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Longitudinal Grey-Box Model Identification of a Tailless
Flapping Wing MAV Based on Free-Flight Data
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Imperial College London, London, South Kensington, SW7 2AZ

M. Karásek‡ and C.C. de Visser§
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Tailless flapping wingmicro aerial vehicles (FMWAVs) are known for their light weight and
agility. However, given the fact that these FWMAVs have been developed only recently, their
flight dynamics have not yet been fully explained. In this paper we develop grey-box models
for the time-averaged longitudinal dynamics of a tailless FWMAV (DelFly Nimble) from free-
flight data using closed-loop system identification techniques. The consequence of the tailless
configuration is inherent instability, therefore tailless FWMAVs are generally more complex
than their tailed counterparts and require an active feedback control system. The control
system introduces additional challenges to the system identification process as it counteracts
the perturbations required to excite the system. Based on this approach, grey-box models were
estimated and validated for airspeeds ranging from hover conditions, 0 m/s, to 1.0 m/s forward
flight. Despite the complexity of the system, we were able to obtain low-order local models that
are both efficient and accurate (R2 values up to 0.92) and can therefore be used for stability
analysis, simulation and control design. With these models we can also take the first steps
towards fully understanding the flight dynamics of tailless FWMAVs.

Nomenclature

δD = Control deflection. Measured dihedral deflection
r = Reference signal of closed-loop automatic feedback system
e = Error signal of closed-loop automatic feedback system
u = Controller output signal of closed-loop automatic feedback system
y = System output
ym = Measured system output
x, y, z = Position
q0,q1,q2,q3 = Attitude quaternions
p = Roll rate
q = Pitch rate
r = Yaw rate
Ûp = Roll acceleration
Ûq = Pitch acceleration
Ûp = Yaw acceleration
ax = Linear acceleration in x-direction
ay = Linear acceleration in y-direction
az = Linear acceleration in z-direction
θsp = Pitch attitude angle set-point
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ff lap = Flapping frequency
θre f = Pitch angle reference
Ûθre f = Pitch rate reference
θm = Measured pitch angle
Ûθm = Measured pitch rate
KD = Rate feedback gain
KP = Attitude feedback gain
X = Measured aerodynamic force in x-direction
Z = Measured aerodynamic force in z-direction
M = Measured aerodynamic moment around the y-axis
m = Mass
g = Gravitational acceleration
u = Velocity along the body x-axis
v = Velocity along the body y-axis
w = Velocity along the body z-axis
Ûu = Acceleration along the body x-axis
Ûw = Acceleration along the body z-axis
θ = Pitch angle
θ0 = Trimmed pitch angle
φ = Roll angle
ψ = Yaw angle
α = Angle of attack
Ixx , Iyy , Izz , Ixz = Moments of inertia of a 3D body
Xq , Xu , Xw , XδD = Longitudinal-directional derivatives
Zq , Zu , Zw , ZδD ,Z0, Zqu = Longitudinal-directional derivatives
Zw2 , Zu2 , ZδDw , ZδDq , Zq2 = Longitudinal-directional derivatives
Mq , Mu , Mw , MδD = Longitudinal-directional derivatives
∆ = Perturbation of corresponding variable
b Ûq = Bias terms of the grey-box state-space system
X = Regression matrix
z = Vector of measured output OLS estimator
θ = Vector containing model parameters
θ̂ = Vector with the best estimators for θ
ε = Model residuals vector
J(θ) = Cost function J as a function of the vector containing model parameters
σ̂ = Estimated standard deviation
R2 = Coefficient of determination (goodness of fit)

I. Introduction

Unmanned aerial vehicles have proven to be very valuable for both the civil and the military sectors. The ever
growing demand for these vehicles has also motivated designers to explore unconventional implementations
[1, 2]. An example of this is the biologically inspired Flapping-WingMicro Aerial Vehicle (FWMAV). FWMAVs

are typically very lightweight and capable of performing rapid manoeuvres, meaning they are very agile at both hover
and high-speed conditions [3–6]. Given these favourable properties, the demand for FWMAVs is expected to grow
in the near future, and many useful applications can be envisaged, e.g. surveillance within buildings where high
manoeuvrability is essential. Among FWMAVs, tailless vehicles stand out for their high agility compared to tailed ones,
however they are inherently unstable and require an active control system for stabilization [7, 8]. They are also typically
more complex, with actuation provided solely via the wings. Examples of successful tailless FWMAVs are the Nano
Hummingbird, the bio-inspired Colibri and the KUBeetle [5, 9–11].

An attractive approach for modelling FWMAVs is the use of low-order dynamic models based on the Equations of
Motion (EOM) of a conventional rigid-body aircraft [8, 12–16]. These models are typically flap cycle-averaged and
sometimes linearized. They are therefore relatively simple and computationally efficient, hence useful for practical
applications. One approach to obtain simple yet accurate dynamic models is free-flight system identification, often
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based on motion tracking data. This approach has been applied previously to tailed FWMAVs and the resulting grey-box
models have been found to be sufficiently accurate for stability analysis, control system design and simulation [12, 17].
Modelling work on tailless FWMAVs, however, is relatively scarce. Roshanbin et al used a simple linear model that
captures the longitudinal pitch dynamics, with parameters estimated using pendulum experiments [10]. In addition, a
minimal longitudinal dynamic non-linear model has recently been devised[18] for the DelFly Nimble, a bio-inspired
tailless FWMAV developed at Delft University of Technology (Figure 1) [3]. The non-linear model is developed using
an output error approach where the unknown aerodynamic damping coefficients are identified based on optimization
routines that minimizes the square of the residuals between the simulation output and free-flight OptiTrack-recorded data.
The research of K.M. Kajak et al does not include the use of a standard aircraft system identification technique. Rather
K.M. Kajak et al developed a physically derived non-linear model in which the identified parameters are aerodynamic
damping coefficients and lengths. Although non-linear models of the Nimble have been developed in a previous study
[18], this study focuses on identifying linear models using a more structured aircraft system identification approach,
where the estimated parameters are longitudinal-directional aerodynamic derivatives (stability- and control derivatives).
These derivatives effectively provide information regarding how much change occurs in the aerodynamic- forces and
moments acting on the DelFly Nimble when there is a small change in states and control surfaces deflection. As a result,
the stability of the DelFly Nimble can be readily analysed using these estimated control- and stability derivatives.

Although standard aircraft system identification approaches have been applied successfully to tailed (stable)
FWMAVs, they have not yet been applied to tailless FWMAV stabilized and controlled in closed loop.

In this work, we test the feasibility of using standard aircraft system identification techniques to identify grey-box
longitudinal models of an inherently unstable tailless FWMAV (DelFly Nimble). An additional goal was to obtain
models well-suited for stability analysis, simulation and control design purposes. Hence, the models should be accurate,
computationally efficient and relatively simple, especially if intended for on-board use. Like other tailless FWMAVs,
the unstable DelFly Nimble needs to be stabilized and controlled by means of active rate and attitude feedback control
on its wing actuation system, in order to maintain controlled flight. Instability brings additional challenges when
applying open-loop system identification techniques, as performing open-loop flight tests is not possible. In closed-loop
flight experiments it was found to be challenging to ensure reproducible test conditions, especially when performing
identification manoeuvres manually. By performing flight experiments manually, the quality of the experiments relied
heavily on the handling capabilities of the pilot and as a consequence, varied almost each flight. In order to improve
repeatability we therefore used automated manoeuvres, activated once the test platform was trimmed in the desired flight
condition. An additional and related challenge lies in acquiring informative flight data, i.e. data suitable for system
identification. While motion tracking was found to provide sufficiently accurate and informative data in free-flight
experiments on the DelFly Nimble, it was a greater challenge to perform manoeuvres that sufficiently excite the natural
motions of the FWMAV within the practical boundaries of the flight testing. A further difficulty is that the natural
motions are damped or even eliminated by the active feedback system, which negatively impacts the information content
of the data.

Applying the aforementioned closed-loop system identification approach, we obtained cycle-averaged models for the
flight dynamics of the DelFly Nimble. The resulting low-order grey-box models accurately describe the FWMAV’s
time-averaged behaviour in flight conditions ranging from hover- (0.0 m/s) up to forward flight (1.0 m/s) conditions, and
are of a low order and computationally efficient. Hence they can be used for simulation and stability analysis. While
simple, they still provide insight into the flight dynamics of the DelFly Nimble and serve as a tool for the development of
new advanced controllers. The models are estimated and validated using free-flight data obtained from optical tracking
devices. Based on the results, we can conclude that system identification techniques can effectively be applied to tailless
FWMAVs, resulting in both computationally efficient and accurate models.

This paper is divided into the following sections. In Section II the working principles of the DelFly Nimble are
discussed together with the experiment set-up. Section III explains the model structure, the modelling process and the
estimation techniques applied to estimate the unknown model parameters. Section IV focuses on the modelling results.
And lastly, Section V discusses the conclusions of this work and provides recommendations for follow-up studies.

II. Experiment Set-up
In this work, longitudinal grey-box model identification was performed on the DelFly Nimble (Figure 1). The DelFy

Nimble is a bio-inspired tailless FWMAV developed at the faculty of Aerospace Engineering of Delft University of
Technology [3]. With a wingspan of only 33 cm, the DelFly Nimble is a fairly small platform weighing just under 29
grams (Figure 1). The left and right flapping mechanisms generate thrust depending on the flapping frequency and are
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indicated by the red arrows/vectors in Figure 1. A. The higher the flapping frequency, the higher the produced thrust.
The platform includes two servos for yaw and pitch control. The yaw is controlled by changing the vector of the two
wings on opposite sides (Figure 1. E, H). Pitch control is accomplished by changing the dihedral of the flapping-wing
mechanisms, thereby changing the location of the thrust vectors with respect to the center of mass (Figure 1. F, I). As a
result, a pitch torque is produced, which rotates the platform to establish forward flight (Figure 1. C). Roll control is
accomplished by differential control of right wing-pair and left wing-pair (Figure 1. G, J). Since the thrust increases
with the flapping frequency, increasing the flapping frequency of one wing and reducing the flapping frequency of the
other will generate a differential thrust and therefore roll torque enabling sideways flight (Figure 1. D).

Fig. 1 The DelFly Nimble is controlled by its two flapping mechanisms and control servos. Source: [3]

The system (DeFly Nimble) was identified using a standard system identification approach [19]. The complete system
identification cycle typically includes the set-up and automated execution of the flight test experiments (manoeuvres),
measurement of the system states and data compatibility/ data processing, reconstruction of the aerodynamic forces and
moments, model structure definition, parameter estimation, and evaluation and validation of the modelling results.

Performing system identification on an FWMAV that is stabilized by an automatic feedback control system represents
a significant challenge. The objective of performing flight tests (manoeuvres) is to excite the natural dynamics of the
FWMAV as much as possible. However, when performing such flight tests the control system regards the natural system
responses to manoeuvre inputs as a disturbance and acts to minimize them [19]. While closed-loop system identification
techniques have been developed for such cases [20], we opted to use simpler open-loop identification techniques. These
have been proven to be applicable as long as the control surface positions δ and system outputs y in Block-diagram 1
can be measured, and the gains of the feedback system can be reduced such that the natural responses are not completely
suppressed [19]. In this work, both δ and y were measurable, hence using an open-loop identification procedure was
viable. Markers mounted on the flapping-mechanisms of the DelFly Nimble, together with the recorded on-board servo
position, made it possible to measure the dihedral angle which was used as input (δD).

This section will additionally explain the in-flight data acquisition process (Subsection II.A), the controller
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architecture of the Nimble (Subsection II.B), the coordinate frame used for system identification (Subsection II.C),
the flight tests required and performed for exciting the natural dynamics of the DelFly Nimble (Subsection IV), and the
in-flight data processing (Subsection II.E).

Controller Actuator Systemu δr e y

−

ym

Block-diagram 1: Basic closed-loop automatic feedback control system.

A. In-Flight Data Acquisition
In order to obtain in-flight data for system identification, we used an OptiTrack Motion Capture System, installed in

the 10m x 10m x 7m flight testing facility of the Delft University of Technology, called the CyberZoo. The system
consists of 12 Prime 17W OptiTrack cameras that provide high-resolution measurements of both the position and the
orientation of a body fitted with retro-reflective markers at a rate of up to 360 Hz. During the in-flight data acquisition
phase data was captured at a rate of 200 Hz. A total of six retro-reflective markers, made from 20 mm styrofoam
balls covered with retro-reflective material, were mounted on the DelFly Nimble in order to determine the position,
orientation of the body in the OptiTrack environment as well as the dihedral deflection (δD). In addition to the OptiTrack
measurements, on-board measurements were obtained from the 1.5 g Lisa MXS autopilot. Radio control set point,
controller outputs and servo positions were recorded on a micro-SD card at a rate of approximately 100 Hz. Refer to
Table 1 for an overview of all the data obtained and by which data acquisition system they were provided.

Type sensor Measurements obtained
OptiTrack Position (x,y,z)

Attitude quaternions (q0, q1, q2, q3)
Control deflections (δD)

IMU AHRS Angular velocities (p,q,r)
Linear accelerations (ax , ay , az)

On-board extra Flap frequency ( ff lap)
Set-point (θsp)
Dihedral command (cmdpitch)
Servo feedback (dihedralf eedback)

Table 1 Data provided by data acquisition systems during flight tests.

B. Controller Architecture
The DelFly Nimble is stabilized by a fixed-gain parallel feedback controller with attitude and rate feedback [3]. A

command filter, which is a low-pass filter with a cut-off frequency of 15 Hz, was added to the controller in order to
reduce the noise generated by vibrations of the fuselage (as a result of the unsynchronyzed flapping mechanisms) and
improve delays introduced into the control loop [3]. In manual flight mode, the pilot provides an attitude set-point via
the remote controller (RC). Alternatively, a sequence of attitude set-points can be pre-programmed and triggered in
flight, which is what was used for the system identification maneuvers. In both cases, the reference generator will then
generate the reference attitude and rate. The controller architecture can be found in Figure 2.

C. Coordinate Frame Definition
The frame used for system identification is defined as follows: the body X-axis is pointing forward, the body Y -axis

is pointing to the right and the body Z-axis is pointing downward (refer to Figure 1. H). In addition, the positive inertial
X-axis and Z-axis are pointing forward and downward, respectively (Figure 3). This coordinate frame was used in order
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Fig. 2 Controller architecture. The set-point is denoted by subscript sp, the reference by ref and the measure-
ment by m. Source: [18]

to prevent singularity issues when performing manoeuvres in hover and forward flight. Note that the Xbody axis in
Figure 3 coincides with the X-axis in Figure 1. H. The same holds for the Z-axis.

Fig. 3 Longitudinal free body diagram of the DelFly Nimble. Positive angles for θ are defined by clockwise
rotation.

D. Flight Tests Required for System Identification
Important factors that affect the quality of the modelling and system identification process are data acquisition and

data processing. However, the flight testing, which includes the input signal applied to the system to be identified,
is especially important. The input signals need to excite the natural dynamics of the system, providing useful and
informative data in the frequency range of interest. In this work, the manoeuvres were designed based on existing input
design theory, the constraints associated with the experimental set-up (e.g. the dimensions of the CyberZoo), the test
platform itself and past experience with similar robots [21, 22].

For input design it is typical to use a priori knowledge of the system at hand if available, however, in the case of the
DelFly Nimble, a priori information was limited. Another approach is to use frequency sweep inputs, exciting as many
frequencies as possible. The drawback of frequency sweeps is the relatively long time they take to perform, especially
when covering a wide range of frequencies. Due to the long manoeuvre duration, the limited flight space available
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hinders the flight testing. As a compromise between execution time and frequency coverage, doublet inputs were applied
in this study. Although doublets cover a narrower frequency range than frequency sweeps, they are advantageous
to use due to the limited flight testing space they require and the fact that the FWMAV is more likely to remain in
its initial steady flight condition since the manoeuvre is symmetrical. The latter point is especially important when
using linearised model structures. Previous studies on modelling FWMAV dynamics also found that doublets provided
adequate excitation [21, 22].

Hence, to model the longitudinal dynamics of the DelFly Nimble we applied doublet inputs to the pitch command in
closed-loop operation. Since the feedback gains dampen the natural dynamic response of the vehicle we weakened the
original feedback gains. Based on previous studies on the DelFly Nimble [18] we were able to gain insight into the
dynamic response of the robot with changing feedback gains and adjusted the gain settings accordingly (Table 2).

Original gains Adjusted gains
for system identification

KP = 1.6250 KP = 2.0833
KD = 0.20832 KD = 0.0500

Table 2 The adjust gain settings were used for system identification flight tests.

Automated manoeuvres were performed to ensure repeatability and consistency during each flight test. These
manoeuvres were tuned in (a) input duration, (b) input amplitude and (c) input type (selection of actuators) in order to
improve the excitation of the natural dynamic response of the system. When the automated manoeuvre is activated it
sends a doublet attitude reference set-point (θsp) to the reference generator as seen in Figure 2. As a result, the DeFly
Nimble will perform a doublet manoeuvre while remaining in closed-loop operation. Figure 4 shows an example of a
typical automated manoeuvre performed for system identification, where the set-point is θsp and the measured dihedral
δD is the input that goes directly into the FWMAV.

76 76.5 77 77.5 78 78.5 79 79.5 80 80.5 81
-1

-0.5

0

0.5

1
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e
t-
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o
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t 
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d
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-10
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e
a
s
u
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ih
e
d
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l 
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e
g
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Fig. 4 Typical set-point θsp signal sent to the reference generator, including the corresponding measured
dihedral δD used for model identification of the DelFly Nimble.

E. Data Acquisition and Processing
The OptiTrack motion tracking system was selected as the primary data acquisition system to derive all the states

required for system identification. Other studies have proven that motion tracking data-based system identification can
lead to sufficiently accurate models [12, 23]. While IMU sensor readings yield a higher resolution (approximately 512
Hz) compared to OptiTrack ones (360 Hz), such high resolution is only important when accurate analysis is required at a
sub flap-cycle time scale [24]. For the purpose of modelling cycle-averaged flight dynamics, the refresh rate of 360 Hz
of the OptiTrack system is therefore considered adequate [12]. In addition to the tracking data, on-board data, such as
the motor speed, was recorded on an SD-card at a rate of approximately 100 Hz [18].
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Based on previous studies, a third-order zero-phase Butterworth filter was used to filter the raw data [13]. First a
cutoff frequency of 50 Hz was used to remove the noise. The cutoff frequency was chosen based on frequency domain
analysis of the flight data, in which after the 2nd harmonic the data is considered as noise (Figure 5). Next, based on the
assumption that the body and flapping dynamics are decoupled, we averaged out the data over the flap cycle in order
to remove time-varying effects. There is some discussion suggesting that it is not always justified to cancel out the
time-varying effects [25], however this remains the most common and accepted approach when modelling FWMAV
dynamics [12, 15]. The Power Spectral Density (PSD) plot of the raw acceleration measured in z-direction, shown in
Figure 5, clearly displays two peaks. The first represents mainly the flapping frequency, which is around 16 Hz, and the
successive one represent the flapping harmonic. Filtering the data below these frequencies will remove the time-varying
effects. Based on previous research [12, 18], a cut-off frequency of 5 Hz was used to filter out the time-varying effects,
and thereby making sure only the body dynamics are preserved in the data.

10
-1

10
0

10
1

f [Hz]

0

0.5

1

1.5

2

2.5

3

3.5

P
S

D
 o

f 
a

z

Fig. 5 Power spectrum density (PSD) of the acceleration in z-direction az derived from OptiTrack data.

The OptiTrack system only provides information on the position and orientation of the FWMAV. However, in order
to derive other states essential for system identification, such as velocity and pitch rate, we must use an appropriate
differentiation scheme to derive these states as accurately as possible. Based on the study by Caetano et al [23], who
studied the effects of numerical differentiation on free-flight data obtained for a FWMAV, we chose a three point central
difference (Equation 1) for numerical differentiation, as it reduces error amplification significantly compared to other
methods and will not result in time lags or significant smoothing. All states were then derived from the position- and
orientation data by applying Equation 1.

Ûxt =
xt+1 − xt−1

2∆t
(1)

III. Model Structure Definition and Parameter Estimation
In Section III.A a comprehensive explanation of the chosen model structure will be provided. The following step is

to estimate the unknown parameters in the chosen model structure using the free-flight data obtained from the flight
tests . This will be explained in Section III.B.

A. Model Structure Determination and Definition
A grey-box system identification approach was used to model the dynamics of the DelFly Nimble, based on research

by Armanini et al [12]. Grey-box identification allows for available a priori knowledge of the system dynamics to be
included in the model structure, maintaining a connection to the physics of the system. Measured data can then be
used to determine the unknown parameters in the model structure. If the model structure and data are appropriate, the
result will be an accurate model validated with real data, and still maintaining a connection to the physics of the system
being modelled. The time-averaged dynamics of the DelFly Nimble were modelled based on the Equations of motion
(EOM) of a conventional fixed-wing rigid-body aircraft (Equations 2a-2c), shown below for the variables relevant for
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the longitudinal dynamics.
Aerodynamic force Equations:

X = m( Ûu + g sin θ − rv + qw)

Z = m( Ûw − g cos θ cos φ − qu + pv)
(2a)

Aerodynamic moment Equation:

M = ÛqIyy + rp(Ixx − Izz) − (p2 + r2)Ixz (2b)

Kinematic Equation:
Ûθ = q cos φ − r sin φ (2c)

Although the DelFly Nimble does not resemble a conventional aircraft, previous studies have shown that these EOM
can describe the motion of some flapping-wing flyers [23, 26–28]. In addition, we do not know the dynamics of the
DelFly Nimble very well yet, therefore the use of standard aircraft EOM is a logical first step. The EOM (Equations
2a-2c) were linearised around a forward flight trimmed condition and decoupled to only include the longitudinal terms.

The next step was to assume a linear model structure for the aerodynamic forces and moments incorporated in
the EOM. Aerodynamic models used for fixed-wing aircraft are typically linear-in-the-parameters, as this simplifies
the parameter estimation process [19, 29]. Several studies on different flapping-wing flyers have shown that linear
aerodynamic model structures can likewise represent the time-averaged flight dynamics fairly accurately in slow forward
flight [12, 16, 23, 28]. For each longitudinal aerodynamic force and moment a linear model structure was therefore
defined, consisting of only measurable and physically plausible states (Equations 3-5), where ∆ denotes a deviation
from the trimmed condition. It was assumed that in steady flight the FWMAV flies symmetrically and the forces only
compensate for the weight, therefore weight-dependent terms are included in Equations 3-4. When expressing the forces
as perturbations, these terms are no longer relevant.

X = Xq∆q + Xu∆u + Xw∆w + XδD∆δD + mg sin θ0 (3)
Z = Zq∆q + Zu∆u + Zw∆w + ZδD∆δD − mg cos θ0 (4)

M = Mq∆q + Mu∆u + Mw∆w + MδD∆δD (5)

Based on the assumptions made earlier, all states, aerodynamic- forces and moments and inputs (control surface
deflection δD) were low-pass filtered (5 Hz cut-off) during the Data Acquisition and Processing phase, with the additional
benefit that vibrations in the measurements (due to the flapping mechanism) are not fed into the model. The linear
models (Equations 3-5) were then substituted into the linearised EOM (Equations 6-9) which resulted in the final model
of the longitudinal time-averaged dynamics shown in Equation 10.

∆ Ûq =
∆M
Iyy

(6)

∆ Ûu =
∆X
m
− g sin θ0 − g cos θ0∆θ − ∆qw0 (7)

∆ Ûw =
∆Z
m
+ g cos θ0 − g sin θ0∆θ + ∆qu0 (8)

∆ Ûθ = ∆q (9)


∆ Ûq
∆ Ûu
∆ Ûw

∆ Ûθ


=



Mq

Iyy

Mu

Iyy

Mw

Iyy
0

Xq

m − w0
Xu

m
Xw

m −gcos(θ0)
Zq

m + u0
Zu

m
Zw

m −gsin(θ0)

1 0 0 0



∆q
∆u
∆w

∆θ


+



MδD

Iyy
XδD

m
ZδD

m

0


[
∆δD

]
(10)

The next step is to estimate the unknown parameters (Xq , Xu , etc.) in the grey-box model (Equations 3-5). Note
that for estimation purposes, the input matrix was augmented with bias terms to account for unmodelled effects. The
parameter estimation process is discussed in the next section.
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B. Parameter Estimation
An Ordinary Least Squares (OLS) estimator was used to estimate the unknown parameters in Equations 3-5. The

working principle of OLS estimation is to minimise the difference between measurements (in this case obtained from
the OptiTrack system) and outputs given by the model. More specifically, it is assumed that at each time point the output
measurement z is a linear combination of a regressor matrix X multiplied by a model parameter vector Θ, plus an
unknown Equation error ε , i.e.,

z = XΘ + ε, (11)

where ε is assumed to be zero-mean Guassian white noise. The best estimator for Θ is obtained by minimizing the sum
of squared difference between the measurements and model, i.e. a cost J given by:

J(Θ) =
1
2
(z − XΘ)T(z − XΘ) (12)

To find the parameter estimate Θ̂, Equation 12 is minimised:
∂J
∂Θ
= −XTz + XTXΘ̂ = 0 (13)

Rearranging Equation 13 gives an expression for the OLS estimator:

Θ̂ = (XTX)−1XTz (14)

The model parameters were estimated separately for each output Equation (i.e. each row in eq. 10). Note that the
pitch attitude θ is fully defined by known kinematic relations and was therefore not considered further. The measurement
variable z for each output Equation was defined as follows, accounting for the fact that some model terms (the kinematic
terms, e.g. the 4th column of the system matrix in eq. 10) were known a priori and did not include unknown parameters
to be estimated.

zX = ∆ Ûu + w0∆q + gcos(θ0)∆θ, zZ = ∆ Ûw − u0∆q + gsin(θ0)∆θ, zM = ∆ Ûq (15)

For all output variables, the regressor matrix X was defined as:

X{X ,Z ,M } =


∆q(1) ∆u(1) ∆w(1) ∆δD(1) 1
∆q(2) ∆u(2) ∆w(2) ∆δD(2) 1
...

...
...

...
...

∆q(n) ∆u(n) ∆w(n) ∆δD(n) 1


(16)

with each row representing a successive measurement step, up to a total of n measurements. The parameter matrix to
estimate for each Equation was defined as:

Θ̂X =



X̂q

X̂u

X̂w

X̂δD
b̂X


, Θ̂Z =



Ẑq

Ẑu

Ẑw

ẐδD
b̂Z


, Θ̂M =



M̂q

M̂u

M̂w

M̂δD

b̂M


(17)

where the b̂ terms are bias parameters.

IV. Modelling Results
The results of the modelling process are presented in four sections. In Section IV.A the results of the hover model

are covered. In Section IV.B the performance of the estimated hover model is validated in closed-loop. Section IV.C is
dedicated to the results of the models in forward flight conditions and in Section IV.D alternative model structures are
tested.

The prediction capability of an identified model must be validated on data that was not used in the identification
process. Therefore, two different datasets were used for parameter estimation and model validation. The estimation
manoeuvres used for system identification consisted of pitch doublets, as discussed in Section and shown in Figure 4.
For validation a different manoeuvre was used, namely a step-input in pitch, for the purpose of strengthening the validity
of the results. Predicted outputs of the model are then established using the validation dataset.
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A. Results of Modelling Process Hover Condition
A total of four datasets were used to identify the time-averaged longitudinal hover model, where each dataset

contained around six system identification manoeuvres. Table 3 displays the estimated parameters of the hover model,
and corresponding standard deviations, for one of the datasets used in this example (dataset #1). The estimated standard
deviations of each parameter in relation to its magnitude (Table 3), are low (below 10% except for Zw and Mw),
indicating an overall satisfactory estimation process. In addition, the correlations between estimated parameters are
sufficiently low, suggesting that all parameters can be estimated separately. The model was open-loop validated by
calculating the output of the Equations in the state-space matrix (Eq. 10) using the measured states and measured
dihedral as input. The aerodynamic forces and moments calculated from the model were also considered. Figures 6a-6b
display the estimated forces and moments and the estimated outputs of the state-space model. The models estimating
the aerodynamic force X and moment M show very good results in terms of goodness of fit (R2) and output correlation
(Table 4-5). However, the model estimating the aerodynamic force Z was found to be ineffective. This is directly
reflected in the output Ûw, which can be seen in Figure 6b. The predicted aerodynamic- forces and moments (Figures
6c-6d) are determined using the validation datasets and again show good results in terms of predictive capability of
the longitudinal models, except for the aerodynamic force Z and corresponding state-space output Ûw. The reason for
the ineffectiveness of the Z model may be lack of excitation of the Z force dynamics or deficiencies in the model
structure (Equation 4). An analysis of the Z force residuals shows that some deterministic components remain in the
data (Figure 7), which suggests a deficiency in the model structure [19]. Attempts were made to improve the Z force
model identification through more aggressive excitation, but this did not improve the results, which again suggests that
the problem may be related to the model structure. In Section IV.D we investigate improvements that can be made to
improve the Z model.

Param. θ̂ |σ̂ | 100|σ̂/θ̂ |
Xq 0.0041 1.2033e-03 1.6045
Xu -0.1011 4.3542e-03 0.5698
Xw 0.0089 6.8437e-03 9.0203
XδD 0.7218 4.0767e-02 0.3727
Zq -0.0056 2.0858e-04 5.0846
Zu 0.0196 7.5479e-04 0.7459
Zw -0.0059 1.1863e-03 13.3852
ZδD 0.2982 7.0668e-03 0.9784
Mq -0.0019 9.8107e-06 6.8274
Mu 0.0194 3.5501e-05 7.1146
Mw -0.0019 5.5799e-05 37.3612
MδD 0.2782 3.3238e-04 4.3765

Table 3 Estimated parameters θ̂, corresponding estimated standard deviations σ̂ and estimated standard
deviation of each parameter in relation to its magnitude 100|σ̂/θ̂ |.

As discussed, four datasets were generated for hover model identification, each of these containing at least five
manoeuvres recorded in the same flight condition. In an ideal situation the estimated models should be the same
regardless of the dataset used. However, in practice this is impossible to achieve due to measurement imperfections,
slight differences between identification manoeuvres and slight changes in the flight conditions. Since a linear model
is only valid in a particular flight condition and differences in manoeuvres and measurement imperfections affect the
estimated model, it is interesting to evaluate to what extent different datasets impact the estimated linear model. A
comparison between the models obtained from different datasets is displayed in Figure 8 from which we can conclude
that the difference between the models is very small, and the choice of dataset will have a negligible impact on the
resulting model for a particular flight condition. As expected, all the estimated models are unstable. Table 6 displays the
eigenvalues of one of the estimated longitudinal models, represented by one unstable oscillatory mode and two stable
aperiodic modes. The obtained pole configuration corresponds with the theoretical model by Karásek et al, as well as,
qualitatively, with the modes found in other insect studies [7, 30].
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(b) Estimated output of the time-averaged longitudinal hover
model. Measured and model-estimated output values of the
state-space model.
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(c) Predicted aerodynamic forces and moment. Measured-
and model-predicted output values of the aerodynamic-
forces and moment.

0 1 2 3 4 5 6 7 8 9 10

-40

-20

0

20

40

0 1 2 3 4 5 6 7 8 9 10
-10

0

10

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

0 1 2 3 4 5 6 7 8 9 10

time [s]

-5

0

5

Predicted

Measured

(d) Predicted output of the time-averaged longitudinal hover
model. Measured and model-predicted output values of the
state-space model.

Fig. 6 Open-loop Estimated (a-b) and Predicted (c-d) aerodynamic- forces and moments of the time-averaged
longitudinal model
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Match of estimation data with measured data
Output Output R2 RMSE
Variable Correlation (% of measurement

range)
X 0.97 0.92 5.93%
Z 0.13 -0.95 20.49%
M 0.97 0.89 5.90%
Ûq 0.97 0.94 4.44%
Ûu 0.97 0.93 3.94%
Ûw 0.30 0.09 15.31%
Ûθ 0.99 0.99 0.63%

Table 4 Estimation metrics of the longitudinal model
of Figure (6a-6b).

Match of prediction data with measured data
Output Output R2 RMSE
Variable Correlation (% of measurement

range)
X 0.95 0.77 11.16%
Z 0.48 -0.40 14.29%
M 0.94 0.81 6.90%
Ûq 0.94 0.81 6.90%
Ûu 0.93 0.73 7.95%
Ûw -0.06 -0.19 13.75%
Ûθ 0.99 0.99 1.37%

Table 5 Predicted metrics of the longitudinal model of
Figure 6c-6d.
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Fig. 7 Residuals of the aerodynamic force Z model.

Since the parameters have a physical meaning, it is possible to evaluate their physical plausibility. For example, the
value of the parameter Mq (Table 3) is negative indicating the DelFly Nimble’s pitch rate damping is stable, which
is also confirmed in the models by Karásek et al [7, 30]. Also the negative value of Xu matches the results of the
aforementioned models. The estimated value of Mu is positive, unlike the result obtained by Karásek et al. However, a
different coordinate frame was used in the previous study, such that a positive Mu in this paper has the same effect as a
negative Mu in the previous study [7].

B. Results of Closed-Loop Modelling
Given the fact that the DelFly Nimble is inherently unstable, active stabilization is necessary to guarantee stable and

controlled flight. Like other tailless FWMAVs, the DelFly Nimble relies on feedback on the body rates and attitude [18].
In order to validate the estimated hover model in closed-loop, an exact copy of the controller architecture of the DelFly
Nimble (Figure 2) was implemented in Simulink. With this Simulink model we were able to both estimate and predict
the output of the DelFly Nimble in closed-loop.

In a previous study on the DelFly Nimble it was found that the dihedral angle (used as input for the longitudinal
hover model) was affected by the velocity u [18], causing an error between the commanded and measured dihedral
angle. The cause of this error was probably due to mechanical play or elasticity of the dihedral actuator mechanism.
To obtain a good estimation of the ‘actual’ dihedral deflection, a correction factor was introduced and added to the
measured dihedral position. The same correction factor was also used in the aforementioned Simulink model.

Figures 9a-9b display the output of the estimated model in closed-loop operation. Both the estimated and the
predicted outputs match the measured data effectively, except for the state w. The estimated output is generated using
the estimation dataset and the predicted outputs are generated using the validation dataset. The model performance
metrics, such as goodness of fit (R2) and output correlation, are reported in Table 7 and Table 8, respectively. The
estimated hover model also accurately predicts the flight dynamics of the DelFly Nimble in a closed-loop setup, with the
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Eigenvalues
-8.8875
1.4262 + 5.1659i
1.2668 − 5.1659i
-0.1343

Table 6 Eigenvalues of the esti-
mated longitudinal hover model
obtained from dataset #1.
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Fig. 8 Pole locations hover model using 4 datasets, where each dataset con-
tains at least 5 system identification manoeuvres. Dataset #1 (used in the
examples), Dataset #2, Dataset #3 and Dataset #4

original controller gains (fast gains: KP = 1.6250 and KD = 0.2083), as show in Figure 10, except for the state w.

Match estimated output with measured output
Output Output R2 RMSE
Variable Correlation (% of measurement

range)
q 0.93 0.87 6.20%
u 0.97 0.90 7.09%
w 0.78 0.42 19.59%
θ 0.96 0.87 7.39%

Table 7 Closed-loop estimated metrics for the longitu-
dinal model of Figure 9a.

Match of predicted output with measured output
Output Output R2 RMSE
Variable Correlation (% of measurement

range)
q 0.93 0.88 5.51%
u 0.97 0.90 8.44%
w 0.42 0.08 23.11%
θ 0.97 0.78 11.23%

Table 8 Closed-loop predicted metrics of the longitudi-
nal model of Figure 9b.

C. Results of the Modelling Process in Forward Flight Condition
The DelFly Nimble can operate in both hover and forward flight conditions, depending on the desired mission.

It is therefore essential to know how the DelFly Nimble operates and behaves not only in hover, but also in forward
flight conditions. This section identifies and analyses the behaviour of the linear time-averaged longitudinal models
estimated in forward flight conditions ranging from 0.5±0.05 m/s, to 0.75±0.05 m/s, up to 1.0±0.05 m/s. In order to
record informative data in a particular forward flight condition, the DelFly Nimble was first stabilized at this flight
condition. Once the DelFly Nimble was in the planned trimmed forward flight condition, the pre-programmed system
identification manoeuvre was performed. However, the process of achieving steady conditions proved to be very difficult
when using slow feedback gains. This issue was solved by using slightly faster gains which still did not excessively
affect the informativeness of the data.

A total of 18 datasets were recorded containing over 90 system identification manoeuvres, performed in conditions
ranging from 0.5±0.05 m/s up to 1.0±0.05 m/s forward velocity. The performance of the forward flight models is
reported in Table 9.

The performance metrics of the forward flight models indicate a successful estimation process and are in the same
order of magnitude as those obtained for the hover models. The output correlation values for the output variable Ûw
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(a) Estimated states. Measured and model-estimated output
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(b) Predicted states. Model-predicted output of the states in
closed-loop.

Fig. 9 Estimated and predicted output of the estimated time-averaged longitudinal hover model in closed-loop.
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Fig. 10 Predicted states in closed-loop using fast gain settings (hover condition).

increase dramatically from 0.78 in hover to 0.92 in forward flight (at 1.0 m/s), and the RMSE (%) decreases significantly.
This is also clearly visible in the plots displaying the estimated and measured output variable Ûw at different flight speeds,
shown in Figure 11. Based on this plot, we can conclude that the original model is able to better capture the Ûw-dynamics
with increasing forward speed and that the DelFly Nimble more closely resembles a conventional aircraft in forward
flight conditions (when only considering time-averaged effects). However, it is also possible that the Z-force dynamics
are better excited with increasing forward speed.
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Output var. Output correlation RMSE (%)
Ûq 0.96 ± 0.010 4.11 ± 0.4%
Ûu 0.92 ± 0.015 6.12 ± 0.5%
Ûw 0.86 ± 0.220 7.01 ± 5.06%
Ûθ 0.99 ± 0.010 1.15 ± 0.2%

Table 9 Performance of the forward flight models, where the average output correlation is displayed ± the
standard deviation over all the datasets (same as for the RMSE).
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Fig. 11 Estimated Ûw for different flight speeds (from top to bottom plots: 0.0 m/s, 0.5 m/s, 0.75 m/s and 1.0 m/s).
Top plot is 0.0 m/s. Bottom plot is 1.0 m/s.

D. Improvements on the Linear Model Structure for the Aerodynamic Force Z
Although the models of X and M yielded very accurate results, both in hover and forward flight conditions, the

model describing the Z force can be greatly improved, especially in and near hover conditions. The obtained results
suggest that the dynamics were insufficiently captured by the model (Equation 4), and, as discussed in Section IV.A,
it is likely that the model structure is inadequate and for example include nonlinear dependencies that are especially
significant near hover. In order to test if this was indeed the case, the model structure of the aerodynamic force Z
(Equation 4) was re-evaluated and adjusted to include nonlinear terms (expressed as additional nonlinear regressors in
the estimation process, see Equation 16). Note that because of the nonlinear terms, it is no longer possible to use the
state-space representation used for the original model.

A number of different model structures were considered, by selecting nonlinear regressors from a pool of candidate
terms and introducing these in the Z-force model. The additional terms were selected based on engineering judgement,
and only low-order (< second order) terms were considered to keep the model plausible and avoid over-fitting. It was for
instance considered likely that coupling terms, such as qu, would be significant, given that the input signal had a limited
direct effect and the linear terms were insufficient to explain the w dynamics. Similarly, quadratic velocity terms were
considered given that a linear relation did not seem to capture the observed dynamics but some effect of the velocity on
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Fig. 12 Output of the adjusted nonlinearmodels (Equations 18-20), with original model shown for comparison.

the forces was nonetheless expected.
In this section we analyse the model estimated output (Zestimated) of three of the models considered, compared to

the measured aerodynamic force (Zmeasured). The model structures are presented in the following Equations (18-20).
Note that the second and third models (Zmodel2, Zmodel3) were defined based on the considerations above and are
considered physically plausible, while the first model (Zmodel1) represents an attempt to maximise model performance,
but contains terms that are difficult to interpret and is therefore not a generally useful solution.

Zmodel1 = Z0 + Zqu∆(qu) + ZδD∆δD + Zw2∆w2 + Zu2∆u2

+ ZδDw∆(δDw) + ZδDq∆(δDq) + Zq2∆q2 (18)

Zmodel2 = Z0 + Zqu∆(qu) + ZδD∆δD + Zw2∆w2 + Zu2∆u2 (19)
Zmodel3 = Z0 + Zqu∆(qu) (20)

The results of the estimation are provided in Figure 12, where the estimated output of the adjusted models is
compared to that of the original model. The simplest model, model Zmodel3 := f (qu) (Equation 20) already captures
some of the dynamics and represents an improvement compared to the original model. Considerably more significant
improvements are obtained when using model Zmodel2 := f (qu, δD,w2,u2) (Equation 19). This model still contains
terms that may be physically plausible, although further investigation would be required to confirm whether this is the
case. As expected, the model Zmodel1 (Equation 18) provides the best results in terms of goodness of fit, however using
too many terms probably leads to over-fitting and, as discussed previously, some of these terms have no immediate
physical meaning (e.g. δDw). The metrics of the adjusted models are provided in Figure 13 and suggest that the
nonlinear model structures significantly improve the effectiveness of the resulting models. Although the adjusted models
are characterized by much better RMSE (%), output correlation and R2 values, compared to the original model, it
remains to be investigated whether or not they are physically meaningful. In addition, by applying more systematic
model structure determination techniques, such as stepwise regression, it will be possible to more effectively select
model terms that most influence the aerodynamic forces and moments [19, 29]. Such a study should be considered in
future work since it has the potential of providing a better understanding of the DelFly Nimble’s dynamic behaviour.

V. Conclusions and Recommendations
In this paper we used a system identification approach to obtain linear time-averaged longitudinal models for a

tailless FWMAV, the DelFly Nimble, in hover and forward flight (up to 1.0±0.05 m/s) conditions. The models for the
aerodynamic force X and moment M in both hover and forward flight captured the dynamic behaviour of the DelFly
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Fig. 13 The metrics of the adjusted model and the three adjusted models.

Nimble very accurately, with R2 values of up to 0.90 and 0.85, respectively. These simple and accurate models can
therefore be used for dynamic simulation, advanced controller development and stability analysis. In addition, we have
shown that a closed-loop system identification approach can be applied effectively to tailless FWMAVs, leading to
accurate models.

Initial modelling results obtained for the aerodynamic force Z were found to be inadequate in capturing the dynamic
behaviour of the Nimble at and near hover conditions. In an attempt to improve this model, we defined new model
structures containing nonlinear terms. These led to a considerable improvement, with the adjusted models, for example
f (qu, δD,w2,u2) (Equation 19), increasing the output correlation by a factor of more than 6. While some components
of the dynamics were not captured by any of the models used in this paper, probably due to deficiencies in the model
structures or a lack of excitation, it was proven that when including nonlinear terms in the model, a larger fraction of the
dynamics could be modelled. This suggests that techniques such as stepwise regression could lead to even more effective
models and might provide a better understanding of the dynamics of tailless FWMAVs and of the DelFly Nimble
specifically. Nonetheless, the physical plausibility of more elaborate nonlinear models must be further investigated.

The models estimated in this paper are all linear local models. These local models are therefore only valid in a
particular flight region. In order to obtain a single model that is valid for the entire flight envelope of the DelFly Nimble,
future research should look into the use of global modelling techniques in order to obtain a single model which is made
up from all the local models identified in this paper [31].

Although the developed models in this work achieved a high accuracy, some dynamic effects remain to be modelled.
For example, the time-varying dynamics (flapping dynamics), longitudinal models valid in fast forward flight conditions
(> 1.0 m/s) and models describing the lateral dynamics of the Nimble, are some of the subjects that should be looked
into in future research.
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