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LOUPE, the Lunar Observatory for Unresolved
Polarimetry of the Earth, is a small, robust spectro-
polarimeter for observing the Earth as an exoplanet.
Detecting Earth-like planets in stellar habitable zones
is one of the key challenges of modern exoplanetary
science. Characterizing such planets and searching
for traces of life requires the direct detection of their
signals. LOUPE provides unique spectral flux and
polarization data of sunlight reflected by Earth, the
only planet known to harbour life. These data will
be used to test numerical codes to predict signals of
Earth-like exoplanets, to test algorithms that retrieve
planet properties, and to fine-tune the design and
observational strategies of future space observatories.
From the Moon, LOUPE will continuously see the
entire Earth, enabling it to monitor the signal changes
due to the planet’s daily rotation, weather patterns
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and seasons, across all phase angles. Here, we present both the science case and the technology
behind LOUPE’s instrumental and mission design.

This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next
decades’.

1. Introduction
Since the first discoveries of planets orbiting other stars in the 1990s, exoplanetary research
has expanded explosively. Today, we know of more than 4000 such worlds, ranging from gas
giants more massive than Jupiter to rocky, terrestrial-type planets considered to be candidates
for harbouring life. Although we now know planets orbiting other stars are not uncommon,
the occurrence rate of Earth-like planets in the habitable zone of Sun-like stars remains a highly
debated topic. Statistical analysis of existing exoplanetary catalogues has shown that somewhere
between 2% and 60% of Sun-like stars may harbour planets similar to the Earth (or super-Earth)
in their habitable zones [1]. The exoplanetary catalogues are being expanded daily through space
missions such as NASA’s TESS (Transiting Exoplanetary Survey Satellite), which is expected to
detect more than 14 000 exoplanets, of which over 2100 will be smaller than 4 Earth-radii [2];
whereas ESA’s upcoming PLATO (PLAnetary Transits and Oscillations of stars) mission will focus
on habitable worlds around Solar-type stars, aiming to yield between 6 and 280 Earth analogues
out of approximately 4600 total detections [3]. Knowing that Earth-like rocky exoplanets might be
more common than previously thought, the next step is investigating their atmospheres, surfaces
and biomarkers. Although transit spectroscopy is a well-established method for characterizing
gas giants, transit signals of the thin atmospheres of Earth-like exoplanets around Sun-like stars
are undetectable with present technology. A significant upcoming technological milestone for
astronomy will be to achieve direct imaging, in which a planet’s (reflected) starlight is observed
separately from the light of its host star. Resolving the planet from its star will offer an opportunity
to investigate its properties via spectral flux and polarization measurements. Furthermore, direct
imaging will enable non-transiting planets to be detected and characterized.

The most reliable benchmark for characterizing Earth-like exoplanets is, naturally, the Earth.
By placing the observer at a distance such that the Earth appears as an unresolved ‘pale
blue dot’, we may simulate the observation of Earth as an exoplanet. In this single ‘dot’, all
the spectropolarimetric information from sunlight reflected off of Earth’s oceans, continents,
biomarkers and clouds is integrated into a spatially unresolved point. If we can reliably extract
this information from the unresolved signal and reverse-engineer the properties of the Earth as
we know it, we will have developed a powerful tool for characterizing exoplanets, including their
oceans, continents, atmospheric composition and life signatures, even if we are unable to spatially
resolve them.

The Earth is already continuously being observed by remote-sensing satellites, which monitor,
e.g., atmospheric trace gas concentrations, crop health and weather patterns. Apart from the fact
that there are currently no Earth remote-sensing satellites with polarimetric capabilities,1 such
Low Earth Orbit observations typically have their field-of-view limited to localized portions of the
Earth’s surface, and not the entire Earth’s disc. A mosaic of such observations does not realistically
represent the instantaneous single-pixel view of Earth, because the individual segments vary
in terms of local time and weather conditions, and the distribution of local illumination and
viewing geometries is very different from the distribution when the Earth is viewed from afar.
In particular, most satellites have a nadir viewing direction, and are in sun-synchronous orbits,
observing a given location on the Earth at more or less the same time of day. Especially the
polarization is very sensitive to the illumination and viewing angles [4]. Even satellites locked
in geostationary orbit would not provide us with complete insight, as they only observe a single
hemisphere, thus missing out on the variations due to the daily rotation.

1NASA’s PACE mission, that is planned for launch at the end of 2022, will carry two polarimeters: SPEXone and HARP2.
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Various reasons make observing the Earth from the Moon, from a Lunar orbit, or the Earth-
Moon L1-point, rather than a low Earth orbit, crucial to the experiment:

1. The Moon is sufficiently far away to allow a spatially unresolved view of the whole Earth.
2. For a lander on the Lunar surface, the Earth is always visible in a confined area in the

sky.2

3. From the Moon, the Earth can be observed at all phase angles3 during a month.
4. From the Moon, the Earth’s daily rotation can be captured.

The last one provides a view of the entire Earth, and allows detecting changes in Earth’s
spectropolarimetric signals as continents and oceans rotate in and out of view. Observations
covering several months could reveal seasonal changes. In the light of these advantages, we
propose the Lunar Observatory for Unresolved Polarimetry of Earth (LOUPE) [5], a compact and
small spectropolarimeter based on pioneering liquid crystal polarization optics, to accompany an
orbiting, landing or roving mission on the near side of the Moon. LOUPE’s tentative instrument
design is presented in §4, and the performance of a previous design iteration was validated in [6].

The main driver of LOUPE is to perform a long-term observing campaign of the Earth as
if it were a spatially unresolved exoplanet, both in flux and polarization, in order to provide
the ongoing search for Earth-like exoplanets with the benchmark of an archetypal Earth.
Another approach to obtain such flux and polarization data is through the so-called ‘Earthshine’
observations [7–10], where ground-based telescopes are used to search for back-scattered light
of the Earth on the shadowed crescent of the lunar disc. Although some spectral features of the
Earth’s flux were reported, such as the O2-A band, the Vegetation Green Bump and Red Edge
(VRE), this method is severely hampered by unknown depolarization effects of the reflection
of polarized light by the Lunar surface, degradation of the signal as it re-enters the Earth’s
atmosphere to reach the observer, and the severe difficulties in monitoring the daily rotation and
a broad range of phase angles. LOUPE would eliminate these problems by observing from the
Moon itself, creating a dedicated spectropolarimetric observing platform with superior science
return.

LOUPE’s aim is to pioneer spectropolarimetry as a uniquely qualified tool for exoplanet
characterization. For ground-based telescopes, polarimetry makes it possible to differentiate
between the reflected flux of a planet and the overpowering flux of its parent star [11] even
when direct detection is not possible from intensity alone, enabling us to find exoplanets which
would otherwise be lost in the stellar glare. This ability stems from the fact that sunlight and—
more generally—light of Solar-type stars can be assumed to be unpolarized when averaged over
the stellar disc, whereas the light scattered in a planetary atmosphere and/or reflected by a
planetary surface will generally become polarized (up to 10%.) Thus, measuring the polarized
flux of a planet can be used to enhance the contrast between the two. Future space telescopes
like HabEx/LUVOIR aim to deliver the intrinsic 10−10 contrast to directly image an Earth
orbiting a Solar-type star, and then polarimetry can be applied to further characterize the planet.
As Solar System observations have indicated [12], the phase angle dependence of the linearly
polarized spectrum of a planet is highly sensitive to atmospheric constituents and clouds, as
well as surface features like vegetation, water, ice, snow or deserts (see §2.) Therefore, the
main advantage of spectropolarimetry is the ability to deliver unambiguous characterization of
exoplanets, breaking the retrieval degeneracies arising from flux measurements alone. In this way,
polarimetry promises to reveal not only a plethora of new worlds, but also a plethora of new
geomorphologies and biospheres.

One of our main goals of monitoring the Earth from afar is to gather benchmark data to
test the radiative transfer codes which are being used to compute signals of rocky exoplanets
[13,14]. Such signals are crucial for the design of future (space) telescopes dedicated to the

2Accounting for the approximate 8◦ apparent motion of the Earth on the celestial sphere due to the Lunar libration.

3The range of phase angles α an exoplanet can attain is 90◦ ≤ α ≤ 90◦ + i, with orbital inclination angle i equal to 0◦ (90◦) for
a face-on (edge-on) orbit.
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characterization of Earth-like exoplanets and for the development of algorithms to retrieve
exoplanet characteristics [15]. Previous attempts to study Earth as an exoplanet involved
serendipitous measurements from deep space instruments used outside their intended mode
of operation, e.g. the Galileo [16], Deep Impact [17], Venus Express [18], DSCOVR [19–21] and
LCROSS [22] space probes. With their limited coverage, these experiments are unsuited to study
the whole phase angle range and to achieve full global coverage, nor could they measure
polarization, thus falling short of a complete and thorough characterization of the Earth’s disc-
integrated signal. LOUPE’s monitoring of the total flux that the Earth reflects would also be
valuable for climate research, as this reflected flux and its spectral and temporal variations give
insight into the amount of Solar energy that the Earth absorbs over time. The polarization signal
of the Earth as a whole could provide new information on high-altitude aerosol particles that
contribute to the Earth’s radiation balance by reflecting incoming sunlight and by heating up
their ambient environment, as well as playing important roles in chemical reactions [23,24].

Section 2 discusses interesting features in the Earth’s flux and polarization signals. Science
requirements and the resulting instrument requirements and goals are presented in §3, and an
overview of LOUPE’s instrument design in §4. Conclusion is presented in §5.

2. Earth’s flux and polarization signals
In the absence of real spectropolarimetric data of the spatially unresolved Earth, we use numerical
simulations for the design of LOUPE. A key part of LOUPE’s mission is to provide benchmark
data for the improvement and refinement of such numerical simulations of exoplanet signals.

We describe light as a Stokes (column) vector [4]:

F = [F, Q, U, V] , (2.1)

with F the total flux, Q and U the linearly polarized fluxes, and V the circularly polarized flux
(all in W m−2 nm−1). Fluxes Q and U are defined with respect to a reference plane, for which we
use the planetary scattering plane, i.e. the plane through the centres of the Sun, the Earth and
the observer, which in our case is LOUPE on a Lunar orbiter or lander. The degree of (linear)
polarization of the light is defined as

PL =
√

Q2 + U2

F
. (2.2)

The angle of polarization, χ , is also defined with respect to the reference plane: tan 2χ = U/Q,
where the sign of χ is such that 0 ≤ χ < π and that it equals that of Q [4].

We compute F (equation (2.1)) of the visible and illuminated disc of a model Earth at a given
phase angle α and wavelength λ by dividing the disc into pixels with specific surface–atmosphere
models (e.g. ocean-cloudy, forest-clear, desert-clear), computing the reflected Stokes vector for
each pixel using an adding-doubling radiative transfer algorithm [13,14,25], and summing up the
local vectors to obtain the disc-integrated, planetary Stokes vector. An example of the simulated
flux and polarization for an unresolved planet is shown in figure 1.

Figure 2 shows the computed F and PL (equation (2.2)) for a spatially resolved model Earth
at several phase angles. Various features in PL stand out. Firstly, at α = 0◦, PL is zero across
the disc because of the symmetric, back-scattering geometry for each pixel. Secondly, clouds
generally have low PL, and oceans with only Rayleigh-scattering gas above them, a high PL.
Thirdly, at large phase angles, PL is highest in the red, due to the glint on the ocean [27]. In the
following subsections, we discuss some notable reflective properties of the planetary surface and
atmosphere.

(a) Continents and oceans
Owing to plate tectonics, the Earth’s surface is covered by continents and oceans. The continents
are covered by various surface types, such as rocks, sand, snow and vegetation, each with
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characteristic (wavelength-dependent) albedos and bidirectional reflectance functions (i.e. the
angular distribution of the reflected total and polarized fluxes). Rough surfaces reflect more or
less isotropically and strongly depolarize the incident light. Generally, the higher the albedo of
such surfaces, the lower PL, as the total flux increases but the polarized fluxes do not [13].

Ocean surfaces exhibit specular, Fresnel, reflection, which is anisotropic and polarizing. The
glint of sunlight on water is a particularly striking feature, arising when the angles of incidence
and reflection are equal. Waves influence the appearance of the glint: generally, the higher the
wind velocity, the higher the waves, and the broader the glint pattern that is expected to appear
on the disc. With LOUPE, we can investigate this relationship and the influence of other wave
parameters, such as white caps and wave direction. Numerical results suggest that an ocean on
a planet can be uniquely identified by a colour change of PL of a planet at intermediate to large
phase angles: only with an ocean, a planet will change from blue, through white, to red, with
increasing α, when observed using polarimetry [27].

The numerically predicted effects of various reflecting surfaces on the planetary phase curve
both in total flux and polarization can be observed by LOUPE.

(b) Vegetation
Earth’s vegetation owes its green colour to a decrease in the absorption by chlorophyll (and
thus an increase in the albedo) around λ = 500 nm. However, as is evident from figure 1, the
most distinct spectral feature of vegetation is not this ‘Green Bump’, but the dramatic brightness
just outside the human visible range, the ‘Vegetation Red Edge’ (VRE) [28]. Light-harvesting
vegetation on exoplanets may have similar reflectance properties, as the VRE is hypothesized to
limit excessive absorption of light at wavelengths where photosynthesis is inefficient. The VRE of
exo-vegetation might cover different wavelengths than terrestrial vegetation, but strong spectral
features of unknown geological or atmospheric origins could be worth investigating as possible
biosignatures of alien vegetation.

A worthwhile exercise is to attempt to extract the VRE from the signal of a spatially unresolved
Earth, as seen by LOUPE. Simulations suggest that the VRE ought to be detectable even through
optically thick clouds, and that its signature in polarization is even more pronounced, as it is
located in a wavelength region where the degree of polarization is highly sensitive to the surface
albedo [13]. A tentative confirmation of the VRE in polarized light has been shown in Earthshine
observations [7]. LOUPE strives to confirm and improve the detection with its beneficial vantage
point on the Moon, without the strongly depolarizing influence of a reflection by the Lunar
surface.

Vegetation has also been shown to exhibit a small, but unambiguous circular polarization
signature, as a consequence of the homochiral configuration of organic matter [29]. A potential
future ‘super-LOUPE’ could be upgraded to perform full-Stokes demodulation, for example
building on the design of the Life Signature Detection polarimeter (LSDpol [30]; see also [31]),
and retrieve the circularly polarized flux as an additional biomarker to be studied.

(c) Clouds
Clouds generally decrease PL because they add total flux but little polarized flux. However, the
phase angle variation of PL of a cloudy planet shows various interesting features, such as glories
and, most notably, rainbows. Rainbows are a well-known optical phenomenon formed when
light is scattered by airborne water droplets, such as rain droplets and also cloud droplets. In
particular, the primary rainbow results from light rays which have undergone a single reflection
inside spherical droplets. This rainbow exhibits dramatic peaks in both F and PL, as shown in
figure 1. Due to the small size of terrestrial cloud particles (as compared to rain droplets), a cloudy
Earth will only show a significant rainbow peak in PL [32]. The rainbow angle depends on the
particle composition: with water clouds, these peaks would appear around α = 40◦, and could
be used to identify the presence of liquid water clouds on exoplanets, even with small cloud
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atmosphere consists of 5 layers with gaseous scattering optical thicknesses equal to (bottom to top): 0.01, 0.003, 0.005, 0.005,
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coverage fractions and partly overlaid with ice clouds [32]. Clouds with different compositions,
such as sulfuric acid clouds which are present on Venus, would produce rainbows at different
phase angles [12]. Other numerical simulations show that the variability of PL of an exoplanet
would reveal the spatial distribution of clouds [14].

Observing the Earth’s clouds with LOUPE will give us a better understanding of the spectral
and temporal variations in F and PL, which could be used to characterize the composition, spatial
coverage and altitude of the cloud cover on exoplanets.

(d) Oxygen and trace gases
The presence of abundant atmospheric oxygen (O2) in thermodynamic disequilibrium is thought
to be a robust biosignature, as on Earth, the dominant source of O2 is oxygenic photosynthesis
[28]. Thus, an O2-rich atmosphere could indicate the presence of photosynthetic organisms. An
exoplanet’s O2 mixing ratio could be derived from the depth of absorption bands in F and PL

spectra, of which the A-band, centred around 760 nm is the least contaminated by absorption
lines of water [13]. This depth, however, also depends on the presence of clouds: on Earth,
measurements of F across the A-band are routinely used to determine cloud-top altitudes [33,34],
as the band depth increases with the amount of O2 above the clouds, and thus with a decreasing
cloud-top altitude. This is evident in the F and PL spectra across the band shown in figure 3,
computed according to [26] and convolved with a Gaussian of 5 nm FWHM, informing LOUPE’s
goal instrument response function (see §4.)

The lines in figure 3 were computed for a planet with a surface albedo of 0.6, completely
covered by a cloud of optical thickness 5.0, and seen at α = 60◦. It is clear that the lower the cloud,
the deeper the band (with respect to the continuum) in F, as the more absorbing gas is above it.
Because of the small atmospheric gaseous scattering optical thickness at these wavelengths, the
continuum F is insensitive to the cloud top altitude. Note that without a cloud, the continuum F
is higher because the cloud particles are strongly forward scattering, thus scattering light towards
the surface. PL is higher in the band because absorption suppresses (depolarizing) multiple
scattering, and because it increases the average scattering altitude and thus the scattering by the
gas, which yields a higher PL at most scattering angles [26].

LOUPE’s observations will allow us to study the spectral and temporal variations of Earth’s
F and PL across the O2 A-band and other absorption bands, such as those of the trace gases
ozone (O3) and water vapour (H2O), which are also indicative for a planet’s habitability, across a
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range of phase angles and with that, provide valuable insight into the diagnostic value of gaseous
absorption bands in exoplanet spectra.

3. Scientific and technical requirements
As outlined above, the top-level science requirements for LOUPE are:

— Perform near-instantaneous (snapshot) spectropolarimetry of the entire Earth.
— Detect the presence of liquid water oceans and clouds.
— Derive and monitor atmospheric properties, e.g. via Rayleigh scattering.
— Detect the O2-A band in F and PL, and its variance with cloud cover and altitude, and α.
— Detect the Chlorophyll Green Bump and Vegetation Red Edge, the spectroscopic

signature of plant life.
— Derive a map of continents from the disc-integrated signal and identify notable features,

such as rain forests, deserts and ice caps.

LOUPE shall perform its science goals by recording and demodulating the disc-integrated Stokes
vector of sunlight reflected from the Earth. The minimum and goal technical requirements for
LOUPE’s mission are stated in table 1.

In order to maximize deployment opportunities, LOUPE will be prototyped with platform
versatility in mind, so that it may be suitable for multiple use cases (including geostationary,
Lunar orbiting and landing scenarios). To keep a first proof-of-concept version of LOUPE as
simple as possible, key trade-offs may be undertaken, such as limiting the instrument not to
measure the circular polarization V, but only F, Q and U. This trade-off is justified by the fact
that, although V has the potential to be considered a biosignature of homochiral life [29], V of
light reflected by an (exo)planet is several orders of magnitude lower than the linearly polarized
flux [25,35,36] and neglecting it introduces no significant errors in F, Q and U [37]. Some other
capabilities of LOUPE are functionally optional as well, such as radiometry, though its addition
could provide data for climate research. The additional capability to resolve the Earth at the
continent scale would also introduce additional signal processing difficulties, as the ability to
perform straightforward disc-integration of the signal is integral to LOUPE’s mission. Weighing
the advantage of a wide field of view with passive pointing against a narrower, baffled field of
view with better protection from the Solar glare, but a need for active pointing, is another topic
for contemplation in the design process.

4. LOUPE instrument design
The leading instrument design principle adopted for LOUPE is to create a compact, low-mass,
low-volume, space-ready hyperspectropolarimeter with no moving parts [5]. These constraints
require creative solutions from the cutting edge of hyperspectral4 and polarimetric instrument
design, where polarimeters traditionally used active rotating optics (temporal modulation) or
beam-splitting (spatial modulation) [38–40]. Since the first design iteration and proof-of-concept
study of LOUPE [6], further improvements forgo the use of bulky imaging and reimaging
optics, resulting in a compact, solid-state instrument with a novel approach to snapshot
spectropolarimetry. Figure 4 shows a tentative 3D-render of LOUPE’s latest design.

The challenge for LOUPE is collapsing four-dimensional data (F, P, χ , and λ) onto a two-
dimensional detector, instantaneously for Earth’s entire disc. The instrument will be built on
cosine Remote Sensing’s5 HyperScout�6 hyperspectral imaging platform [41,42], space qualified

4Unlike traditional digital imaging, which records each pixel value in three discrete bands of red, green and blue visible light,
spectral imaging records each pixel spectrum in a larger number of wavelength bands, possibly extending beyond the visible.
Accordingly, hyperspectral imaging records spectra in continuous spectral bands with a very fine wavelength resolution.
5See https://www.cosine.nl/.

6See https://hyperscout.nl/.

https://www.cosine.nl/
https://hyperscout.nl/
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microlens array

patterned liquid crystal + polarizer

linear variable filter

Hyperscout® CMOS

Figure 4. A three-dimensional render of the current LOUPE concept, with aAC 1 coin for scale. (Online version in colour.)

0.05 0.10 0 0.025
1000

900

800

700

l 
(n

m
)

600

500

400

F

Q

U

Figure 5. A simulated LOUPE detector snapshot. Each coloured dot is an unresolved Earth-image, filtered spectrally along
the vertical (denoted by colour), with polarization modulation along the horizontal (denoted by the arrows). The wavelength
dependence of F, Q and U is plotted on the right-hand side. The input spectrum is a simulated fully cloudy planet, with the
spectral resolution set to approximately 3 nm, and the detector is rotated by 30◦ with respect to the planetary scattering plane.
(Online version in colour.)

and operating in Earth orbit for almost two and a half years,7 which is based on CMOS and linear
variable filter (LVF) technologies. Because apart from the Sun, the Earth is the brightest object
in the sky as seen from the Moon, we can use a wide-field micro-lens array (MLA) instead of a
traditional telescope objective system. Each ‘fisheye’ MLA-lenslet focuses the Earth as a dot on
the detector (figure 5). We therefore forfeit the ability to resolve features on the Earth’s disc, in
favour of recording an unresolved point source, similar to observations of distant exoplanets.

By overlaying a linear variable filter (LVF) atop the detector, every pixel will be filtered
spectrally in the direction of the LVF gradient (figure 5). The polarization information is encoded
in the perpendicular direction (figure 5) using a technique of cross-spectral modulation analogous
to the rotating retarder polarimeter [30,31]. Uniquely to this design, and similarly to that of

7See http://www.esa.int/ESA_Multimedia/Images/2020/05/HyperScout_view_of_Netherlands.

http://www.esa.int/ESA_Multimedia/Images/2020/05/HyperScout_view_of_Netherlands
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LOUPE’s ‘cousin’, LSDpol, this is achieved by placing a linear polarizer and a patterned liquid
crystal (PLC)[43] on top of the spectrometer. The liquid crystal pattern is such that it behaves as an
achromatic half-wave plate [44] for all wavelengths of interest. This combination of polarizer and
PLC acts as a passive modulator superimposing a sinusoidal modulation on the flux spectrum
in the cross-spectral direction. This modulation has the same form as the case of a rotating wave
plate polarimeter described in [38], and ensuring several modulation cycles across the detector
provides redundancy in case of bad pixels or local dust accumulation. The amplitude of this
modulation scales with PL, and its phase with χ . By demodulating the signal in post-processing,
the full polarization information can be retrieved in parallel with a spectral measurement at full
spectral resolution. Additional resolution across spectral regions of interest, e.g. the O2 A-band,
can be achieved by installing ring resonators as bandpass filters on separate ‘pixels’ next to the
HyperScout� focal plane.

In conclusion, a LOUPE observation will consist of an array of ‘pale (blue) dots’ in all colours of
the spectrum, modulated with respect to angle and degree of polarization. We can then extract the
disc-integrated Stokes vector by demodulating this two-dimensional array of dots, and proceed
to compare it to our numerically simulated planet signals. The features we identify in our analysis
can be verified by comparison to satellite data.

Another benefit of this compact design is that the need for instrument pointing has been
effectively removed. The offset of an Earth-dot from its respective lenslet centre in figure 5 is
directly related to the incidence angle of the Earth-light, enabling the retrieval of Earth’s position
relative to the detector a posteriori. This is crucial for both the spectral and the polarization pre-
flight calibration, which strongly depend on the incidence angle. In addition to the data-driven
calibrations enabled by LOUPE’s elegant design, vicarious calibrations can be performed using,
e.g. bright starlight of known properties. Furthermore, any persistent features caught in the
instrument’s field of view—such as the Lunar surface—can be corrected for. As long as LOUPE
has a direct line of sight to Earth, even accounting for Lunar libration, active mechanical pointing
is not required. Yet another benefit of the MLA-design is redundancy: bad pixels or lenses covered
by Lunar dust can be corrected for in post-processing.

The preliminary design fits well within the dimensions of 1 U and ca 300 g (table 1), and can be
adapted to a variety of landing, roving or orbiting missions. For instance, for a roving mission to
the Lunar south pole, where the Earth remains close to the horizon, fold mirrors can be installed
to ensure an image of the Earth is reflected onto the horizontal LOUPE detector without actively
pointing the instrument. Alternatively, installing multiple LOUPEs so that they face various
directions and span the sky might be the solution for a lander or an orbiting platform such as
the Lunar Gateway.8

As such, LOUPE’s lightweight and robust design is a low-cost addition to any existing Lunar
landing or roving mission with minimal impact to payload mass, power consumption and down-
link load, as each hourly observation is expected to produce 2 MB of data at an estimated 1 kJ per
image.

5. Conclusion
In the quest to characterize terrestrial exoplanets, the first step is an introspective look at Earth as
our benchmark. The Lunar Observatory for Unresolved Polarimetry of the Earth (LOUPE) applies
pioneering hyperspectropolarimetric techniques to observe Earth as an exoplanet from the Moon.
LOUPE’s science mission is to guide future exoplanet observing campaigns by offering improved
models of exoplanetary flux and polarization spectra, including the ability to recognize features
such as clouds, continents, oceans, vegetation and oxygen abundance on worlds we cannot
resolve past a single pixel. LOUPE’s novel design is being prototyped around state of the art
patterned liquid crystal optics for polarimetry, working in tandem with the cosine HyperScout�

hyperspectral imager for spectroscopy, which was first launched to orbit in 2018. Following

8See http://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/Gateway.

http://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/Gateway
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design, manufacturing, testing and calibration, the first flight qualified model of LOUPE is
expected to be ready in 2022, resulting in a compact, light-weight addition to any mission orbiting
or landing on the near side of the Moon.
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