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Abstract.
The integration of wind energy to desalinate seawater can address the freshwater scarcity

issue and alleviate the environmental impact of desalination. This paper presents the use of
the Delft Offshore Turbine, an unconventional wind turbine with hydraulic transmission which
can be used to directly drive a seawater reverse osmosis desalination process and to produce
electricity with a Pelton turbine. A steady-state model is used to identify the potential regions at
which it is possible to operate the system and to propose a system settings for maximising water
production. The results show that the proposed system provides up to 300 kW of electricity
and can desalinate up to 25 m3/h, at rated operating conditions.

1. Introduction
1.1. Wind powered desalination
Seawater desalination is an effective solution for alleviating the freshwater scarcity problem [1].
On the other hand, desalination is a high energy consuming process, and the use of fossil fuels
to power desalination plants contributes significantly to the intensification of CO2 emissions
[2]. The integration of wind energy to drive seawater desalination has the potential to mitigate
the environmental impact and to satisfy the high demand of power required for freshwater
production [3].

Previous work has already been carried out on wind driven desalination. The majority of
the work presented in literature requires wind energy conversion into electricity to power the
desalination process, [4, 5, 6] or energy storage system for power smoothing, [7]. A case of a
prototype in which the intermediate electrical conversion was avoided is described by Liu [8, 9],
in which the multivane windpump was able to raise up enough pressure for desalinating brackish
water, but not seawater. A small-scale windpump driving seawater desalination was developed
in [10]. In this project the seawater pump was located at the bottom of the tower and was
connected to a 6.2 kW multivane wind turbine by means of a bevel gear and a vertical shaft. It
produced up to 0.5 m3/h with a 25% recovery rate.
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1.2. DOT500kW Pilot Reverse Osmosis (PRO) Project
Delft Offshore Turbine (DOT) develops an innovative wind turbine with hydraulic power
transmission [11, 12]. This technology can be used to directly provide the high pressurised
seawater for the reverse osmosis process, with the aim to make freshwater production from wind
energy more simple and cost-effective [13]. Moreover, part of the pressurised water could be
used for electrical power production by means of a Pelton turbine generator [14]. Hence there is
the flexibility to adjust the system output between electricity and freshwater depending on the
required demand.

The use of wind energy for seawater desalination presents the challenge of combining a wind
turbine, which is a highly dynamic system, with reverse osmosis desalination, which is typically
operated under relatively stationary conditions. A reverse osmosis desalination unit can work
in a very narrow range of conditions and cannot be easily switched on and off, since flushing of
the system is required to prevent damage of the membranes. This operating mode clashes with
the stochastic nature of the wind resource. Therefore, the integration of a wind turbine with
desalination unit requires a fundamental understanding of each component’s limits and their
interactions.

Within the DOT500 PRO Project, DOT plans on developing, building and testing their
hydraulic wind turbine for both water and electricity production. A pilot demonstration of this
project is scheduled for installation and commissioning in the first half of 2021. The pilot plant
will be composed of a 44 meter rotor diameter wind turbine, retrofitted with a high pressure
pump. The hydraulic power transmission system will feed a seawater reverse osmosis desalination
unit with a capacity of 600 m3/day of permeate and a Pelton turbine.

The goal of the research presented in this paper is to identify the system settings that allow for
maximum freshwater production under a given system configuration. The potential regions of
operation are identified taking into account the safe operation of the wind turbine, the required
electricity production to power the auxiliary equipment, and the highest amount of freshwater
production within the physical and chemical constraints given by the reverse osmosis process
and membranes. A mapping of the operating settings is proposed to maximise the production
of freshwater and electricity within the potential regions of operation.

2. Description of the wind driven desalination system
The system can be subdivided in three main subsystems, that will be described in this section:
the hydraulic wind turbine, the electricity production subsystem and the freshwater production
subsystem. A schematic of the system is shown in figure 1.

2.1. Hydraulic wind turbine
The hydraulic wind turbine consists of a three bladed horizontal axis wind turbine whose
generator in the nacelle has been replaced by a positive displacement pump. In this way, it
is possible to relocate the heavy components, like the generator and the power converters, to
ground level, resulting in a higher accessibility. Further elaboration on hydraulic wind turbines
with their advantages and disadvantages is presented in [11, 12].

In the proposed system, the rotor converts the energy extracted from the wind into rotational
motion. The motion is transmitted through the shaft to the high pressure pump, that pressurises
the seawater and directs it to the electricity and water production subsystems. The high pressure
pump has a nominal flow of 2417 l/min at nominal rotation speed of 28rpm.

2.2. Electricity production system
A portion of the pressurised seawater is deviated towards a spear valve and dedicated to
electricity production. The function of the spear valve is to convert the pressurized flow into
kinetic energy in the form of a high speed water jet, that is finally converted into electrical



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 032015

IOP Publishing

doi:10.1088/1742-6596/1618/3/032015

3

Figure 1: Schematic showing the main components of the wind driven seawater reverse osmosis
(SWRO) system. Courtesy of DOT B.V.

energy by the use of a Pelton turbine and a generator. The spear valve is constituted by a spear
that, moving in and out a nozzle, varies its orifice area. By adjusting the effective area of the
nozzle, it is possible to control the pressure of the flow and the speed of the hydrodynamic jet
supplied to the Pelton [14, 11].

2.3. Freshwater production system
The freshwater production group is composed of the seawater reverse osmosis (SWRO)
desalination unit, that actively separates salts (brine) from freshwater, and the isobaric energy
recovery device (ERD) that extracts the high residual pressure energy in the brine.

Reverse osmosis is a water purification technology driven by pressure [15]. When seawater and
freshwater are separated by a selective membrane, i.e. a membrane that only allows the passage
of pure water and retains salt, ions and other particles, the difference in salt concentration
generates a driving force that pushes the pure water from the low concentration (freshwater)
side of the membrane to the high concentration (seawater) side, until the balance is reached.
The water pressure on the seawater side of the membrane at equilibrium conditions is defined as
the osmotic pressure. The osmotic pressure increases with the increase in the concentration. For
seawater, with an average total dissolved salts (TDS) concentration of 35000 mg/l, the osmotic
pressure is around 30 bar. In the reverse osmosis process, when an external pressure, higher
than osmotic pressure, is applied on the high concentration side, pure water is forced to pass
through the membrane to the low concentration side, proportionally to the difference between
the applied pressure and the osmotic pressure. For seawater desalination, usually the pressure
applied is between 55 and 68 bar [15].

In SWRO desalination systems, spiral wound membranes are often used. More membranes
can be placed in series after each other, so the brine exiting from one membrane becomes the
feed flow of the following one. The series of membranes, up to eight in a row in case of seawater,
is enclosed inside a pressure vessel. More pressure vessels can be connected in parallel to increase
the capacity of the system. For the study of this paper, a six by six configuration is adopted.

Since the pressure drop along the pressure vessels is limited to a few bars, the brine still has
a high energy content at the exit side. The ERD is a device that allows to recover the energy
in the brine by exchanging pressure between the brine and feed seawater. The ERD is made
of a perforated rotor in a sleeve and two end covers. On one end, low-pressure seawater enters
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Figure 2: Schematic of the system showing the flow rates in the main points of interest. Solid
lines represent seawater, the dashed lines represent the brine and the double lines represent
permeate (in blue) and electricity (in yellow)

the ERD and flows in the perforated ducts of the rotor (solid blue line in figure 2). During
the rotation, the feed seawater is briefly exposed to the high pressure brine, entering from the
other end (dashed red line). The brine transmits its energy to the seawater and pushes it out
from the ERD (solid red line). Simultaneously, the low pressure brine is pushed out of the ERD
(dashed blue line) by the feed seawater entering the ERD (solid blue line). This cycle repeats
continuously with each rotation. A boost pump is used with the high pressure seawater line to
compensate for the pressure losses. The high pressure line is brought up to the same pressure as
of the seawater coming from the high pressure pump, to be fed to the SWRO unit. The use of
the ERD increases the efficiency of the system, but can also contribute to control the operation
of the desalination unit as will be described in section 5.

2.4. Control of the system
The integrated system described above can be actively controlled in three different manners:

• The collective blade-pitch mechanism, to adjust the rotational speed and the power
extracted by the rotor

• The spear valve of the Pelton turbine: by moving the spear in the nozzle, the available area
is varied which allows to modify the pressure and consequently the flow through the spear
valve.

• The ERD: by adjusting the seawater flow rate exiting the ERD to modify the recovery rate
of the desalination unit.

3. Design criteria and constraints
Desalination plants and wind turbines are typically operated differently. SWRO desalination
plants are usually designed to operate under stationary conditions with relatively constant
flow rates. They work at one operating point, corresponding to rated conditions, and during
the production the system is only allowed to slightly deviate from the selected operating
conditions. For the DOT hydraulic wind turbine, the high-pressure pump with constant
volumetric displacement (HPP) delivers a flowrate proportional to its rotational speed. The
pump flow is therefore a function of the wind conditions. As a consequence, the reverse osmosis
(RO) module is subjected to a varying feed flow, preventing it to operate at a unique and fixed
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operating point. A series of operating points per wind speed has to be defined, within the limits
and constraints of each component.

The limits and the possible range of operation that are described in this section are shown in
figure 3. The dashed lines represent the pressure-flow curves corresponding to the aerodynamic
torque on the rotor for each constant wind speed. The aerodynamic torque is translated to
pressure by means of the high-pressure pump with constant volumetric displacement.

3.1. Safe operation of the hydraulic wind turbine
The operation of the wind turbine is limited by the cut-in and cut-out wind speeds. In between,
two different operation modes can be identified [16].

From cut-in wind speed up to rated wind speed, the wind turbine gradually increases its
rotational speed, as well as its power production and the torque applied. For any change in
wind speed, the torque exerted by the high pressure pump counteracts the aerodynamic torque,
to find a new equilibrium point. The region of instability, that is simplistically represented in
figure 3 on the left side of the maximum torque line, must be avoided [14]. At rated wind
speed and above, the rotational speed of the rotor and the power produced are kept constant by
actively controlling the pitching of the blades. In this case, the high pressure pump is operated
at steady conditions.

Regarding the high pressure pump, the main constraint is given by its maximum rotational
speed, which is related to the maximum feed flow delivered by the volumetric displacement
pump. This coincides with the right limit of the horizontal axis shown in figure 3.

3.2. Desalination system limits and constraints
The SWRO unit is a very delicate part of the system. The constraints can be subdivided in two
types: more stringent limits and less stringent limits. Limits of the former type are imposed
to prevent the membranes failure. Limits of the latter type, if exceeded, imply a faster wear or
more frequent maintenance of the membranes, and are not described in this paper.

In the first group, the osmotic pressure draws the dotted bottom limit in figure 3. If the
fluid pressure entering the SWRO unit is lower than the osmotic pressure it is not possible to
obtain any permeate. On the other hand, natural osmosis may occur, if not prevented by safety
measures. The permeate may flow through the membrane in the opposite direction, causing
a loss of product and the damage of the membranes, that are not designed for the reverted
flow. Since the concentration of the feed increases moving along the pressure vessels, also the
osmotic pressure increases accordingly. Thus, the bottom boundary line is set to be higher than
the osmotic pressure corresponding to the concentration of seawater at the inlet of the pressure
vessel.

The upper limit is given by the maximum pressure that the membranes can withstand to
avoid mechanical failure, usually around 83 bar (top dotted line in figure 3). Regarding the flow,
a feed flow higher than the maximum allowed can cause the so-called telescope effect, which is
the shifting of the membranes layers towards the end covers, due to the excessive drag forces
generated by the water flow. This effect destroys the membrane. Similarly to the high pressure
pump, the ERD limitations for maximum and minimum flowrates were considered.

3.3. Safe operation envelope for wind driven desalination
All the constraints described before delimit a portion of the graph area in figure 3 where it is
possible to safely operate the SWRO subsystem. Considering such constraints, the final goal is
to maximise fresh water production while producing enough electricity to power the auxiliary
equipment of the system, i.e. to make it independent from any external energy sources.

The recovery rate has to be kept as high as possible in order to maximize the permeate, taking
into account the concentration of the feed water. The water concentration on the feed-brine side
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increases as the water moves along the membrane proportionately with the recovery rate. A high
recovery rate combined with a high feed concentration might lead to an oversaturated brine,
which will cause scaling at the end of the pressure vessel.

Figure 3: Limits of the hydraulic wind turbine (in orange) and of the freshwater production
subsystem (in red) with respect to the pressure-flow curves of the rotor (in grey)

4. Numerical model of the wind driven desalination system
A numerical model has been developed to describe the steady state behaviour, including the
interactions between the components as shown in figure 2. Hydraulic lines and the additional
pressure losses through pipes are not considered in the simplified model, since their impact
is slightly affecting the system for the operating conditions. The integrated model is based
on physical principles for each of the components and their interaction using the fundamental
principles of conservation of mass, energy and momentum.

4.1. Hydraulic wind turbine
The wind energy is extracted by the wind turbine rotor and transmitted to the high pressure
pump (HPP ). At equilibrium conditions, the torque of the wind turbine acting on the shaft
must be equal to the torque exerted by the high pressure pump. The aerodynamic torque of a
horizontal axis wind turbine can be expressed as a function of the wind speed U , the air density
ρair and the rotor radius Rrot, as in equation 1 [16].

τaero =
1

2
π ρair R

3
rot U

2 Cτ (β, λ) (1)

Cτ (β, λ) is a non dimensional coefficient, called torque coefficient, and is a function of the pitch
angle of the blades β and the tip speed ratio λ, that is the ratio of the rotor tip speed to the
free wind speed.
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The high pressure pump converts the rotary motion in a pressurised seawater flow, as follows:

Qhpp = Vd,hpp ωhpp ηhpp,vol (2)

where ωhpp is the rotational velocity of the pump and ηhpp,vol is the volumetric efficiency, which
takes into account the volume loss relatively to the total displaced flow, and it is assumed
constant for the considered range of operating conditions.

The transmitted torque of the pump is expressed as the product of the volumetric
displacement Vd,hpp and the pressure difference across the pump, ∆phpp:

τhpp = ∆phpp Vd,hpp
1

ηhpp,mec
(3)

where ηhpp,mec is the mechanical efficiency of the pump, considering the friction losses. The
pressure downstream the high pressure pump is determined by the minimum flow resistance
provided by the spear valve and the SWRO unit. The flow processed by the high pressure pump
is directed to the electricity production subsystem and to the SWRO unit:

Qhpp = Qsv +Qswro (4)

4.2. Electricity production system
The flow that passes through the spear valve and that acts on the Pelton turbine is given by
equation 5, which results from the manipulation of Bernoulli’s equation for incompressible flow:

Qsv = Cd Aeff,sv

√
2∆psv
ρw

(5)

where Cd it the discharge coefficient and takes into account pressure losses attributed to the
geometry of the valve and flow regime, ∆psv is the pressure difference over the spear valve, ρw
is seawater density and Aeff,sv is the effective nozzle area, that depends on the relative position
of the nozzle with respect to the circular surrounding nozzle area, as described in [14].

4.3. Water production system
The reverse osmosis unit is modelled as a series of membrane elements located in a pressure
vessel; several pressure vessels are connected in parallel. The system parameters refer to each
membrane unit. The total mass balance and a salt mass balance per membrane element are
expressed in equations 6 and 7 respectively, where Q represents the volumetric flow, while C
the salt concentration; the subscripts f, p, and c refer to feed, permeate and concentrate of each
element.

Qf = Qp +Qc (6)

Cf Qf = Cp Qp + Cc Qc (7)

The reverse osmosis model considers the solution-diffusion theory for the mass transfer across
the membrane [15, 17, 18], in combination with empirical equations to account for concentration
polarization Fcp, the influence of temperature, expressed by the temperature correction factor,
Ftc, among others. Concentration polarization represents the tendency of formation of a higher
concentration layer next to the membrane surface, and locally increases the osmotic pressure.
According to this model, the permeate flow can be expressed, as shown in equation 8, as a
function of pressure difference between the system p and the osmotic pressure π, also defined as
net driving pressure ∆pnet.

Qp = Ff Fcp Ftc
KwAm
ρw

(∆p− ∆π) (8)
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∆pnet = ∆p− ∆π = (pin −
pdrop

2
− pp) − (π̄fc,iel − πp) (9)

where ∆p and ∆π represent the pressure and osmotic pressure difference between the two sides of
the membrane; Ff is the flow factor, indicating the wear and the fouling of the membrane which
depends on its age; Am is the membrane area; pin is the pressure of the flow at the inlet of the
membrane, pdrop is the pressure drop along the membrane; π̄fc,iel is the average osmotic pressure
on the seawater side of the membrane. The water permeability, Kw, is a membrane dependent
parameter, and represents the tendency of the membrane to let water permeate through it.

The osmotic pressure, that strongly depends on the concentration of the solution, also depends
on the water temperature Tw as expressed in equation 10.

π = δ Tw C (10)

where δ is an empirical constant [18]. Another important parameter that characterizes the
membrane is the rejection R, describing the ability of the membrane to prevent the salt passage,
in equation 11. Nowadays, membranes can reach a rejection as high as 97-99%, that means that
only the 1-3% of salts are passing through the permeate.

R = 1 − Cp
Cf

(11)

An indication of the amount of freshwater produced with respect to the water fed to the
desalination unit is the recovery rate γ, that is given by the ratio between the permeate and the
feed flow rates:

γ =
Qp
Qf

(12)

The efficiency of the ERD operation is affected by mixing and overflush [19]. Mixing M is
due to the lack of a physical barrier between the brine and the seawater inside the ducts. It
describes the exchange of salts from the brine to the seawater at their interface. Mixing affects
only a very small layer of fluid and it is limited by the contact time of the fluids. Therefore, it
decreases by increasing the rotational speed of the ERD. Its definition is given in equation 13.
As a result of the mixing, the concentration of Qout,hp is slightly increased, and therefore, also
of the feed seawater to the membranes .

M =
(Cout,hp − Cin,lp)

(Cin,hp − Cin,lp)
(13)

Overflush is a parameter that indicates the difference between Qin,lp and Qout,hp. A higher
overflush limits the mixing. On the other hand, it requires more power to feed the ERD with a
higher flow.

The mass and salt balance for the ERD are expressed in equations 14 and 15

Qin,hp +Qin,lp = Qout,hp +Qout,p (14)

Cin,hp Qin,hp + Cin,lp Qin,lp = Cout,hp Qout,hp + Cout,lp Qout,lp (15)

A few assumptions are taken into account in the model. For the sake of simplicity, the required
overflush is neglected. Second, following the conservation of mass in the sleeves of the ERD
perforated rotor and for the correct operation of the ERD, the high pressure brine flow Qin,hp
and the high pressure seawater flow Qout,hp are considered equal, except for leakages, which are
in this paper assumed negligible.

Qin,hp = Qout,hp = Qc (16)
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The most significant consequence on the overall water production subsystem is that the permeate
flow Qp results equal to the flow Qswro, according to the conservation of mass:

Qswro = Qf −Qout,hp = Qp (17)

In other words, the permeate produced depends only on the flow coming from the high pressure
pump, and it is independent from the feed flow. Therefore, given Qswro, the recovery rate is only
affected by the feed flow, that is in turn determined by Qout,hp. As a consequence, it is possible
to regulate the recovery rate of the SWRO unit by controlling the high pressure seawater flow
exiting the ERD Qout,hp [13]. The design of the system and of the control strategy is built on
this relevant conclusion.

5. Mapping of the proposed steady-state operation
The results presented in this section are obtained by combining and solving the system of
equations of the numerical model presented in section 4. In table 1 all the input parameters are
listed. A mapping of the proposed steady-state operation is defined considering the limited area
of possible operation as well as the requirements defined in section 3, . The mapping is shown in
figure 4 by a thick red line. The letters A, B, C, D identify the points where the control switches
to different modes. The results in terms of freshwater and electricity produced and consumed
by the system, for each wind speed are shown in figure 5.

Table 1: Design parameters and values used for this study

Parameter Unit Parameter Unit Parameter Unit

ρair 1.225 kg/m3 Vd,hpp 1.61 l/rev Ff 0.85 -
ρw 1025 kg/m3 ηhpp,mec 0.90 - Kw 3.43/1e9 s/m
Csw 38000 ppm ηhpp,vol 0.93 - M 0.06 -
Tw 10 ℃ Npv 6 - δ 0.2641 Pa/ppm K
Rrot 22 m Nmem 6 - γ 0.40 -
β 0 deg Am 40.9 m2

For the wind speeds at which the resulting pressure on the system is below osmotic pressure
(trait 0-A in figure 4), water production is not possible. Hence, all the flow processed by the
high pressure pump is directed to the Pelton turbine for electricity production. Passive control is
implemented and the spear valve is set to the opening position that maximise power extraction
of the wind energy by the rotor [11, 20] (on top of the green line in figure 4).

At a wind speed of 4 m/s the threshold is reached for the system to produce enough power
to satisfy the electricity needs. Above that wind speed, the power produced by the system is
higher than the power consumed by the system.

In point A, the required wind speed to start water production is reached at 7 m/s. With
the current setting of the spear valve, the resulting pressure is still below osmotic pressure.
However, by closing the spear valve it is possible to obtain enough pressure on the system to
overcome osmotic pressure, and start producing freshwater. The spear valve can be closed up
to the maximum allowed without reaching the unstable operation area for the wind turbine,
as described previously in section 3. Therefore, the valve is closed until reaching the operating
point in B (following the blue line in figure 4). The possible unfavourable effects of the transition
between operating points A and B, i.e. water hammering, the sudden increase in the torque and
decrease in rotational speed experienced by the rotor require further investigation..
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Figure 4: Turbine rotor and volumetric displacement pump pressure line curves at different wind
speed U and fine pitch angle are represented in grey. The load (spear valve, SWRO desalination
unit and ERD) is drawn for a fixed recovery rate and for different setting of the spear valve
(small in blue, medium in orange and large in green). The proposed mapping of the operating
settings follows the red line.

In the trait B-C, at higher wind speed corresponds to an increase in the high pressure pump
seawater flowrate. Passive control is again implemented, with the spear valve position kept
constant to the value set in B. The flow directed towards the SWRO unit is proportional to the
driving force exerted on the membranes, as expressed by equation 8. The higher the wind speed,
the higher the amount of water flowing towards the SWRO unit and the freshwater produced.
The remaining flow is directed to the Pelton turbine for electricity production. It is important
to notice that the ERD has a minimum flow that can be provided. Therefore, at the lower wind
speed in the trait B-C, the recovery rate is lower that the desired one.

In point C, the pressure resulting from the current setting of the spear valve and the wind
speed has reached the rated pressure of 70 bar. The rated pressure corresponds to the design
operating pressure of the SWRO unit to obtain the required permeate flow. Therefore, the
SWRO unit has reached maximum capacity and any excessive flow has to be deviated to the
Pelton turbine.

From Point C to D, the spear valve is gradually opened to handle the increasing flow coming
from the high pressure pump as the wind pseed increases. In this way, the water production
subsystem keeps operating at rated flow and pressure. When the spear valve is fully opened and
has reached the maximum flow that it can handle, or when the maximum rotational speed of
the high pressure pump is reached, in D, pitch control is used to maintain the operational point.

The proposed strategy allows for an effective integration of electricity and freshwater
production when the goal is to maximise the latter. The combination of active and passive
control by means of the spear valve allows to safely produce water and electricity for a wider
range of wind speeds, while the use of the ERD allows to maximise the water production for each
operating point by increasing the recovery rate. In this configuration the electricity production
is sufficient to cover the electricity consumption at any wind speed above 4 m/s. The option of
doubling the capacity is made possible by doubling the number of pressure vessels.
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Figure 5: Freshwater production (in blue) and electricity production (solid red line) and
consumption (dashed red line) at each wind speed as a result of the proposed control strategy

6. Conclusions
This paper presented the preliminary design of the application of the DOT hydraulic wind
turbine for combined electricity and water production. A safe operation of the system is defined,
taking into account the operational window of each component and their limits, especially the
stringent constraints given by the reverse osmosis desalination unit. Within this safe operation
envelope, a system of settings that allows the optimal performance of the system is obtained.

The philosophy behind the system settings can be summarised as follows: below osmotic
pressure conditions, no water is sent to the desalination unit and all the flow is used for electricity
production. As soon as water production can start, the settings are tuned to build up the
pressure as fast as possible, and therefore reach the rated pressure. When rated pressure is
reached, the settings are defined to let the desalination unit operate at constant operating
point, while the electricity production increases until maximum flow rate or rotational speed is
reached.

The next steps will be the translation of the hydraulic turbine and SWRO settings into the
design and implementation of a robust control system.
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