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Abstract
This paper presents our winning entry for the EVA 2019 data competition, the aim
of which is to predict Red Sea surface temperature extremes over space and time.
To achieve this, we used a stochastic partial differential equation (Poisson equa-
tion) based method, improved through a regularization to penalize large magnitudes
of solutions. This approach is shown to be successful according to the competi-
tion’s evaluation criterion, i.e. a threshold-weighted continuous ranked probability
score. Our stochastic Poisson equation and its boundary conditions resolve the
data’s non-stationarity naturally and effectively. Meanwhile, our numerical method
is computationally efficient at dealing with the data’s high dimensionality, without
any parameter estimation. It demonstrates the usefulness of stochastic differential
equations on spatio-temporal predictions, including the extremes of the process.

Keywords Data competition · EVA 2019 Conference · Prediction ·
Poisson equation · Spatio-temporal data · Temperature data

AMS 2000 Subject Classifications 62P12 · 62H11 · 62M30 · 35Q62

1 Introduction

The aim of EVA 2019 data competition is to predict spatio-temporal extremes of Red
Sea surface temperature (Huser 2020). The dataset of the competition consists of
daily sea surface temperature (SST) anomalies for the entire Red Sea from 1985 to
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2015 whilst part of the data is masked. The main goal of this data competition is to
predict the distribution of

X(s, t) = min
(s̃,t̃)∈N (s,t)

Â(s̃, t̃ ), (1)

for space-time validation points (s, t), where Â(·, ·) is the predicted SST anoma-
lies. The competition evaluates the performance via a threshold-weighted continuous
ranked probability score (twCRPS). The main challenge is the data’s high dimension-
ality (16703 locations and 11315 days) and strong non-stationarity in space and time
(Section 3.3 of Huser (2020)). More details of the data competition, including the
definition of the anomaly, plots of the data along with some exploratory analysis, as
well as the competition’s rules and goals, are available in the Editorial (Huser 2020).

To predict the extremes on the spatio-temporal domain, it is sufficient to pre-
dict the whole field of values on it. That is to say, we can predict Â(·, ·) instead of
directly predicting X(·, ·) in Eq. (1). Given the partial data of Â(·, t) for someday t ,
the predicted data in the unobserved region should comply with some continuity con-
straints. According to Fourier’s analytical theory of heat, it is reasonable to assume
a temperature field has a second order derivative, implying that the anomaly field
has its Laplacian. We formulate the missing value prediction problem as a Poisson
equation based model. The Poisson equations are defined on the two-dimensional
spatial domain, not the spatio-temporal domain. For each time step (day), Pois-
son equations are solved to interpolate the unobserved regions. To generate the
stochasticity in predictions, our Poisson equation is not deterministic but stochas-
tic. The stochastic components (i.e. the Laplace fields) in our SPDEs (stochastic
partial differential equations) are sampled from the observed data, assuming tempo-
ral stationarity, which allows bypassing explicit estimation of parameters defining a
stochastic model. The method is further improved with a regularization term to penal-
ize large magnitudes of solutions. Experimental results show that it is effective and
efficient to use the regularized stochastic Poisson equation to fill in the missing data
in this problem.

A lot of approaches have been proposed on spatio-temporal extremes in the field
of extreme value theory (EVT). One category of approaches is to model block
maxima using max-stable processes (Davison et al. 2012; Davis et al. 2013; Huser
and Davison 2014). The other category is to model the exceedances of a threshold
(Pickands 1975; Bacro et al. 2020) using extreme distributions such as generalized
Pareto distribution (GPD). Both categories of models have been used on climate
data (Chavez-Demoulin and Davison 2005; Reich and Shaby 2012). SPDE-based
approaches have been made popular by the INLA method in spatial and spatio-
temporal statistics (Krainski et al. 2018). In Lindgren et al. (2011), a type of SPDE
similar to our Poisson equations is studied, which will be discussed in the last section
of this paper. Comparing to EVT-based methods, our method is more efficient since
we do not need any parameter estimation. The drawback is its performance will
be inferior comparing to methods tailored to the prediction of the upper tail. Our
approach is very similar to the Poisson image editing method (Pérez et al. 2003)
from the image processing community, which blends multiple images seamlessly
with Poisson equations.
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The remainder of this paper is structured as follows. In Section 2, we give the
details about the stochastic Poisson equation based model. Its numerical method and
the regularized version are given in Section 3. In Section 4, we explain our scheme
to generate predictions, and the cross-validation dataset we prepared to evaluate our
approach, followed by some concluding discussions in Section 5.

Notation The following notation is used: Italic lower-case letters refer to scalar val-
ues (x) or scalar-valued functions (f (·)). Lower-case bold letters denote vectors (x)
or vector-valued functions (f(·)). Finally, upper-case bold letters represent matrices
(X).

2 Method

The missing data prediction problem can be studied from the perspective of data
interpolation. By considering a 1D curve y = f (x) with missing interval (x0, x1),
as shown in Fig. 1, the interpolation result should have at least C0 continuity. It is
straightforward to connect two endpoints of the missing interval with a straight line
segment, on which the second derivative is zero. Thus finding such a line segment is
equivalent to solving the differential equation{

d2f (x)

dx2
= 0, x ∈ (x0, x1)

f (x0) = y0, f (x1) = y1.
(2)

The one-dimensional case above can be easily generalized to 2D, i.e. assuming the
second derivative on the missing region is zero. Given a function u(x, y), (x, y) ∈ S
with masked region M ⊂ S, the unobserved region can be interpolated by solving
the equation {

�u = ∂2u

∂x2
+ ∂2u

∂y2
= 0, (x, y) ∈ M

u(x, y) takes known value in S \ M.
(3)

Fig. 1 One-dimensional data interpolation
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Equations taking the form �u = 0 are known as Laplace equations. An interpola-
tion example is demonstrated in Fig. 2 (a–b). It is observed that the predicted region
is over-smooth, lacking variations, compared to the known area, indicating that the
right-hand side (RHS) in Eq. (3) should be some function f which is not zero. Thus
the missing region can be predicted by solving the equation �u = f , which is known
as Poisson equation.

The physical meaning of Poisson equation �u = f here is that, given the partial
temperature data u of someday t ∈ T , the Laplacian of u (we call it Laplace field)
in the unobserved region should follow some target field f . Immediately, it is neces-
sary to model the target Laplace field f conditioning on the known data. We assume
f is random since its exact value is unknown. Then the equation we are solving is
actually a stochastic Poisson equation, instead of a deterministic one. Although we
can construct some statistical model for random f , it is more straightforward to sam-
ple existing fields from known data directly, with the assumption that the Laplace
field is independent and identically distributed (i.i.d.) in time for the sake of simplic-
ity. That is to say, the Laplace fields of day t ′1, t ′2, . . . are independent and identically
distributed realizations of the random function f . The stochastic Poisson equation is
solved by solving a series of deterministic ones. In terms of solving one of the Pois-
son equations, we take a reference day t ′ ∈ T as an example. Day t ′ is picked as a
reference day, then Laplace field of day t ′ is a reference target Laplace field for day
t . Therefore, missing data interpolation for day t can be accomplished by solving{

�u(x, y; t) = �u(x, y; t ′), (x, y) ∈ Mt

u(x, y; t) = known, in S \ Mt ,
(4)

in whichMt is the unobserved region of the day t . In general, this function does not
always have a unique solution, but our numerical method gives a unique solution in
our specific setting, which is described in Section 3. There are still missing data in

−3.0

0.0

3.0

a b c d

Fig. 2 Given the partial data of Dec 22, 2015 a, the unobserved regions (in gray) are interpolated with
Laplace equation, which is over-smooth b. With the data of Apr 1, 1985 as reference c, the solution of
Poisson equation is more realistic d
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�u(x, y; t ′) since u(x, y; t ′) is incomplete for any t ′. These values in �u(x, y; t ′)
will be simply filled with zeros. An example is shown in Fig. 2 (c–d).

As indicated in Huser (2020), the temperature anomalies are not stationary in
space and time. The Poisson equation �u = f can handle it effectively. In fact, the
solution of Poisson equation can be decomposed as the sum of the solutions of the
following two equations,{

�u = 0, (x, y) ∈ M
u(x, y) = known, in S \ M,

and

{
�u = f, (x, y) ∈ M
u(x, y) = 0, in S \ M.

(5)

In these two equations, the left one is the Laplace equation that imposes the continuity
constraints, and the right one provides the randomness. The left one, which is only
related to the boundary conditions, ensures the solution is adaptive to the known
data of the current day, tackling the non-stationarity in time. The right one has RHS
f = �u(x, y; t ′), making the Laplace field be the same as some other day in a
location-wise sense. Thus it resolves the temperature anomalies’ non-stationarity in
space. In conclusion, the sum of them can handle the non-stationarity in both space
and time.

3 Numerical solution

3.1 Numerical solution of the Poisson equation

The numerical solution of Poisson equation on a rectangular domain with Dirich-
let boundary condition can be found with the finite difference method (Knabner and
Angerman 2003). The key idea is discretizing the domain as a grid and approxi-
mating the Laplace operator with a linear combination of neighbor grid nodes. The
differential equation is then converted to a linear system, of which the left-hand side
(LHS) matrix is named the Laplacian matrix. In this paper, Poisson equation Eq. (4)
is solved with the finite difference method.

First, the spatial domain is represented as a mesh grid �. The Red Sea S has been
discretized into S = 16703 grid cells in the dataset of this competition. The grid cells
are represented with their row/column indices (i, j), in which i ∈ {1, . . . , 359}, j ∈
{1, . . . , 233}. Each cell (i, j) has at most four neighbors (i ± 1, j) and (i, j ± 1).
Then the mesh grid � is established after taking cells (i, j) as mesh nodes and the
neighboring relation as mesh edges.

Then, the Laplacian matrix is determined after defining the mesh grid �. Noting
that the mesh grid � is equivalent with an undirected graph G with its nodes and
edges, the Laplacian matrix L of graph G is defined according to Godsil and Royle
(2001), as a generalization of the Laplacian matrix of a rectangular domain. The
Poisson equation Eq. (4) is converted to the linear system

Lu = Lu′, (6)

in which matrix L has shape S × S, u is an S-dimensional column vector containing
the temperature anomalies of all locations on the day t , and u′ is the temperature
anomalies vector of some other day t ′. In this equation, the LHS Lu is the Laplace
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field of day t , and the RHS Lu′ is the reference Laplace field taken from day t ′.
Both of them are computed with the Laplacian matrix L defined on the mesh domain.
As discussed above, some elements in (Lu′) are not available since u′ is incomplete
(containing values represented with NaNs). These invalid values in (Lu′) are filled
with zeros.

Finally, unknown values of u are determined by solving the equation. Without
loss of generality, it can be assumed that vector u is split into two parts u0 and u1,
of which the first one u0 contains all unobserved locations while the known values
appear in the second part u1. This form can be obtained by multiplying permutation
matrices on both sides of Eq. (6). Then L and u′ are partitioned accordingly, resulting
in the linear system (

L00 L01
L10 L11

) (
u0
u1

)
=

(
L00 L01
L10 L11

)(
u′
0

u′
1

)
, (7)

which implies that
L00u0 = L00u′

0 + L01(u′
1 − u1). (8)

This equation has a unique solution since L00 is invertible, which will be proved in
the next subsection. At last, Eq. (8) can be solved with LU decomposition of matrix
L00.

3.2 An optimization perspective: least squares

From the viewpoint of mathematical optimization, the Poisson equation Eq. (4)

�u = ∇ · ∇u = ∇ · ∇u′ (9)

is the Euler-Lagrange equation of the type

min
u

∫∫
‖∇u − ∇u′‖2. (10)

A discrete approximation of this optimization problem is

min
u

‖Gu − Gu′‖2, (11)

in whichG is the gradient matrix. The gradient matrix is defined as transpose of graph
G’s incidence matrix, when an arbitrary orientation is given to G (Godsil and Royle
2001). Rows and columns of matrix G are the numbers of edges and nodes in graph
G respectively. If G is written in the block form according to values’ availability as
before, i.e. G = (

G0 G1
)
, finding unknown values u0 is to solve the least squares

problem
min
u0

‖G0u0 − h‖2 , (12)

in which h = G0u′
0 − G1

(
u′
1 − u1

)
. Invalid values (NaNs) in h are also filled with

zeros.
The least squares problem (12) is solved with the pseudo inverse theory, i.e.

u0 = (G�
0 G0)

−1G�
0 h. (13)

Noting that L00 = G�
0 G0 since L = G�G, solution of the least squares problem

should be identical with that of Eq. (8) if there is no missing value on the reference
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day. When there is missing data, the only difference between them is that it is the
invalid gradient values that are filled with zeros in Eq. (13), while it is the invalid
Laplacian values that are replaced with zeros in Eq. (8).

To make L00 = G�
0 G0 invertible, block G0 in the gradient matrix is required

to have linearly independent columns. This is true because each unknown node on
graph G is connected with at least one known node by a path (Godsil and Royle
2001), which can be concluded from the fact that the spatial domain � has only one
connected component and all days have at least one known node.

3.3 Least squares with regularization

Solution of the least squares problem in Eq. (12) gives a prediction of the missing data
that is smooth and vibrant (Fig. 3 (c)). However, it is suffering from numerical issues.
Although the Laplacian matrix L00 is invertible, its condition number is large from
the viewpoint of computing, making the numerical solution instable. If the Poisson
equation has a closed domain with Dirichlet boundary condition, the solution will be
well bounded by known values. However, this is not our case.

Regularization is commonly used to stabilize least squares, based on which
Eq. (12) becomes

min
u0

‖G0u0 − h‖2 + λ‖u0‖2, (14)

with λ ≥ 0. The regularized least squares problem takes the form of ridge regression
(Hastie et al. 2009), of which the solution is given by

(L00 + λI)u0 = f. (15)

Here, f is G�
0 h, and I is the identity matrix. Please note that f can also take the

value of RHS in Eq. (8), depending on how invalid values at the RHS are handled, as
discussed in the last subsection. When f takes the RHS of Poisson equation, Eq. (15)

−3.0

0.0

3.0

a b c d e f

Fig. 3 Results of the regularized least squares. Given the partial data of Sept 23, 2015 a and the reference
data of Apr 1, 1985 b, the spatial domain is completed with the regularized least squares method, using
λ = 0.0, 0.001, 0.01,+∞ respectively c–f
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actually solves (� + λ)u = f , which is named screened Poisson equation. It is the
Euler-Lagrange equation of the type

min
u

∫∫
‖∇u − ∇u′‖2 + λ‖u‖2. (16)

This minimization objective means the gradient field of the target day should be close
to that of the reference day. At the same time, large values of u are penalized.

It is necessary to determine the value of λ in the regularized problem. Observing
the results with different λ values in Fig. 3 (c–f), we can see that larger λ generates
flatter result. By considering the limit situation when λ → +∞, the predicted tem-
perature anomalies will degenerate to all zeros (Fig. 3 (f)). In this case, there is a step
between observed and unobserved regions (“boundary step”), which can be evaluated
as follows

BS(λ; t) =
∑

(p,q)∈P

‖u0(p) − u1(q)‖2, (17)

where P is the set of all neighboring location pairs (p, q) where p is unobserved and
q is observed. Unavailable data u0 is uniquely determined once given λ ≥ 0, thus u0
is a function of λ. So is the “boundary step” BS(λ; t). The “boundary step” is large
when the regularization parameter λ is too large or too small. However, finding the
optimal λ is not trivial. We pick the value of λ that minimizes the “boundary step”
among all candidates in a finite set �, i.e.

λ∗(t) = argmin
λ∈�

BS(λ; t). (18)

The candidate set � will be given numerically in the next section. Please note that
the best weight λ∗ is determined for each day t separately. We do not estimate a fixed
value of λ for all days.

4 Inference

To predict the distribution of X(s, t) (see Eq. (1)) for space-time validation point
(s, t), we will predict the whole temperature anomaly field Â(s, t) for all days that
fall in the ±3 days temporal neighborhoods of validations days first, then compute
the spatio-temporal neighborhood minimums directly. And last, we use the empirical
distribution of the minimums as the prediction.

4.1 Inference procedure

Given a space-time validation point (s0, t0), the temperature anomaly field of that
target day, Â(s, t0), s ∈ S, is predicted first. To achieve this, a guidance day t ′ is
picked to provide a reference of Laplace or gradient field. The sampled day t ′ should
be as complete as possible, thus it is sampled from the period 1985–2006 with only
20% missing data. After that, linear systems are constructed and solved following
the method presented in the previous section. All space-time validation points from
the day t0 are computed together from the same linear system, to avoid redundant
computing, which saves time, energy, and helps fight climate change.
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After predicting the field of the target day t0, we repeat the same procedure to pre-
dict all seven days in its temporal neighborhood, i.e. the days t0 + i, −3 ≤ i ≤ 3.
Hence seven reference days should be sampled. Instead of choosing them indepen-
dently, it is better to sample seven successive days, i.e. the days t ′ + i, −3 ≤ i ≤ 3.
The advantage is that the temporal dependency of the temperature anomalies is
implicitly maintained in the data of sampled seven days. Until now, all Â(·, ·) values
in N (s0, t0) are obtained. Then we calculate the minimum to get one realization of
X(s, t).

An empirical distribution of X(s, t) is predicted if the whole procedure above is
performed repeatedly for t ′1, t ′2, . . . , t ′N . We repeated N times to generate N values of
X(s, t) for each validation point (s, t), and used the empirical cumulative distribution
function (ECDF) of them as the prediction of that validation point. It is noted that
the LHS Laplacian matrix in Eq. (6–8) only depends on the data availability, i.e.
the binary mask, of the target day; its temperature anomaly values and that of the
reference day only affect the RHS of the linear systems. We take advantage of this
to pre-factorize the Laplacian matrix with LU decomposition only once. Then all of
those days sharing the same data availability can be solved directly by forward and
backward substitutions.

4.2 Leave-one-out validation

Since the validation set of this competition is not available to the teams, a cross-
validation set is prepared during the competition. Data in the range of 1985–2006 is
used for 22-fold cross-validation. For the i-th fold (i = 0, . . . , 21), data of the year
1985 + i is left out for validation while the other 21 years are used for training. For
each day in the left-out year, some of the locations have already been unobserved in
the original training set (gray regions in the left of Fig. 4) and more locations are
masked out (gray regions in the right of Fig. 4) for cross-validation. For example, as
demonstrated in Fig. 4, 1985 is left out and part of Jan 5’s data is masked out (new
gray regions in the right figure comparing to the left). Unmasked regions (colored
regions in the right figure) are used as training data in the cross-validation stage. For
some points in the gray region, they can be sampled as cross-validation points if their
spatio-temporal neighborhood N (·, ·) is completely available in the original train-
ing set, which are shown as black dots in the right of Fig. 4. Ground truth X(·, ·) is
available on these points. Therefore, we have generated the training set and valida-
tion points for cross-validation. Since the average temperature anomalies of the first
22 years are lower than that of the last 9 years (where the competition’s final pre-
dictions should be made), as indicated in Huser (2020), we translated the data by the
differences of empirical means between the last 9 years and our cross-validation set
in order to match the means.

We evaluated different configurations of our method on the generated cross-
validation set, including Poisson equation Eq. (8), regularized least squares Eq. (15),
and screened Poisson equation that takes Eq. (15)’s LHS and Eq. (8)’s RHS. For those
configurations with regularizers, the candidate set of weight λ is � = {0.02×(0.5)k :
k = 0, 1, . . . , 11}. For each day, we choose the λ value that gives the least “bound-
ary step” as Eq. (18). Consequently, the Poisson equation generates one solution for
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−3.0

0.0

3.0

Fig. 4 Cross-validation set is constructed by masking part of the training data. Left: Training data of Apr
5, 1985. Right: Gray regions are masked. Colored regions are the training data for cross-validation. Black
dots are cross-validation points

each day; each of the regularized methods, i.e. the regularized least squares and the
screened Poisson equation, chooses one solution from |�| = 12 candidate solutions
for each day. At last, an ensemble is proposed, which pools all 25 resulting candidate
u0s (one from the Poisson equation and 12 from each of the regularized methods) and
picks the one with the least “boundary step” from them as Eq. (18). In all methods
above, the sample size N is 1000. These methods are compared to the benchmark
proposed in Huser (2020), as shown in Tab. 1. The ensemble gives the lowest error
in terms of the average twCRPS on the cross-validation set, thus we used its result as
the final submission for the competition.

After samplingN = 1000 times, the ECDF curves are already smooth enough. We
have tried to fit the ECDFs with the generalized extreme value (GEV) distribution,
while there is little difference according to the twCRPS.

Table 1 Average twCRPS of
different methods on the
cross-validation set

Method 104× twCRPS

Benchmark 5.37

Poisson equation 2.46

Regularized least squares 2.33

Screened Poisson equation 2.35

Ensemble 2.19
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4.3 Final submission

Our approach is implemented with Python to perform parallel computing with an
Intel® Core™ i7-9700K CPU on a desktop computer. In our final submission to
the competition, we used the ensemble method with sample size N = 1000 and
candidate weight set � as described above. The total computational cost is less than
70 minutes.

5 Discussion

This approach is shown to be successful in the context of this competition, thanks to
its advantages. First, the Laplacian matrix is a nice encoding of the spatial domain’s
geometry. It contains the links between locations and its neighbors, and helps to
build the spatial dependence between locations. Second, the temporal dependence
is considered implicitly via borrowing the Laplace fields from successive days, i.e.
reference weeks, instead of independent reference days. Third, the non-stationarity
over time and space is embedded in our model since the values in unobserved
regions can be decomposed into two parts (Eq. (5)); one is associated only with
the current day’s information and the other considers the spatial variation. Last, this
method is training-free. Training data are used directly as references without any
time-consuming parameter estimation.

In Lindgren et al. (2011), the SPDE (λ − �)α/2u = f is studied, where α > 0,
λ ≥ 0 and f corresponds to Gaussian white noise. First, it should be noted that the
−� in Lindgren et al. (2011) is actually the +� in this paper. The latter notation is
used here to make it compatible with the discretization of Laplace operator in Godsil
and Royle (2001). Therefore, the above SPDE coincides with the (screened) Poisson
equation in this work, when α = 2, λ ≥ 0. The difference is that our model is derived
from an interpolation perspective. Our regularization term with λ is motivated by
penalizing large magnitudes of solutions. At the same time, our model is parameter-
free since the value of λ is determined according to the “boundary step” on each day.
Also, we do not assume the RHS f corresponds to Gaussian white noise.

However, there are still some aspects that are neglected, which will be further
studied to improve the current approach. For example, this approach is not tailored
specifically to the evaluation criterion twCRPS. The performance might be further
improved by putting the emphasis on the upper tail, according to the weight function
in twCRPS. Also, reference weeks are just sampled randomly, which means some of
the sampled reference fields might not be compatible with the known data. It will be
helpful to study which Laplace field is more likely to present subject to the known
data.

Thanks to the efficiency of our method, we were able to simulate a large number
of temperature anomaly fields and compute local minimums directly. That is why
extreme value theory methods were not used in our competition contribution. In the
future, it will be studied to improve this model with EVT methods. For example,
the sample size N can be largely reduced if EVT methods are used to model the
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distributions of reference Laplace or gradient fields. This model can also be combined
with the EVT method to further reduce its error on large temperature anomalies.
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