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Running head: Imaging fracture compliances using LSM

ABSTRACT

To quantitatively image fractures with high resolution, we develop an elastic least-squares

migration (LSM) algorithm coupled with linear-slip theory, which accurately addresses seis-

mic wave interaction with thin structures. We derive a linearized waveform inversion using

the Born approximation to the boundary integral equation for scattered waves, including

linear-slip interfaces for P-SV and SH wavefields. Numerical modeling tests assuming a

laboratory-scale fracture where a 20 cm long fracture is illuminated by waves with 50 KHz

center frequency, show that the proposed LSM successfully estimates the fracture compli-

ances. Furthermore, due to the presence of coupling compliances at the fracture, the results

using the proposed LSM show better images than those using the conventional LSM es-

timating Lamé constants. We also numerically illustrate that the proposed LSM can be

successfully applied to dipole acoustic borehole logging data with 3 KHz center frequency
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for single-well reflection imaging of a 10 m long, dipping fracture embedded in a random

background. Finally, we apply the LSM to laboratory experimental data, measuring PP

reflections from a fluid-filled fracture. We confirm that the estimated fracture compliances

correspond well to those estimated by earlier AVO inversion. Furthermore, the LSM re-

solves the spatially varying fracture compliances due to local filling of water in the fracture.

Because the linear-slip theory can be applied to thin structures in a wide range of scales,

high-resolution imaging results and estimated fracture compliance distributions will be cru-

cial to further address small-scale properties at fractures, joints and geological faults.
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INTRODUCTION

Fractures and faults are mechanical weaknesses in the subsurface. They extend, propagate,

and connect and interact with each other. Large-scale geological faults are generally associ-

ated with the accumulation of tectonic displacements (Ben-Zion and Sammis, 2003). Joints

and geological faults in low-porosity rocks and deformation bands in highly porous rocks

are fluid pathways or fluid barriers, and therefore control the subsurface mechanical and hy-

draulic properties (Aydin, 2000; Fossen et al., 2007). Due to the sensitivity of seismic waves

to mechanical properties, seismic fracture characterization has provided vital information of

fractures in the upper crust of the Earth (e.g., Leary et al., 1990; Liu and Martinez, 2013).

Fractures, joints and faults can be thought of as thin structures, with their thicknesses

being significantly smaller than their length (e.g., Segall and Pollard, 1980). Seismic wave

propagation across a compliant zone that is thin with respect to the seismic wavelength

is often represented by the linear-slip theory (Schoenberg, 1980). The theory assumes

a thin compliant zone to be a zero-thickness nonwelded interface: seismic wave traction

is continuous across the interface but seismic wave displacement is discontinuous. The

magnitude of the displacement discontinuity is controlled by the traction vector and the

fracture compliance tensor.

The fracture compliance tensor represents the small-scale properties at the thin compli-

ant zone. The linear-slip theory can accurately represent a wide variety of structures that

are thin with respect to the seismic wavelength, e.g., a fracture having rough surfaces, a

thin layer of a visco-elastic material or a poro-elastic material (Nagy, 1992; Worthington

and Hudson, 2000; Barbosa et al., 2017). The nonwelded interface model has been tested

for thin structures in a wide range of scales, e.g., cracks in metals, fractures and joints in
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rocks, and geological faults (e.g., Rokhlin and Wang, 1991; Pyrak-Nolte and Nolte, 1992;

Worthington and Hudson, 2000; Li et al., 2014a; Minato and Ghose, 2016a). Worthington

(2007) and Hobday and Worthington (2012) discuss the possibility that fracture compli-

ance increases with fracture size. Furthermore, anisotropy caused by fracture compliance

tensor enables determining the preferred orientation of a rough surface due to slickenside

and striations (Bakulin et al., 2000b; Far et al., 2013), and the off-diagonal components

of a fracture compliance tensor are sensitive to the shear-induced altered distribution of

the contacts (Nakagawa et al., 2000). Kame et al. (2014) discuss the relation between the

linear-slip theory and the change of the strength of faults using stick-slip cycle experiments.

Finally, the fracture compliances are relevant to the bulk deformation of a fracture under

static loading (Hobday and Worthington, 2012, and references therein).

Earlier studies of seismic fracture characterization assume that the seismic wavelength is

not capable of resolving the fine details of individual fractures and that a low frequency/long

wavelength seismic wave only senses the cumulative effect of multiple fractures whose spac-

ing is much smaller than the seismic wavelength. In this case, individual fractures are

considered seismically invisible, but multiple fractures effectively change the elastic prop-

erties of the representative elementary volume into anisotropy (e.g., Crampin, 1984). The

linear-slip theory is exploited to link the averaged fracture compliance tensor of multiple

fractures to seismic anisotropy (e.g., Bakulin et al., 2000a).

Although the approach of seismic anisotropy based on an effective medium assuming

small fractures has been successful to characterize a fractured medium (Leary et al., 1990;

Liu and Martinez, 2013, among many others), large-scale fractures dominate hydraulic and

mechanical properties of the entire subsurface (e.g., Aydin, 2000). Furthermore, as noted

in Segall and Pollard (1980), discontinuous fault traces occur at all length scales. When the
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fracture length and spacing are larger than or comparable to the seismic wavelength, the

effective medium approach shows large errors due to neglected scattered waves (Yousef and

Angus, 2016). In this vein, there is a growing number of reports showing scattered waves,

including reflected waves, due to thin compliant zones like fractures, joints and geological

faults. For example, reflection imaging methods using acoustic logging data have shown

the potential to image fine-scale structures including fractures (Hornby, 1989; Tang and

Patterson, 2009). The recent developments of dipole acoustic logging enabled imaging of

fine structures up to 40 meters away from the borehole (Lee et al., 2019). Reshetnikov et al.

(2010) use reflection events in microseismic data at the San Andreas Fault zone and imaged a

thin fault layer intersecting the borehole and a fault inside the fractured sandstone. Despite

these imaging results, the characterization of elastic properties of those thin compliant zones

has not yet been possible due to the lack of high-resolution characterization methodologies.

Several methods that do not rely on the effective medium approach have been proposed

for characterizing large-scale fractures using scattered waves. Willis et al. (2006) consider

scattered waves due to multiple fractures and estimate fracture orientations, exploiting the

azimuthal variation of a scattering index. Elastic compliances of an individual fracture

have been estimated through AVO inversion of primary reflections (Minato and Ghose,

2016a; Peng et al., 2017; Minato et al., 2018) and using data-driven wavefield reconstruc-

tion of scattered waves (Minato and Ghose, 2014, 2016b). Cui et al. (2017) discuss the

feasibility of the AVO inversion with fracture compliances in the seismic frequency range.

Pourahmadian et al. (2017) also develop an inversion approach to estimate the spatially

varying fracture compliance using a generalized linear sampling method. Characterization

of fractures intersecting a borehole was also performed using transmitted waves in acoustic

logging data (Barbosa et al., 2019) and tube wave scattering in vertical seismic profiling
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data (Hardin et al., 1987; Minato et al., 2017).

The existing approaches discussed above involve a two-step processing to estimate the

fracture compliances: imaging the fracture geometry followed by estimating the fracture

compliances at the known fracture geometry. In this study, we develop an alternative

approach which handles multiple fractures with unknown geometry embedded in a complex

background medium. To this end, we explore least-squares migration (LSM) of reflection

data, with fractures represented by the linear-slip theory.

Seismic migration methods, aimed at high-resolution imaging in complex media, are

formulated as a linearized waveform inversion to estimate quantitative medium properties.

Those properties are reflectivity (e.g., angle-dependent reflection coefficients) based on the

Kirchhoff approximation (Xu et al., 2001, 2011) or perturbation of medium properties in the

volume (e.g., Lamé constants and density) based on the Born approximation (Tarantola,

1984). These migration/inversion methods can be implemented as ray-based asymptotic

inversion (Bleistein, 1987), or as a general least-squares problem (Tarantola, 1984). The

latter approach can be implemented by numerically solving a linear discrete inverse problem,

which is what we call LSM in this study. The LSM is known to be robust to acquisition

irregularities and incomplete data (Nemeth et al., 1999).

In the framework of migration/inversion mentioned above, quantitative medium prop-

erties are estimated differently. The algorithms based on the Born approximation directly

estimate the spatial distribution of medium properties defined in the volume, e.g., pertur-

bations in velocity/slowness (Lambaré et al., 1992; Plessix and Mulder, 2004), or those

in Lamé constants, density and impedance (Beydoun and Mendes, 1989; Jin et al., 1992;

Operto et al., 2000). On the other hand, angle-dependent reflection coefficients estimated

6



by methods based on the Kirchhoff approximation (Xu et al., 2001, 2011) are properties

defined at an interface between two different media. Therefore, to further elucidate the

medium properties in the volume, amplitude variation with offset/angle (AVO/AVA) inver-

sion is applied to the estimated reflection coefficients (Tura et al., 1998). All conventional

migration approaches mentioned above assume perfectly welded interfaces without fracture

compliances; the nonwelded interface with the fracture compliance tensor has not been

considered in migration/inversion.

In this study, we develop a new LSM for quantitatively imaging thin compliance zones

like fractures using the linear-slip model. The linearized equation is derived from the Born

approximation using the elastic wave representation theorem including nonwelded bound-

ary conditions (Wapenaar, 2007). This, in combination with a singular function (Bleistein,

1987; Bostock, 2002), enables us to directly estimate the spatial distribution of the frac-

ture compliance tensor which is defined at an interface. Note that an approach using the

Kirchhoff approximation, instead of the Born approximation, is also possible. In this case,

we estimate angle- and frequency-dependent reflection coefficients due to the fracture com-

pliances, which will provide input data for AVO/AVA inversion of fractures (Minato and

Ghose, 2016a; Cui et al., 2017; Peng et al., 2017; Minato et al., 2018). In this study, how-

ever, we restrict ourselves to the Born approximation so that we directly estimate the spatial

distribution of fracture compliances without the two-step processing mentioned earlier.

This paper is organized as follows. We first explain the boundary conditions of the

nonwelded interface model. Next, we introduce the definition of the 2D problem considered

in this study, i.e., wave propagation in a 2D (x − z) plane in an isotropic medium where

the vector normal to a fracture surface is located in the same plane, and the values of

the fracture compliance tensors associated to the y axis are negligible. In this case, we
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separately consider P-SV and SH wavefields. We then formulate the new LSM as a linearized

waveform inversion to estimate the fracture compliances using the Born approximation. We

discuss numerical modeling examples representing a horizontal fracture in laboratory-scale

measurements, to show the quantitative nature of LSM, and the relation between the new

LSM and conventional LSM associated to a thin-layer model of fractures. We also perform

numerical experiments representing borehole acoustic logging measurements to characterize

a dipping fracture embedded in a random background medium. Finally, we show the results

of the application of the new LSM to data from ultrasonic laboratory experiments with a

fluid-filled fracture.

THEORY

Nonwelded interface model for thin structures

We consider that the seismic wavelength is much larger than the aperture of a fracture and

the characteristic wavelength of the contact asperity distribution at the rough surface of

the fracture. In this case, the fracture can be represented by a compliant and nonwelded

interface, where a fracture-compliance tensor describes the magnitude of deformation at the

interface. The linear-slip theory (Schoenberg, 1980) considers that the deformation at the

interface (seismic-induced displacement jump) linearly depends on the seismic traction and

the fracture compliance tensor: 
∆ux

∆uy

∆uz

 = η


τxz

τyz

τzz

 , (1)
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where η is the fracture compliance tensor:

η =


ηxx ηxy ηxz

ηyx ηyy ηyz

ηzx ηzy ηzz

 . (2)

We assume here that the fracture surface is located in the x− y plane. In equation 1, ∆ui

is the discontinuity in the displacement in the i direction across the fracture, and τij is the

stress field, where the subscripts i and j can each stand for x, y or z. The linear-slip theory

assumes the stress across the fracture to be continuous. In equation 2, each element of

the fracture compliance tensor describes the magnitude of the displacement discontinuity

due to different traction component. The simplest form of the fracture compliance tensor

is a diagonal matrix assuming rotational symmetry (Schoenberg, 1980). In this case, the

fracture compliance tensor is written as,

η = diag(ηT , ηT , ηN ), (3)

where diag indicates a diagonal matrix. In equation 3, ηT is the tangential compliance and

ηN the normal compliance, respectively due to tangential stress and normal stress. Several

theoretical models have been developed in the past to relate the fracture compliances to

small-scale heterogeneities at a fracture, e.g., a thin layer of visco-elastic material (Schoen-

berg, 1980; Rokhlin and Wang, 1991), a thin layer of poro-elastic material (Nakagawa and

Schoenberg, 2007; Barbosa et al., 2017), or statistical properties of contact asperities (Wor-

thington and Hudson, 2000). Importantly, any compliant structure whose thickness is thin

compared to the seismic wavelength is appropriately represented by the nonwelded interface

model, e.g., fractures, joints and faults.
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Uncoupled P-SV and SH wavefields

In this study, we consider 2D wave propagation in the x − z plane, assuming that varia-

tions in elastic constants and density along the y axis are negligible. Furthermore, a point

source in the x − z plane in the numerical modeling examples discussed in the later sec-

tions corresponds to a line source along the y axis. In this case, P-SV wave components

(vx,vz,τxx,τzz,τxz) and SH wave components (vy,τxy,τyz) are mutually uncoupled when they

are independent of each other in the constitutive equations (e.g., in the case of isotropic

background medium), and in the linear-slip boundary condition (equation 1). The latter is

the case when the fracture compliance tensor (equation 2) has the following form:

ηh =


ηT1 0 ηC

0 ηT2 0

ηC 0 ηN

 , (4)

where ηC is the coupling compliance. The tangential fracture compliances in two princi-

ple directions (ηT1 and ηT2) may have different values (Bakulin et al., 2000b; Far et al.,

2013); subscript h indicates a horizontal fracture. The coupling compliance ηC in equation

4 indicates the tangential deformation (∆ux) due to normal stress (τzz) or the normal de-

formation (∆uz) due to tangential stress (τxz); the existence of the coupling compliance has

earlier been shown in laboratory experiments and by numerical calculation considering a

periodic crack model (Nakagawa et al., 2000). The zero off-diagonal components in equation

4 assume that variations in the small-scale structures (e.g., periodic shape) at the fracture

along the y axis are negligible.

Next, we show that P-SV and SH wavefields are uncoupled for a dipping fracture in

the x − z plane. We first consider the general nonwelded-interface boundary condition

10



(Wapenaar, 2007):

[Mu] = −jωY ⟨Mu⟩ , (5)

where j =
√
−1, ω is the angular frequency, u the complete wave vector, M a matrix

contracting u to the components involved in the boundary condition (e.g., traction vector),

Y a matrix including the boundary parameters (e.g., a fracture compliance tensor), and [·]

and ⟨·⟩ represent the jump and average across the interface, respectively. The explicit forms

of the vectors and matrices in equation 5 depend on the dimensionality of the problem and

the wave modes. In a 3D elastodynamic wavefield, u is a 12 × 1 vector including particle

velocities and stresses, M a 6 × 12 matrix and Y a 6 × 6 matrix (Wapenaar et al., 2004).

In this case, equation 5 can be written as, [v]

− [σn]

 = −jωY

 ⟨v⟩

− ⟨σn⟩

 , (6)

where v is the particle velocity vector, σ the Cauchy stress tensor, and n = (nx, ny, nz)

a fracture-normal vector. The linear-slip boundary condition for a horizontal fracture is

derived from equation 6 by assuming n = (0, 0, 1) and the matrix Y as,

Yh =

0 ηh

0 0

 . (7)

Considering that a dipping fracture in the fracture-oriented coordinate system satisfies the

same boundary condition as a horizontal fracture in the original coordinate system, we

obtain the matrix Y as a function of ηh for a dipping fracture with an arbitrary normal

vector n:

Y =

0 QTηhQ

0 0

 , (8)
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where Q is the rotation matrix. Therefore, when a fracture is dipping in the x−z plane, i.e.,

n = (nx, 0, nz) and Q =
(

nz 0 −nx
0 1 0
nx 0 nz

)
, then P-SV and SH wave components are uncoupled

in the boundary condition (equation 6).

Elastic least-squares migration

For the quantitative reflection imaging that we propose in this study, we consider a linearized

waveform inversion using the following equation:

d = Lm, (9)

where d is waveform data, m the spatial distribution of material properties (e.g., reflectivity

or perturbation in elastic constants) that produces scattered waves due to a source wavefield,

and L a Born or Kirchhoff operator. In the case of space-frequency domain, d is a column

vector with Nf ×Ntr components, m is a column vector with M ×Np components, and L

is a NfNtr ×MNp matrix, where Ntr is the total number of traces, Nf the total number of

frequencies, M the total number of grid points in the imaging volume, and Np the number of

inversion parameters. Least-squares migration (LSM) solves equation 9 for m, considering

m to be perturbations of material properties or reflectivity (Yang and Zhang, 2019, and

references therein). Equation 9 can be derived after linearizing the full wavefield equation

using the Born or Kirchhoff approximation. The operator L contains the source wavefield

and Green’s functions between points of scattering and receiver locations. In the next

subsection, we specify equation 9 using the linear-slip theory and the Born approximation

applied to the scattered wavefield.

In this study, we formulate equation 9 in the space-frequency domain, and we solve

equation 9 for the model parameter vector m using the conjugate gradient least-squares
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method (CGLS). Thus, we define the imaging result of the proposed LSM as,

mLSM = L−gdo, (10)

where do is the observed data vector and L−g is the generalized inverse (e.g., Menke, 1989)

of the Born operator L, which is implicitly calculated by the CGLS method. We solve

the system of equation 9 after constructing L. When the data and the imaging volume

are large, constructing the full matrix L and estimating L−g are prohibitively expensive.

In this case, an alternative approach can be used to numerically implement L and its

mathematical adjoint operator using ray approximation (e.g., Lambaré et al., 1992), one-

way wave equation (e.g., Kühl and Sacchi, 2003), two-way wave equation (e.g., Feng and

Schuster, 2017; Chen and Sacchi, 2017), or multisource migration technology (Tang and

Biondi, 2009; Dai et al., 2011; Huang and Schuster, 2012).

Note that the CGLS method iteratively updates the model parameter vector m from

the initial value (m0 = 0) to minimize the objective function E(m) = 1
2∥d

o−Lm∥2. In this

case, the gradient of the objective function with respect to the model parameter evaluated

at the initial value can be written as (e.g., Plessix and Mulder, 2004),

∂E(m0)

∂m
= −ℜ

(
L†do

)
, (11)

where L† is the Hermitian transpose of L. The real part of L†do (denoted by ℜ) corresponds

to the zero-lag crosscorrelation between the source and receiver wavefields; equation 11 is

equivalent to the classical crosscorrelation imaging condition (Claerbout, 1971). Note that

an evaluation of equation 11 does not involve inverting the Born operator.
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Born approximation to scattered waves due to linear-slip interfaces

Appropriately deriving the Born operator L associated with the linearized model parameter

vector m is necessary for LSM. The earlier studies of LSM consider imaging the pertur-

bations in elastic constants (Lamé constants λ and µ) and density (ρ) or the impedance

contrasts (Beydoun and Mendes, 1989; Jin et al., 1992). For this purpose, the Born operator

is derived from an integral representation of the scattered wavefield due to the perturbations

in λ, µ and ρ (Wu and Aki, 1985). Contrary to these earlier studies, in this study, we derive

the Born operator L considering the fracture compliance tensor. This new formulation is

derived from the elastic wavefield representation theorem including nonwelded interfaces

(Wapenaar, 2007).

From a convolution-type representation for Green’s functions including nonwelded in-

terfaces (Wapenaar, 2007), we obtain the following boundary integral representation of

scattered seismic waves in the space-frequency domain:

u(x′)− ū(x′) = −
∫
∂Dint

Ḡ(x′,x)∆Hb(x)u(x)d2x, (12)

where u denotes the wave vector, G the Green’s matrix, and ∆Hb the fracture contrast

function (Wapenaar, 2007). The variables with a bar (̄·) indicate wavefields that are de-

fined in an arbitrary reference medium. ∂Dint is the geometry of the nonwelded interface

(fracture). In the forward problem, the surface integral is evaluated at a known fracture ge-

ometry. We assume in equation 12 that the reference medium has the same elastic constants

distribution as the true medium; hence, the only difference between the reference medium

and the true medium is the fracture. The explicit forms of the vectors and matrices in

equation 12 depend on the dimensionality of the problem and on the wave modes. In this

study, we consider a 2D problem, and we show the explicit forms of u, G and ∆Hb for the
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P-SV wavefield and the SH wavefield, respectively, in Appendix A.

The Born approximation is defined as the first-order term of the Neumann series expan-

sion of equation 12 for u:

uS(x′) = −
∫
∂Dint

Ḡ(x′,x)∆Hb(x)ū(x)dx, (13)

where the left-hand side of the equation is the scattered wave, i.e., the difference of the

wave vector between the true and the reference media. Note that we have changed the

surface integral (
∫
∂Dint

d2x) to the contour integral (
∫
∂Dint

dx) because of the considered 2D

problem. When we define the reference medium such that it does not contain fractures, the

contrast function ∆Hb is linear with respect to the fracture compliances (ηT , ηN , and ηC)

at the fracture (see Appendix A).

We use equation 13 to formulate the linearized model (equation 9) so that d contains

the recorded reflected waves (particle velocities), m the spatial distribution of the fracture

compliances, and L the operator including Green’s functions in the reference medium, the

source wavefield, and the fracture dip angle (see Appendix A). To this end, we introduce a

singular function (Bleistein, 1987; Bostock, 2002) at the fracture geometry (∂Dint) in order

to recast the contour integral in equation 13 as a 2D volume integral:

uS(x′) = −
∫
V
Ḡ(x′,x)δΣ(x)∆Hb(x)ū(x)d2x, (14)

where V is a 2D volume and δΣ(x) is the singular function with support on the fracture

geometry. The definition of the singular function can be found in Appendix B. Due to

the band limitation of the input reflection data, furthermore, LSM estimates a bandlimited

representation of δΣ(x) scaled by the fracture compliances. In this study, we compensate

for the scaling effect due to band limitation of the singular function by analyzing the output

image of LSM (see Appendix B for more details). Note that, for the 3D problem, the 2D
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volume integral in equation 14 becomes a 3D volume integral with a singular function with

support on the fracture surface.

NUMERICAL MODELING EXAMPLES OF LEAST-SQUARES

MIGRATION OF FRACTURE COMPLIANCES

In this section, we show numerical modeling examples at two different scales where fractures

are imaged and characterized using the proposed LSM. The first example considers simple,

laboratory-scale measurements where a single horizontal fracture is embedded in a homoge-

nous medium. We assume that the nonwelded interface model best describes the elastic

reflections from a fracture, and we estimate the fracture compliances using the proposed

LSM. We also test the conventional LSM formulated as perturbations in Lamé constants

(Beydoun and Mendes, 1989; Jin et al., 1992), which implies that we interpret the observed

data by a thin-layer model of fractures (e.g., Wu et al., 2005). We discuss the relation

between the estimated images using both formulations (linear-slip and thin-layer models),

and explain the advantages of the proposed LSM over the conventional approach. The sec-

ond example shows the potential of applying the proposed LSM to field-scale measurements

where dipole acoustic borehole logging data are used to image a dipping fracture around a

borehole embedded in a random background medium.

Laboratory-scale fracture imaging: numerical tests

Model and data

We first present a numerical modeling example considering an ultrasonic laboratory exper-

iment to characterize a single horizontal fracture (Figure 1a). A horizontal receiver array
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measures the reflected waves due to sources located at the same level as the receiver array

(e.g., Palmer et al., 1981). Note that this configuration is equivalent to a vertical receiver

array recording reflected waves from a vertical fracture (e.g., Cheng and Sansalone, 1995).

We consider a 2D problem and a fracture with coupling compliance. The fracture compli-

ances are, respectively, ηT1 = ηT2 = ηT = 4.5× 10−14 m/Pa, ηN = 1.75× 10−14 m/Pa, and

ηC = 1.40× 10−14 m/Pa, and they are tapered at the edges (Figure 1b). The values of ηT

and ηN are taken from laboratory experiments of the fracture compliances in a fluid-filled

sandstone (Lubbe et al., 2008). The coupling compliance (ηC) is calculated assuming its

relative magnitude (equation 5 in Nakagawa et al., 2000) to be 0.5. The elastic properties

and density of the background material are VP = 6350 m/s, VS = 3410 m/s, and ρ = 2500

kg/m3, respectively.

We install two point sources located at the center and at the edge of the receiver array

(Figure 1a), considering uneven illumination of the fracture from the sources. The observed

wavefield at the receiver array is calculated in the frequency-wavenumber domain (wdSDD,

Nakagawa et al., 2004), where we use a point-force source 2D Green’s function representing

incident waves. The source wavelet is a Ricker wavelet with 50 KHz center frequency. The

example of the modeled shot gather (source x = 0.15 m) is shown for SH wavefield (Figure

1c) and P-SV wavefield (Figure 1d). We consider a horizontal force source (fy) for the SH

wavefield and a vertical force source (fz) for the P-SV wavefield, respectively. Furthermore,

we add random noise to the modeled responses; the signal-to-noise ratio (SNR) is 15 dB,

where we define SNR as the ratio of the peak amplitude and the standard deviation of noise.

Furthermore, to identify reflection and scattering modes, we calculate the travel times of

the specular reflections (Figure 1e) and those of the non-specular reflections, assuming

scattering at the fracture edges (Figure 1f).
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The SH wavefield (Figure 1c) contains specular reflections (SS) and non-specular scat-

tered waves (SSd) due to spatially varying compliances at the fracture edges (Minato et al.,

2018). The P-SV wavefield (Figure 1d) shows converted waves (PS, SP, PSd, SPd) as well as

pure modes (PP, SS, PPd, SSd). The amplitudes of PS and SP waves show an asymmetric

variation along the receiver position (around 0.10 ms in vx in Figure 1d). At the zero-offset

trace (receiver x = 0.15 m), the event at 0.10 ms is a PS wave because of the absence of

normally propagating shear waves from the source due to the radiation pattern; we observe

non-zero PS reflection amplitude at normal incidence. The non-zero PS reflection coefficient

at normal incidence is due to the presence of the coupling fracture compliance, where the

tangential displacement discontinuity is generated by the normal stress acting on the rough

fracture (Nakagawa et al., 2000).

In Appendix C, we show that the Born approximation accurately predicts the wave-

field in this configuration, i.e., the magnitude of the fracture compliances and the center

frequency. At high frequencies, however, the discrepancy between the Born approximation

and the true response is large. See Appendix C for more details.

Imaging results

We apply the new LSM (equation 10) to SH wavefield (Figure 2). The grid spacing in

the imaging area is 2 mm. We calculate free-space Green’s functions in the 2D elastic

homogeneous reference medium (de Hoop, 1995) to construct the Born operator. Figure

2a presents the initial gradient of the objective function without inversion or the result of

the classical crosscorrelation imaging condition (equation 11). The amplitude of the initial

gradient is normalized by the maximum value. Figure 2b is the result of the new LSM solved
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by CGLS method after 100 iterations (the convergence of the residual is shown in Figure

2d). Note that the scaling effect due to the band-limited singular function is compensated

for in the LSM image (Figure 2b) by analyzing the bandwidth of the output image at a

representative location in the imaged fracture (see Appendix B for more details).

The final LSM result (Figure 2b) images the fracture with higher resolution than the

initial gradient without inversion (Figure 2a) because after the iteration LSM removes the

effect of the source wavelet and compensates the illumination pattern due to uneven dis-

tribution of sources (two sources are installed, see Figure 1a). Furthermore, the final LSM

image provides the quantitative property of the fracture (fracture compliance). The loca-

tion of the peak amplitudes in Figure 2b successfully estimates the fracture geometry, and

the peak amplitudes at the fracture between x = 0.10 m and x = 0.20 m show an average

value of 4.43 × 10−14 m/Pa with a standard deviation of 0.57 × 10−14 m/Pa. Therefore,

LSM successfully estimates the tangential compliance (4.5 × 10−14 m/Pa, see Figure 1b).

The final data residual of LSM (black solid line in Figure 2d) shows the effect of noise and

the errors in the Born approximation.

To illustrate a relation between linear-slip and thin-layer models for fracture imaging,

the conventional LSM formulated as perturbations in Lamé constants as model parameters

(Beydoun and Mendes, 1989; Jin et al., 1992) is applied to the same dataset (Figure 2c)

where we estimate the volumetric distribution of perturbation in shear modulus (∆µ). Note

that for a consistent comparison with the new LSM, we use the same theoretical Green’s

functions as for the proposed LSM in constructing the Born operator of the conventional

LSM, instead of using the ray-approximated Green’s functions as proposed in Beydoun and

Mendes (1989). Conventional LSM has a resolution similar to the new LSM. This corre-

sponds to the fact that the linear-slip interface model can represent a thin layer of isotropic
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material at normal incidence in the long wavelength assumption (e.g., Rokhlin and Wang,

1991; Nagy, 1992), i.e., ηT = H/µ0 where H is the layer thickness and µ0 is the shear

modulus of the thin layer. This indicates that we can estimate tangential fracture compli-

ance using the conventional LSM when we appropriately interpret the effective thickness

of the imaged fracture. Furthermore, the small difference in the final residual between the

proposed and conventional LSM approaches (Figure 2d) indicates that the linear-slip model

and the thin-layer model can explain almost equally well the reflections from the fractures

(Wu et al., 2005).

The new LSM applied to the P-SV wavefield estimates the fracture compliance tensor:

tangential (ηT ), normal (ηN ), and coupling (ηC) compliances (Figure 3a–3c, respectively).

Due to the complex wavefield including mode conversion and limited source illumination,

the imaged fracture compliances show more noise and artefacts than the result using SH

wavefield. Nevertheless, the new LSM provides the fracture geometry much better than

the conventional LSM (Figures 3d and 3e) where the volumetric distribution of ∆µ and

∆λ is estimated. Contrary to the result for the SH wavefield, here the large difference in

the final residual between the proposed and the conventional LSM (Figure 3f) indicates

that the fracture is not represented by a thin isotropic layer. This is because the normal-

incident P wave produces converted S wave (see Figure 1d and the discussion in the previous

subsection). A possible approach to improve the resolution of the conventional LSM is to

introduce effective anisotropy (Coates and Schoenberg, 1995) in a thin-layer model, which

provides more degrees of freedom in fitting the observed data.

We show that the proposed LSM is successfully applied to numerically modeled data

with noise. The comparison between the proposed and conventional LSM results shows that

the conventional LSM assuming isotropic media fails to image the fracture when the frac-
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ture contains non-zero coupling compliances, which indicates that the new LSM is crucial

for monitoring shear-induced coupling changes at fractures. The results using SH wavefield

show that the conventional LSM also can be used to estimate tangential fracture compli-

ances. Note, however, that when fracture compliances are of primary interest (see Intro-

duction), the proposed LSM is useful because it directly estimates the fracture compliances

and it does not require estimating the effective fracture thickness using the conventional

LSM.

Borehole acoustic logging: numerical tests

Model and data

The second numerical example shows field-scale fracture imaging. We consider borehole

acoustic logging experiments in order to image and characterize fractures around a bore-

hole. Single-well reflection imaging using acoustic logging data carefully removes direct and

borehole-coupled waves to isolate reflected waves (Li et al., 2014b, 2017, and references

therein). In the context of single-well reflection imaging, several imaging approaches have

been tested, e.g., Kirchhoff depth migration, prestack f-k migration, beamforming migra-

tion, and reverse-time migration (Hornby et al., 1989; Tang and Patterson, 2009; Li and

Yue, 2015; Gong et al., 2018). We propose in this subsection the use of the new LSM for

high-resolution quantitative imaging of the fractures around a borehole.

We consider a 2D plane which is formed by the borehole axis and the normal vector

of a fracture (x − z plane in Figure 4a). The dip angle of the fracture is 50◦ with respect

to the x axis, and the fracture intersects the borehole. The geometry can be interpreted

also as a dipping borehole penetrating a subvertical fracture (Tang and Patterson, 2009).
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Considering prior successful imaging of fine-scale fractures using dipole acoustic logging

(Lee et al., 2019), we model dipole data, i.e., horizontal force and horizontal component

receiver. We separately consider P-SV and SH wavefields assuming a 2D configuration. In

this study, furthermore, we ignore the presence of the borehole and model a point force

source and the particle displacement in an elastic medium where the borehole source and

the receiver would be located.

We consider a 20 m deep and 10 m wide imaging area (Figure 4a). We assume a random

background medium where a random velocity distribution is superposed on the constant

P-wave velocity (4000 m/s). The VP /VS is fixed at 1.74, and we assume a constant density

of 2500 kg/m3. The autocorrelation function of the random distribution follows a von

Kármán function with Hurst number 1, correlation length 0.1 m, and a variance of 10 %

with respect to the background medium. The random background model is inspired by

the work of Tang et al. (2016), who investigate the elastic scattering in borehole acoustic

logging. The rotationally invariant fracture (i.e., no coupling compliance) has the following

parameters: ηT=1×10−11 m/Pa and ηN=1×10−12 m/Pa. These compliances correspond to

a fluid-filled fracture where the normal fracture compliance ηN is one order of magnitude

smaller than the tangential compliance ηT (Lubbe et al., 2008). The order of magnitude of

the tangential fracture compliance corresponds to the scale length of the fracture - to be

a few tens of meters, assuming a trend of increasing fracture compliance with fracture size

(Hobday and Worthington, 2012).

The P-SV and SH wavefields are separately modeled using a rotated staggered-grid

finite-difference time-domain (FDTD) method (Saenger and Shapiro, 2002) where linear-

slip interfaces are implemented through calculating effective elastic properties (Coates and

Schoenberg, 1995). We consider a realistic source and receiver configuration for dipole
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acoustic measurements; the receiver array consists of five receivers with minimum offset 3

m and receiver spacing 0.15 m, and the tool moves along the borehole in steps of 0.5 m

(e.g., Li et al., 2017). See Figure 4a for the source–receiver configuration. The dominant

frequency of the dipole measurements is considered in the source wavelet; a Ricker wavelet

with 3 KHz center frequency is used.

Figures 4b and 4c show, respectively, the examples of the modeled SH and P-SV wave-

fields, for the first receiver in the receiver array with varying source depths (i.e., a common

receiver gather). Direct P and S waves have been suppressed in Figures 4b and 4c by

subtracting the response of the reference medium from the modeled response. The refer-

ence medium is a homogeneous medium without the fracture with the background P- and

S-wave velocities (VP =4000 m/s and VS =2300 m/s). Note that the reference medium is

also utilized in calculating the Green’s functions in the proposed LSM. Figures 4d shows

the traveltimes of direct waves (P and S) and reflected waves (PP, SS, PS and SP) calcu-

lated by using the reference medium and the fracture geometry. Although we ignore the

borehole-coupled waves (Stoneley and flexural waves), the traveltimes of these waves are

also calculated from the low-frequency approximation (White, 1983). Note that the flexural

wave velocity is close to the formation shear-wave velocity at low frequencies in the fast

formations, where VS is larger than the compressional velocity of the borehole fluid (Tang

and Patterson, 2010). At sources shallower than 5 m and those deeper than 12 m, the

reflected waves, especially the SS waves, can be observed without major interferences with

the direct waves (Figures 4d). However, suppressing the direct waves helps imaging the

fracture close to the borehole between 5 m and 12 m depth. Direct waves are not perfectly

suppressed in the data (see 2 ms and 0–6 m depth in Figures 4b and 4c) because of the ran-

dom background velocity. The vertical event at 2 ms between 6–12 m depth in Figures 4b
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and 4c is the transmitted wave across the fracture, and the dipping events are the reflected

waves. As expected from dipole measurements, pure shear waves are dominant in the P-SV

wavefield (SS), but converted waves (PS and SP waves) also show large amplitudes in the

data where sources are located close to the fracture.

Imaging results

The proposed LSM (equation 10) is applied to the SH wavefield (Figure 5). The imaging

area is discretized with a spatial sampling interval of 0.05 m; we use frequencies in the range

of 0–8 KHz. We assume the source wavelet to be known: calibration of source wavelets can

be performed using, for example, reference data with known reflection coefficients (see next

section). Furthermore, we assume the fracture dip angle to be known in constructing the

Born operator L of both SH and P-SV wavefields: the information can be obtained from

borehole acoustic/optical televiewer and/or conventional migration images. Note that the

fracture dip angles can be assigned at each imaging grid point.

The strong artefacts in the initial gradient without inversion or the image with crosscor-

relation imaging condition (equation 11) around the borehole (around x = 0 m in Figure 5a)

are due to the correlation of the remaining direct and transmitted waves with the source

wavefield. The artefacts are largely suppressed in the final LSM image. The initial gra-

dient does not provide quantitative information. In contrast, the new LSM minimizes the

data misfit taking into account scattered radiation pattern at a fracture. This quantita-

tive nature of LSM suppresses structures producing non-physical reflections. The effective

wavelength in the LSM image is smaller than in the initial gradient (see insets figures in

Figure 5a and 5b), which provides a much higher resolution image. Furthermore, the final
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LSM image shows quantitative values of the fracture compliance (ηT ). The peak amplitudes

of the imaged ηT at the fracture between x = −4 m and x = −1 m show an average value of

6.47× 10−12 m/Pa with a standard deviation of 0.49× 10−12 m/Pa, which underestimates

the true value (1×10−11 m/Pa). This is mainly because of the overestimation of amplitudes

of the Born approximation in this frequency range (Appendix A).

For P-SV wavefield, the new LSM is applied to estimate ηT , assuming ηN to be zero.

Similar to the SH wavefield, the initial gradient using P-SV wavefield (Figure 5c) contains

strong artefacts, which are suppressed in the final LSM image (Figure 5d). Note that the

results for the P-SV wavefield (Figure 5c and 5d) show an X shaped image, indicating the

ambiguity in the fracture location; due to the source–receiver configuration, a fracture with

the same dip angle but opposite sign would generate the same reflections. This ambiguity

does not appear in the SH image (Figure 5a and 5b) because the Born operator L including

information of the fracture dip angle acts as a filter to suppress the artefacts. However, in

the case of P-SV wavefield, they are not effectively suppressed due to the lack of a vertical

component receiver. Note that these artefacts can be effectively removed by separately

processing upgoing and downgoing waves (e.g., Hornby, 1989).

LABORATORY EXPERIMENT

Data

In this section, we apply the newly proposed LSM to laboratory experimental data. The

laboratory experiments were performed in order to measure PP reflections from a horizontal

fracture (Minato et al., 2018). An artificial fracture was created by installing spacers of 100

µm thickness between two aluminum blocks (Figure 6a). Vertical component reflection re-
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sponses were measured for three different fracture conditions; dry fracture (i.e., the fracture

is filled with air), homogeneously wet fracture (i.e., the fracture is filled with water), and

heterogeneously wet fracture (i.e., the fracture is partly filled with water and partly with

air). For each fracture condition, the location of source and receiver (piezo-electric trans-

ducers) was fixed so that the coupling condition between the surface of the sample and the

transducers did not vary during the measurements. In total, 21 shot gathers were acquired;

each shot gather contained on average 20 traces (Figure 6b). The observed PP reflections

were isolated by time-windowing the data (Figure 6c). The measured response shows a

center frequency of 700 KHz (Figure 6d). A more detailed measurement procedure can be

found in Minato et al. (2018). In this study, we assume 2D wave propagation. Therefore,

all observed data are scaled by
√
t in order to account for the difference in geometrical

spreading between 3D and 2D wave propagation.

We first check the accuracy of the Born approximation in the configuration of the labo-

ratory experiments; we numerically model the vertical component, zero-offset reflection re-

sponse due to a vertical force source and a horizontal fracture located at the same depth as

in the laboratory experiments (Figure 7). The input fracture compliances are ηT = 1×10−12

m/Pa and ηN = 10× 10−14 m/Pa, respectively, considering a water-filled fracture without

contact asperities and the results of an earlier AVO inversion using the same experimental

data (Minato et al., 2018). Because of the large compliance values and the high center fre-

quency, the Born approximation in this configuration is accurate only for very low-frequency

components (lower than 200 KHz, Figure 7). Since high-resolution imaging requires large

bandwidth and the signal-to-noise ratio is high around the center frequency of the measured

responses, we use the frequency components between 50 KHz and 500 KHz for the proposed

LSM.
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Data calibration

To apply the proposed LSM, we estimate the source wavelets. Similar to previous AVO

inversion (Minato and Ghose, 2016a; Minato et al., 2018), we use the dry fracture response

in order to estimate the wavelets.

We first calculate theoretical dry fracture responses as follows. The dry fracture re-

sponses are considered to be free-surface reflections because the fracture does not contain

contact asperities (Minato and Ghose, 2016a). We calculate the free-surface reflections in

a homogeneous half space using the Kirchhoff approximation. Once we have calculated

the theoretical PP reflection responses at the receiver positions, we introduce the addi-

tional effect of the free-surface boundary at the receiver; this is achieved by multiplying the

calculated particle velocities by a factor of two, assuming normal-incidence reflections.

Next, we estimate the source wavelets by deconvolving the measured dry responses with

the theoretical responses. We estimate the source wavelet at each trace (i.e., for each source–

receiver pair) assuming that (1) for each source–receiver pair the source wavelet remains the

same for different fracture conditions (dry and wet) due to the invariant coupling condition

during the measurements, and (2) the source wavelets at each trace effectively account for

complex source directivity at the transducers. The implementation of independent source

wavelets at each source–receiver pair is straightforward in the Born operator L in LSM

(equations 9 and 14).

Imaging results

We apply the proposed LSM (equation 10) on a dataset representing a homogeneously wet

fracture, assuming a 2D P-SV wavefield. The imaging area around the fracture (0.3 m ×
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0.05 m) is discretized with a spatial sampling interval of 0.5 mm. We image the normal

fracture compliance ηN using only vertical component records. To this end, the tangential

compliance is assumed (1 × 10−12 m/Pa) at the known fracture geometry, and the contri-

bution of the tangential compliance in the vertical component records is subtracted from

the measured data, assuming the Born approximation (equation 13 with ∆Hb including

only ηT ). Finally, we formulate equation 9 where d consists of the measured data, and m

the spatial distribution of ηN . The Born operator L is calculated using free-space Green’s

functions and the estimated source wavelets.

As discussed earlier, we use the frequency components between 50 KHz and 500 KHz

to obtain the result of LSM (Figure 8a). The final LSM image (Figure 8a) shows improved

resolution than the initial gradient (Figure 8b). The initial gradient shows strong oscillations

around the fracture due to the crosscorrelation of bandpass filtered data using a boxcar

function; the LSM removes the effect of the source wavelet and suppresses artefacts that

produce non-physical reflections.

Next, we quantitatively check the estimated fracture compliances. Figure 8c shows the

estimated compliance of the homogeneously wet fracture along the fracture. The filled cir-

cles in Figure 8c show the fracture compliance obtained by AVO inversion, using the same

dataset (Minato et al., 2018). The estimated fracture compliances using both approaches

are similar. The LSM estimates smaller compliances than AVO inversion. Due to the over-

estimation of the amplitudes in the Born approximation (see Figure 7), LSM underestimates

the fracture compliances.

Finally, the proposed LSM is applied to the heterogeneously wet fracture responses

(Figure 9). The procedure to construct the Born operator and to subtract the contribution
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of the tangential compliance is the same as for the homogeneously wet fracture. As discussed

earlier, the dry fracture responses are free-surface reflections, which correspond to responses

due to infinitely large fracture compliances (Schoenberg, 1980). In this case, the Born

approximation is not accurate to estimate the fracture compliances at the dry part of the

fracture. Therefore, in Figure 9, the scaling effect due to the band-limited singular function

is estimated at a representative location at the wet region. The result of LSM (Figure 9)

clearly shows the difference between the wet region (x = 0 m – 0.15 m) and the dry region (x

= 0.15 m – 0.30 m) along the fracture. The dry region of the fracture shows the magnitude

of positive amplitudes similar to the negative amplitudes across the fracture (e.g., see the

variation of the amplitudes at x = 0.2 m in Figure 9): the asymmetric amplitude variation

across the fracture is not represented by the band-limited singular function with a unit

spectrum between the minimum and maximum wavenumbers (equation B-2). This indicates

that we cannot interpret the results at the dry region of the fracture as the singular function

(equation B-2) scaled by the fracture compliance. In other words, the Born approximation

fails to represent the dry part of the fracture as a nonwelded interface due to infinitely large

compliances. We conclude that the proposed LSM successfully estimates the compliances

of the wet fracture and also detects correctly the spatial variation in fracture compliances.

DISCUSSION

Frequency, accuracy, and resolution of LSM

We show numerically that the Born approximation of scattered waves due to linear-slip

interfaces is generally accurate at low frequencies (Appendix C and Figure 7). Considering

that LSM estimates the band-limited singular function (Dirac delta function) scaled by the
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fracture compliances, large bandwidth data including high frequencies are necessary to ob-

tain higher resolution images. However, including higher frequency components leads to an

underestimation of the fracture compliances. This is because the Born approximation over-

predicts the amplitudes, as discussed in the numerical modeling example. Therefore, there

is a trade-off between the accuracy of the estimated compliance and the imaging resolution.

Checking numerically the accuracy of the Born approximation at different frequencies is

recommended to determine the frequency components to be used for LSM.

Feasibility of LSM using dipole acoustic logging

In the numerical modeling section, we show the application of the proposed LSM to the

dipole acoustic measurements with a number of assumptions. First of all, we separately

consider P-SV and SH wavefields, assuming wave propagation in the plane formed by the

borehole axis and the normal vector of the fracture. Therefore, data acquisition requires the

knowledge of the azimuth angle of the target fracture. However, when the azimuth angle

of the fracture is not known, the rotation of the cross-dipole data (Lee et al., 2019) will be

able to provide the input data for the proposed LSM and the azimuth angle of the target

fracture.

Next, in the numerical modeling, we ignore the presence of the fluid-filled borehole.

In this vein, the Born approximation for perturbations in Lamé constants in the borehole

environment ignoring the borehole effect was investigated earlier (Geerits et al., 2013).

However, a theoretical study shows that the fluid-filled borehole affects the radiation pattern

at the source and the reception pattern at the receiver, especially at high frequencies (Tang

et al., 2014). Angle- and frequency-dependent effects of the fluid-filled borehole on the source
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radiation and receiver reception pattern can be implemented in the linearized equation 9

when the angle of the incident wave from the source and the angle of the scattered waves

at the receiver can be appropriately calculated.

Complex geology

In the numerical modeling examples, we show that the proposed LSM is successfully applied

to data with noise in simple configurations; reflection data due to a single horizontal frac-

ture embedded in a homogeneous medium contaminated by random noise (the subsection

“Laboratory-scale fracture imaging: numerical tests”) and data due to a single dipping frac-

ture contaminated by scattered waves generated by a random background velocity field (the

subsection “Borehole acoustic logging: numerical tests”). Imaging multiple fractures is pos-

sible without any modification because the proposed LSM estimates the spatial distribution

of the fracture compliances (equation 14). In the boundary integral equation (Wapenaar,

2007), fractures may intersect each other. In this case, however, fracture compliances at the

intersection may not be uniquely estimated using LSM because of the ambiguity regarding

the fracture normal vector.

We use free-space Green’s functions in a homogeneous medium to calculate wave prop-

agation in a background medium. However, any other approach which can handle a

more complex background model (for example, smooth velocity variation and/or a lay-

ered earth model) can be used, e.g., using ray approximation, one-way wave equation, or

finite-difference method (e.g., Operto et al., 2000; Kühl and Sacchi, 2003; Dai et al., 2010).

When data contain reflections from both welded interfaces (geological layer boundaries) and

nonwelded interfaces (fractures), there are two options: (1) explicitly incorporating welded
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interfaces in the background velocity model and inverting only for the fracture compliances,

or (2) simultaneously inverting for perturbations in elastic constants and fracture compli-

ances. The former option requires prior knowledge of geological layer boundaries (e.g., from

standard sonic logging in the case of single-well reflection imaging). The latter requires the

modification of the Born operator (equation 13) to include scattering due to the perturba-

tion in Lamé constants and density with respect to the background, which is represented

by an additional volume integral (Beydoun and Mendes, 1989; Wapenaar, 2007).

Dip angle of a fracture

We assume that the dip angle of the fracture is known in the Born operator. The dip angles

are assigned at each imaging grid point. The information of dip angles can be obtained from

borehole images and/or standard migration images. Alternatively, it is possible to include

dip angles or a vector normal to the fracture (nx and nz) in the inversion parameters of

LSM. In this case, however, LSM estimates the indirect parameters which couple the fracture

compliances and the normal vector (see the components of the contrast function ∆Hb in

equation A-12). Note that, in this case, at least two additional unknown parameters are

involved in the inversion, which is computationally more expensive.

CONCLUSION

In this study, we propose a new elastic least-squares migration method for thin compliant

zones (fractures, joints and faults) in order to estimate the fracture compliance tensor with

high resolution. We derive the Born approximation in order to linearize the scattered

wavefield with respect to the fracture compliances. We consider a 2D wave propagation
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problem, i.e., P-SV and SH wavefields.

We show two numerical examples of the new LSM: laboratory-scale fracture imaging

and field-scale fracture imaging using borehole acoustic logging data. The LSM generally

provides images with higher resolution than the initial gradient or the image with classical

crosscorrelation imaging condition. Furthermore, an anisotropic fracture with non-zero

coupling compliance is imaged much better by the new LSM than by the conventional LSM

where the perturbation of Lamé constants is estimated. This indicates that the new LSM is

essential in accurate imaging of rough fractures, where shear-induced coupling changes are

monitored. The dipole acoustic input data are modeled considering a random background

medium. The results show the potential of the new LSM to provide quantitative imaging

of fracture compliances of a dipping fracture embedded in a complex background medium.

Finally, we apply the new LSM to a laboratory experimental dataset. The estimated

compliance values are similar to those obtained by AVO inversion. The compliance val-

ues are, however, underestimated because at higher frequencies the Born approximation

overpredicts the amplitudes. The LSM image detects a spatially varying fracture condition

resulting from the partial inclusion of water in the fracture.

The linear-slip theory and the fracture compliance tensor describe the interaction be-

tween the seismic waves and the compliant zones with an effective thickness that is much

smaller than the seismic wavelength. Quantitatively imaging the fracture compliance tensor

is, therefore, crucial to further address the small-scale properties at fractures, joints and

geological faults.

33



ACKNOWLEDGMENTS

The authors thank editors and reviewer A. Stovas, and three anonymous reviewers for their

comments and suggestions that improved the paper. The research of K. Wapenaar has

received funding from the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation program (grant no. 742703).

APPENDIX A

LINEAR-SLIP BOUNDARY CONDITION AND REPRESENTATION

THEOREM IN A 2D PROBLEM

P-SV wavefield

We explicitly formulate vectors and matrices necessary to define the linear-slip boundary

condition (equation 5) and the boundary integral representation (equation 12 and 13) for

2D P-SV wavefield.

The wave vector u is

u =



vx

vz

−τxx

−τzz

−τxz


. (A-1)

Similar to 3D problem (see the main text), Y (a 5 × 5 matrix) in equation 5 can be

written for a linear-slip interface with an arbitrary dip angle using the fracture compliance

tensor of a horizontal fracture ηh. We obtain an equation with the same form as equation
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8, but ηh defined as,

ηh =

ηT1 ηC

ηC ηN

 , (A-2)

and Q =
(
nz −nx
nx nz

)
. For completeness, a 4 × 5 matrix M in equation 5 is defined as,

M =



1 0 0 0 0

0 1 0 0 0

0 0 nx 0 nz

0 0 0 nz nx


. (A-3)

The Green’s matrix G consists of Green’s functions in P-SV wavefield, defined as

G =



Gv,f
x,x Gv,f

x,z Gv,h
x,xx Gv,h

x,zz Gv,h
x,xz

Gv,f
z,x Gv,f

z,z Gv,h
z,xx Gv,h

z,zz Gv,h
z,xz

Gτ,f
xx,x Gτ,f

xx,z Gτ,h
xx,xx Gτ,h

xx,zz Gτ,h
xx,xz

Gτ,f
zz,x Gτ,f

zz,z Gτ,h
zz,xx Gτ,h

zz,zz Gτ,h
zz,xz

Gτ,f
xz,x Gτ,f

xz,z Gτ,h
xz,xx Gτ,h

xz,zz Gτ,h
xz,xz


, (A-4)

where the superscripts of the Green’s functions represent the type of the observed wavefield

(e.g., particle velocity (v) or stress (τ)) and the type of source (e.g., force (f) or deformation

rate (h)), and the subscripts represent the different components. Please see Wapenaar

(2007) for more details on the notation in the case of an acoustic wavefield, and Wapenaar

and Fokkema (2004) for more details in the definitions of the source types in the case of an

elastodynamic wavefield.

The contrast function ∆Hb in the boundary integral representation (equation 12) can be

derived from equation 56 in Wapenaar (2007) using M (equation A-3), Y (equation 8 but

using ηh and Q defined in this subsection), K = diag(1, 1,−1,−1,−1), and N =
(

0 I
−I 0

)
.
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Finally, we obtain,

∆Hb = jω



0 0 0 0 0

0 0 0 0 0

0 0

0 0 MT
1 Q

T∆ηhQM1

0 0


, (A-5)

where

M1 =

nx 0 nz

0 nz nx

 , (A-6)

and

∆ηh =

∆ηT1 ∆ηC

∆ηC ∆ηN

 . (A-7)

The symbol ∆ in equation A-7 denotes the difference in the fracture compliances between

the reference medium and the actual medium. When the reference medium does not contain

fractures (fracture compliances are 0), ∆ηh is equivalent to ηh.

SH wavefield

In case of a 2D SH wavefield, the wave vector u is

u =


vy

−τxy

−τyz

 . (A-8)

The fracture compliance tensor becomes a scalar, ηT2 (see equation 4). The linear-slip

boundary condition is represented by equation 5 using M and Y defined as,

M =

1 0 0

0 nx nz

 , (A-9)
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and

Y =

0 ηT2

0 0

 . (A-10)

The Green’s matrix is

G =


Gv,f

y,y Gv,h
y,xy Gv,h

y,yz

Gτ,f
xy,y Gτ,h

xy,xy Gτ,h
xy,yz

Gτ,f
yz,y Gτ,h

yz,xy Gτ,h
yz,yz

 . (A-11)

Similar to P-SV wavefield, the contrast function ∆Hb in the boundary integral rep-

resentation (equation 12) can be derived from equation 56 in Wapenaar (2007) using M

(equation A-9), Y (equation A-10), K = diag(1,−1,−1), and N =
(

0 1
−1 0

)
. Finally, we

obtain,

∆Hb = jω


0 0 0

0 n2
x∆ηT2 nxnz∆ηT2

0 nxnz∆ηT2 n2
z∆ηT2

 , (A-12)

where ∆ηT2 denotes the difference in the tangential fracture compliance between the ref-

erence medium and the actual medium. When the reference medium does not contain

fractures, ∆ηT2 is ηT2 .

APPENDIX B

COMPENSATION OF THE SCALING EFFECT DUE TO THE

BAND-LIMITED SINGULAR FUNCTION

In this study, LSM estimates the band-limited singular function scaled by the fracture

compliances (equation 14). The output image of LSM, therefore, includes the scaling effect
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of the band-limited singular function; we compensate for it by estimating the bandwidth of

the output image.

We consider that the fracture geometry ∂Dint is described parametrically in terms of one

parameter s, i.e., x = x(s) and z = z(s). In this case, the singular function δΣ in equation

14 has the following property:∫
V
δΣ(x, z)f(x, z)dxdz =

∫
∂Dint

f (x(s), z(s)) ds, (B-1)

where f(x, z) is a test function. For brevity, in this appendix, we consider a horizontal

fracture located at z = 0. In this case, δΣ(x, z) = δ(z), where δ(z) is the Dirac delta

function. We assume that the band-limited Dirac delta function, δ̃(z), in the result of

LSM, is approximated by an unit spectrum in the wavenumber domain parametrized by

the maximum wavenumber (Lk) and the minimum wavenumber (lk),

δ̃(z) =
Lk

π

sin(Lkz)

Lkz
− lk

π

sin(lkz)

lkz
. (B-2)

Once we have estimated Lk and lk, the output image of LSM is scaled so that the maximum

amplitude of δ̃(z) becomes 1.

In this study, we estimate Lk and lk of the output image of LSM as follows: (1) we

first solve the linearized inversion (LSM) and obtain m(x, z), where we replace the vector

representation of the model parameter m in equation 9 by its spatial distribution m(x, z),

(2) we extract an one-dimensional amplitude distribution of m normal to the fracture (in

the case of a horizontal fracture, we extract m(x0, z) where x0 is a fixed lateral position),

and (3) we estimate Lk and lk either in the wavenumber domain by reading the minimum

and maximum wavenumbers or in the space domain by fitting m(x0, z) using equation B-2.

In this study, we use the latter approach for estimating Lk and lk. To this end, we first

normalize the amplitude of m(x0, z), and we search for Lk and lk which best fit m(x0, z)
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using equation B-2 whose amplitudes are also normalized. Figure B-1a shows an example

of the estimation of Lk and lk for the numerical example of Figure 2b. As expected from

equation B-2, the estimated amplitude distribution, m(0.15, z), is symmetric around the

fracture location (z = 0.172 m). The best fit curve (black line in Figure B-1a) is obtained

by using Lk = 543.50 (rad) and lk = 40.84 (rad), respectively. The Fourier spectrum

(Figure B-1b) shows that we successfully estimated Lk and lk. The output image of LSM is

then scaled by (Lk/π − lk/π)
−1, and we obtain the result shown in Figure 2b. Note that for

a dipping fracture, we evaluate the spatial distribution of m(x, z) along the perpendicular

direction of the imaged fracture.

APPENDIX C

ACCURACY OF BORN APPROXIMATION IN NUMERICAL

EXAMPLES

In this appendix, we show the accuracy of the Born approximation (equation 13) in the

configurations of the numerical modeling section.

We first consider the numerical modeling of laboratory-scale measurements (Figure 1a),

where we model zero-offset reflection responses. Figure C-1 shows the comparison between

the Born approximated response (’Born’) and the true response (’Total’). The true response

is calculated using the wavenumber domain method (Nakagawa et al., 2004). Figures C-1a–

C-1c are the frequency spectra of modeled Green’s functions for SH wavefield (vy) and P-SV

wavefield (vz and vx). Figures C-1d–C-1f show the time-domain waveforms after the convo-

lution of a Ricker wavelet (50 KHz center frequency) with the modeled Green’s functions.

For this particular model, the Born approximation is accurate at low frequencies (lower
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than 200 KHz). At higher frequencies the Born approximation overpredicts amplitudes.

Next, we consider the configuration in the dipole acoustic measurements (Figure 4a).

For simplicity, we assume a homogeneous background medium with the average P and S

wave velocities of the random model (Figure 4a), and we calculate zero-offset reflection

responses due to a horizontal fracture located at 5 m distance from the source and receiver.

The dipole sources are modeled as point force sources parallel to the fracture. Similar to

Figure C-1, Figures C-2a and C-2b are the frequency spectra of modeled Green’s func-

tions, and Figures C-2c–C-2d show the time-domain waveforms after the convolution of a

Ricker wavelet (3 KHz center frequency) with the modeled Green’s functions. Contrary

to Figures C-1a–C-1c, the frequencies where the Born approximation is accurate for this

configuration are very low (lower than 3 KHz, Figures C-2a and C-2b). This is because the

order of magnitude of fracture compliances in the field-scale fracture (ηT = 1×10−11 m/Pa,

ηN = 1×10−12 m/Pa) is larger than that of the laboratory-scale fracture (ηT = 4.5×10−14

m/Pa, ηN = 1.75× 10−14 m/Pa, ηC = 1.40× 10−14 m/Pa).
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Figure C-1: Born approximated response (Born) and true response (Total) for zero-offset

record in the configuration of Figure 1a. (a),(b),(c) Modeled Green’s functions for SH wave-

field (vy) and P-SV wavefield (vz and vx). (d),(e),(f) Time-domain responses of (a),(b),(c)

after convolution of Ricker wavelet with 50 KHz center frequency.
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Figure C-2: Born approximated response (Born) and true response (Total) for zero-offset

record in the configuration of Figure 4a. (a),(b) Modeled Green’s functions for SH wavefield

(vy) and P-SV wavefield (vx). (c),(d) Time-domain responses of (a),(b) after convolution

of Ricker wavelet with 3 KHz center frequency.
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