
 
 

Delft University of Technology

Dynamic and interactive re-formulation of multi-objective optimization problems for
conceptual architectural design exploration

Yang, Ding; Di Stefano, Danilo; Turrin, Michela; Sariyildiz, Sevil; Sun, Yimin

DOI
10.1016/j.autcon.2020.103251
Publication date
2020
Document Version
Final published version
Published in
Automation in Construction

Citation (APA)
Yang, D., Di Stefano, D., Turrin, M., Sariyildiz, S., & Sun, Y. (2020). Dynamic and interactive re-formulation
of multi-objective optimization problems for conceptual architectural design exploration. Automation in
Construction, 118, Article 103251. https://doi.org/10.1016/j.autcon.2020.103251

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.autcon.2020.103251
https://doi.org/10.1016/j.autcon.2020.103251


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

Dynamic and interactive re-formulation of multi-objective optimization
problems for conceptual architectural design exploration
Ding Yanga,b,c, Danilo Di Stefanod, Michela Turrinc, Sevil Sariyildizc, Yimin Suna,b,⁎

a School of Architecture, South China University of Technology, Guangzhou, China
b State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, China
c Chair of Design Informatics, Department of Architectural Engineering and Technology, Faculty of Architecture and the Built Environment, Delft University of Technology,
Delft, the Netherlands
d ESTECO SpA, Trieste, Italy

A R T I C L E I N F O

Keywords:
Simulation-based multi-objective optimization
Conceptual architectural design
Optimization problem re-formulation
Divergent concept generation
Information and knowledge extraction
Self-organizing map
Hierarchical clustering
Hierarchical variable structure
GH-MF integration
Top-daylighting system

A B S T R A C T

Simulation-Based Multi-Objective Optimization (SBMOO) methods are being increasingly used in conceptual
architectural design. They mostly focus on the solving, rather than the re-formulation, of a Multi-Objective
Optimization (MOO) problem. However, Optimization Problem Re-Formulation (Re-OPF) is necessary for
treating ill-defined conceptual architectural design as an iterative exploration process. The paper proposes an
innovative SBMOO method which builds in a dynamic and interactive Re-OPF phase. This Re-OPF phase, as the
main novelty of the proposed method, aims at achieving a realistic MOO model (i.e., a parametric geometry-
simulation model which includes important objectives, constraints, and design variables). The proposed method
is applied to the conceptual design of a top-daylighting system, focusing on divergent concept generation. The
integration of software tools Grasshopper and modeFRONTIER is adopted to support this application. The main
finding from this application is that the proposed method can help to achieve quantitatively better and quali-
tatively more diverse Pareto solutions.

1. Introduction

1.1. Context

1.1.1. Necessity of requirement and concept re-definition
Conceptual architectural design is the early stage of architectural

design, where knowledge is lacking and a number of issues are ill-de-
fined (or ill-structured). This design stage mainly aims at finding a
promising design concept that is most likely to meet all important ar-
chitectural and engineering requirements. Here, a design concept refers
to a combination of ideas about the form, technology, working princi-
ples of an artefact being designed, namely about how the artefact may
satisfy related requirements [1]. A design concept can be explored
through vertical or lateral transformation [2,3], thus deriving a vertical
or lateral concept accordingly. Vertical transformation focuses on re-
fining existing ideas, while lateral transformation focuses on enriching
new ideas. The requirements to be satisfied include quantitative and

qualitative requirements [4,5]. In conceptual architectural design,
substantial knowledge is required, such as knowledge about various
requirements, broad concepts, and their interplay, etc. Unfortunately,
in this design stage, such kind of knowledge is often insufficient. De-
signers may have limited understanding of what should be treated as
important requirements, promising concepts, and how the requirements
and concepts may affect each other, etc. Their understanding of these
issues may become even more limited, when confronted with many
conflicting requirements and competing concepts. As a result, initial
requirements and concepts are often vague, uncertain, and incomplete;
more generally speaking, a number of issues in conceptual architectural
design are ill-defined [6].

Treating design, especially the early design stage, as an iterative
exploration process, can help to acquire desired knowledge and deal
with ill-defined issues. The idea of treating design as exploration has
been put forward by some precedent studies [7–10]. The exploration
can be defined, among other definitions, as a phenomenon in design
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where problem space (i.e., requirement space) interacts and evolves
with solution space (i.e., concept space) over time [11–13], that is, co-
evolution of problem space and solution space (Fig. 1). Specifically, the
exploration is an iterative and situated process where designers inter-
pret problems, propose solutions, and more importantly, re-define the
problems and/or solutions [14]. The “re-definition” is key to acquiring
new knowledge, as shown in Fig. 1 and described below. After the in-
itial definition of problem and solution space (i.e., P0 and S0), (1)
knowledge that designers possess (i.e., dot 1) can trigger a move to
refocus on a re-defined problem space (i.e., P1); (2) new knowledge
(i.e., dot 2) can be shaped through designers' understanding on previous
problem and solution space (i.e., P1 and S0); (3) knowledge that de-
signers possess (i.e., dot 2) can trigger a further move to lead to a re-
defined solution space (i.e., S1), (4) new knowledge (i.e., dot 3) can be
shaped through designers' understanding on previous problem and so-
lution space (i.e., P1 and S1); and the remaining actions continue in a
similar manner, until knowledge acquired has become insignificant or
designers' understanding cannot change enough to warrant further re-
definition [8]. As described, the re-definition and knowledge extraction
intertwine closely and proceed in an alternating fashion. In this way,
designers can acquire and accumulate knowledge, gradually better
understand problems and/or solutions in design, and eventually better
re-define final problem and solution space (i.e., Pn and Sn). In this sense,
the exploration can be also seen as an open-ended human learning
process. Moreover, the re-definition can be done in two ways: an ad-
ditive way (i.e., divergent enrichment), and a subtractive way (i.e.,
convergent refinement). The two ways of the re-definition can occur
throughout all design stages; but, the earlier the design stage, the more
meaningful to encourage the divergent enrichment [15], and to
broaden the scope of the exploration.

Obviously, it is reasonable to treat the ill-defined conceptual ar-
chitectural design as the iterative exploration. In such design explora-
tion, it is necessary to allow continuous re-definition of (quantitative
and qualitative) requirements and (vertical and lateral) concepts, so as
to achieve more precise, certain, and complete final requirements and

concepts. Importantly, given the early design stage, divergent enrich-
ment of requirements and concepts is worth to be encouraged, espe-
cially revealing lateral concepts.

1.1.2. Necessity of optimization problem re-formulation (Re-OPF)
Performativity can be seen as the fourth dimension in architectural

design [16]. Performative design [17–20], or performative architecture
[21–25], has become a prevailing paradigm in the field of computer-
aided conceptual architectural design. In this paradigm, simulation-
based optimization [26] is used to achieve optimal designs satisfying
architectural and engineering performance requirements. It is known as
Simulation-Based Multi-Objective Optimization (SBMOO) when taking
advantage of Multi-Objective Optimization (MOO) [27].

Optimization Problem Re-Formulation (Re-OPF) is a necessity to
achieve a right or more realistic MOO problem from a design task. The
conversion from a design task to an MOO problem and an MOO model,
is always a matter of the first priority. Here, an MOO problem refers to a
descriptive statement of objectives, constraints, and design variables for
a design task; an MOO model refers to a mathematical expression of an
MOO problem (i.e., a parametric geometry-simulation model which
includes objectives, constraints, and design variables). It is important to
know that an MOO problem is in fact an approximation or partial re-
presentation of a real design task; thus, there is a gap between the MOO
problem and the real design task [28]. This gap is often large in the
early design stage, as the initial understanding of the design task is very
limited and many issues are still ill-defined; thus, the gap should be
reduced as much as possible, to prevent the computation of unrealistic
or unfeasible solutions [28]. Given these facts, Optimization Problem
Initial-Formulation (Initial-OPF) should be re-formulated and improved
as much as possible, in order to achieve a MOO problem which can
better approximate the real design task. The necessity of Re-OPF can be
also understood as a consequence of re-defining requirements and
concepts. That is, once requirements and concepts of a design task are
re-defined, associated objectives, constraints, and design variables
should be re-formulated accordingly.

Fig. 1. Co-evolution of problem space and solution space, adapted from [11–13]. The varying sizes of circles show the additive and subtractive re-definition of
problem space and solution space; the dots show the knowledge extraction.
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SBMOO methods can be used to aid the conceptual architectural
design exploration. In such design exploration, it is necessary to allow
continuous re-formulation of objectives, constraints, and design vari-
ables, so as to achieve a more realistic MOO problem. Specifically, al-
lowing such re-formulation can be broken down into three specific
demands: (1) allowing adding and/or removing objectives, constraints,
and design variables multiple times; (2) allowing considering objectives
and constraints for quantitative and qualitative requirements; (3) al-
lowing considering design variables for vertical and lateral concepts.
Importantly, given the early design stage, divergent enrichment of ob-
jectives, constraints, and design variables is worth to be encouraged,
especially revealing design variables for lateral concepts.

The above demands indicate two required characteristics of Re-OPF.
First, Re-OPF should be dynamic (i.e., dynamic Re-OPF). Second, Re-
OPF should be interactive (i.e., interactive Re-OPF which leverages
both human roles and computer roles). On one hand, human roles are
crucial, including human creativity (i.e., a divergent thinking style [29]
leading to creativity) and human subjectivity (i.e., Kansei aspects [30]
like intuitions, preferences etc.). Human creativity can facilitate di-
vergent enrichment of requirements and concepts; human subjective
interpretation of information is required for identifying important re-
quirements and promising concepts [31]. On the other hand, computer
roles are complementary to human roles. Computation power can
augment, but not replace, human creativity by alleviating routine work
[32]; computational objective analysis of data is useful for extracting
information about requirements and concepts [33].

1.2. Problem

Although SBMOO methods have been increasingly used to support
conceptual architectural design in recent years [34–36], there are still a
number of shortcomings. A major one is that, in general, existing
SBMOO methods have largely been “cut and paste” from the field of
detailed engineering design, with little-to-no adaptation for the needs
required in conceptual architectural design [37], as specified below.

First, existing SBMOO methods mostly do not focus on Re-OPF [33].
This can be due to the use of an unrealistic assumption in conceptual
architectural design optimization. For the sake of simplicity, ill-defined
conceptual design has often been unrealistically assumed to be a well-
defined stage where all objectives, constraints, and design variables are
given (i.e., not replaceable or removable). Thus, related methods often
focus on solving a known MOO problem - Optimization Problem Sol-
ving (OPS), rather than finding an unknown MOO problem - Optimi-
zation Problem Formulation (OPF).

Second, there are a small number of SBMOO methods which focus
on Re-OPF, but most of them do not allow dynamic Re-OPF and in-
teractive Re-OPF simultaneously. The lack of dynamic Re-OPF can be
due to the underestimation of the constant nature of Re-OPF.
Conceptual design may be seen as an ill-defined stage, but not ne-
cessarily an open-ended stage. Thus, related methods only conduct re-
formulation once. The lack of interactive Re-OPF can be due to the
underestimation of human roles for Re-OPF. Designer subjectivity may
be completely excluded, and/or, designer creativity may be constrained

within a narrow design direction. Thus, related methods cannot con-
sider objectives for qualitative requirements, and/or, reveal design
variables for lateral concepts.

Third, some techniques and tools are useful for supporting
SBMOO methods which focus on Re-OPF, but they still face some
challenges. These challenges include, for instance, ensuring proper
flexibility of parametric models, ensuring proper use of analysis tech-
niques, and testing the usability of the tools, especially for supporting
SBMOO methods which involves dynamic Re-OPF.

1.3. Aim

This paper aims to propose an innovative SBMOO method which
allows dynamic Re-OPF and interactive Re-OPF simultaneously and is
suitable for use in conceptual architectural design exploration. The
main novelty of the proposed method is a dynamic and interactive Re-
OPF phase built in the OPF phase (Fig. 2). The Re-OPF phase has two
characteristics: a dynamic Re-OPF characteristic which can enable
MOO problems to be re-formulated multiple times; and, an interactive
Re-OPF characteristic which can enable MOO problems to be re-for-
mulated by considering qualitative objectives, and/or, revealing lateral
concept related variables. The Re-OPF phase is realized through three
groups of looped actions: data generation, information and knowledge
extraction, and MOO model re-formulation. The information and
knowledge extraction are crucial and connect the other two groups of
actions. Namely, data generation is the basis of the information and
knowledge extraction; and, MOO model re-formulation is supported by
the information and knowledge extraction. In this paper, divergent
enrichment of concepts (i.e., divergent concept generation [38]) is
emphasized, aiming to achieve quantitatively better and qualitatively
more diverse Pareto solutions.

To implement the proposed method, relevant computational tech-
niques and a promising integration of software tools are adopted. The
techniques are used to implement the actions needed for the proposed
method. They include: frequently highlighted techniques, like geo-
metric parametric modelling [39], multi-disciplinary simulation mod-
elling [40], MOO, which may now be used in a more advanced or
different manner; and seldom highlighted techniques, like Design of
Experiments (DoE) [41], correlation analysis [42], cluster analysis [43],
etc., which are now important for the Re-OPF phase. A promising in-
tegrated tool is used to implement the techniques needed for the pro-
posed method. It is called “GH-MF” which integrates McNeel's Rhino-
ceros with Grasshopper (GH) [44,45] and ESTECO's modeFRONTIER
(MF) [46]. It was developed based on a collaboration between TU Delft
and ESTECO [33,47].

To verify the capability of the proposed method, and examine the
usability of the techniques and tools, a case study of the conceptual
design of a top-daylighting system is conducted. The case mainly fo-
cuses on divergent enrichment of three typical types of top-daylighting
concepts (i.e., skylights, roof monitors, and saw-tooth clerestories [48])
based on daylight, energy and aesthetic performances. By applying the
proposed method, each of the initial concepts is enriched to form sev-
eral modified concepts (i.e., lateral concepts that include new features);

Fig. 2. The proposed SBMOO method. The red box shows the main novelty of the method - the dynamic and interactive Re-OPF phase. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

D. Yang, et al. Automation in Construction 118 (2020) 103251

3



Ta
bl
e
1

Re
vi
ew

of
SB
M
O
O
m
et
ho
ds

w
hi
ch

fo
cu
s
on

Re
-O
PF
.N

ot
e:
“*
”
m
ar
ks

th
e
cl
as
si
fic
at
io
n
cr
ite
ri
a.

Ty
pe

Li
te
ra
tu
re

A
pp
lic
at
io
n
fie
ld

In
iti
al
qu
an
tit
at
iv
e
ob
je
ct
iv
es

an
d
co
ns
tr
ai
nt
s

In
iti
al
qu
al
ita
tiv
e

ob
je
ct
iv
es

an
d

co
ns
tr
ai
nt
s

In
iti
al
de
si
gn

va
ri
ab
le
s

W
ay
s
of

Re
-O
PF

D
yn
am

ic
Re
-

O
PF

*
In
te
ra
ct
iv
e
Re
-O
PF

*

Ty
pe

1
H
ei
se
lb
er
g
et
al
.[
51
]

Co
nc
ep
tu
al
de
si
gn

of
a

se
ve
n
st
or
ey

offi
ce

bu
ild
in
g

To
ta
le
ne
rg
y
us
e
(↓
)

H
ea
tin

g
de
m
an
d
(↓
)

–
N
on
-g
eo
m
et
ri
c
va
ri
ab
le
s

Re
m
ov
in
g
de
si
gn

va
ri
ab
le
s

(1
-ti
m
e
Re
-O
PF
)

N
O

N
O

Sh
en

an
d

Tz
em

pe
lik
os

[5
2]

Co
nc
ep
tu
al
de
si
gn

of
a
on
e

st
or
ey

offi
ce

sp
ac
e

U
se
fu
ld
ay
lig
ht

ill
um

in
an
ce

(↑
)

A
nn
ua
ll
ig
ht
in
g,
he
at
in
g
an
d

co
ol
in
g
de
m
an
d
(↓
)

A
nn
ua
ls
ou
rc
e
en
er
gy

co
ns
um

pt
io
n
(↓
)

–
W
in
do
w
-to

-w
al
lr
at
io

Sp
ac
e
as
pe
ct
ra
tio

N
on
-g
eo
m
et
ri
c
va
ri
ab
le
s

Re
m
ov
in
g
de
si
gn

va
ri
ab
le
s

(1
-ti
m
e
Re
-O
PF
)

N
O

N
O

Ty
pe

2
Tr
ab
el
si
et
al
.[
58
]

A
pp
lia
nc
e
sc
he
du
lin
g
in

a
sm

ar
th

om
e

El
ec
tr
ic
ity

co
st
(↓
)

En
er
gy

co
ns
um

pt
io
n
(↓
)

D
is
sa
tis
fie
d
re
qu
es
ts
(↓
)

Bu
dg
et
fo
r
el
ec
tr
ic
ity

co
st

Ca
pa
ci
ty
of

el
ec
tr
ic
ci
rc
ui
t

A
llo
w
ed

tim
e
in
te
rv
al
et
c.

–
St
ar
tin

g
tim

e
of

m
ul
tip

le
ap
pl
ia
nc
es

M
od
ify
in
g
qu
an
tit
at
iv
e

ob
je
ct
iv
e
fu
nc
tio
ns

M
od
ify
in
g
qu
an
tit
at
iv
e

co
ns
tr
ai
nt

va
lu
es

(4
-ti
m
e
Re
-O
PF
)

YE
S

N
O

Cu
rt
is
et
al
.[
59
]

Co
nc
ep
tu
al
de
si
gn

of
a
tw
o-

ba
r
tr
us
s
st
ru
ct
ur
e

M
as
s
(↓
)

D
efl
ec
tio
n
(↓
)

St
re
ss

Bu
ck
lin
g
st
re
ss
et
c.

–
D
im
en
si
on

of
th
e
st
ru
ct
ur
e

M
at
er
ia
ls
of

th
e
st
ru
ct
ur
e

A
dd
in
g
de
si
gn

va
ri
ab
le
s

(≥
2-
tim

e
Re
-O
PF
)

YE
S

N
O

Cu
rt
is
et
al
.[
59
]

Co
nc
ep
tu
al
de
si
gn

of
an

ai
rc
ra
ft

Cr
ui
se

ra
ng
e
(↑
)

Ta
ke
-o
ff
w
ei
gh
t(
↓)

W
et
te
d
as
pe
ct
ra
tio

M
ax
im
um

lif
t
to

dr
ag

ra
tio

Li
ft
to

dr
ag

ra
tio

et
c.

–
W
in
g
as
pe
ct
ra
tio

A
dd
in
g
an
d
re
m
ov
in
g

qu
an
tit
at
iv
e
ob
je
ct
iv
es

(2
-ti
m
e
Re
-O
PF
)

A
dd
in
g
de
si
gn

va
ri
ab
le
s

(4
-ti
m
e
Re
-O
PF
)

YE
S

N
O

Ty
pe

3
Br
in
tr
up

et
al
.[
61
]

Co
nc
ep
tu
al
de
si
gn

of
a
on
e

st
or
y
pl
an
t
la
yo
ut

Co
st
of

bu
ild
in
g
(↓
)

Su
bj
ec
tiv
e
ex
pe
rt

sa
tis
fa
ct
io
n
(↑
)

D
im
en
si
on
s
of

m
ul
tip

le
ro
om

s
an
d

ar
ea
s

A
dd
in
g
qu
al
ita
tiv
e
ob
je
ct
iv
es

(1
-ti
m
e
Re
-O
PF
)

M
ai
nt
ai
ni
ng

or
ig
in
al

qu
an
tit
at
iv
e
ob
je
ct
iv
es

N
O

YE
S

M
ue
lle
r
an
d

O
ch
se
nd
or
f[
62
]

Co
nc
ep
tu
al
de
si
gn

of
a
ri
gi
d

fr
am

e
st
ru
ct
ur
e

U
se

of
m
at
er
ia
l(
↓)

Su
bj
ec
tiv
e
ae
st
he
tic

qu
al
ity

(↑
)

3D
co
or
di
na
te
s
of
an

in
ne
r
pr
ofi
le
of

a
ri
gi
d
fr
am

e
A
dd
in
g
qu
al
ita
tiv
e
ob
je
ct
iv
es

(1
-ti
m
e
Re
-O
PF
)

M
ai
nt
ai
ni
ng

or
ig
in
al

qu
an
tit
at
iv
e
ob
je
ct
iv
es

N
O

YE
S

Tu
rr
in

et
al
.[
66
]

Co
nc
ep
tu
al
de
si
gn

of
a

do
m
e
st
ru
ct
ur
e

W
ei
gh
t
of

st
ru
ct
ur
e
(↓
)

Su
bj
ec
tiv
e
ae
st
he
tic

qu
al
ity

(↑
)

G
eo
m
et
ry

of
th
e
st
ru
ct
ur
e

A
dd
in
g
qu
al
ita
tiv
e
ob
je
ct
iv
es

(1
-ti
m
e
Re
-O
PF
)

M
ai
nt
ai
ni
ng

or
ig
in
al

qu
an
tit
at
iv
e
ob
je
ct
iv
es

N
O

YE
S

Ba
rn
um

an
d
M
at
ts
on

[6
7]

Co
nc
ep
tu
al
de
si
gn

of
a

ve
hi
cl
e

Pr
ic
e
(↓
),
W
ei
gh
t(
↓)
,S
ea
tin

g
(↓
),

To
w
in
g
(↓
),
Ca
rg
o
sp
ac
e
(↓
)

Su
bj
ec
tiv
e
ae
st
he
tic

qu
al
ity

(↑
)

G
eo
m
et
ry

of
th
e
ve
hi
cl
e,

Ty
pe
s
of

do
or
s,
ch
as
si
s,
en
gi
ne
s,

dr
iv
e
st
yl
es
,c
ar
go

A
dd
in
g
qu
an
tit
at
iv
e
ob
je
ct
iv
es

(1
-ti
m
e
Re
-O
PF
)

M
ai
nt
ai
ni
ng

or
ig
in
al
qu
al
ita
tiv
e

ob
je
ct
iv
es

N
O

YE
S

Ya
ng

et
al
.[
33
]

Co
nc
ep
tu
al
de
si
gn

of
an

in
do
or

sp
or
ts
bu
ild
in
g

U
se
fu
ld
ay
lig
ht

ill
um

in
an
ce

(↑
)

D
ay
lig
ht

un
ifo
rm

ity
ra
tio

(↑
)

En
er
gy

U
se

In
te
ns
ity

(↓
)

St
ru
ct
ur
al
m
as
s
(↓
)

Su
bj
ec
tiv
e
ae
st
he
tic

qu
al
ity

(↑
)

G
eo
m
et
ry

of
th
e
gr
an
ds
ta
nd
,

bu
ild
in
g
en
ve
lo
p,
ex
te
rn
al
sh
ad
in
gs
,

ro
of

st
ru
ct
ur
e

M
od
ify
in
g
qu
an
tit
at
iv
e

ob
je
ct
iv
e
fu
nc
tio
ns

(1
-ti
m
e
Re
-O
PF
)

Re
m
ov
in
g
qu
an
tit
at
iv
e

N
O

YE
S

(c
on

tin
ue

d
on

ne
xt

pa
ge
)

D. Yang, et al. Automation in Construction 118 (2020) 103251

4



and several final promising concepts are identified for eventual opti-
mizations. The optimization results confirm the capability of the pro-
posed method, and the usability of the techniques and tools.

1.4. Outline

The remainder of this paper is structured as follows. Section 2 re-
views the state of the art of SBMOO methods, techniques and tools, and
indicates gaps to be filled. Section 3 describes the overall procedure of
the proposed method, and unfolds the dynamic and interactive Re-OPF
phase. Section 4 provides more details on the adopted computational
techniques. Section 5 provides more details on the adopted software
tools. Section 6 presents a case study used to verify the capability of the
proposed method and examine the usability of the techniques and tools.
Finally, Section 7 summarizes contributions of this paper and some
relevant aspects of the proposed method, and concludes with future
research directions and concluding remarks.

2. Literature review

This section reviews the state of the art of SBMOO methods (in
Section 2.1), and of SBMOO techniques and tools (in Section 2.2). The
literatures presented here are not limited to those from the field of
conceptual architectural design, due to the lack of relevant studies.

2.1. Review of SBMOO methods

This section reviews SBMOO methods which focus on Re-OPF, as
shown in Table 1. Reviewing these methods relates to the necessity of
Re-OPF for SBMOO methods. Such necessity has also been highlighted
in [33]. In this section, first, four types of methods are introduced (in
Section 2.1.1); then, examples of each type of methods are presented
respectively (in Sections 2.1.2, 2.1.3, 2.1.4 and 2.1.5); finally, related
gaps are identified (in Section 2.1.6).

2.1.1. Four types of methods
The methods under consideration can be classified into four types,

according to whether or not Re-OPF is dynamic and interactive (Fig. 3).
The four types of methods are: Type 1 methods with non-dynamic and
non-interactive Re-OPF, Type 2 methods with dynamic and non-inter-
active Re-OPF, Type 3 methods with non-dynamic and interactive Re-
OPF, and Type 4 methods with dynamic and interactive Re-OPF. This
classification can help to understand the state of the art of the methods
in allowing dynamic Re-OPF and/or interactive Re-OPF.

2.1.2. Type 1 methods with non-dynamic and non-interactive Re-OPF
Type 1 methods are characterized by non-dynamic and non-inter-

active Re-OPF (i.e., one-time Re-OPF where qualitative objectives are
not considered, and lateral concept related variables are not revealed).
The need of allowing such Re-OPF has been pointed out for nearly a
decade in the aerospace and automotive industries. As stated in [49], it
is necessary to include design space re-definition in optimization, given
the fact that design requirements may change over time and significant
re-designs can occur at a later time. Similarly, according to [50], al-
lowing changing the set of design variables can allow new regions of the
design space to be explored and lead to better designs.

Type 1 methods include some examples in relation to late-stage
engineering design, for instance, those aiming at refining original de-
sign space using sensitivity analysis (e.g., [51,52]). In such examples,
sensitivity analysis of multiple quantitative performance metrics to
various design variables was conducted; then, the design variables were
ranked according to their relative importance to each of the perfor-
mance metrics. In this way, unimportant design variables were identi-
fied and screened out, thus refining the original design space. Given
that design variables are removed once, but qualitative objectives are
not considered, and lateral concept related variables are not revealed,Ta
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the above examples belong to Type 1 methods.

2.1.3. Type 2 methods with dynamic and non-interactive Re-OPF
Type 2 methods are characterized by dynamic and non-interactive

Re-OPF (i.e., multiple-time Re-OPF where qualitative objectives are not
considered, and lateral concept related variables are not revealed). The
need of allowing such Re-OPF has been recognized recently in the
building industry. Arora [53] stated that developing a proper for-
mulation for a design optimization problem is an iterative process,
namely, an initial formulation of the problem often needs several re-
finements or adjustments before an acceptable one is obtained.

Type 2 methods include “dynamic MOO” - a hot research topic in
computer science [54–56], although it is seldom applied in conceptual
architectural design. This topic aims at developing methods to solve
dynamic MOO problems which involve time-varying objectives, con-
straints and design variables, such as control problems, scheduling
problems, mechanical design problems, etc. [57]. To solve these pro-
blems, advanced dynamic MOO algorithms which have the ability to
track the changing Pareto-optimal front are needed. They include at
least two kinds: algorithms that solve dynamic MOO problems without
adapting the problems, and algorithms that convert a dynamic MOO
problem into multiple static MOO problems [57]. Trabelsi et al.'s ex-
ample [58] was solved using the former algorithm; while Curtis et al.'s
two examples [59] were solved using the latter algorithm. Curtis et al.'s
examples also showed that the conversion or re-formulation of a dy-
namic MOO problem can be done by iteratively adding and removing
objectives and design variables, and that this re-formulation can extend
the exploration divergently into a larger space in order to avoid missing
potentially superior solutions. Given that quantitative objectives and/or
design variables are re-formulated multiple times, but qualitative ob-
jectives are not considered, and lateral concept related variables are not
revealed, the above examples belong to Type 2 methods.

2.1.4. Type 3 methods with non-dynamic and interactive Re-OPF
Type 3 methods are characterized by non-dynamic and interactive

Re-OPF (i.e., one-time Re-OPF where qualitative objectives are con-
sidered, and/or, lateral concept related variables are revealed). The
need of allowing such Re-OPF has been recognized in the building in-
dustry. According to Cichocka et al.'s survey among architects [60],
91% of the surveyed architects would like to influence optimization
outcomes by subjectively selecting promising designs, which indicates

that human-in-the-loop methods seem appropriate in architectural de-
sign optimization. Brintrup et al. [61] claimed that a flexible optimi-
zation framework should be able to handle changing definitions of
qualitative and quantitative criteria, constraints and criteria pre-
ferences. Mueller and Ochsendorf [62] stated that an ideal computa-
tional approach should expose designers to a diverse range of alter-
natives that may inspire new (quantitative and qualitative) goals or
spark new (vertical and lateral) ideas.

Type 3 methods include “interactive evolutionary computation
(IEC)” - a class of human-in-the-loop methods [63], although it is not
often applied in conceptual architectural design. IEC relies on human
subjectivity to evaluate qualitative performances that are normally
difficult to be quantified explicitly [63]. For instance, human designers
can quickly capture the value or beauty of buildings via observing their
images [64,65]. IEC also promotes Re-OPF, it is extremely versatile in
handling changing definitions of qualitative objectives as there is no
need to hard-code qualitative influences [61]. Brintrup et al.'s example
[61], Mueller and Ochsendorf's example [62], and Turrin et al.'s ex-
ample [66] are among typical applications of IEC in conceptual archi-
tectural and structural design. In each of these examples, first, a single-
objective optimization involving one quantitative objective was run;
then, human designers were asked to subjectively evaluate qualitative
performances of the obtained designs and select preferred designs for
further optimization. In a certain circumstance (i.e., if there is no fur-
ther optimization), the original optimization problem can be seen as
being re-formulated once by adding a qualitative objective. Differently,
Barnum and Mattson's example [67] showed a “reverse” method: first, a
single-objective optimization involving one qualitative objective was
run based on human subjective evaluation, in order to generate a
quantitative preference-based model; then, a MOO problem was for-
mulated by adding quantitative objectives, and thus run by using the
preference-based model and other physics-based models. Moreover,
instead of running optimization first, Yang et al.'s example [33] started
with conducting a computational design exploration over a set of broad
design samples preselected from the initial design space, with respect to
the initial quantitative and qualitative objectives. During the explora-
tion, numeric simulation was performed; quantitative and qualitative
information were extracted via computational objective analysis of
quantitative data and human subjective evaluation of qualitative data
respectively; then, the two kinds of information were combined, in
order to obtain comprehensive knowledge needed for re-formulating

Fig. 3. Classification of SBMOO methods, according to whether or not Re-OPF is dynamic and interactive.
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the initial MOO problem. Finally, optimization was run based on a re-
formulated MOO problem. Given that objectives and/or design vari-
ables are re-formulated once, qualitative objectives are considered, the
above examples belong to Type 3 methods.

2.1.5. Type 4 methods with dynamic and interactive Re-OPF
Type 4 methods are characterized by dynamic and interactive Re-

OPF (i.e., multiple-time Re-OPF where qualitative objectives are con-
sidered, and/or, lateral concept related variables are revealed). The
need of allowing such Re-OPF is seldom recognized in the building
industry. Newton [37] identified major limitations of current MOO
methods for architectural design, that is, the current methods do not
accommodate flexible open-ended iterative design processes where
design and objective spaces may change dynamically; they are not
designed for finding novel and diverse designs; and they do not bring
the designer into the loop in ways that stimulate the designer to be
more creative. Actually, the first limitation indicates the need of dy-
namic Re-OPF, while the last two limitations indicate the need of in-
teractive Re-OPF. Janssen [68] believed that it is helpful to have an
adaptive - iterative design process which allows defining and re-de-
fining a design search space, and thus shifting the boundaries of the
space dynamically. Yang et al. [33] mentioned that the boundary
shifting via “variable adding” should be encouraged in conceptual ar-
chitectural design exploration, especially adding lateral concept related
variables for more creative designs.

Type 4 methods have very few examples in relation to conceptual
architectural design. Newton [37], Kaushik and Janssen [69] provide
two valuable ones. In both examples, it is through dynamic and inter-
active Re-OPF phases that the design processes were driven forward,
making the designs more complex and less abstract progressively. The
dynamic and interactive Re-OPF phases are realized in different ways.
In Newton's example, quantitative and qualitative objectives were
added and/or removed two times, lateral concept related variables
were added also two times; human designers are involved for handling
qualitative objectives and devising lateral concept related variables. In
Kaushik and Janssen's example, quantitative objectives were added
once, lateral concept related variables were added and/or removed
three times; human designers are involved for devising lateral concept
related variables. Given that objectives and/or design variables are re-
formulated multiple times, qualitative objectives are considered, and/
or, lateral concept related variables are revealed, the above examples
belong to Type 4 methods.

2.1.6. Gaps in SBMOO methods
In sum, there are a small number of SBMOO methods which focus

on Re-OPF. Most of them do not allow dynamic Re-OPF and interactive
Re-OPF simultaneously (i.e., Type 1, Type 2 and Type 3 methods). Only
two of them allow dynamic and interactive Re-OPF to varying degrees
(i.e., Type 4 methods). Although the two methods may have not been
fully explored in some aspects, they do indicate the value of dynamic
and interactive Re-OPF for conceptual architectural design exploration.
Therefore, a SBMOO method which builds in a dynamic and interactive
Re-OPF phase is suggested in this study, as elaborated in Section 3.

2.2. Review of SBMOO techniques and tools

This section reviews SBMOO tools each of which can be used to
implement six predefined kinds of techniques, as shown in Table 2. In
this study, a SBMOO tool refers to a combined software system con-
sisting of individual software programs and/or customized tools. Re-
viewing these tools relates to their capabilities of supporting techniques
needed for SBMOO methods which focus on Re-OPF. Such capabilities
have been partially demonstrated in [33]. In this section, first, six kinds
of techniques are introduced (in Section 2.2.1); then, examples of tools
capable of supporting six kinds of techniques are presented (in Section
2.2.2); finally, related gaps are identified (in Section 2.2.3).

2.2.1. Six kinds of techniques
The tools under consideration can facilitate users to implement the

following six kinds of techniques: geometric parametric modelling,
multi-disciplinary simulation modelling, MOO, DoE sampling, quanti-
tative data analysis, and qualitative data visualization. These kinds of
techniques are used as relevant dimensions, based on which specific
characteristics of the tools are presented. It should be clarified that tools
supporting “non-geometric” parametric modelling and “mono-dis-
ciplinary” simulation modelling (e.g., MultiOpt [70], IDA-ICE+MA-
TLAB [71], jEPlus+EA [72,73], MOBO [74], etc.) are out of scope of
this review, as they are more suitable for late stages of detailed en-
gineering design, rather than conceptual architectural design.

2.2.2. Tools capable of supporting the six kinds of techniques
The tools capable of supporting the above six kinds of techniques

include early and recent generative design systems. In order to guide
the readers to understand the authors' choice of the tool for this study,
specific characteristics of these systems are presented below, based on
the aforementioned six dimensions.

• Geometric parametric modelling
The reviewed systems may utilize different kinds of geometric

parametric modelling techniques. Some systems apply non-visual pro-
gramming, such as, a text-based programming language (as in [75–79],
[80,81], [82,83]), a BIM technique (as in [84], [85,86]), or, a fast
modelling technique (as in [87]). The other systems apply visual pro-
gramming, such as, a visual programming language (as in [68,88,89],
[90,91], [92,93], [94–97], [98], [33,47]).

• Multi-disciplinary simulation modelling
The reviewed systems may utilize different kinds of multi-dis-

ciplinary simulation modelling techniques with different integration
capabilities. Some systems integrate only two kinds of simulations or
calculations belonging to two disciplines (as in [75–79], [80,81],
[82,83], [84], [85,86]). The other systems integrate more kinds of si-
mulations or calculations belonging to more disciplines (as in [87],
especially in [68,88,89], [90,91], [92,93], [94–97], [98], [33,47]).

• MOO
The reviewed systems may utilize different kinds of MOO algo-

rithms based on different user interfaces. Some systems apply a MOO
algorithm based on text-based user interfaces (as in [75–79], [80,81],
[82,83]), or, user-friendly graphical user interfaces (as in [84], [85,86],
[87], [90,91], [94–97]). The other systems have multiple advanced
MOO algorithms to choose from based on user-friendly graphical user
interfaces (as in [68,88,89], [92,93], especially in [98], [33,47]).

• DoE sampling

The reviewed systems may utilize different kinds of DoE sampling
algorithms. Some systems apply a simple random sampling algorithm
(as in [75–79], [80,81], [82,83], [84], [85,86], [68,88,89], [90,91],
[92,93], [94–97]). The other systems have multiple advanced sampling
algorithms to choose from (as in [87], especially in [98], [33,47]).

• Quantitative data analysis
The reviewed systems may utilize different kinds of quantitative

data analysis techniques. Some systems apply only trade-off analysis (as
in [75–79], [80,81], [82,83], [84], [85,86], [68,88,89], [90,91],
[92,93]). The other systems have richer data analysis techniques to
choose from (as in [87], [94–97], especially in [98], [33,47]).
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• Qualitative data visualization
The reviewed systems may utilize different kinds of qualitative data

visualization techniques. Some systems apply separated visualization -
showing 3D geometries and numeric data separately (as in [75–79],
[80,84], [85,86], [87], [68,88,89]). The other systems apply combined
visualization - showing 3D geometries and numeric data side-by-side
simultaneously (as in [81], [82,83], [90,91], [92,93], [94–97], [98],
[33,47]).

To facilitate the implementation of SBMOO methods which focus on
Re-OPF, visual programming, broad simulation integration, advanced
MOO algorithms, advanced sampling algorithms, rich data analysis,
and combined visualization are all desired. Among these techniques,
visual programming and rich data analysis are considered particularly
important, due to the following facts. Visual programming can make
geometric parametric modelling more user friendly for architects (many
of whom may not have knowledge of text-based programming). Rich
data analysis can serve as a major support for extracting information
used for Re-OPF. In addition, the remaining techniques are also useful
in other respects, for instance, in covering a wider range of performance
requirements, improving search and sampling efficiency, and synthe-
sizing information extracted from 3D geometries and numeric data.

Given the particular importance of visual programming and rich
data analysis, tools to be used for this study should score high first on
these two dimensions, while advantages on the other dimensions are
also welcomed. Among the tools reviewed, generative design systems
used in [98], [33,47] have relative advantages in the two important
dimensions, as well as in the remaining dimensions. Thus, they are
deemed more promising options for this study.

2.2.3. Gaps in SBMOO techniques and tools
In sum, visual programming and rich data analysis are particularly

important techniques for supporting SBMOO methods which focus on
Re-OPF; thus, the GH-MF system [33,47] which has relative advantages
in these two techniques, is adopted as a promising option for this study.
These two techniques face some challenges, for instance, visual pro-
gramming requires proper flexibility of parametric models [99], rich
data analysis requires proper use of analysis techniques. Besides, the
GH-MF system needs more usability testing. To handle these challenges,
some general solutions based on the GH-MF system have been sug-
gested in a precedent study [33], but they are used for supporting a
SBMOO method which involves non-dynamic Re-OPF. In contrast, some
new and some previous solutions based on the GH-MF system are
adopted in this study, so as to support a SBMOO method which involves
dynamic Re-OPF. These solutions (i.e., techniques) and the GH-MF
system adopted are elaborated in Section 4 and Section 5, respectively.

3. Proposed method

This section describes the overall procedure of the proposed method
(in Section 3.1), and unfolds the dynamic and interactive Re-OPF phase
(in Section 3.2).

3.1. The overall procedure

As shown in Fig. 4, the overall procedure of the proposed method
consists of three phases: Initial-OPF, dynamic and interactive Re-OPF,
OPS. These phases are respectively responsible for: formulating an in-
itial MOO model; re-formulating previous MOO models; and solving a
final re-formulated MOO model. The main innovation of the proposed
method is the dynamic and interactive Re-OPF phase introduced be-
tween the Initial-OPF and OPS phases. Such Re-OPF phase is crucial for
achieving a right or more realistic MOO problem and model before
solving them. In the three phases of the overall procedure, several
groups of actions (i.e., Action A-G) are appropriately arranged, as
shown in Fig. 4 and described below.Ta
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• Initial-OPF (Action A, B)
In initial idea generation (Action A), designers start with brain-

storming ideas about initial formulation of an MOO problem (e.g.,
thoughts or suggestions about meaningful performance measures and
objectives, promising design concepts and variables etc.). There can be
multiple lateral concepts that are considered simultaneously, given the
emphasis of divergent exploration.

In MOO model initial-formulation (Action B), an initial parametric
geometry model and simulation models are created based on the initial
ideas. Then, these models are integrated, to formulate an initial para-
metric geometry-simulation model which includes an initial set of ob-
jectives, constraints, and design variables (i.e., an initial MOO model).

• Re-OPF (Action C, D, E)

In data generation (Action C), a large set of samples are selected
from the initial (or latest) design space, and used as a representation of
the design space for exploring performance trends over the entire space.
Based on the initial (or latest) parametric geometry-simulation model,
the samples' 3D geometries are generated and their numerical simula-
tions are run automatically. This automation is conducted in a se-
quential manner. Then, qualitative data sets (i.e., 3D geometries) and
quantitative data sets (i.e., numeric design values, numerical simulation
results) of all selected samples are collected.

In information and knowledge extraction (Action D), the quantita-
tive data sets are analyzed and interpreted to acquire quantitative in-
formation; and the qualitative data sets are visualized to acquire qua-
litative information. Then, the two kinds of information are
synthesized, to acquire comprehensive new knowledge about which
performance measures and objectives, design concepts and variables
can be added and/or removed.

In MOO model re-formulation (Action E), the initial (or latest)
parametric geometry model and simulation models are modified based

on the new knowledge. Then, the modified models are integrated, to
formulate a new parametric geometry-simulation model which includes
a new set of objectives, constraints, and design variables (i.e., a new
MOO model).

At this point, designers can decide either to continue Re-OPF by
iterating through the above three groups of actions (Action C, D, E), or
to enter OPS. After the last Re-OPF iteration, a final parametric geo-
metry-simulation model which includes a final set of objectives, con-
straints, and design variables (i.e., a final MOO model) is ready for use
in the consequent OPS.

• OPS (Action F, G)

In optimization run (Action F), a small set of samples are selected
from the final design space (specifically from final promising samples),
and used as an initial population for searching optimal solutions within
the design space. Based on the final parametric geometry-simulation
model, searched solutions' 3D geometries are generated and their nu-
merical simulations are run automatically. This automation is guided by
an optimization algorithm. Then, qualitative and quantitative data sets
of all searched solutions are collected.

In optimization result interpretation (Action G), the qualitative and
quantitative data sets of optimal solutions are compared and inter-
preted, in order to acquire desired information and knowledge about
the optimal solutions (e.g., trade-off relations etc.).

To sum up, the above actions are not arranged in a fixed and fully
automated manner; instead, their arrangement provides necessary
flexibility for the procedure to accommodate different needs. The
flexibility is largely derived from the dynamic and interactive Re-OPF
phase; thus, it is worth further understanding the mechanism of this
particular phase, as elaborated in the next section.

Fig. 4. The overall procedure of the proposed method. The dark gray, light gray, and white boxes show groups of actions mainly relying on computers, human-
computer collaboration, and humans, respectively.
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3.2. The Re-OPF phase

As shown in Fig. 4, the Re-OPF phase consists of three groups of
looped actions: data generation (Action C); information and knowledge
extraction (Action D); and MOO model re-formulation (Action E). The
Re-OPF phase has two characteristics: a dynamic Re-OPF characteristic
- the above three groups of actions (Action C, D, E) are iterated in an
open-ended manner; and, an interactive Re-OPF characteristic - the
above three groups of actions (Action C, D, E) are performed by
leveraging human capability and computation power in a collaborative
manner.

The Re-OPF phase is flexible in, at least, two senses. It allows de-
signers to include different numbers of Re-OPF iterations (within
available time), and to perform actions of the same group in different
ways (according to the desired extent of divergent exploration). In
short, designers are allowed to customize the procedure of the Re-OPF
phase with due flexibility. Here, a possible example of the Re-OPF
phase (Fig. 5) is customized and used to explain the procedure. In this
example, the Re-OPF phase is unfolded to include three iterations; ac-
tions of the same group (Action C1, C2, C3; Action D1, D2, D3; Action
E1, E2, E3) are performed differently across the iterations, as shown in
Fig. 5 and described below.

• The first Re-OPF iteration (Action C1, D1, E1)

In data generation (Action C1), data is generated based on the initial
MOO model. In information and knowledge extraction (Action D1),

three kinds of quantitative information are extracted, helping to extract
three kinds of corresponding knowledge: “what are meaningful per-
formance measures, what are promising existing concepts, and what are
promising new concepts?”. In MOO model re-formulation (Action E1),
the extracted knowledge suggests to conduct quantitative measure re-
duction, qualitative measure addition, convergent concept selection,
and divergent concept generation. By doing so, the first re-formulated
MOO model is derived for the next Re-OPF iteration.

• The second Re-OPF iteration (Action C2, D2, E2)

In data generation (Action C2), data is generated based on the first
re-formulated MOO model. In information and knowledge extraction
(Action D2), one kind of quantitative information is extracted, helping
to extract one kind of corresponding knowledge: “what are promising
new concepts, other than previous ones?”. In MOO model re-formula-
tion (Action E2), the extracted knowledge suggests to conduct divergent
concept generation. By doing so, the second re-formulated MOO model
is derived for the next Re-OPF iteration.

• The third Re-OPF iteration (Action C3, D3, E3)

In data generation (Action C3), data is generated based on the
second re-formulated MOO model. In information and knowledge ex-
traction (Action D3), one kind of quantitative information is extracted,
helping to extract one kind of corresponding knowledge: “what are
promising existing concepts, among all explored ones?”. In MOO model

Fig. 5. A possible example of the Re-OPF phase which is unfolded to include three iterations.

D. Yang, et al. Automation in Construction 118 (2020) 103251

11



re-formulation (Action E3), the extracted knowledge suggests to con-
duct convergent concept selection. By doing so, the third re-formulated
MOO model is derived for the consequent OPS.

To sum up, information and knowledge extraction (Action D1, D2,
D3) can be seen as a crucial learning process where designers can im-
prove their understanding on MOO problems. They can link data gen-
eration (Action C1, C2, C3) and MOO model re-formulation (Action E1,
E2, E3), by converting raw data into useful knowledge based on human-
computer collaboration (Fig. 6). Computers are responsible for quan-
titative information extraction; humans are responsible for quantitative
information interpretation, qualitative information extraction, and in-
formation synthesis.

Data generation is the basis of information and knowledge extrac-
tion. In the above example, three sets of diverse design samples selected
using sampling algorithms are used for generating performance data,
rather than three sets of less diverse solutions searched or selected using
optimization algorithms. This is mainly because the use of diverse de-
sign samples is in accordance with the emphasis of this paper - di-
vergent exploration. Nevertheless, it is also possible to use optimization
algorithms for data generation in other cases where divergent ex-
ploration is not so much emphasized.

MOO model re-formulation is the result of information and knowl-
edge extraction. In the above example, the extracted knowledge sug-
gests to conduct MOO model re-formulation in different ways for dif-
ferent Re-OPF iterations. Overall, divergent concept generation is
emphasized here, which is conducted in the first and second Re-OPF
iterations. If designers want to emphasize divergent concept generation
at a higher level, they can increase the number of Re-OPF iterations
involving it.

Table 3 shows actions of the Re-OPF phase (discussed in Section 3),
adopted computational techniques and software tools (to be discussed
in Section 4 and Section 5 respectively).

4. Computational techniques

This section provides more details on the adopted computational
techniques. The techniques are used to implement the actions of the Re-
OPF phase, as shown in Table 3. They are classified into three groups:

techniques for data generation (in Section 4.1); techniques for in-
formation and knowledge extraction (in Section 4.2); and techniques
for MOO model re-formulation (in Section 4.3).

4.1. Techniques for data generation

DoE sampling and tool integration techniques are used to imple-
ment data generation. In particular, uniform Latin hypercube sampling
[100] as a DoE sampling technique (in Section 4.1.1) and custom
system-to-system integration [101] as a tool integration technique (in
Section 4.1.2), are respectively useful for selecting samples, automating
geometry generation and simulation run.

4.1.1. DoE sampling: uniform Latin hypercube sampling
DoE sampling can help to get the maximum amount of information

using the minimum amount of resources (i.e., a lower number of
samples) [41,102]; thus, it is used to guide the choice of samples. The
chosen samples represent an entire design space, in order to explore
performance trends over the entire spectrum of the design space [98].
DoE sampling differs from an optimization technique, as it selects
samples in a one-time manner before running all simulations, rather
than selecting a small portion of samples at a time depending on si-
mulation results of previous samples.

Uniform Latin hypercube sampling is a particular DoE sampling
technique. It guarantees the lowest correlation between each pair of
design variables and the highest uniform distribution [103]. Thus,
samples well representing the entire design space can be selected using
uniform Latin hypercube sampling.

4.1.2. Tool integration: custom system-to-system integration
Tool integration here not only refers to tool interoperability but also

tool automation; thus, it is used to automate geometry generation and
simulation run. Tool integration (automation) is an important requisite
for working in a multidisciplinary design optimization framework
[104]. It avoids users to click icons and enter data manually to perform
tasks (e.g., geometry generation and simulation run) using graphic user
interface [104]. In other words, it automates data flows between in-
terconnected computer-aided design and computer-aided engineering

Fig. 6. Information and knowledge extraction relying on human-computer collaboration.
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tools.
Custom system-to-system integration is a particular tool integration

technique. It links generation, evaluation and selection tools in the
same environment, usually for early design stages [101]. Typically, the
generation and evaluation tools can be parametric design environments
and their built-in simulation plug-ins; the selection tools can be process
automation and optimization platforms. Thus, automated geometry
generation and simulation run can be achieved using custom system-to-
system integration.

4.2. Techniques for information and knowledge extraction

Quantitative data analysis and qualitative data visualization tech-
niques are used to implement information and knowledge extraction. In
particular, Self-Organizing Map (SOM) [105] as a correlation analysis
technique (in Section 4.2.1), Hierarchical Clustering (HC) [106] as a
cluster analysis technique (in Section 4.2.2), and box-whisker plots
[102] as a technique to show summary statistics, are useful for ex-
tracting quantitative information. Combined visualization as a tech-
nique to simultaneously visualize numeric and non-numeric data, is
especially useful for synthesizing quantitative and qualitative in-
formation. In practice, SOM and HC are relatively unfamiliar to de-
signers, while box-whisker plots and combined visualization are more
often used or easier to understand. Thus, the former two techniques are
the focus of this section, rather than the latter ones.

4.2.1. Correlation analysis: self-organizing map
Correlation analysis can measure the strength of association be-

tween two variables and the direction of the relationship [42]; thus, it is
used to extract “correlation between each pair of quantitative perfor-
mance measures”. Knowing such correlation and optimization goals of

the measures (i.e., maximization or minimization), can help to identify
meaningful quantitative performance measures from among possible
ones. When two measures are positively and strongly correlated and
their optimization goals are the same, or, when two measures are ne-
gatively and strongly correlated and their optimization goals are op-
posite, there are probably no meaningful trade-off relations between
the two objectives. Thus, one of the measures can be considered as
meaningful and kept, while the other one can be removed or treated as
a constraint.

Self-organizing map is a particular correlation analysis technique. It
is essentially an unsupervised neural network for ordering of high-di-
mensional data in such a way that similar data are grouped spatially
close to one another [106]. Concisely, it is a dimensionality reduction
method which can map multi-dimensional data into a two-dimensional
space. It can be used to hunt for correlations [107,108], given the easy
visualization and interpretation [109,110], as shown in Fig. 7 and de-
scribed below.

As shown in Fig. 7 (left), a SOM (represented by a honeycomb-like
diagram) is generated using a training data set and a learning algo-
rithm. The training data set (marked by gray dots in the multi-dimen-
sional data space) has quantitative performance measures as its di-
mensions (denoted by X, Y, Z). The learning algorithm is applied on the
data set, in order to train prototype vectors (marked by black dots in the
multi-dimensional data space). The prototype vectors' distribution ap-
proximates the probability density function of the training data [110];
each prototype vector corresponds to a group of similar training data.
The obtained prototype vectors are projected onto a two-dimensional
data space, forming a SOM.

As shown in Fig. 7 (right), the SOM of each quantitative perfor-
mance measure is visualized and interpreted via a SOM plane. In the
SOM plane, SOM units are colored according to related values of the

Table 3
Actions of the Re-OPF phase, computational techniques (used to implement the actions), and software tools (used to implement the techniques). Note: “*” marks
techniques which are focused in Section 4.

Actions of the Re-OPF phase (Section 3) Computational techniques (Section 4) Software tools (Section 5)

Types of actions Specific actions Types of techniques Specific techniques Types of tools Specific tools

Data generation
(Action C)

Sample selection DoE sampling Uniform Latin hypercube
sampling *

Grasshopper (GH)
modeFRONTIER (MF)

GH's slider components
MF's DoE node

Automated geometry generation
Automated simulation run

Tool integration Custom system-to-system
integration *

GH's API
MF's myNODE tool

Information and knowledge
extraction
(Action D)

Quantitative information extraction
1) extracting correlation between
each pair of quantitative performance
measures
2) extracting clusters of design
samples with similar quantitative
performances
3) extracting quantitative
performance distribution of existing
concepts

Quantitative data
analysis
1) correlation analysis
2) cluster analysis
3) summary statistics

Self-Organizing Map
(SOM) *

modeFRONTIER (MF) MF's multivariate analysis
tool
(i.e., SOM creation tool)

Hierarchical Clustering
(HC) *

MF's multivariate analysis
tool
(i.e., HC creation tool)

Box-whisker plot MF's distribution analysis
chart

Quantitative information
interpretation
Qualitative information extraction
Quantitative and qualitative
information synthesis

Qualitative data
visualization

Combined visualization MF's run analysis interface
(i.e., customizable
visualization GUIs)

MOO model re-formulation
(Action E)

Parametric geometry model
modification

Geometric parametric
modelling

Hierarchical variable
structure *

Grasshopper (GH) GH's Python script editor

Modular programming * GH's group and cluster
features

Simulation model modification
Geometry-simulation model
integration

Multi-disciplinary
simulation modelling

Integrated dynamic
models

GH's simulation plug-ins
(e.g., Ladybug and
Honeybee)
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prototype vectors; the color scale runs from blue (i.e., low values) to red
(i.e., high values). SOM planes for all measures are ordered on a large
hexagonal grid, based on correlations between the measures. The more
similar the color patterns and the closer the positions of the SOM
planes, the stronger the correlations between the measures (e.g., Y and
Z are positively and strongly correlated; X and Y are negatively and
weakly correlated). This kind of pattern matching is something that
human eye is very good at [108]. Moreover, arrows on top of SOM
planes show the optimization goals of the measures. The arrows
pointing from blue to red (i.e., from a low-value area to a high-value
area) represent maximization goals; while the arrows with opposite
directions represent minimization goals (e.g., X, Y, Z are all mini-
mization goals). Overall, by observing the color patterns and arrows,
correlations between each pair of quantitative performance measures
and optimization goals of the measures can be easily understood,
helping to identify meaningful quantitative performance measures.

4.2.2. Cluster analysis: hierarchical clustering
Cluster analysis can identify homogeneous clusters of samples in a

source data set based on measured characteristics [102,106]; thus, it is
used to extract “clusters of design samples with similar quantitative
performances”. Knowing such clusters, can help to identify quantita-
tively high-performing concepts from among existing ones. When a
concept contains a relatively large number of samples belonging to
quantitatively high-performing clusters, or in other words, when
quantitatively high-performing clusters of samples mostly belong to a
concept, this concept is more likely to produce desired solutions. Thus,
this concept can be considered as quantitatively high-performing and
kept for further exploration.

Hierarchical clustering is a particular cluster analysis technique. It is
actually a versatile kind of approaches to clustering data, which pro-
duces a nested series of partitions rather than only one partition [43].
Concisely, it is a method to provide refined views to the inherent
structure of the data. It can be used to group a large amount of data into
manageable and meaningful clusters based on similarity, as shown in

Fig. 8 and described below.
As shown in Fig. 8 (left), clusters (represented by a tree-like diagram

called dendrogram) are generated using a source data set and a clus-
tering algorithm. The source data set not only has quantitative perfor-
mance measures (e.g., X, Y, Z) but also a high-level design variable
(e.g., called “concept”, to be mentioned in Section 4.3.1) as its di-
mensions. This facilitates to achieve clusters of design samples which
have similar quantitative performances and belong to the same concept.
The clustering algorithm specifies a linking method for building clus-
ters. Based on the linking method, samples are merged, thus creating
nested clusters (i.e., larger clusters created at later stages contain
smaller clusters created at earlier stages) [106]. The dendrogram re-
presenting the nested clusters allows users to determine the number of
clusters to be applied to the source data set. The number of intersections
between the dash line and the dendrogram shows the number of clus-
ters applied.

As shown in Fig. 8 (right), the clusters applied are visualized and
interpreted using a clustering parallel coordinate chart. The chart cre-
ates a colored band for each of the clusters. In the colored band, the
intersections between the thick center polyline and the parallel vertical
lines represent the means of the quantitative performance measures and
the high-level design variable; the band width represents the confidence
intervals of the means. The green cluster consists of design samples
from concept 1 and 2, as the mean of the high-level design variable
“concept” is between 1 and 2. Arrows along the vertical lines of the
quantitative performance measures reflect human preference on re-
lative importance of the measures. The closer an arrow reaches the
desired bound of the measure, the more important the measure is.
Overall, by “pushing” the arrows to desired directions in desired ex-
tents, clusters of design samples with high quantitative performances
can be quickly found, helping to identify quantitatively high-per-
forming concepts.

Fig. 7. Self-Organizing Map (SOM), revised from [110]. SOM generation (left); SOM visualization and interpretation (right). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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4.3. Techniques for MOO model re-formulation

Geometric parametric modelling, multi-disciplinary simulation
modelling techniques are used to implement MOO model re-formula-
tion. In particular, hierarchical variable structure [111] (in Section
4.3.1) and modular programming [112,113] (in Section 4.3.2) as geo-
metric parametric modelling techniques, are useful for modifying
parametric geometry models in a more flexible manner. Integrated
dynamic model [5] as a multi-disciplinary simulation modelling tech-
nique, is useful for modifying simulation models and integrating geo-
metry-simulation models. In practice, hierarchical variable structure
and modular programming are relatively unfamiliar to designers, while
integrated dynamic model (i.e., a combination of a design tool, a visual
programming language and building performance simulation tools [5])
has become often used. Thus, the former two techniques are the focus of
this section, rather than the latter one.

4.3.1. Geometric parametric modelling: hierarchical variable structure
Geometric parametric modelling should be used in a flexible way

which allows the inclusion of different sets of lateral concept related
variables in a parametric model. This flexibility is especially meaningful
when many lateral geometric concepts need to be considered para-
metrically, as in this paper.

Hierarchical variable structure is a particular parametric modelling
technique that can help to realize such flexibility. It often exists in
product design in which a number of substructures and parts are hier-
archically assembled into a larger system [111]. In this context, design
variables may be from different levels of the hierarchy; and naturally,
they are organized using a hierarchical structure, rather than a flat, one-
dimensional array structure. This hierarchical structure consists of
high-level and low-level variables. The values of high-level variables
determine the selection of low-level variables; thus, the dimensionality
of the resulting design space is changeable.

In this study, a two-level hierarchical variable structure is used, as
shown in Fig. 9 (top left and bottom). The high-level variable (i.e., input

variable 0, called “concept”) represents the type of design concepts; the
low-level design variables (i.e., the remaining input variables) include
those necessary to define the concepts.

4.3.2. Geometric parametric modelling: modular programming
Geometric parametric modelling should be used in a flexible way

which facilitates the modification of parametric schemata for different
lateral concepts. This flexibility is especially meaningful when many
lateral geometric concepts need to be considered parametrically, as in
this paper.

Modular programming is a particular parametric modelling tech-
nique that can help to realize such flexibility. It structures parametric
schemata into modules. As defined in [112], a module in a dataflow
programming language is a sequence of program instructions bounded
by an entry and exit point, which performs a particular task. The entry
point(s) collects data the module requires; the exit point(s) returns data
the module produces; and the program instructions in between can be
evoked by passing data through the module. According to [113],
parametric schemata structured with modular programming principles
are consistently better understood, particularly when the parametric
model is complex and used in a collaborative environment.

In this study, the parametric schemata are structured into geometry
generation modules and performance simulation modules, as shown in
Fig. 9 (top middle and top right). Each geometry generation module
corresponds to a group of geometric variations belonging to a particular
design concept; each performance simulation module corresponds to a
particular type of simulation.

5. Software tools

This section provides more details on the adopted software tools.
The tools are used to implement the techniques needed for the Re-OPF
phase, as shown in Table 3. The purposes of choosing the tools are
introduced (in Section 5.1), and the integration of the tools is described
(in Section 5.2).

Fig. 8. Hierarchical Clustering (HC), revised from [43]. Cluster generation (left); cluster visualization and interpretation (right). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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5.1. Choice of Grasshopper and modeFRONTIER

McNeel's Grasshopper [45], is a visual programming environment
for the 3D modeler Rhinoceros. It is the most popular parametric design
tool among architectural design professionals, due to its intuitive way
of exploring geometries without having to know scripting [60]. Grass-
hopper and its plug-ins are chosen to implement geometric parametric
modelling, multi-disciplinary simulation modelling techniques (men-
tioned in Section 4.3). Specifically, hierarchical variable structure and
modular programming can be implemented using Grasshopper's Python
script editor, group and cluster features, respectively; integrated dy-
namic model can be implemented using Grasshopper's simulation plug-
ins (e.g., Ladybug and Honeybee [114] for linking simulation engines
Daysim [115] and EnergyPlus [116]).

ESTECO's modeFRONTIER [46], is a process automation and opti-
mization platform. It is an often-used multi-disciplinary engineering
design exploration tool. modeFRONTIER is chosen to implement
quantitative data analysis and qualitative data visualization techniques
(mentioned in Section 4.2). Specifically, self-organizing map and hier-
archical clustering can be implemented using modeFRONTIER's multi-
variate analysis tools; box-whisker plots can be implemented using
modeFRONTIER's distribution analysis chart; combined visualization
can be implemented using modeFRONTIER's run analysis interface.

Grasshopper and modeFRONTIER are chosen also for their cap-
abilities of supporting DoE sampling and tool integration techniques
(mentioned in Section 4.1). Specifically, uniform Latin hypercube
sampling can be implemented using modeFRONTIER's DoE node and
Grasshopper's slider components; custom system-to-system integration
can be implemented using modeFRONTIER's myNODE tool and Grass-
hopper's API.

It is worth noting that Grasshopper and modeFRONTIER are not the
only choices for supporting the aforementioned techniques. Other vi-
sual programming environments that could be chosen include Bentley's
GenerativeComponents [117], Autodesk's Dynamo Studio [118], Gehry
Technologies' Digital Project [119], Sidefx’ Houdini [120], etc. Other
process automation and optimization platforms that could be chosen

include Phoenix Integration's ModelCenter [121] etc. The combination
of Grasshopper and modeFRONTIER is one available option among
others, which is adopted in this study.

5.2. Integration of Grasshopper and modeFRONTIER

The chosen tools Grasshopper and modeFRONTIER need to be in-
tegrated, in order to form a promising SBMOO tool GH-MF. In fact, the
GH-MF integration (Fig. 10) is a form of custom system-to-system in-
tegration, and facilitates the implementation of other related techni-
ques. It refers to the interoperability and automation between GH and
MF, as shown in Fig. 10. In such integration, data exchange between GH
and MF is automated. That is, modeFRONTIER automatically sends
numeric input data to drive geometry generation and simulation run;
and, Grasshopper automatically returns numeric output data to initiate
the next iteration. This automatic data exchange repeats for all pre-
selected samples. All the data, including numeric and non-numeric
data, are stored in a database for later analysis and visualization.

The GH-MF integration is realized through a “GH-MF node”. The
GH-MF node is a custom integration plug-in for modeFRONTIER, which
is developed using modeFRONTIER's myNODE tool and Grasshopper's
API. Specifically, the myNODE tool packages integration scripts into a
myNODE file that can be installed in modeFRONTIER; once installed,
the GH-MF node is created. There are different versions of the GH-MF
node, which have been applied in previous studies [33,47,122,123].
The version used in this study is updated, and the same as that in [33].
Compared to the older versions in [47,122,123], this updated version
can significantly streamline the integration process and has more ad-
vantages. Specifically, through the use of Grasshopper's API, the up-
dated GH-MF node can automatically recognize and propagate input
and output variables from GH to MF; and, it enables direct data ex-
change between GH and MF, without the need to specify external
templates. Moreover, the updated GH-MF node enables one-click in-
itiation of simulation run, rather than sequential clicking in both GH
and MF (which may cause connection issues); and, it improves the
stability of simulation run by calling and closing Grasshopper and

Fig. 9. The overall structure of parametric schemata. A two-level hierarchical variable structure (top left); geometry generation modules (top middle); performance
simulation modules (top right); Python scripting for the hierarchical variable structure (bottom). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Rhinoceros automatically for each iteration, rather than keeping them
always alive (which may increase the risk of crashing).

6. Case study

This section presents a case study used to verify the capability of the
proposed method and examine the usability of the techniques and tools.
The case study is about the conceptual design of the top-daylighting
system of a 40m × 70m × 15m indoor sports hall. It is carried out
according to the overall procedure of the proposed method (Fig. 4) in
which the Re-OPF phase includes three iterations (Fig. 5). First, the
initial-OPF phase is described (in Section 6.1), where the initial MOO
model is formulated. Then, three Re-OPF iterations are followed (in
Section 6.2, 6.3 and 6.4 respectively), where previous MOO models are
re-formulated. Last, the OPS phase is presented (in Section 6.5), where
optimizations are conducted based on final re-formulated MOO models.
Note that, in each Re-OPF iteration, the information and knowledge
extraction (Fig. 6) are focused, given their importance.

6.1. Initial-OPF (Action A, B)

6.1.1. Initial idea generation (Action A)
Top daylighting is an effective way of bringing natural lights deep

into buildings; thus, it is often used in large space like indoor sports
halls. The initial idea of this case is to divergently explore the geome-
tries of three typical types of top-daylighting concepts, in order to fulfill
daylight, energy, cost and aesthetic performance requirements. Based
on this idea, the initial MOO model is formulated as below.

6.1.2. MOO model initial-formulation (Action B)

• Initial design concepts and variables

Three typical types of top-daylighting concepts are considered as
initial concepts, as shown in Fig. 11 (top). They are: Concept 1_0 (i.e.,
skylights), Concept 2_0 (i.e., roof monitors), Concept 3_0 (i.e., saw-
tooth roofs) [48]. The initial variables for these concepts are organized
in a two-level variable structure. A high-level variable is used to re-
present the type of the concepts; and, three different sets of low-level
variables are used to define the geometries of the concepts. That is,
when the value of the high-level variable “concept” is given, a parti-
cular set of low-level variables is chosen automatically to define the
geometries of the given concept. A parametric geometry model is

created using these initial variables.
In this paper, the focus is not on highlighting the complexity of

geometries, but rather on showing how to continually enrich multiple
concepts in a more informed manner. Thus, initial design variables in
different cases may be more complex or less complex, depending on
designer's preference, design contexts, etc.

• Initial performance requirements and measures

Four kinds of quantitative performance requirements from different
disciplines are considered as initial requirements, as shown in Table 4.
They are: energy use, daylight availability, daylight uniformity, and
investment cost for glass. Some possible initial performance measures,
and the associated goals, abbreviations and definitions are also shown
in Table 4. Energy and daylight simulation models are created for these
measures. In the energy simulation model, the weather file of
Guangzhou is used; in the daylight simulation model, 66 illuminance
test points evenly spread over the indoor space are used. These simu-
lation models are integrated with the parametric geometry model, to
form the initial MOO model.

In this paper, the focus is not on discussing the completeness of the
initial performance measures, but rather on showing how to find
meaningful performance measures in a more informed manner. Thus,
initial performance measures in different cases may be more complete
or less complete, depending on designer's prior knowledge, design
contexts, etc.

6.2. The first Re-OPF iteration (Action C1, D1, E1)

6.2.1. Data generation (Action C1)
The first 300 data sets are generated automatically, based on an

initial automation workflow. The workflow is established by uploading
the initial MOO model, specifying the uniform Latin hypercube sam-
pling algorithm and a sequential execution order. The data derived
includes quantitative data (i.e., numeric design values, numeric simu-
lation values) and qualitative data (i.e., 3D geometries), as shown in
Fig. 12.

6.2.2. Information and knowledge extraction (Action D1)
As shown in Fig. 5, three kinds of knowledge are extracted during

information and knowledge extraction (Action D1), as summarized
below.

Fig. 10. The GH-MF integration. Grasshopper and its simulation plug-ins: Ladybug and Honeybee (top left); modeFRONTIER and its integration plug-in: GH-MF node
(top right); a database for storing numeric and non-numeric data (bottom). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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• Extracting knowledge of meaningful performance measures
To find meaningful quantitative performance measures, correlation

between each pair of quantitative performance measures is extracted

from the data, and interpreted by humans (Fig. 6). The quantitative
data (having all the initial measures as its dimensions) is analyzed using
self-organizing map. As a result, SOM planes for all the initial measures
are generated (Fig. 13, left). Via human interpretation, three SOM

Fig. 11. All concepts and variables considered in different phases of the case study. The dashed boxes show the variables of the final promising existing concepts in
the third Re-OPF iteration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Initial performance measures and related goals, abbreviations and definitions.

Category Performance measures Goals Abbreviations Definitions

Energy use Energy Use Intensity Minimization EUI Annual energy use per square meter of floor area

Percentages of Cooling Minimization PoC Percentages of energy use for cooling, heating, lighting and equipment respectively
(which can be meaningful objectives, if they account for major portions of energy
use)Percentages of Heating Minimization PoH

Percentages of Lighting Minimization PoL

Percentages of Equipment Minimization PoE

Daylight availability Useless Daylight Illuminance
(< 100)

Minimization UDI (< 100) Percentage of floor area that meets the specified illuminance range for at least 50%
of the occupied time

Useful Daylight Illuminance
(100–2000)

Maximization UDI (100–2000)

Useless Daylight Illuminance
(> 2000)

Minimization UDI (> 2000)

Day Lit Area Maximization DLA Percentage of floor area that receives illuminances above 300 lx for at least 50% of
the occupied time

Over Lit Area Minimization OLA Percentage of floor area that receives illuminances above 3000 lx for at least 5% of
the occupied time

Daylight uniformity Average Uniformity Maximization AU Annual average of illuminance uniformity ratios

Investment cost for glass Area of Glass Minimization AoG Total area of the glass used for top windows
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planes are identified (Fig. 13, right), indicating three meaningful
quantitative performance measures, as summarized below.

(1) PoL is a meaningful quantitative measure, as lighting energy use
dominates total energy use in this case. EUI is also a meaningful
quantitative measure, as it facilitates direct comparison of energy
use among different buildings. Either of them can be chosen, given
that they are positively and strongly correlated and their optimi-
zation goals are the same. In this case, EUI is chosen (to form a
minimization objective).

(2) For UDI (< 100) and UDI (100-2000), either of them can be chosen,
given that they are negatively and strongly correlated and their
optimization goals are opposite. For OLA and DLA, DLA is re-
dundant with EUI, given that they are negatively correlated and
have opposite optimization goals; OLA is more meaningful, which

not only reflects daylight availability but also the risk of glare or
overheating. In this case, OLA is chosen (to form a minimization
objective).

(3) For AU and AoG, both of them can be considered as meaningful
quantitative measures, given that they (especially AU) have weak
correlation with the above chosen measures. In this case, AU is
chosen (to form a maximization objective).

To find meaningful qualitative performance measures, human sub-
jectivity is needed. Aesthetics is considered as a meaningful qualitative
measure and chosen (to form a constraint). Overall, EUI, OLA, AU and
Aesthetics are chosen as meaningful performance measures.

• Extracting knowledge of promising existing concepts

Fig. 12. Examples of building geometries, numeric design values, and numeric simulation values. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 13. SOM planes. SOM planes for all the initial measures (left); SOM planes for three meaningful quantitative performance measures (right). The yellow, blue,
green and grey boxed lines, show SOM planes for energy use, daylight availability, daylight uniformity and investment measures, respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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To find quantitatively promising existing concepts, clusters of
samples with similar quantitative performances are extracted from the
data, and interpreted by humans (Fig. 6). The quantitative data (having
the chosen measures EUI, OLA, AU and the high-level variable “con-
cept” as its dimensions) is analyzed using hierarchical clustering. As a
result, nine clusters of samples are generated (Fig. 14, left). Via human
interpretation, three clusters are identified (Fig. 14, right), indicating
quantitatively promising existing concepts, as summarized below.

(1) Concept 1_0 and Concept 2_0 are quantitatively promising existing
concepts, as the identified clusters of samples mostly belong to
these two concepts.

(2) Concept 3_0 is a less quantitatively promising existing concept, as
the identified clusters of samples mostly do not belong to this
concept (i.e., very few samples in the identified CLUSTER_6 are
from Concept 3_0, as shown in Fig. 14).

To judge qualitatively acceptable existing concepts, human sub-
jectivity is needed. Concept 1_0, Concept 2_0 and Concept 3_0 are all
judged as aesthetically acceptable. Overall, they are chosen as pro-
mising existing concepts (although Concept 3_0 is less quantitatively
promising).

• Extracting knowledge of promising new concepts

To find quantitatively promising new concepts, quantitative per-
formance distribution of previous concepts is extracted from the data,
and interpreted by humans (Fig. 6). The quantitative data (having the
chosen measures EUI, OLA, AU as its dimensions) is summarized using
box-whisker plots and scatter plots. As a result, such plots for EUI, OLA,
AU of the previous concepts (i.e., Concept 1_0, Concept 2_0 and Concept
3_0) are generated (Fig. 15). Via human interpretation, room for pos-
sible improvements is found, indicating new design strategies and
concepts, as summarized below.

(1) For Concept 1_0, there is room for improving OLA and AU while
maintaining EUI. Reducing direct sunlight and introducing re-
flected daylight can be respectively helpful for reducing OLA and
increasing AU. Allowing daylight to enter without obstacles
through the top-facing window is meaningful for maintaining EUI.
Based on these strategies, Concept 1_1 is produced which creates
inclined opaque elements by lifting the skylight and expanding the
opening on the roof bottom surface.

(2) For Concept 2_0, there is room for improving EUI while maintaining

OLA and AU. Introducing more daylight into the space can be
helpful for reducing EUI. Blocking out some daylight from high
angles with the horizontal protruding opaque element is mean-
ingful for maintaining OLA and AU. Based on these strategies,
Concept 2_1 is produced which enlarges the window size by lifting
the protruding element.

(3) For Concept 3_0, there is room for improving EUI and AU while
maintaining OLA. Introducing a proper amount of daylight from
near the south can be helpful for reducing EUI and increasing AU.
Blocking out some daylight from the opposite side of the window
with the inclined protruding opaque element is meaningful for
maintaining OLA. Based on these strategies, Concept 3_1 is pro-
duced which changes the orientation of the window around the
south.

To judge qualitatively acceptable new concepts, human subjectivity
is needed. Concept 1_1, Concept 2_1 and Concept 3_1 are all judged as
aesthetically acceptable. Overall, they are chosen as promising new
concepts.

6.2.3. MOO model re-formulation (Action E1)
The above knowledge suggests to conduct: quantitative measure

reduction and qualitative measure addition, convergent concept selec-
tion and divergent concept generation. Specifically, the initial energy
and daylight simulation models are modified, by reducing some initial
quantitative measures; the initial parametric geometry model is mod-
ified, by using the variables of the promising new concepts. These
variables are shown in Fig. 11 (middle), and the newly introduced or
revised variables are colored in blue. Thus, the initial MOO model is re-
formulated for the first time.

6.3. The second Re-OPF iteration (Action C2, D2, E2)

6.3.1. Data generation (Action C2)
The second 300 data sets are generated automatically, based on an

updated automation workflow. The workflow is updated by uploading
the first re-formulated MOO model.

6.3.2. Information and knowledge extraction (Action D2)
As shown in Fig. 5, one kind of knowledge is extracted during in-

formation and knowledge extraction (Action D2), as summarized
below.

• Extracting knowledge of promising new concepts (other than

Fig. 14. Clusters in the first Re-OPF iteration. Nine clusters of samples generated (left); three clusters of samples identified (right). CLUSTER_0 consists of samples
from Concept 2_0; CLUSTER_6 consists of samples from Concept 2_0 and Concept 3_0; CLUSTER_7 consists of samples from Concept 1_0. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Box-whisker plots and scatter plots for EUI, OLA, AU of all concepts considered in different phases of the case study. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

D. Yang, et al. Automation in Construction 118 (2020) 103251

21



previous ones)

Finding quantitatively promising new concepts in the second
iteration (Action D2), is similar to that in the first iteration (Action D1).
As a result, box-whisker plots and scatter plots for EUI, OLA, AU of the
previous concepts (i.e., Concept 1_1, Concept 2_1 and Concept 3_1) are
generated (Fig. 15). Via human interpretation, room for possible im-
provements is found, indicating new design strategies and concepts, as
summarized below.

(1) For Concept 1_1, AU is improved as expected, but OLA becomes
worse. This indicates that daylight reflected by the inclined north
opaque element is over concentrated on certain spots. Thus, a possible
solution is to reflect daylight to a wider range. Based on this strategy,
Concept 1_2 is produced which makes the north opaque element ver-
tical, adds a shading element (to reflect daylight further into the space),
and enlarges the size of the window (to compensate the amount of
daylight being blocked out).

(2) For Concept 2_1, EUI is improved as expected. To pursue even
better EUI, a more aggressive strategy is to increase daylight from the
north. Based on this strategy, Concept 2_2 is produced which expands
the opening of the roof bottom surface, and enlarges the size of the
north-facing window.

(3) For Concept 3_1, EUI is improved as expected, but AU does not
become better. This indicates that the saw-tooth geometry itself has
difficulties to evenly spread daylight over the space. Thus, a possible
solution is to increase the portion of reflected daylight, while main-
taining the total amount of daylight. Based on this strategy, Concept 3_2
is produced which adds a shading element (to increase reflected day-
light), expands the opening of the roof bottom surface and enlarges the
size of the south-facing window (to compensate the amount of daylight
being blocked out).

Judging qualitatively acceptable new concepts in the second itera-
tion (Action D2), is similar to that in the first iteration (Action D1),
which needs human subjectivity. Concept 1_2, Concept 2_2 and Concept
3_2 are all judged as aesthetically acceptable. Overall, they are chosen
as promising new concepts.

6.3.3. MOO model re-formulation (Action E2)
The above knowledge suggests to conduct: divergent concept gen-

eration. Specifically, the parametric geometry model is modified, by
using the variables of the promising new concepts. These variables are
shown in Fig. 11 (bottom), and the newly introduced or revised vari-
ables are colored in red. Thus, the MOO model is re-formulated for the
second time.

6.4. The third Re-OPF iteration (Action C3, D3, E3)

6.4.1. Data generation (Action C3)
The third 300 data sets are generated automatically, based on an

updated automation workflow. The workflow is updated by uploading
the second re-formulated MOO model.

6.4.2. Information and knowledge extraction (Action D3)
As shown in Fig. 5, one kind of knowledge is extracted during in-

formation and knowledge extraction (Action D3), as summarized
below.

• Extracting knowledge of promising existing concepts (among all
explored ones)

Finding quantitatively promising existing concepts in the third
iteration (Action D3), is similar to that in the first iteration (Action D1).
The quantitative data to be analyzed includes all 900 data sets (not just
300 data sets). As a result, ten clusters of samples are generated
(Fig. 16, left). Via human interpretation, three clusters are identified
(Fig. 16, right), indicating quantitatively promising existing concepts,

as summarized below.

(1) Concept 1_0, Concept 1_1, Concept 2_0, Concept 2_1 and Concept
2_2 are quantitatively promising existing concepts, as the identified
clusters of samples belong to these five concepts.

(2) Concept 3_0, Concept 3_1, Concept 3_2 and Concept 1_2 are less
quantitatively promising existing concepts, as the identified clusters
of samples do not belong to these four concepts.

Judging qualitatively acceptable existing concepts in the third
iteration (Action D3), is similar to that in the first iteration (Action D1),
which needs human subjectivity. Concept 1_0, Concept 1_1, Concept
2_0, Concept 2_1 and Concept 2_2 are all judged as aesthetically ac-
ceptable. Overall, they are chosen as final promising existing concepts.

It is worth noting that promising Concept 3_0 in the first iteration
(Action D1) now disappears from the list of final promising concepts in
the third iteration (Action D3). This is because Concept 3_0 is over-
whelmed by new competitors - promising Concept 1_1, Concept 2_1 and
Concept 2_2 derived in the second and third iterations (Action D2 and
Action D3). Moreover, it should be clarified that, due to possible in-
accuracy of prior knowledge or guesses, concepts generated in later Re-
OPF iterations may not necessarily outperform those generated in
earlier Re-OPF iterations. For instance, Concept 1_2 performs worse
than Concept 1_1 in AU and EUI; Concept 2_2 performs worse than
Concept 2_1 in AU and OLA, as shown in Fig. 15.

6.4.3. MOO model re-formulation (Action E3)
The above knowledge suggests to conduct: convergent concept se-

lection. Specifically, the parametric geometry model is modified, by
using the variables of the final promising existing concepts. These
variables are shown by dashed boxes in Fig. 11. Thus, the MOO model is
re-formulated for the third time.

6.5. OPS (Action F, G)

6.5.1. Optimization run (Action F)
Optimization run in this case is for verifying the proposed method,

specifically, for verifying benefits of divergent concept generation, and
benefits of identified clusters of samples.

First, it is hypothesized that conducting divergent concept genera-
tion can help to achieve quantitatively better and qualitatively more
diverse Pareto solutions. To verify this hypothesis, Scenario A and B are
investigated. In Scenario A, divergent concept generation is not con-
ducted, and optimizations are run for the initial concepts (i.e., Concept
1_0, Concept 2_0, Concept 3_0). In Scenario B, divergent concept gen-
eration is conducted, and optimizations are run for the final promising
concepts (i.e., Concept 1_0, Concept 1_1, Concept 2_0, Concept 2_1,
Concept 2_2). The settings for each optimization include: NSGA-II al-
gorithm [124], an initial population selected from random samples of a
concept, a population size of 30, and 10 generations.

Second, it is hypothesized that selecting an initial population from
identified clusters of samples can help to achieve better searched so-
lutions and Pareto solutions. To verify this hypothesis, Scenario C and D
are investigated. In Scenario C, the initial population is selected from
random samples of a concept. In Scenario D, the initial population is
selected from identified clusters of samples of a concept. Three of the
final promising concepts (i.e., Concept 2_2, Concept 1_0 and Concept
2_1) are selected for optimizations. The optimizations are run for each
scenario and each selected concept. The settings for each optimization
are the same as the aforementioned ones, except the initial population.

For the verification, it is also necessary to understand an s-Pareto
front [125,126] and a hypervolume indicator [127,128]. The s-Pareto
front is used to simultaneously consider a set of Pareto fronts of various
concepts. It applies Pareto dominance to all optimal solutions on dif-
ferent Pareto fronts, in order to figure out new non-dominated solu-
tions. The hypervolume indicator is used to compare the goodness of
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different Pareto fronts. A better Pareto front has a higher hypervolume
value. To allow the comparison, the reference point used for calculating
the hypervolume is fixed.

6.5.2. Optimization result interpretation (Action G)
Optimization results for verifying the first hypothesis are compared

in Fig. 17. In Scenario A, the Pareto fronts of the initial concepts are
combined, forming an s-Pareto front which has a lower hypervolume
value and consists of solutions from Concept 1_0 and Concept 2_0
(Fig. 17, left). In Scenario B, the Pareto fronts of the final promising
concepts are combined, forming an s-Pareto front which has a higher
hypervolume value and consists of solutions from Concept 1_0, Concept
2_0, Concept 2_1 and Concept 2_2 (Fig. 17, right). Overall, the s-Pareto
front in Scenario B is quantitatively better and qualitatively more

diverse, which confirms the first hypothesis.
Optimization results for verifying the second hypothesis are com-

pared in Fig. 18. Two searched solution sets of each selected concept
are distributed similarly in the objective space, but with noticeable
differences (Fig. 18, top). Further comparison of the performance data
shows that the searched solution set of Scenario D is more concentrated
and near the desired goal, compared to that of Scenario C. Moreover,
two Pareto fronts of each selected concept are also distributed similarly
with some differences (Fig. 18, bottom). Further comparison of the
hypervolume values shows that the Pareto front of Scenario D is better
than that of Scenario C. Overall, the searched solutions and Pareto
solutions of Scenario D are better, which confirms the second hypoth-
esis.

Fig. 16. Clusters in the third Re-OPF iteration. Ten clusters of samples generated (left); three clusters of samples identified (right). CLUSTER_1 consists of samples
from Concept 2_2; CLUSTER_8 consists of samples from Concept 1_0 and Concept 1_1; CLUSTER_9 consists of samples from Concept 2_0 and Concept 2_1. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Optimization result comparison for verifying the first hypothesis. The Pareto fronts and s-Pareto front in Scenario A (left); the Pareto fronts and s-Pareto front
in Scenario B (right). The s-Pareto front solutions are marked by black boxes and circles. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

D. Yang, et al. Automation in Construction 118 (2020) 103251

23



7. Conclusion

This section summarizes contributions of this paper and some re-
levant aspects of the proposed method, and concludes with future re-
search directions and concluding remarks.

7.1. Contributions and discussion

This paper has proposed an innovative SBMOO method for con-
ceptual architectural design exploration. The method is featured with
the built-in dynamic and interactive Re-OPF phase. This phase is flex-
ible, allowing designers to include different numbers of Re-OPF itera-
tions, and to perform actions of each iteration in different specific ways.
The flexible, reasonably-structured method can lead to greater design
success than a rigid, over-structured approach [129]. The method can
be supported by a number of computational techniques and a promising
integration of software tools - GH-MF integration. With these supports,
the method has been applied to a case study of the conceptual design of
a top-daylighting system. The results of the case study have confirmed
the capability of the proposed method (as described in Section 6.5), and
the usability of the adopted techniques and tools.

Human factors may affect the outcome of applying the proposed
method. Specifically, designer's prior knowledge is used in quantitative
information interpretation; designer's preference is used in qualitative
information extraction, and information synthesis. Thus, these human
factors can affect what concepts are generated and eventually selected,
and hence affect what s-Pareto front is achieved. Nevertheless, as

indicated in Fig. 17, the more concepts are explored during Re-OPF
iterations, the higher chance a better s-Pareto front is achieved. Since
the exploration of multiple initial concepts in multiple Re-OPF itera-
tions requires significant time, designers have to properly allocate
available time between the exploration and the consequent optimiza-
tion.

7.2. Future research directions

This research has several limitations and could be extended in
several ways. First, the current case is relatively simplified in term of
the completeness of measures and the complexity of geometries, for the
convenience of demonstrating the proposed method. In order to show
the capability of the method for practical projects, future works can be
extended to involve more complete measures and more complex geo-
metries. Second, the current case only conducts performance measure
re-formulation in the initial Re-OPF iteration, for the purpose of fo-
cusing on concept re-formulation. In order to further emphasize di-
vergent exploration, future works can be extended to conduct perfor-
mance measure re-formulation in more Re-OPF iterations.

7.3. Concluding remarks

In conclusion, although there are various SBMOO methods for
conceptual architectural design, they mostly focus on a one-shot “op-
timization problem solving”, rather than a continuous “optimization
problem framing” or “problem-solution co-evolution” [129] which is a

Fig. 18. Optimization result comparison for verifying the second hypothesis. The searched solutions of each selected concept (top); the Pareto fronts of each selected
concept (bottom). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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better description of conceptual architectural design. Differently, the
proposed SBMOO method highlights the importance of dynamic and
interactive Re-OPF, especially the importance of divergent concept
generation. The proposed method can help to achieve quantitatively
better and qualitatively more diverse Pareto solutions.
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