structures, only using the CPU to parse
high-level metadata that does not impact performance. For a POWER9 system with an
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FPGA connected via OpenCAPI, a single instance of the proposed architecture is able to
process realistically configured Parquet files at up to 6 GB/s versus just over 2 GB/s for an
optimized CPU implementation.
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5
COMPLEX DATA STRUCTURES OVER

HARDWARE STREAMS

Based on the lessons learned from the development of the Fletcher framework, this chapter
introduces a type system and streaming interface specification that help to define how com-
plex, nested, and dynamically sized data structures can be exchanged between components
in digital circuits. We believe this type system and specification, called Tydi, are helpful in
the future development of new hardware generation tools such as Fletcher itself, but also for
new hardware description languages, providing a high level of abstraction without a loss of
performance, while still staying hardware-oriented. Through the simple but intuitive type
system, it is possible to construct types for interfaces over which all sorts of data structures
may be transferred, and through the specification, the associated access behavior is clearly
defined. We provide an initial set of standard generic types for common data structures,
that serve as an analogy for containers in standard libraries of modern software languages.
Such containers are well known by software developers, and they select them according to
the access behaviour of their applications and the implications of that access behaviour for
that container. However, hardware streams deliver data structures in an inherently sequen-
tial manner, while software abstractions typically assume random-access, a difference that
is reflected in the constructs of the type system and the containers that we provide. Despite
the abstractions that Tydi provides, at the digital-circuit level, developers may still make
hardware-oriented trade-offs in area and throughput when necessary. We implement a
code generation tool that can target various contemporary hardware description languages
to generate boilerplate code for interfaces based on Tydi types. A brief study of the amount
of code to define a Tydi type and the amount of generated boilerplate code shows that the
abstractions provided by Tydi may decrease developer effort by orders of magnitude.
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Figure 5.1: Tydi context.

5.1. INTRODUCTION
Exchanging data between components of a computing system is a major topic in com-
puter architecture. When components interact, a well-specified representation of the
data should exist in whatever medium used for communication to allow the data to be
interpreted correctly and enable reusable and extensible designs. Clear format specifica-
tions are especially useful for an open-source community, where it enables more efficient
collaboration.

Agile development of hardware-oriented solutions is driven by many excellent open-
source projects that increase the level of abstraction at which hardware is described. Some
experts even argue that we are in “A Golden Age of Hardware Description Languages” [1]
— more advanced designs can be automatically synthesized from fewer lines of code.

However, we observe a lack of standardized exchange formats and abstract views for
complex data structures at the level of digital circuits. As a result, developers often manu-
ally design their custom representations of more advanced composite and aggregate data
structures (e.g. strings, nested lists, etc.), that need to be exchanged between components
over streams.

We propose Tydi; an open specification (found freely online [2]) that allows developers
to map composite and dynamically-sized data structures onto hardware streams. It
furthermore provides an abstract, but still hardware-oriented view of these data structures,
as to not lose the opportunity to make common trade-offs in the design phase.

An overview of the context of Tydi is seen in Figure 5.1. To implement a data structure,
programmers choose some types and containers, helped by language constructs and
libraries (a), run-time engines and compilers take care of the mapping to RAM (b). The
same for contemporary HDLs (c) is prevented because dynamically-sized structures are
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Data type Data structure (or instance) Description
EMPTY (;) Empty set, singleton value.
PRIM〈B〉 (bB−1 ,bB−2 , ...,b0) Primitive element containing B bits of information.
STRUCT

〈T1 ,T2 , ...,Tn 〉
(I(T1 , p1), I(T2 , p2), ..., I(Tn , p3)) Composite type. An instance is a set with one instance of every type

argument T1 ,T2 , ...,Tn .
VARIANT

〈T1 ,T2 , ...,Tn 〉
I(t ∈ (T1 ,T2 , ...,Tn ), pt ) A variant type. An instance is one of either type T1 or T2, etc. t is

known when instantiated, by some tag.
TUP〈n,T 〉 (I(T, p1), I(T, p2), ..., I(T, pn )) A fixed-length aggregate type. An instance is a sequence with n ∈N+

instances of the same type T . n is part of the type.
SEQ〈T 〉 (I(T, p1), I(T, p2), ..., I(T, pn )) A variable-length aggregate type. An instance is a sequence with n ∈

N0 instances of the same T . n is only known when instantiated.
I(T, p) is an instance of type T , where p parametrizes the instance, if necessary.

Table 5.1: Conceptual view of data types and data structures used throughout this article.

not inherently supported. When mapping to hardware streams (d) designers customize
solutions to transport data structures over multiple stream transfers. Tydi is a specification
that clearly and intuitively provides a mapping (e) and pre-defined containers for common
types.

At the core of the specification lies a type system. It provides an intuitive and clear
definition of how complex data structures are transported over hardware streams. We
discuss additional parameters that can be used to make an area/throughput trade-off
for component interfaces, and provide a precise specification at the hardware level.
This specification can be used by developers that design components, or that combine
components into larger designs, either manually or by automated tools.

5.2. BACKGROUND
Designing digital circuits from a dataflow-oriented perspective involves selecting appro-
priate transformations and connections between the transformations through directed
channels. When data starts flowing from external sources, the specific configuration of
transformations and channels allow an algorithm to be executed, producing output that
can flow back to an external sink. For digital circuits, channels are often implemented as
streams; point-to-point connections, where a sink receives data elements from a source
in FIFO-order. Transformations are typically implemented as streamlets: components
with streaming interfaces.

When data structures flow over streams between streamlets, it is favorable to reason
about them at a high level of abstraction, rather than at a low level (bits and clocks),
especially when the data structures are dynamic and complex. An example data structure
that we will use throughout this article, is a chat message consisting of a (64-bit POSIX-
time encoded) timestamp and a sentence (Extended-ASCII encoded string). To create
more context, envision an application with an unbounded stream of messages, where
one would like to apply a transformation that filters the message by some time range,
then splits the sentence into separate words.

A more formal view of data types and structures is presented in Table 5.1. Using that
view, we can describe the aforementioned chat message as: Tm = STRUCT〈PRIM〈64〉, SEQ〈PRIM〈8〉〉〉,
and the filtered message as: T f = STRUCT〈PRIM〈64〉, SEQ〈SEQ〈PRIM〈8〉〉〉〉.

In the software domain, instantiated data structures of these types are typically ma-
terialized as bytes in a RAM. How this is done depends on the software framework used,
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as shown in Figure 5.1. The exact byte-level representation is left to compilers, run-time
engines and standard libraries. Especially for aggregate types, programmers typically
select pre-defined containers from standard libraries (e.g. the C++ std::vector) that
help mapping tuples and sequences based on their basic notion of the architecture of
their device (typically a load-store architecture) and properties of their algorithm/work-
load (e.g. whether to store a sequence as a linked-list or in a hash-table). This greatly
abstracts the details of how the data structure is mapped onto (typically) a RAM — a
one-dimensional sequence of bytes, under some constraints (the total number of bytes
available), but programmers retain some control over the performance characteristics of
the mapping.

While attempting to map complex and dynamically-sized data structures onto a single
streamed element, one quickly finds it impractical to allow the streamed element to
be as wide as the amount of information in bits. This impracticality exists for at least
two reasons. First, some aggregate types, such as the sequence, are dynamically-sized.
Accommodating an interface at design-time based on some initial guess for its length
would rule out support for potentially larger sequences. Second, data structures described
by aggregate types that are statically-sized, such as tuples, can grow arbitrarily large.
Streamlets may not be able to absorb all data from a large element at once. Consequently,
one would be under-utilizing the resources used for the streaming interface.

Thus, designers often choose to split the information over multiple stream transfers,
such that over time, the whole data structure is transported between the sourcing and
sinking streamlet. Therefore, a hardware developer does not map a data structure merely
onto space (e.g. a one-dimensional bit-vector), but also onto time, or more specifically,
stream transfers. From this description, a two-dimensional plane emerges that we will
call streamspace — the plane consisting of both a spatial resource (bits) and a resource
of temporal nature (transfers).

To the best of our knowledge, while there is an enormous body of work in the software
domain about mapping complex data structures onto byte-addressed RAM, little literature
exists that discusses methods of mapping composite, potentially dynamically-sized and
nested aggregate types onto streamspace from an abstract point of view. This causes the
tedious need for hardware designers to create custom formats for their designs and data
structures (often on top of existing standards), which is a problem we address through
Tydi.

5.2.1. RELATED WORK

One widely-used streaming protocol specification is the AXI4-Stream protocol [3]. Users
can transport anywhere between zero and N bytes per transfer, with an (optional) last bit
that denotes the end of a one-dimensional sequence of bytes. It therefore specifies how to
transport either PRIM〈8〉 or SEQ〈PRIM〈8〉〉. It does not specify how structures that are not
byte-oriented or that have deeper levels of nesting, e.g. SEQ〈SEQ〈PRIM〈7〉〉〉, should be
communicated. Avalon Streaming [4] is similar to AXI, but slightly less restrictive, because
elements can be arbitrarily sized.

CoRAM++ [5], where DMA engines are generated based on a set of specific C-style
data structures, such as multidimensional arrays, linked lists, and trees, allows stream-
lets to interact with more advanced data structures in memory, but does not focus on
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communication between streamlets or on how to mix the above data structures.

We have explored active (open-source) hardware frameworks, including classical
HDLs (VHDL, Verilog, SystemVerilog) and contemporary ones ( Cλash [6], Chisel [7],
and Spatial [8]). All these HDLs support compound types that map onto bit-vectors
(e.g. VHDL’s record, Chisel’s Bundle, etc.), and statically-sized aggregate types, but lack
inherit support for dynamically-sized aggregate types mapped onto streamspace. This
is unsurprising; the type systems of these frameworks reason only about space, but not
about stream transfers — the latter being typically left to the designer — as the goal
is to describe hardware just above the register-transfer level. In libraries of some of
the languages, abstractions for streaming dataflow designs are provided, e.g. Chisel’s
DecoupledIO, Spatial’s StreamIn/Out and Cλash’s DataFlow. The abstractions move
towards the level we envision when composing designs out of streams and streamlets, but
only abstract the handshake mechanism for otherwise completely user-defined signals,
lacking inherent support for throughput scaling of streams that is available in AXI/Avalon.

Commercial high-level-synthesis frameworks (including Vivado HLS and SDAccel)
support streams as parameters for functions, creating a streaming interface for kernels.
These streams provide an abstraction for the handshake protocol of a single unbounded
stream for statically-sized composite types. Information about the size of dynamically-
sized aggregate types traveling over the stream still requires a custom mapping onto the
streamed elements.

5.3. ENTERING STREAMSPACE

As mentioned in the previous sections, our goal is to find a suitable mapping of the data
structures shown in Table 5.1 into streamspace. We propose a mapping, where we define
logical streams; streams that transport a top-level data structure (that may consist of
nested data structures). Depending on the data structure, a logical stream can consist of
multiple physical streams; streams with their own handshake/transfer interface.

To facilitate a clear definition of the physical streams emerging from a logical stream,
we introduce a streamspace-oriented type system. The type system exposes the direction
of physical streams, and how two of their properties E and D are derived. E is the number
of bits of an element that the stream transports in every transfer, and D is the number of
bits used to signal the end of some (nested) sequence. The physical streams have more
properties that are explained in the next section.

At least three use-cases for this type system exist. First, it can be used in tools that au-
tomatically generate streamlet interfaces for traditional hardware description languages
(e.g. VHDL or (System)Verilog). In a later section, we briefly discuss two implementations
of such generators; the reference implementation utility of Tydi, and Fletcher, a hardware
acceleration framework for FPGAs. Second, the type system can be used in hardware
description frameworks, such as Chisel. Chisel has highly generative capabilities through
its host language Scala. The type system and generative code can reside in a Scala library.
Third, we envision tight integration within hardware description languages that use a
functional programming paradigm, such as Cλash, as they are highly suitable to express
dataflow designs.
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Type Description Dchi l d
BITS〈B〉 Defines a B-bits primitive element, where B ∈N0. n/a
GROUP〈S1,S2, ...,Sn〉 Concatenates elements of types S1,S2, ...,Sn into one physical

stream element.
Dp

UNION〈S1,S2, ...,Sn〉 Defines a B-bits element, where B is the max. element width of
S1, ...,SN

Dp

DIM〈S〉 Creates a streamspace of elements of type S in the next dimension
w.r.t. its parent.

Dp +1

REV〈S〉 Creates a new physical stream of S that flows in reverse direction
w.r.t. its parent.

Dp

NEW〈S〉 Creates a new physical stream in the parent space Dp with elements
of type S.

Dp

D0 is the first streamspace dimension, Dp is the dimension of the parent type, if applicable.

Table 5.2: Overview of streamspace types in Tydi

Figure 5.2: Examples of streamspace types.

5.3.1. A STREAM-ORIENTED TYPE SYSTEM
We define six types that help to construct a streamspace representation of the data struc-
tures, also shown in Table 5.2. These types abstract indivisible properties of data structures
being exchanged in streamspace. More advanced abstractions can be constructed by
combining these types, as shown in Figure 5.2 (discussed later).

The first three types in the table manipulate the size E of the element that a physical
stream transports. As such, they could ‘live’ outside streamspace (i.e. they map only to a
one-dimensional bit vector). The other types are used to create separate physical streams
in streamspace.

Of the element-manipulating types, the first, BITS〈B〉 will add B bits to that element,
and could be seen as simply adding a field of a primitive type to the streamed element.
This is the streamspace representation of a PRIM〈B〉. The second, GROUP〈S1,S2, ...,Sn〉,
concatenates elements of its child types (where S denotes a streamspace type parame-
ter). This causes the element size E to be the sum of all child element sizes, as long as
these children reside in the same physical stream. GROUP therefore allows to represent
STRUCT, but can also help to combine multiple physical streams, as the type arguments
are not limited to element-manipulating types. The final element-manipulating type
is UNION〈S1,S2, ...,Sn〉, that selects the element size to be the largest element size of its
children. This is useful in representing the VARIANT type.

Of the physical stream creating types, DIM〈S〉 increases the dimensionality of its child
type S, and therefore increases the parameter D . In physical streams, D bits are reserved
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that signal an element is the last element in a (nested) sequence (rather than e.g. the
single ‘last’ bit of AXI4-Stream). A separate physical stream is created over which zero or
more instances travel for every single element of its parent. This makes DIM〈S〉 suitable
to represent (nested) sequences. REV〈S〉 is used to create a physical stream that flows in
the reverse direction respective to its parent. This stream remains in the same dimension
as its parent; for every element that the parent transfers, also one instance of REV〈S〉
will be transferred. REV〈S〉 can be used for interfaces between streamlets that work on a
request-response basis.

NEW〈S〉 is used to create a new physical stream that has the same dimensionality as
its parent, and is implicitly at the root of all streamspace types.

In Figure 5.2, we demonstrate by example how data structures can be mapped into
streamspace.

(a) A streamspace mapping of a structure with a seven-bit field and a sixteen-bit field:
STRUCT〈PRIM〈7〉, PRIM〈16〉〉. In the mapping GROUP〈BITS〈7〉, BITS〈16〉〉, GROUP concatenates
the BITS elements together into a single element, resulting in a single physical
stream transporting twenty-three-bit elements (E = 23) with dimensionality D = 0.

(b) The type Tm of our chat message example. A simple mapping of Tm into streamspace
is: GROUP〈BITS〈64〉, DIM〈BITS〈8〉〉〉 creating two physical streams; one for the timestamp
field, and another, logically nested in the first, for the sequence of 8-bit elements.
For every transfer on the first stream, there must be at least one (possibly empty)
transfer on the second stream.

(c) Output T f of the streamlet transforming Tm . The second field is now a sequence of
sequences, requiring a nested DIM. Although the outer DIM defines a new physical
stream, it is discarded because its element size is zero. The stream transporting the
nested sequence has D = 2 dimensionality bits to encode the three possibilities for
every element transported: it is the last element of the inner sequence but not the
outer, or it is the last element of both sequences, or it is the last element of neither
sequence.

(d) A type allowing random access to an element from a sequence SEQ〈BITS〈8〉〉. We
map this to streamspace as: GROUP〈BITS〈L〉, DIM〈REV〈GROUP〈REV〈BITS〈L〉〉, BITS〈8〉〉〉〉〉 where
L is the number of bits used to represent sequence lengths. The streamlet sourcing
the random element first provides the length of the sequence on the outermost
physical stream, so that the sink knows how large the sequence is (to prevent
requesting out of bounds). Then, for every sequence length, the sink may send
multiple (hence DIM) requests through a reversed (hence REV) physical stream. For
every request, an element is provided (hence the GROUP of the BITS and REV). This
describes a streamed RAM interface. The arguments of GROUP are strictly ordered.
To prevent deadlocks, a source may not assume that the sink accepts transfers on
streams out of the order of appearance as type arguments.

(e) An example of a mapping of the type VARIANT〈PRIM〈32〉, PRIM〈64〉, SEQ〈PRIM〈8〉〉〉. The first
field of the group contains the variant type tag to let the sink know what type of
instance is contained in the variant. Because the first two potential types are bit
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Data type Tydi container Definition
EMPTY NULL BITS〈0〉 (this is useful increase the tag size for VARIANT with an EMPTY type)
PRIM〈B〉 BITS〈B〉 BITS〈B〉
STRUCT〈T1 ,
T2 , ...,Tn 〉

CONCATSTRUCT〈S1 ,S2 , ...,Sn 〉 GROUP〈S1 ,S2 , ...,Sn 〉
DESYNCSTRUCT〈S1 ,S2 , ...,Sn 〉 GROUP〈NEW〈S1〉, NEW〈S2〉, ..., NEW〈Sn 〉〉

VARIANT〈T1 ,
T2 , ...,Tn 〉

PACKEDVARIANT〈S1 ,S2 , ...,Sn 〉 GROUP〈BITS〈dlog2 ne〉, UNION〈S1 ,S2 , ...,Sn 〉〉
CONCATVARIANT〈S1 ,S2 , ...,Sn 〉 GROUP〈BITS〈dlog2 ne〉, GROUP〈S1 ,S2 , ...,Sn 〉〉
DESYNCVARIANT〈S1 ,S2 , ...,Sn 〉 GROUP〈BITS〈dlog2 ne〉, NEW〈S1〉, NEW〈S2〉, ..., NEW〈Sn 〉〉

TUP〈n,T 〉
CONCATARRAY〈n,S〉 GROUP〈U1 ,U2 , ...,Un 〉,∀u ∈U ,u : S
ARRAY〈n,S〉 NEW〈S〉
RATELEM〈n,S〉 GROUP〈REV〈BITS〈dlog2ne〉〉,S〉
RATSLICE〈n,S〉 GROUP〈REV〈GROUP〈BITS〈dl og2ne〉, BITS〈dlog2ne〉〉〉, NEW〈S〉〉

SEQ〈T 〉
LIST〈S〉 DIM〈S〉
VECTOR〈S〉 GROUP〈BITS〈L〉, NEW〈S〉〉
RASELEM〈S〉 GROUP〈BITS〈L〉, REV〈GROUP〈BITS〈I 〉〉,S〉〉
RASSLICE〈S〉 GROUP〈BITS〈L〉, REV〈GROUP〈BITS〈dl og2ne〉, BITS〈dlog2ne〉〉〉, NEW〈S〉〉

L is a system-wide constant representing the number of bits to represent indices. RAS stands for
random-access-sequence, and RAT for random-access-tuple.

Table 5.3: Overview of Tydi ‘container’ types.

fields, they can fit into the outermost stream through the UNION type, causing the
element size to be the maximum of the size of the BITS fields, in this case E = 64.
Since the third type has a higher dimensionality (D = 1), its instances flow over their
own physical stream. Whenever the tag exposes that the element is of the third type,
the sink must read the rest of the instance from the innermost stream.

(f ) A use for NEW. Instead of mapping the length of a sequence by increasing D, we
may choose to map the sequence length as a separate stream. This can be seen as
another way of mapping an instance of a SEQ into streamspace.

5.3.2. STANDARD CONTAINER LIBRARY

As described in the Background section, software projects provide programmers with
pre-defined containers to map data structures to memory. Containers are aliases for
combinations of types from the programming language’s type system, with some specific
access behavior, typically implemented in a standard library. Similarly, Tydi proposes
‘containers’ for streamspace to represent common data structures. These ‘containers’
have access behavior associated with them as described by the streamspace type system.
Some of these proposed mappings can be found in Table 5.3. The reader is encouraged to
draw out some of these similar to the graphs of Figure 5.2, to verify the intuitive hardware-
oriented view on data types of the streamspace type system.

5.4. PHYSICAL STREAMS
We discussed the streamspace types, and how it determines two properties of physical
streams; E , the number of element bits, and D , the number of dimensionality bits to signal
the end of a (nested) sequence. We now introduce the bit-level layout of a physical stream
and show additional properties of physical streams that are relevant in the context of
connecting two streamlet interfaces producing and consuming data. When all properties
are known, a concrete circuit-level interface can be synthesized.

Physical streams have three additional properties; N , U and C . N is the number of
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Figure 5.3: Bit-level layout of a physical stream (a) and examples for various complexity levels (b).

elements per transfer. Communicating multiple elements per transfer can be used to
scale up the bandwidth of a physical stream at the cost off additional wires. When N > 1,
the stream has multiple lanes over which elements are transported. U is the number of
arbitrary user bits piggybacking transfers, for whatever purpose. C is the complexity level
of a stream, that describes the guarantees about the packing of elements into (mainly
the temporal dimension of) streamspace. The complexity level can be used to make
additional trade-offs about the complexity of the control logic of the interface on both
ends of the stream, with minor nuances in area and throughput. Finally, physical streams
use the same valid/ready-handshaking mechanism as AXI4-Stream for flow control.

Using these properties, the layout of a physical stream can be seen in Figure 5.3a. The
signals fall into the following five categories.

• Flow control; the valid/ready signals for an AXI-like handshake.

• Elementary data; the N elements of size E to be transported in a single transfer,
each over their own lane.

• Transfer metadata; used when N > 1 to deal with sub-normal transfers (i.e. when
not all lanes contain valid data, explained below).

• Dimensional data; last, the D-bits to signal the elements are last in some dimen-
sion, and empty, to signal empty sequences.

• User data; user, an arbitrary-size field for custom per-transfer information.

In Figure 5.3b, we also find how the complexity parameter affects the guarantees that
may be dropped when increasing the complexity level, effectively changing the number
of required signals.
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At the lowest complexity level C = 1, the source provides the strictest guarantees about
the packing of the elements into streamspace. When N > 1, a transfer may contain less
than N elements (e.g. at the end of a sequence). Requiring elements to be aligned to the
least significant lane, the end index field signals which lane holds the last valid element.
At C >= 5, the alignment requirement is relaxed, allowing also a consecutive number of
least significant lanes to be invalid, requiring the start index as well. At C >= 6, any
lane may contain valid or invalid elements, introducing the need for a strobe. Note
that tools using Tydi can automatically insert small combinatorial conversion units in
case a sink supports a higher complexity level than a source, to convert the end and
start index to strobes. Note that the choice between C = 5 and C = 6 is rather significant,
since when elements are very small but a high throughput is required, strobes require
N signals rather than only 2 · dlog2Ne signals for the end and start index. Finally, at
C >= 7, it is furthermore allowed that every element is the last element of a sequence. In
other words, a transfer may signal multiple ends of data in some dimensions, and signal
multiple empty sequences. Therefore, the last and empty fields are duplicated for all
lanes, linearly increasing the number of wires required for the dimensional data with
respect to the number of lanes.

For a detailed discussion, we refer the reader to the Tydi website where the specifica-
tion is freely available [2].

5.5. FEATURE COMPARISON
We compare the features of Tydi and existing streaming interface specifications and
language abstractions mentioned in the background section. The comparison is shown in
Table 5.4. We focus on those features that are novel through this work or common among
multiple specifications.

The main difference between Tydi and AXI/Avalon is that Tydi also provides a type
system for compound types (e.g. structs and variants) and describes how streams nested
within streams must behave, while AXI and Avalon only describe the Tydi equivalent of a
single physical stream of primitives or sequences of one dimension. While the Tydi type,
and the knowledge that group and union fields adhere strict ordering clearly specifies
the interaction, any logical interface with multiple physical streams using AXI or Avalon
requires additional specifications.

Transferring higher dimensional information is also undescribed, requiring custom
design effort. AXI has a unique feature, called positional bytes that a consumer should not
replace in an implied byte-addressable memory being overwritten. This is an implication
that is explicitly not used in Tydi, but could simply be supported by wrapping the element
in a GROUP with an additional positional flag bit. AXI and Avalon contain different specific
features for element packing, that are both supported through the complexity parameter
of physical streams in Tydi. Avalon and AXI contain additional flow control and routing
features not described in Tydi, but they can be mapped onto the user field.

The comparison between Tydi and the HDL constructs is rather simple, since in all
HDLs that we compare, the only thing that is described and abstracted is the valid/ready
handshake mechanism. Every other signal of the interface is completely user-defined.
While this results in a lot of undescribed features, it provides a starting point for imple-
mentations of Tydi in the respective languages.
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Table 5.4: Feature comparison of Tydi with existing streaming
interface specifications and language constructs

Feature
Specification / language construct

Tydi AXI
[3]

Avalon
[4]

HDLs
[6][7][8]

Intended for Complex
datastr.

Byte
packets

Packets,
DSP

Handshake
only

Elem. size (bits) {1,∞} 8 {1,512} {1,∞}
Structs Yes n.d. n.d. Yes
Variants Yes n.d. n.d. Yes
Stream nesting Yes n.d. n.d. n.d.
Max. dimen-
sions

∞ 1 1 n.d.

Max. data bits
per transfer

∞ 1024 4096 ∞

Container li-
brary

Yes n.d. n.d. n.d.

Multiple elem.
per transfer

Yes Yes Yes n.d.

Lane control Aligned,
Strobes

Strobes Aligned n.d.

Null elements Yes Yes Yes n.d.
Positional ele-
ments

n.d.† Yes n.d. n.d.

Back-pressure Optional Optional Optional Mandatory
Multiplexing n.d.‡ Yes Yes n.d.
Credit-based
flow control

n.d.‡ n.d. Yes n.d.

User data; per ... Transfer Transfer Element,
Packet

n.d.

Yes: possible, by specification. No: not possible, by specification.
n.d.: not described by specification or documentation.

† Can be supported by using GROUP with a "don’t care" bit field.
‡ Can be supported with the user field.
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Figure 5.4: Comparison of hardware description effort

5.6. IMPLEMENTATIONS
We implemented a software utility, found alongside the specification, that serves as a
reference implementation. The utility parses files containing declarations of Tydi types as
well as streamlets with Tydi interfaces and generates HDL code templates.

Using the templates, users can build libraries of reusable components that have
interfaces adhering to the specification. The back-end of the utility is modular, currently
generating VHDL, but can be easily extended to other hardware description languages.
The generated code consists of a package that contains user-friendly, human-readable
VHDL record type hierarchies and readable boilerplate procedures derived from the Tydi
types, subjectively not different from how an experienced hardware developer would
write them. The generated code can be used to e.g. perform handshakes and decode
unions with a single line of VHDL.

To indicate the amount of effort saved by this utility and the Tydi specification and
type system, Figure 5.4 compares the size of the input of our utility to its output . A
minimum amount of VHDL required are the record type hierarchies, shown in the figure
as “VHDL Types” whereas additional boilerplate code is listed as “VHDL Boilerplate”. It
is design-dependent how much of this boilerplate code will be used, depending on the
procedures and functions used, so this measure gives an upper bound.

We generate code for all types presented in the examples and the container library.
Only the BITS generic type parameter is used, only two fields for the containers for STRUCT

and VARIANT are provided. As Table 5.4 shows, all the other known specifications can be
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implemented as a Tydi type, which we also did for the whole AXI4 (memory) interface
specification. The Tydi equivalent to the HDL constructs is the Tydi BITS type.

Because the code size depends on the physical stream parameters, we generate for
E = 1, E > 1 and all possible values for C , and report the average lines of code for each
type. From Figure 5.4, we find that Tydi decreases the required lines of code of all types by
an order of magnitude and potentially by another order of magnitude depending on how
much of the boilerplate code is used.

We expect to implement additional back-ends for more modern HDLs, such as Chisel
and Cλash in the near term. Longer term, the utility can be grown into an HDL of its own
to support structural composition of streamlets, followed by behavioral constructs, where
the specific rules related to the streamspace type system may be statically or dynamically
checked by automated tools. Such a language could borrow from well-studied dataflow
languages [9] and from recent implementations of this paradigm [10].

A subset of Tydi is also implemented in the Fletcher FPGA accelerator framework.
Fletcher provides a hardware/software interface between data structures in memory
and hardware accelerators. Fletcher is built on Apache Arrow, a project that provides
a common in-memory data layer for over eleven software languages, preventing the
need to serialize/deserialize information between heterogeneous (software) processes,
which can incur significant bottlenecks in accelerator systems [11]. Because the data
structures that can be expressed in Arrow include nested sequences and variants, existing
streaming specifications are not adequate to support all Arrow data types, hence the
need for the more advanced streaming specification and infrastructure that Tydi provides.
Fletcher translates Arrow types into a subset of Tydi types, and generates the appropriate
bus infrastructure and control logic to stream in Arrow data, bridging the gap between
hardware and software for any of the languages supported by Arrow.

5.7. CONCLUSION
While hardware accelerators are becoming increasingly popular, we observed a lack of
clear specifications and methods that allow developers to work with complex, dynamically-
sized data structures in hardware description languages. We have introduced the Tydi
specification, that allows to rapidly express how such structures can be exchanged be-
tween components using streaming interfaces, based on an intuitive, hardware-oriented
type system. We have shown that by describing components with interfaces based on
the type system, the hardware description effort can be reduced by orders of magnitude.
Our work enables future integration of the type system into modern existing, or new,
hardware description languages, such that the exchange of complex, dynamically-sized
data structures between components is as easy to describe for hardware as they are for
software today.
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6
CONCLUSION

In the domain of big data analytics, there is an ever-increasing demand for computational
performance. In such increasingly specialized systems, chip resources can be used more
efficiently towards achieving a specific computational goal. The recent increase in I/O
bandwidth for network, storage, and accelerator interface, is relatively large compared to
the increase in CPU performance. This additionally makes the inclusion of heterogeneous
accelerators in new systems a more interesting alternative.

Because of the increased complexity of heterogeneous system architectures, special
care must be taken to not only allow solutions to have a small run time component, but
also a small design time component, since in general, within a given budget, the complete
time-to-solution is what matters most.

It is yet to be seen if the time-to-solution for FPGA accelerated systems is economically
interesting, especially for widespread use in data centers. In this dissertation, we have
explained that because of the many choices a developer has to make at the level of the
digital circuit, it is time consuming to produce new solutions that are both functional,
exhibit high performance, and integrate well with contemporary software systems —
systems that typically enjoy a much higher level of abstraction when working with them.

Until the maturation of productive, open-source tools for FPGA accelerator develop-
ment, we expect that in the near term, the most successful FPGA accelerated solutions
will initially be created by expert developers with hardware design knowledge. To this end,
it is helpful to increase the level of abstraction of hardware development tools without
the loss of potential performance. This is easier to do in a domain-specific context, since
domain-specific architectural knowledge can be implemented in the tools without having
to work well for other domains.

On the other hand, accelerators are typically intended to be integrated with software
systems. In the domain of big data analytics, the run-time systems used to provide these
level of abstraction have various drawbacks that in some cases nullify the advantage of
increased I/O bandwidths — one advantage that makes using accelerators increasingly
more interesting in the first place.

The drawback of serialization overhead, ultimately caused by collections of data being
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fragmented in memory so much, that we cannot move data sets over high-bandwidth
interfaces without first gathering them in more contiguous regions of memory. The
gathering of the data itself cannot be done at throughput similar to the interface, and is
therefore detrimental to the efficient integration of FPGA accelerators in big data systems.

The Apache Arrow open-source project was initiated by a community of developers to
deal specifically with this challenge, although mainly in the context of software systems.
It provides an in-memory format for structured data, especially in the form of tabular
data sets, that is column-oriented and highly contiguous. Through the many libraries for
various software languages, zero-copy inter-process communication is made possible
between heterogeneous software processes.

In this dissertation, we have built on top of the Arrow format to provide a domain-
specific hardware development and integration tool-chain, named Fletcher, to enable
the same type of functionality for FPGA accelerators. Fletcher generates the complete
hardware infrastructure for accelerator designs based on descriptions of the type of Arrow
data of interest. The infrastructure provides high-performance, easy-to-use interfaces
that match the type of Arrow data. It also contains run-time integration libraries for
software, to abstract a large portion of the data and control path from high-level languages
down to the hardware kernel performing some accelerated computation. Fletcher is
platform-agnostic, allowing developers to target various accelerator platforms without
changing any code. The tool-chain therefore integrally improves the time-to-solution
when designing and integrating FPGA accelerators with big data systems using the Apache
Arrow format.

In experiments, we have shown that the combination of Fletcher and Arrow allows
specific applications, such as regular expression matching on a large collection of strings,
to improve computational throughput by between 1.3× and 49×, specifically by prevent-
ing serialization from taking place from less optimal in-memory formats that are the
default in some language run-time systems and libraries. The design effort is significantly
reduced through the use of Fletcher, although how much is hard to quantify properly
due to the large human dimension in such a measurement. It is perhaps indicative that
it only takes tens of lines of code to express the Arrow data types, in turn generating
all code related to the high-performance infrastructure feeding the accelerated kernel
implementation, which can be in the order of thousands of lines of code.

Using the Fletcher framework, we have furthermore explored several applications in
the domain of big data analytics that have a high FPGA acceleration potential, such as
Hidden Markov Models in a genomics context, and decoding the widely used Parquet
storage format, where improved performance over a traditional system with a general
purpose processor was observed in both cases.

Driven by the desire to reduce the design time of FPGA accelerators, we have applied
lessons learned in a final contribution where we extend transport Arrow data structures
over streams to a more generic approach in the form of a streaming interface specification
and type system named Tydi. In software, standard libraries of well-developed languages
provide all sorts of containers for data, with specific access behavior, that are highly
reused when developing applications and sharing designs. We may think about a string
object, for example. While it is in the typical case absolutely clear what that means in
software languages, and especially how one passes a string from one function to another,
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in hardware description languages, there is no such thing as a default string, causing
developers to spend a lot of time making choices about how to represent and transport it
across a design. Tydi allows such a software-inspired view on data structures, but in an
explicitly hardware-oriented manner. Tydi is a more formal extension of the more ad hoc
Fletcher streaming interface protocol, and does allow a clear and reusable definition of
interfaces that exchange dynamically sized, nested data structures, such as e.g. a list of
strings. We have implemented some tools that generate boilerplate code surrounding the
types, that indicate orders of magnitude reduction in design effort when working with
complex, dynamically sized data structures in hardware.

RESEARCH QUESTIONS
Over the course of this dissertation we have developed answers to several questions posed
at the end of Chapter 1. We reiterate the questions, summarize the answers and give an
outlook on some potential future research in the direction of the question.

What challenges arise from the desired merger of big data systems software and FPGA
accelerators? On the side of FPGA accelerators, we observed a lack of portability. Fur-
thermore, a large portion of the design entails infrastructure and interfacing. On the
side of big data software systems, we observed complex run-time systems, hardware-
unfriendly data lay outs, ultimately causing significant (de)serialization overhead. We
have described how the approach of the Apache Arrow open-source project, to place the
data in memory in a column-oriented fashion, as contiguous as possible, may help to
overcome the challenges on the big data analytics side, and how Fletcher makes use of
the merits of Arrow to automate a large portion of the infrastructure and interface design,
furthermore providing portability.

In the future, as the increase in performance of traditional processing systems contin-
ues to slow down, more of the existing software systems that were not originally designed
for big data analytics will be slowly replaced. It would be useful if the inclusion of hetero-
geneous components, such as GPGPUs and FPGA accelerators, is taken into consideration
from the drawing board of these new systems, both from the hardware perspective and
the software run-time systems and programming languages. Lessons may be learned
from initial efforts to specify such systems, as was done in e.g. the Heterogeneous Systems
Architecture specifications, but more effort is required to raise the level of abstraction
of using such components to a level a majority of application developers in big data
analytics would be comfortable with.

What of an FPGA accelerator design and software interface can be automated in the
context of big data systems? Based on Apache Arrow, we have contributed the Fletcher
FPGA acceleration framework. The framework automates a large portion of the infrastruc-
ture and interface design, where easy-to-use, high-performance interfaces are presented
to users of Fletcher at both the level of the hardware and at the level of the software where
the accelerator is to be integrated.

In the future, several improvements could be made to Fletcher, including:

• Improved resource utilization: Especially when accelerator kernels need to work
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on many columns, a large number of infrastructural resources are generated, while
it is likely not all of them are fully utilized when the system is operational. Based
on measurements of running applications with the profiling feature, it would be
interesting to explore methods to automatically optimize the design by allowing
specific resources to be regenerated with different dimensions or by sharing them
across multiple interfaces based on profiling outcomes. In the best case, these type
of data-centric architectural improvements could be implemented while the system
runs, fine-tuning the performance without the need for a developer to interfere.

• Extend the number of supported languages: More of an engineering exercise,
it would be useful to support more of the languages that Arrow supports, such
that high-performance integration between FPGA accelerators and more software
languages is made possible.

• Extensively quantify the design effort saved: We have so far only reported indi-
cations for the decrease in design effort through measurements of lines-of-code.
While the measurement is very precise, design effort also knows a large human di-
mension that requires a different type of experiment and a large set of test subjects
to be more properly be quantified.

• Closed-loop architectural optimization: Making use of the stream profiling capa-
bility, it would be interesting to investigate a form of closed-loop stream parameter
optimization to increase throughput, based on statistical profiles about the data
streams entering the system. Methods should be developed to introduce profile-
based parameters that influence how computational kernels and the data streams
they interface with may be optimized.

(How) can a platform-agnostic environment be created in the currently highly ven-
dor-specific context of FPGA accelerator design? We have described the architecture
of Fletcher, where for all platforms, there is one common interface that must be adhered
to on both the software and hardware side. After creating various platform-specific hard-
ware designs and software libraries to convert platform-specific interfaces to the common
interface, it is easy to port designs between various systems. All applications that were
measured on various FPGA accelerated platforms have made use of this functionality. No
code application-specific code has to be changed in order to port a design to another
platform.

In the future, especially in the case of FPGA accelerators, where high-bandwidth
memories have recently become available, special care must be taken to allow novel
technologies to be effectively used. The potential of such advancements should not be
nullified by conflicting properties of the common interface.

What applications can benefit from the features of the Fletcher framework? Fletcher
provides streaming interfaces that are most effective when sequentially accessing columns
of tabular data sets in the Arrow format. Preventing serialization overhead is a major
advantage of the Arrow framework, and since Fletcher is built on top of that, any appli-
cations that suffer from serialization overhead and that are acceleratable by FPGA can
benefit from the Fletcher framework.
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In the future, it is interesting to investigate the possibility to specialize the framework
further towards more specific application domains, e.g. database queries or machine
learning.

Can we decrease the complexity of describing interfaces between hardware compo-
nents that exchange complex data structures? We have described the need for a more
agile hardware development experience, specifically in the context of decreasing the
design time for FPGA accelerators in big data systems. Data structures in that context are
often dynamically sized (e.g. strings) and can be complex (e.g. nested lists), but no clear
specifications are publicly available that describe how such data structures should be
transported, hence we have asked this question. We have developed the Tydi streaming
interface specification, type system and an initial set of tools to quickly generate HDL
templates to use such data structures. We have indicated the design effort saved through
lines of code, although such a measurement is subject to the disadvantages previously
described in this section, and should be more properly quantified in the future, when the
tools surrounding the specification are more mature and when more applications have
been developed.

In the future, it would be worthwhile to expose the benefits of Tydi in modern HDLs,
such as Chisel, Spatial, or Cλash, where libraries or other constructs may be introduced
that allow interfaces to be specified according to the Tydi type system. It would also
be interesting to investigate creating a new dataflow language to describe hardware
using Tydi. Initially, this would be easiest to develop in a form where only structural
hardware may be described. After studying the implications on the access behavior of
data structures through Tydi streams, it may also be feasible to introduce behavioral
constructs, that can then be statically checked for correctness, discovering potential
errors as early as possible, reducing the development time of digital circuits processing
complex data structures.

How can FPGA accelerators be efficiently integrated with contemporary big data sys-
tems software? Finally, we summarize an answer to the main question of this disser-
tation. Since we have defined ’efficiently’ to mean ’with the lowest time-to-solution
within a given budget’, balance should be sought between a decent time to design FPGA
accelerated systems and the run time of FPGA accelerated systems. Fletcher currently
helps by automating large portions of the infrastructure and interface design for tabular
data structures, reducing the design effort, and by the grace of Apache Arrow, preventing
serialization overhead, increasing the interface throughput. As such, Fletcher integrally
helps to improve the efficiency of integrating FPGA accelerators with big data systems
software.

On a final note, since FPGAs have the inherent technological disadvantage of lower
clock frequencies and circuit overhead, it is likely that only the most specialized and most
highly optimized solutions form a competitive enough alternative to other platforms
such as CPUs and GPGPUs. We therefore argue for HDL design flows that do not favor
abstraction at the cost of performance like in the current state of HLS flows, and further-
more argue that HDLs themselves should be improved to make the design time lower
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using meaningful hardware-oriented abstractions, such as Tydi. Because creating new
languages takes considerable effort, solutions such as Fletcher help on the near-term
to deal with the problem in a domain-specific manner, but there is a large window of
opportunity to decrease HDL flow effort in general. From a community perspective, it
would also be useful if in general FPGA development tools become more friendly towards
open source, such that it becomes easier to exchange and reuse designs, and to provide
portable solutions that work across FPGA-enabled cloud systems everywhere.
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