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Abstract. Simulation methods ensuring a level of fidelity higher than that of the ubiquitous 

Blade Element Momentum theory are increasingly applied to VAWTs, ranging from Lifting-

Line methods, to Actuator Line or Computational Fluid Dynamics (CFD). The inherent 

complexity of these machines, characterised by a continuous variation of the angle of attack 

during the cycloidal motion of the airfoils and the onset of many related unsteady phenomena, 

makes nonetheless a correct estimation of the actual aerodynamics extremely difficult. In 

particular, a better understanding of the actual angle of attack during the motion of a VAWT is 

pivotal to select the correct airfoil and functioning design conditions. Moving from this 

background, a high-fidelity unsteady CFD model of a 2-blade H-Darrieus rotor was developed 

and validated against unique experimental data collected using Particle Image Velocimetry 

(PIV). In order to reconstruct the AoA variation during one rotor revolution, three different 

methods – detailed in the study - were then applied to the computed CFD flow fields. The 

resulting AoA trends were combined with available blade forces data to assess the corresponding 

lift and drag coefficients over one rotor revolution and correlate them with the most evident flow 

macro-structures and with the onset of dynamic stall. 

Keywords: Darrieus, VAWT, angle of attack, PIV, CFD 

1.  Introduction and objectives of the study 
Applied research on Darrieus-type Vertical-Axis Wind Turbines (VAWTs) has been receiving a 

renewed attention for the last few years [1]. In particular, this technology is more often favorably 

associated to deep-sea, offshore floating installations due to the theoretical possibilities of shifting the 

generation system on the platform (so having a lower the center of mass), the absence of a yaw system, 
and the simple architecture [2]. Due to the lack of studies in the last thirty years of the 20th century, 

however, both the knowledge of involved physics and the state of development of existing simulation 

tools have fallen behind those for horizontal-axis machines. To this end, computational tools with a level 
of fidelity higher than that of the ubiquitous Blade Element Momentum (BEM) theory are increasingly 

applied to VAWTs, ranging from Lifting-Line methods, to Actuator Line ones or Computational Fluid 
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Dynamics (CFD) [3,4]. The greatest complexity in the analysis of Darrieus VAWTs relies in the 

continuous variation of the angle of attack during the cycloidal motion of the airfoils, going often much 

beyond the stall angle. This generates a variety of unsteady phenomena during the blade-flow 
interaction, making a correct estimation of the actual functioning conditions of the airfoils extremely 

difficult. Inter alia, dynamic stall strongly affects the performance of these machines, especially at 

medium-low tip-speed ratios (TSRs) [5]. A better understanding of the actual angle of attack (AoA) 
during the motion of a VAWT is however pivotal to select the correct airfoil and functioning conditions 

during the design and optimization phases.  

Moving from this background, in the present study the unique experimental data collected using 

Particle Image Velocimetry (PIV) on a 2-blade H-Darrieus rotor in the TU Delft wind tunnel [6] were 

compared to high-fidelity, unsteady CFD simulations. Two operating conditions were tested, one in the 

unstable branch of the turbine characteristic curve (TSR=2) and one in the stable one (TSR=4.5). The 

main scopes of the comparison were to: a) compare the experimental and computed flow fields to assess 

the accuracy of the simulations and get an inner insight to the flow past rotating blades; b) reconstruct 

the AoA variation during the revolution and correlate it with the actual aerodynamic performance of the 
airfoils. For the latter purpose, three methods for the extrapolation of the AoA from the CFD flow field 

were selected: the 3-Points [7], Line Average [8] and Trajectory [4] approaches. Originally developed 

for horizontal-axis machines, they were adapted to work with vertical-axis machines and then applied 
to the CFD data available for the TU Delft 2-blade rotor. The resulting AoA trends were combined with 

the CFD blade forces data to assess the corresponding lift and drag coefficients over one rotor revolution. 

The objective of this procedure was to understand how much the extracted blade loading data are 

sensitive to the choice of the AoA assessment method and thus to correlate the reconstructed AoA trends 

with the most evident flow macro-structures and with the onset of dynamic stall. 

2.  Methodology 

2.1.  Experiments 
The experimental activity [6] has been performed in the Open Jet Facility (OJF), which is the closed-

circuit, open-jet wind tunnel of the Delft University of Technology. The tested turbine model was a        
2-blade (untwisted and untapered) H-Darrieus. The blade airfoil was a NACA0018, made of extruded 

aluminum section and having a chord of 0.06 m. Both the diameter and the height were equal to 1 m, 

thus leading to a turbine solidity of σ=0.12. Blades were hold in place by two straight struts per blade 

(NACA0030, chord 0.023 m). The velocity fields in the near wake of the turbine have been obtained by 

particle image velocimetry (PIV), adopted in a planar 2D–2C configuration for the horizontal plane at 

the turbine mid span and in a stereoscopic 2D–3C configuration for the measurements on the vertical 

planes. Further details on the experimental setup and the data acquisition/processing can be found in [6]. 

2.2.  CFD simulations 
Detailed unsteady Reynolds-Averaged Navier-Stokes (U-RANS) CFD simulations were carried out, 

based on a consolidated numerical approach developed by some of the authors [9], making use of the 
k-ω SST turbulence model, the coupled algorithm for pressure-velocity coupling, and the 2nd order 

upwind scheme for both RANS and turbulence equations. The sliding mesh technique was used to allow 

the rotation of the machine. The settings for convergence definition, maximum inner iterations and 
residuals were the same of [9]. The selected mesh refinement level and timestep were selected based on 

the experience of the authors on similar test cases and were verified to be compliant with the results of 

the sensitivity studies presented in [9] and particularly with the thresholds for the dimensionless vorticity 

and the Courant number proposed in [10]. 

2.3.  AoA extraction methods 
Different methods have been developed over the years for the extraction of the angle of attack on wind 

turbine blades, either from numerical (CFD) or experimental flow field data [7,8,11–15]. The majority 
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of these approaches, originally developed for horizontal-axis wind turbines (HAWTs), and only in some 

cases adapted to VAWTs [4], are based on the use of one or several sampling points to gather 

information about the velocity field around the airfoil. From such data, the so-called undisturbed velocity 

��⃗  is obtained, which is then combined with the turbine peripheral speed ���⃗   to compute the angle of 

attack α on the blades: 

 � = ���	 
��

��

� = ���	 � ��� ��� � � ��� �
��� ��� �� � ��� ��  � (1) 

where Ω is the turbine rotational speed, R is the turbine radius and θ the blade instantaneous azimuthal 

position. Conventions and notations adopted for the current study are presented in figure 1. 

 

 

Figure 1. Conventions adopted for the present study 

 

Although the arrangement of these points varies from one method to the other, it is always based on 

a two-dimensional modelling of the airfoil flow. As a consequence, they tend to lose coherence when 

the flow becomes inherently three-dimensional, i.e. near the blade tip or under massive flow separation 

[16]. If this represents a minor problem in HAWTs, where these issues are limited to the root and tip 

sections of the blade [11], it becomes of paramount importance when the focus is shifted on VAWTs. 
As anticipated in section 1, in fact the blades of these machines are usually subject to large AoA 

oscillations, which in some parts of the rotor revolution largely exceed the static stall limit. On top of 

that, the majority of small VAWTs are characterized by blades with low aspect ratio, so that the influence 
of the tip three-dimensional flow is extended to a major part of their span. 

Starting from these considerations, the following approaches were selected from the literature and 

adapted for this study to work with VAWTs: the 3-Points, Line Average and Trajectory methods. 
  

 

Figure 2. Position of the sampling points for the different methods: (a) 3-Points (b) Line 
average (c) Trajectory  
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2.3.1.  3-Points method. Originally developed by Rahimi et al. [7,11] to study the behaviour of 

horizontal-axis turbines in yawed flow conditions, the 3-Points method exploits six points in total, three 

on the suction side and three on the pressure side of the blade, to extract the AoA information from the 
flow field. As shown in figure 2a, for each side of the airfoil, the three points are located at a distance 

of 0.25c, 0.5c and 0.75c in the chord-wise direction starting from the leading edge, approximately 1c 

away from the blade aerodynamic centre in the normal direction.  
The extraction of the AoA occurs in two main steps: 1) at each station along the chord, the average 

velocity vector is computed from the values sampled in the corresponding couple of points, via an ad 
hoc interpolation function; 2) the undisturbed velocity vector ��⃗  is computed as the arithmetic average 

of the velocities coming from each station, as shown in equation (2): 

 ��⃗ = ���⃗ �����⃗ ������⃗ ���
�  (2) 

According to [7,11], such strategy should be able to reduce the influence of bound circulation, 

together with the effects of upwash and downwash, over the measured incoming velocity. Furthermore, 

unlike other methods that have been developed for HAWTs, the 3-Point approach should be able to 
account for instantaneous velocity oscillations on the turbine blades, thus allowing one capturing also 

dynamic effects. 

2.3.2.  Line average method. The Line Average method (LineAve) has been introduced by Jost et al. [8], 
in the attempt of increasing the accuracy of previously available methods in capturing the effects of shed 

and trailing vorticity on the measured angle of attack on turbine blades. To this end, the undisturbed 

velocity ��⃗  is computed as the integral average of the flow velocity field along a closed line around the 
airfoil (see figure 2b). According to the creators of the method, this sampling strategy should be able to 

completely remove the effect of bound circulation on the local inflow velocity, since in the averaging 

process the induced velocity components on any pair of opposite points on the closed path are levelled 

out, still accounting for the net distortion associated to trailing vorticity. This feature is particularly 

useful when modelling the flow around the blade tip. Nevertheless, since the method always includes 

the wake behind the profile, it might yield an unstable AoA trend when working in stalled conditions. 

In the present study, in particular, it has been chosen to use a circular sampling line, centered in the 

aerodynamic center of the airfoil (assumed as the quarter-chord) and with a radius r=1c. According to 

[8], this configuration yields the best performance in terms of AoA sampling accuracy. Regarding the 
sampling resolution, two different configurations were tested, as shown in figure 1b: a low-resolution 

(points #, N=6) and high-resolution (points #, N=80) ones. 

2.3.3.  Trajectory method. The Trajectory method is an adaptation by Bianchini et al. [4] to VAWTs of 
the approach proposed by Shen et al. [13], originally conceived for HAWTs. As shown in figure 2c, the 

local inflow velocity is sampled in a single monitor point on the trajectory outlined by the rotating blade, 

at a specified distance upstream its aerodynamic centre. In virtue of this strategy, the trajectory method 
is extremely easy to implement but, due to the lack of additional sampling points around the airfoil, it 

cannot provide any information about bound circulation and trailing vorticity. As a consequence, a 

theoretical model must be embedded into the method to account for the local flow deformation induced 

by these phenomena. More in detail, the vorticity distribution around the blade is modelled as a 

concentrated point vortex located in its aerodynamic centre and with a magnitude equal to the bound 

circulation Γ, that, according to the Kutta-Joukowksy theorem, can be computed as in equation 3: 

 � = � 
��!

 (3) 
where L is the lift force on the blade, ρ is the freestream flow density and Vr is the relative air speed 

with respect to the airfoil. The induction exerted by the blade circulation on the flow at the sampling 

point is then computed via the Biot-Savart law (equation 4): 
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being d the distance between the sampling point and the blade aerodynamic center. The undisturbed 

velocity ��⃗  is obtained by subtracting the induced velocity vector �&������⃗  from the one sampled in the 

monitoring point ��⃗�: 

 ��⃗ = �����⃗ − ��⃗ ��  (5) 
Once ��⃗  is known, the angle of attack α is computed from eq. 1. It must be noted that, since the lift 

force L is dependent on α, the procedure described so far must be applied in an iterative way. As 
demonstrated by Bianchini et al. [4], such correction strongly increases the robustness of the method, 

making the computed AoA almost independent from the sampling point position. Following the 

guidelines proposed in the same study, a distance of 1c between the sampling point and the blade quarter-

chord is adopted for the current work.  

3.  Results 

3.1.  CFD model validation 
The reliability of the developed CFD model was first verified by comparing the computed blade forces 

and flow fields surrounding the rotor with the ones available from experimental data (see section 2.1). 

Figure 3 reports the comparison in terms of normal force FN, in this case normalized over the 
freestream momentum qꝏ=0.5ρV0

2 and the turbine radius R, between numerical and experimental data 

over one rotor revolution. Fairly good agreement is apparent at both TSRs, especially in the upwind 

region (0°≤θ≤180°), while in the downwind region (0°≤θ≤360°), probably due to the disturbances 
associated to the blade shed vorticity and the presence of the shaft (see figure 4), the CFD curve tends 

to slightly deviate from experimental points. The same degree of matching, at least from a qualitative 

point of view, can be observed between the experimental and numerical flow fields shown in figure 4. 
Both the experimental axial velocity and vorticity fields are well reproduced by CFD, although the 

predicted wake seems narrower and less deflected than the measured one. Overall, the fair agreement 

between the two approaches justified the adoption of the developed tool for the analysis of the angle of 

attack on the rotor blades which is presented in section 3.2. 

  

 

Figure 3. Comparison between experimental and CFD normal force azimuthal profile for:          
(a) TSR=2 (b) TSR=4.5 

 

3.2.  AoA trends 
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The different methods outlined in section 2.3 were applied to the CFD data, in order to reconstruct the 

corresponding AoA trend along one rotor revolution. The analysis was repeated for the same two turbine 

operating conditions, i.e. TSR=2 and TSR=4.5. The comparison is reported in figure 5. 

 

 

Figure 4. Comparison between experimental and CFD flow fields for TSR=4.5 
 

 

Figure 5. Comparison of the AoA azimuthal profiles obtained with different methods for:           

(a) TSR=2 (b) TSR=4.5 
 

Upon examination of figure 5, fairly good agreement in terms of AoA between the tested methods is 

observed for low blade load conditions, i.e. for AoA � 5°. Further increasing the angle of attack up to 

the static stall limit (AoA≈10°), the different curves start diverging one from the other. The overall 

deviation, however, remains limited to a few degrees. 
Conversely, as the static stall limit is largely exceeded, the scattering between the various curves 

grows exponentially, leading to deviations larger than 10° in the most critical conditions (e.g. θ=100°, 

TSR=2). Such phenomenon, which has already been identified by Rahimi et al. [11], can be understood 

by recalling the theory underlying the formulation of the adopted methods. 



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 052064

IOP Publishing

doi:10.1088/1742-6596/1618/5/052064

7

 
 

 

 

 

 

 

Figure 6. CFD velocity field data, normalized over the freestream velocity V0 
 

All of them are in fact based on the two-dimensional inviscid airfoil circulation theory [17], which 
assumes that the local flow around the blade can be interpreted as the superposition of the freestream 

and a free-vortex flow, which in turn depends on the intensity of the circulation Γ on the profile (see 

equations (3) and (4)). As long as this condition holds, i.e. viscous phenomena are confined to narrow 

region in the airfoil boundary layer and wake (attached flow), the different methods maintain a fair 

coherence one with the other. This occurs in a certain measure for TSR=4.5 (see figures 6 and 7b). On 

the contrary, when the static stall angle is exceeded, massive separation occurs on the airfoil surface. 
The circulation around the blade, as well as the overall vorticity distribution, are disrupted by the growth 

of the suction side boundary layer or, in case of dynamic stall, by the shedding of vortexes (see figure 

7a). For this reason, when applied to critical rotor operation such as TSR=2, these methods become 
extremely sensitive to the arrangement of monitoring points.  

 

 

Figure 7. CFD vorticity field for: (a) TSR=2 (b) TSR=4.5 
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More in detail, the Trajectory approach is the one yielding the highest values of AoA over one 

revolution among the tested methods. Such phenomenon is particularly evident in the second quarter of 

the rotor revolution, i.e. between θ=60° and θ=150°, where the load experienced by the blades is 

maximum and, for the lower TSRs, massive flow separation occurs (see figure 6). The corresponding 
vortex shedding nonetheless is not captured by this approach, since the monitoring point is always 

positioned near the airfoil leading edge and thus no information about the flow pattern in the wake is 

provided. The resulting AoA profile is therefore smooth over the whole rotor revolution. 
The AoA trend predicted by the 3-Points method, on the other hand, presents severe oscillations in 

the deep stall region (see figure 5a). For some angular positions of the rotor, in fact some of the sampling 

points on the suction side fall in the vortexes shed by the blade. These unsteady flow structures, related 
to the dynamic stall phenomenon occurring at the most critical operating conditions such as TSR=2, are 

clearly visible in figure 7a. Extending the analysis to the whole rotor revolution, it can be seen from 

figure 5 how this approach yields the lowest AoA values among tested methods, for all operating 

conditions under consideration. 

Finally, the Line Average method presents AoA trends, which are intermediate between those of the 

Trajectory and the 3-Points approaches. This phenomenon is probably related to the corresponding 
sampling strategy, which accounts for the flow pattern in both the leading edge and wake of the rotating 

blade (see figure 6). Nonetheless, the predicted AoA oscillations in the deep stall region (see figure 5a) 

are inherently more severe than those shown by the 3-Points method. In fact, the number of sampling 
points falling in the airfoil wake is overall higher than in the latter case, raising the weight of shed 

vorticity on the extracted AoA value. From figure 5, it can also be noted how, apart from a bunch of 

singularities, lowering the line resolution to N=6 has a very low influence on the predicted AoA trend. 

3.3.  CL, CD trends 
Finally, the AoA trends reported in figure 5 were combined with the available CFD blade forces data 

(see figure 3) to assess the corresponding lift and drag coefficients over one rotor revolution. 

 

 

Figure 8. Comparison of the lift coefficient hysteresis loops obtained with different methods and 

static airfoil data for: (a) TSR=2 (b) TSR=4.5 
 
In figure 8, the computed lift coefficient CL (more significant than the drag one in VAWTs) is plotted 

against the corresponding angle of attack for the two operating conditions considered. The attended 

experimental static lift data for the airfoil at Re=150k [18], which is the average Reynolds number of 

the test turbine blade for TSR=4.5, are also reported as reference. It has to be noted that these data do 

not correspond to those of the “geometrical” NACA0018 airfoil, but to a virtual one cambered by the 

same revolution radius of the trajectory followed onboard the Darrieus turbine. This procedure was made 

in order to account for the virtual camber effect characterizing airfoils in cycloidal motion. In order to 

improve the readability of the graphs, the points that were considered to be unphysical, i.e. deriving 
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from bias of the AoA extraction method, or associated to dynamic effects, were represented as point 

clouds or discontinuous lines. This is the case for instance of the AoA values sampled with Line Average 

in the deep stall region (see figure 8a). For TSR=2, a heavily hysteretic behavior of the lift coefficient 
can be observed over the whole rotor revolution. Although at this operating condition the influence of 

the blade Reynolds number variation during rotation cannot be neglected, this phenomenon can be 

directly related to the onset of dynamic stall. As the AoA is raised beyond the static stall limit 
(AoA≈15°), the lift coefficient keeps increasing until reaching a maximum value, which is way higher 

than that allowed in static conditions. From a physical point of view, this corresponds to the formation 

of the leading edge vortex on the airfoil suction surface (see figure 7a) [19]. When such vortex is shed 

away from the profile, the lift coefficient drops down to values much lower than the static ones. This 

condition holds for the whole lower branch of the hysteresis loop, i.e. when the AoA is lowered until 

returning to the starting point. For TSR=4.5, although with a much lower extent than for TSR=2, an 

inherently hysteretic behavior of the lift coefficient is observed, as clearly visible in figure 8b. In this 

case though, since the AoA oscillation is contained in the static stall limit, such trend cannot be attributed 

to dynamic stall, but to an inherently inviscid unsteady phenomenon. During the pitch-down portion of 
the rotor upwind rotation in fact, a phase lag occurs between the flow incidence on the blades and their 

angular position, leading to an effective AoA which is higher than the nominal one [20]. The phenomena 

described so far are well captured by both the Line Average and Trajectory methodologies, which 
nonetheless deviate one from the other due to the scattering already encountered in the corresponding 

AoA trends (see section 3.2). Once again, such dispersion is quite limited in the pre-stall region, while 

it becomes extremely relevant in the deep stall one. As shown in figure 8, both the extension and the 

shape of the post-stall hysteresis loop change dramatically from one method to the other, making the 

selection of the proper approach crucial when analyzing highly unstable turbine operating conditions 

such as TSR=2.  

4.  Conclusions 
The study presents a combined experimental and numerical approach applied to the analysis of the flow 

field surrounding a 2-blade H-Darrieus turbine in motion at different TSRs. An ad hoc unsteady CFD 
model of the test turbine has been developed and validated with PIV experimental data. The 

corresponding numerical flow fields have been then analyzed with three different methods, so that the 

angle of attack could be reconstructed along one rotor revolution. The resulting AoA trends showed a 

not negligible sensitivity with respect to the selected method, especially for AoA values approaching 

and exceeding the static stall limit. The maximum scattering has been observed for deep stall conditions, 

as the ones encountered for a large part of the rotor revolution at TSR=2. Such phenomenon is 

particularly pronounced for methods which sample the local velocity in the wake, such as the 3-Points 

and the Line Average ones, due to their interaction with the vorticity shed by the airfoil.  

Eventually, the obtained AoA trends were combined with the available CFD blade forces data to 

assess the corresponding lift and drag coefficients over one rotor revolution. On one hand, this analysis 
highlighted the strict relationship between the AoA profile and the characteristics of the dynamic stall 

phenomenon experienced by the blades at the lower TSRs. Such evidence is also supported by the vortex 

structures observed in the CFD flow fields. On the other hand, it has been observed how the scattering 
characterizing the AoA trends obtained with the different methods is also reflected on the extracted 

blade loading profiles. Such uncertainty makes the choice of the proper method quite critical, especially 

when analyzing highly unstable turbine operating conditions such as TSR=2. As highlighted by this 

study however, no rigorous criterion is currently available to perform such selection. Therefore, further 

investigations must be carried out in the future, aimed at finding a proper methodology to validate the 

adopted AoA extraction method against available CFD and experimental data. 
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