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Abstract—This study aims to quantify the impact of uncon-
trolled charging of Electric Vehicles (EVs) on the low voltage
distribution networks with increasing EV penetration levels.
For this objective, key indicators are developed to show the
magnitude, scale and duration of the impact on the distribution
network. The disseminated results are based on the case study
with actual data from the existing distribution networks. The
findings of this paper can serve as a benchmark for determining
the potential of smart EV charging algorithms and/or the extent
of necessary infrastructural reinforcement that the grid operators
must incorporate.

I. INTRODUCTION

Mass deployment of Electric Vehicles (EVs) can have
a detrimental effect on the Low Voltage (LV) distribution
networks due to the increased peak demand and unpredicted
charging behaviour. The increased number of EVs increases
the total demand for power and energy, which can lead to an
overload of system assets like transformers and lines [1], [2].
With the growing quantity of EV owners, the increased load
peak can be much higher than the percentage of increased
EV share. That is because the new charging demand of EVs
will possibly be added on top of the existing peak demand.
The transformer is hence under high risk of increased loading
which leads to a decreased lifetime, and overloading which
will destroy the transformer eventually [3], [4]. Besides, the
high penetration level of EVs can aggravate the system power
losses and the voltage deviation, especially at the far end of
the lines [5], [6]. It has been found that even with a low
level of EV penetration, the furthest nodes already experienced
measurable voltage deviations [7]. Grid overloading can be
reduced with use of distributed generation such as Photo-
voltaics (PV) [8]. However, power mismatch arising due to the
uncertain nature of these resources can lead to local pockets of
network congestion that can be avoided if PV to EV charging
is integrated [9], [10].

This paper aims to benchmark the technical challenges
associated with increasing electrification needs for electrical
vehicle charging.

The main contributions of this paper are the following:
• Develop insight on the possible consequences of mass

deployment of EVs under uncontrolled charging in terms

Fig. 1: Heat map showing the overloaded and under-voltage
region in the suburban grid with 80 % EV penetration.

of transformer overload, line overload and node voltage
deviation.

• Define the key indicators that show the magnitude, scale
and duration of the distribution grid impacted as the
percentage penetration of EVs increases.

• Determine the trend based on key indicators and quantify
the critical EV percentage penetration level where its
influence on the studied grid infrastructure needs inter-
vention.

Case studies using actual data from existing distribution grids
in the Netherlands are performed to support the findings of
this paper.

II. SYSTEM DESCRIPTION AND SIMULATION SCENARIOS

A. Grid Description

One sub-urban grid and one urban grid were investigated
in this study. The main parameters of the simulated grids are



shown in Table I. The structure of both grids can be observed
in the heat map in Fig. 1 and Fig. 4 respectively. In this study,
a level of 15 % PV penetration in suburban grid, and a level
of 5 % PV penetration in urban grid with 2.5 kW rated power
for each installation is considered in all simulated scenarios.
The PV penetration is calculates based on the number of loads
in the grid.

TABLE I: Grid parameters.

Grid type Suburban grid Urban grid
Number of transformers 3 2

Transformer rating [kVA] 400 400
Average line length [m] 6.97 4.62

Number of loads 806 349
Number of households 772 269

Yearly energy demand [MWh] (2018) 2353.03 1680.22

B. EV Fleet Setup

An average number of 0.9 cars per household for given
sub-urban grid, and 0.5 cars per household for given urban
grid is considered as a base assumption [11]. Factoring in
different EV types is out of the scope for this study and the
variation of the market share is unknown for future high EV
penetration case. Therefore, parameters of the two EV types
considered in this preliminary study are summarised in Table II
based on market data from [12]. A rated charging power with
three phase, 25 A is selected for it is assumed that the higher
charging power is more popular in the future.

TABLE II: Parameters of the chosen EV fleet.

EV Type I Type II
Percentage of total EVs 70 % 30 %

Battery size 50 kWh 100 kWh
Average energy Consumption 6 km/kWh 4 km/kWh

Charging Power 17.25 kW (3x25 A) 17.25 kW (3x25 A)

The EVs are evenly distributed throughout the grid. How-
ever, the location of charge points are differentiated into Home,
Semi-public and Public neighbourhoods. That is because for
each location, the EV has its typical charging behaviour
e.g. particular pattern of arrival time and charging duration,
and it has a significant impact on the grid, in combination
with the base-load feature of that location. For the sub-urban
grid, 50 % of the chargers are used in the home (residential)
neighbourhoods and the rest are equally distributed between
semi-public and public neighbourhoods. Similarly, 25 % of the
chargers are for residential neighbourhood in urban grid, and
the rest of the chargers are equally shared by semi-public
and public neighbourhoods. The average charging frequency is
assumed to be four times per week for each car, out of which
three charging events occur in the weekdays and one in the
weekend.

It is assumed that charging is initiated with rated power
immediately after the EV arrives at the charge point. The

arrival time is selected from its probability distribution ob-
tained from an open data platform [13], [14]. This platform
also provides probability distribution of the parking time and
the energy demand from real measurement data for different
charger types (home, public and semi-public). While these
two parameters together govern the charging duration for
the given event, the challenge is that probability sampling
may not give a physically viable option. For example, if the
energy demand selected from the measured distribution is
higher than the amount that can be delivered by uncontrolled
charging within the corresponding obtained parking time by
sampling, this value cannot be preserved in simulations. The
challenge is further exacerbated because the arrival SoC of
the two EV types signify different chargeable battery capacity
for the event. Therefore to represent the grid impact of
uncontrolled EV charging, this paper considers the start time
and duration of a given event based on the available measured
data while avoiding such input inconsistencies that can arise
from a random selection of multiple probabilities. However,
this choice can cause deviations from the actual probability
distribution. A multivariate probability analysis can improve
the accuracy of the data if further interdependence information
of individual probability is given [15]. Besides, a aggregated
consideration of available data can be a interesting research
initiative to reduce the uncertainty and complexity in the
simulation model [16]. This is out of scope of the present
paper.

III. SIMULATION RESULTS

A. Suburban grid

The daily variation in transformer loading for a week (From
Monday to Sunday) in winter with a time resolution of 10
minutes is shown in Fig. 2a and the maximum line loading
among all lines at a given instance of time is shown in Fig. 2b.
The results are for EV penetration levels of 0 % (EV0), 20 %
(EV20), 50 % (EV50) and 80 % (EV80). It is conspicuously
shown in the graph that the overall loading of both transformer
and line rises when the EV penetration level grows. Most of
the peak loading caused by EV charging directly adds on top of
the peak loading of the basic load (0 % EV) and this tendency
is less fierce in the weekend, which related to the prevalent
arrival and parking time of the EV fleet during the week. Even
though the peak loading reaches incredibly high value, there is
still plenty of capacity for charging during the night and this
ensures the technical potential for smart charging algorithms.

Aside from the transformer and line loading which varies
with time, there are two other aspects that are interesting
and considered in this study. First is the percentage length of
overloaded lines in the system as EV penetration increases
since the cost of line replacement depends on the length
and the result is shown in Fig. 3a. What is the size of
the influenced area when a grid congestion happens is also
interesting. Thus the percentage number of nodes in the system
which experience an under-voltage (below 0.9 p.u.) as the EV
penetration level increases is plotted in Fig. 3b.
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Fig. 2: Comparison of the grid loading of suburban grid with different EV penetration levels (a) Peak transformer loading (b)
Peak line loading

TABLE III: Variation in key indicators of suburban grid performance.

Indicators 0 % EV 20 % EV 50 % EV 80 % EV Impact
Peak Transformer Loading [Pol,xmer,%] 92.58 124.13 152.04 180.57 Magnitude

Peak Line Loading [Pline,max, %] 97.29 145.40 189.35 231.85 Magnitude
Lowest Node Voltage [Vnode, min, p.u.] 0.90 0.86 0.83 0.76 Magnitude

Maximum percentage length of overloaded lines [lol,line, %] 0 2.22 3.42 4.31 Scale
Maximum percentage of under-voltage nodes [Nuv,node, %] 0 21.66 23.27 29.85 Scale

Percentage time of transformer overload [tol,xmer, %] 0 3.97 13.79 19.74 Duration
The ratio of energy delivered when transformer overload [rxmer

E-ov , %] 0 7.66 25.71 36.05 -
Average transformer loading [Pav,xmer, %] 52.72 56.68 63.42 70.36 Utilisation

From two loading curves in Fig. 2, it can be observed that
both transformer and line loading shares similar trend versus
the time. Comparably, the congestion scale in suburban grid
which is reflected in the percentage length of line overloading
and node undervoltage percentage also presents a similar trend
versus time, as exhibited in Fig. 3.

The heat map of suburban grid in Fig. 1 can connect the
above findings together easily. This heat map is a snapshot of
the grid under its maximum loading moment when both the
maximum line loading and the transformer loading reaches
their peak value. In this simulated sub-urban grid heat map,
the overloaded transformers, lines and undervoltage regions
with 80 % EV penetration level are depicted in red and
blue separately. The location of the overloaded transformer

is highlighted in the circle and the following study on the
transformer is focused on this overloaded transformer. Most of
the area in the grid shows different degrees of voltage drop and
loading increase and there is a significant big area experiences
heavy congestion at the lower left corner of the heat map.
Based on the heat map we can see that the overloaded
transformer is upstream from the maximum overloaded line
and an undervoltage area presents further downstream. The
most congested components are interconnected and interactive
with each other, leading to the identical trend in Fig. 2 and
Fig. 3.

While the EV chargers are assumed to be evenly distributed
across the grid, a more clustered charging scenario can lead to
localised, but more significant overloads. On the other hand,



2018-01-22 2018-01-23 2018-01-24 2018-01-25 2018-01-26 2018-01-27 2018-01-28
Time

0

1

2

3

4

5
Pe

rc
en

ta
ge

 
 li

ne
 o

ve
rlo

ad
in

g 
[%

]
EV0
EV20
EV50
EV8016:00 18:15 20:30 22:45 01:00

0
1
2
3
4

(a) Percentage length of overloaded lines in the system as EV penetration increases.
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(b) Percentage number of nodes in the system with under-voltage as EV penetration increases.

Fig. 3: Comparison of the congestion scale of Suburban grid

Fig. 4: Heat map showing the under-voltage region in the urban
grid with 80 % EV penetration.

in the evenly distributed scenario, the area of the affected
grid when the line overload occurs can be more significant. In
order to quantify the influence of uncontrolled EV charging,

further representative index are investigated. The magnitude,
the scale, the duration and the quantity of grid impact as
EV penetration level increases based on eight selected key
indicators are summarised in Table III.

The variation in the indicators Pol,xmer, Pline,max, Vnode,min,
lol,line and Nuv,node (refer Table III for definition) are compared
for the two grids in Section IV. tol,xmer is important because
duration of overload can suggest how much flexibility in
energy demand from EV charging is necessary in terms of
time. The parameter rxmer

E-ov as the ratio of the energy delivered
when the transformer is overloaded (Exmer

ov ) and the overall
energy delivered by this transformer (Exmer

total ), as given by (1)

rxmer
E-ov =

Exmer
ov

Exmer
total

(1)

Further investigation is needed to derive insight on grid
congestion as a consequence of combined effect of magnitude
and duration of overload. Similarly, Pav,xmer can indicate the
utilization of installed infrastructure and it can be seen that the
variation in this parameter is more gradual than peak (Pol,mer).
The method of obtain indicators tol,xmer, rxmer

E-ov and Pav,xmer is
applicable for line overloading analysis as well.

The findings of this study are important because the nature
of the grid impact will govern the type of necessary interven-
tion. For example, indicators showing a high magnitude, low
duration grid impact may necessitate a different smart charging
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Fig. 5: Comparison of the grid loading of urban grid with different EV penetration levels (a) Peak transformer loading (b)
Peak line loading

method than one with low magnitude, high duration overload-
ing. The geographical scale and utilisation factor can provide
insight into the potential of smart charging as compared to
conventional infrastructure reinforcement solution.

B. Urban grid

Similar analysis were applied on the urban grid. The heat
map of the simulated 80 % EV penetration level scenario at
the moment of its maximum line loading reaches the peak
are shown in Fig. 4 and the most heavy loaded transformer is
highlighted in the circle. The following analysis on the trans-
former focus on this heavy loaded transformer. The loading
of the focused transformer and the maximum line loading
among all lines is shown in Fig. 5. The transformer loading and
maximum line loading of urban grid shows a dissimilar trend
with each other, which suggests these two loading behaviour
are not highly co-related. This is supported by the heat map
of urban grid in Fig. 4 that the transformer, the max loaded
line and the voltage drop area are not directly connected.

Since there is no overloading situation happening in urban
grid, the overloading scale analysis is then omitted. The rest
of the key indicators are inspected together with suburban grid
in the next section.

IV. COMPARISON OF KEY INDICATOR TRENDS BETWEEN
SUBURBAN AND URBAN GRID

This section describes the trend in the defined key indicators
as a function of EV penetration and discusses the possible
reasoning behind these variations. Fig. 6 shows that the varia-
tion in the maximum transformer and line loading (Pol,xmer and
Pline,max, respectively) as a function of EV penetration (Nev,%)
for sub-urban and urban grids respectively.

Intuitively it can be expected that overload magnitude is
directly proportional to EV penetration level due to increase
in number of EVs connected during peak hours. The following
are some interesting insights that can be derived from the
results

• The main observation is that unlike suburban grid, where
the impact of increase in EV penetration leads to signifi-
cant overloads, this is not the case with urban grid, even
with highest considered EV penetration (Nev = 80 %).
The first reasoning is that the suburban grid has a very
high base-load that both its transformer and the maximum
line loading almost reach 100 % even with none EV
connected to the grid. Another reason is the number of
urban households (269) is less than the suburban case
(772). The assumption on average number of cars per
household is much lower for urban (0.5) as compared to
suburban (0.9). As a consequence, the actual connected
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Fig. 6: Transformer and line loading trend as a function of EV
penetration for Sub-urban and Urban grid.

EVs as a function of penetration level is lower for
the urban grid, leading to a correspondingly lower EV
charging power demand. Furthermore, the number of EVs
in the grid was estimated based on the car statics where
the car mobility is not included. Which means the data
can only reflect the location of car ownership but not the
actual location where the car frequently parks.

• The maximum line overloading is relatively more severe
than the maximum transformer loading for sub-urban
grid. This trend is not observed for urban grid, where
peak line loading is lower and flattens with higher EV
penetration. From the heat map of these two grids we
can see the maximum line loading of suburban grid
mainly aggregated in the main lines but in urban grid the
maximum line loading appears locally to a greater degree.
Two hypotheses are proposed based on the observation.
If the absolute number of EV is greater than certain
threshold, the loading of the main lines (which is the
accumulated loading of all their sub-branch lines) will
surpass the regional line loading, and then the feature
of regional line loading will be less distinct. Besides,
the grid congestion tendency might be grid specific that
different grid characteristics alters the magnitude and the
allocation of the grid loading.

• The slope of the plot-lines (
∆Pol,xmer
∆Nev

and
∆Pline,max

∆Nev
, re-

spectively) can be reduced by means of smart charging for
achieving power demand flexibility. Thereby,

∆Pol,xmer
∆Nev

and
∆Pline,max

∆Nev
as a function of EV penetration can be

used to benchmark the performance potential of the smart
charging algorithm for the given operating scenario. More
data point is needed to attain a more accurate trend and
the slope.

Furthermore, Fig. 7 shows the minimal node voltage trend
as a function of EV penetration for both suburban and urban
grids. The voltage line in both grids present a linear trend.
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Fig. 8: Scale of grid impact as EV penetration increases in the
Sub-urban grid.

suburban grid has a way worse voltage problem than the
urban grid as expected which is again related with the absolute
number of EVs that are connected to the grid.
Nuv,node and lol,line indicate the scale of grid impact with

uncontrolled EV charging in the sub-urban grid. Fig. 8 shows
the Nuv,node and lol,line as a function of Nev for the suburban
grid. These parameters are not shown for urban grid because
even high EV penetration did not cause overload in the
system. Note that the indicators are plotted on double y-
axis with different limits. It can be observed that Nuv,node is
relatively higher than lol,line, suggesting that the challenge of
under-voltage is more significant in percentage terms. Further,
the curves tend to flatten with increasing EV penetration,
indicating that the impact is located at certain critical regions
in the considered grid. This is particularly more plausible
because a uniform distribution of connected EVs is considered
in the study.

However as highlighted before, more simulated data-points
are necessary for further analysis to make a more conclusive
suggestion on the observed tendencies. Furthermore, it is im-



portant to consider that the observed loading patterns are grid
specific which can change with operating scenarios such as
topology, base-load, daily work-place migration from suburban
to urban grids and a more clustered EV distribution.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the impact of uncontrolled EV charging is
investigated with two actual distribution grids in the Nether-
lands. Different EV penetration levels are simulated based
on available measured field data and the obtained results
support the intuitive understanding that the variations in trans-
former/line overloading and node under-voltage increase with
higher penetration. Specifically, it was found that the impact
of uncontrolled EV charging is relatively higher in sub-urban
as compared to the urban grid for the given scenarios.

Key indicators are defined to understand the impact on the
studied grids and some interesting insights are derived based
on their trends as a function of EV penetration. For example,
the curves for percentage under-voltage nodes and overloaded
branches in the network tend to flatten with increasing number
of EVs suggesting that the impact locates at specific grid
regions. It is recommended that further analysis with more
simulated data-points can provide deeper understanding of the
underlying tendencies.

The main conclusion is that the key indicators defined in this
paper and the corresponding trends shown for uncontrolled EV
charging can be useful to benchmark the grid impact in terms
of magnitude, scale and duration. Reducing the slope of these
parameters as a function of EV penetration can be applied to
evaluate the effectiveness of developed smart charging algo-
rithms in reducing the footprint of increasing transportation
electrification on the existing distribution network.

There are several things can be considered for further
research. More EV penetration levels can be added for simula-
tion. How the grid impacts varies with the increasing absolute
number of EVs instead of relative EV penetration levels can
be examined. Simulation with same settings can be tested
on different grid types. How grid characteristics affect the
grid performances with uncontrolled charging can be explored
via control variable method. The EV mobility should also be
covered in future study in order to improve the accuracy of
actual connected number of EVs.
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