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A B S T R A C T

At the time of creating an experimental design for a stated choice experiment, the analyst often
does not precisely know which model, or decision rule, he or she will estimate once the data are
collected. This paper presents two new software tools for creating stated choice experimental
designs that are simultaneously efficient for regret minimisation and utility maximisation deci-
sion rules. The first software tool is a lean, easy-to-use and free-of-charge experimental design
tool, which is dedicated to creating designs that incorporate regret minimisation and utility
maximisation decision rules. The second tool constitutes a newly developed extension of Ngene –
a widely used and richly featured software tool for the generation of experimental designs. To
facilitate the use of the new software tools, this paper presents clear worked examples. It focusses
on practical issues encountered when generating such decision rule robust designs, such as how
to obtain priors and how to deal with alternative specific parameters. Furthermore, we analyse
the robustness of the designs that we created using the new software tools. Our results provide
evidence that designs optimised for one decision rule can be inefficient for another – highlighting
the added value of decision rule robust designs.

1. Introduction

Stated Choice (SC) experiments are widely used to acquire understanding of choice behaviour in a variety of research fields,
including but not limited to transportation, marketing, and health and environmental economics (Louviere et al., 2000; Street and
Burgess, 2007; Rose and Bliemer, 2009; de Bekker-Grob et al., 2012). In SC experiments respondents are presented with choice tasks
involving two or more hypothetical alternatives, which are described by a set of attributes and attribute levels. Respondents are asked
to assess the alternatives and make a choice, typically of their most preferred alternative. Prior to the SC experiment the analyst
creates the experimental design, which involves allocating attribute levels to the alternatives of each choice task. There are different
approaches to generate experimental designs, of which so-called efficient designs are most common at present. Efficient designs aim
to maximise the information obtained from the SC data, resulting in more reliable parameter estimates for a given number of
observations (Rose and Bliemer, 2009; Kessels et al., 2011).

To date, research and software for experimental design have almost exclusively been based on the (often implicit) assumption that
decision-makers make choices using a (linear-additive) Random Utility Maximisation (RUM) decision rule. However, a growing
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number of studies have found overwhelming evidence that decision-makers may opt for other types of decision rules when making
choices (Kivetz et al., 2004; Hess et al., 2012; Leong and Hensher, 2012; Guevara and Fukushi, 2016; Hancock et al., 2018; Van
Cranenburgh and Alwosheel, 2019). In light of this, very recently a method to create efficient experimental designs for one alter-
native decision rule, namely Random Regret Minimisation (RRM), has been proposed (Van Cranenburgh et al., 2018). RRM models
postulate that decision-makers choose the alternative that provides them with minimum regret, which is caused by the need to trade-
off attributes of alternatives during the decision making process (Chorus, 2010). Unlike its RUM counterpart, RRM models feature a
particular reference-dependent type of semi-compensatory behaviour.

One particularly important result of the study by Van Cranenburgh et al. (2018) is that they find that designs that are efficient for
estimating RUM models can be highly inefficient for estimating RRM models, and vice versa. Therefore, they advocate taking
multiple decision rules into account when creating efficient experimental designs. To create such ‘decision rule robust designs’ they
propose to use a model averaging approach, akin to the approach taken by Rose et al. (2009) to account for uncertainty regarding the
model specification (e.g., multinomial logit, mixed logit). But, although the theory to devise designs which are robust toward the
uncertainty on the side of the analyst regarding the underlying decision rule has recently been established, the burden to actually
generate these designs is currently high: it requires extensive software coding on the side of the analyst.

This paper aims to lower the burden for analysts who wish to create SC experimental designs that are simultaneously efficient for
estimating RUM and RRM models. In particular, it presents two software tools in which such decision rule robust designs can be
generated. The first software tool is called Robust Design Generator (RDG). RDG is a lean, easy-to-use and free-of-charge experimental
design tool, running in a MATLAB environment. RDG is confined to the design of unlabelled experiments with three alternatives. The
second tool constitutes a newly developed extension of Ngene. Ngene is an established, highly versatile commercial software
dedicated to the design of SC experiments (ChoiceMetrics, 2018). To facilitate creating decision rule robust efficient designs using the
two new software tools, this paper presents clear and worked out examples. It focusses on practical issues encountered when gen-
erating such efficient designs, such as how to obtain priors and how to deal with alternative specific parameters.

The remaining part of this paper is organised as follows. Section 2 briefly revisits efficient design theory for RRM models. Section
3 shows how to create efficient designs using the two software tools. In this section the robustness of the created designs is also
analysed. Finally, section 4 provides a conclusion and discusses new avenues for further research.

2. RRM efficient design theory

This section briefly revisits the theory behind efficient designs for estimating RRM models. Theory on efficient designs for esti-
mating RUM models is widely available in the literature (see e.g. Rose and Bliemer, 2009). Although generating efficient designs is in
many respects very similar for both RRM and RUM models, this section details a number of key differences between the two
modelling paradigms that need to be discussed. This includes how to obtain adequate priors for RRM designs (Section 2.2), and how
the analyst can deal with non-generic variables (e.g. labels) in RRM designs (Section 2.3). Additionally, the creation of designs that
are robust towards uncertainty on the side of the analyst regarding the decision rule are discussed in Section 2.4.

2.1. Efficient designs for estimating RRM models

RRM models are descriptive models of choice. A particular feature of RRM models – as compared to the normative linear-additive
RUM model – is that they are able to capture some frequently observed behavioural phenomena. One notable behavioural phe-
nomenon that can be captured by RRM models is the compromise effect. The compromise effect is the behavioural notion that – from
a utilitarian perspective – the compromise alternative1 receives a higher market share than one would expect based on its attribute
levels (Chorus and Bierlaire, 2013). The idea is that by accounting for this behavioural phenomenon, RRM models may be able to
better explain and predict choice behaviour.

RRM models postulate that decision-makers choose the minimum regret alternative (Chorus, 2010). Regret is experienced by the
decision-maker when a competitor alternative j outperforms the considered alternative i with regard to one or more attributes m. The
total regret associated with an alternative is – in most RRM model specifications – the sum of all the pairwise regrets that are
associated with bilaterally comparing the considered alternative with the other alternatives in the choice set. The most widely used
mathematical form of RRM models is shown in Equation (1), where RRin denotes the random regret for decision-maker n who
considers alternative i, Rin denotes the observed, or systematic, part of regret, and εin denotes the error term which captures the
unobserved part of regret. rijmn is the so-called attribute level regret function. This function maps the difference between the levels of
attributes m of the competitor alternatives j and the considered alternative i onto regret. Different specifications of this function lead
to different types of RRM models (see Van Cranenburgh and Prato (2016) for an overview of RRM models, and their specifications).
All specifications have in common that they have convex attribute level regret functions. As a result of that, RRM models predict that
having a (very) poor performance on one attribute (which causes much regret) cannot necessarily be compensated for by having a
(very) strong performance on another attribute. A compromise alternative will only generate modest levels of regret since it has no
particularly poor performance on any of the attributes. As a result, RRM models predict that the compromise alternative is relatively
attractive in terms of minimising regret (see Chorus, 2012 for a more extensive explanation on how RRM models capture the

1 Compromise alternatives have an intermediate performance on each or most attributes rather than having a poor performance on some attributes
and a strong performance on others.
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compromise effect).
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In the remainder of our paper, we use the P-RRMmodel (Van Cranenburgh et al., 2015a). The P-RRMmodel is a special case of the
generic and flexible μRRM model,2 and has a cornerstone interpretation within the RRM modelling paradigm as it postulates no
‘rejoice’ (the opposite of regret). In other words, it yields the strongest regret minimisation behaviour, i.e., the highest level of regret
aversion which is possible within the RRM modelling framework. Its attribute level regret function is given by

=r x xmax(0, [ ])ijmn m jmn imn . This piece-wise linear function consists of a max operator, which at first sight may seem undesirable
from a numerical optimisation perspective. However, when the signs of the taste parameters are known to the researcher – as is most
often the case – the P-RRM model becomes linear-additive (Equation (2)). This, in turn, makes this model particularly attractive for
creating efficient designs.
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Van Cranenburgh et al. (2018) derive the Fisher information matrix for this RRM model (in MNL form), which is essential to the
creation of efficient designs, see Equation (3). Using the Fisher information matrix the Asymptotic Variance Covariance (AVC) matrix,
denoted Ω, can be derived (Equation (4)). As can be seen, for the P-RRM MNL model the Fisher information matrix I is not a function
of the actual choices Y. As such, the AVC matrix can analytically be computed in a straightforward way, just like for linear-additive
RUM MNL models (Huber and Zwerina, 1996) and linear-additive RUM Nested Logit models (Bliemer et al., 2009). From a com-
putational point of view, this is a highly desirable feature, given that to find an efficient design typically many thousands of candidate
designs have to be evaluated.
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To compute the efficiency of a design, different measures of statistical efficiency can be used (Kessels et al., 2006). In the context
of this paper we mainly focus on one measure of statistical efficiency: the D-error statistic (D-efficiency). The D-error statistic is the
most commonly used measure of efficiency in experimental design practice, and is calculated by taking the determinant of the AVC
matrix, see Equation (5).

=D Xerror det [ ( , )] (5)

2.2. Priors for P-RRM models

Prior parameters are an essential ingredient for creating efficient designs. Prior parameters essentially inform the design algo-
rithm on where the trade-off points of decision-makers can be expected to be. By doing so, they allow the creation of designs which
provide a maximum amount of information on the sizes and signs of the estimable parameters. However, regardless of whether one
generates efficient designs for RUM or RRM, it is important to set the priors carefully. There is extensive literature – in the context of
RUM efficient designs – showing that when accurate priors are used efficient designs can result in substantial statistical benefits, as
compared to orthogonal or random designs (e.g. Bliemer and Rose, 2011). But, ill-chosen priors may undermine the sole purpose of
creating efficient designs as they may lead to statistical inefficient designs (Ferrini and Scarpa, 2007; Walker et al., 2018). The most
common way to obtain prior parameters is by conducting a pilot study. For RUM and RRM efficient designs alike, a pilot study may
provide valuable insights on what are good priors. However, it should be noted that RRM parameters are less transferable from one
design set-up to another. Unlike RUM models, RRM models are context dependent models of choice. This means that they are
sensitive towards the composition of the choice task. By extension, RRM model parameters are context dependent. The implication is
that the analyst has limited freedom to adjust the design dimensions of the experiment, such as changing the ranges of the attribute
levels or changing the number of alternatives in a choice task, after having conducted the pilot study, without jeopardising the
reliability of the obtained priors from the pilot study.

In the absence of a pilot study, a second best way to obtain RRM priors is based on the literature. However, the vast majority of the
discrete choice modelling literature involves RUM models, not RRM models. Although no theoretical relation exist between RUM and
RRM estimates, RUMmodelling results can be used to obtain proxies for RRM priors. From the numerous studies comparing RUM and
RRM models, we know that when RUM and RRM models are estimated on the same data (1) the ratios of the parameters are fairly
stable across both models, and (2) RRM parameters are roughly J2/ times smaller than their RUM counterparts, where J denotes the

2 The μRRM model is a generalisation of the RRM model proposed by Chorus (2010). In this model, an additional parameter μ is estimated, jointly
with the taste parameters. This parameter captures the extent to which losses loom larger than equivalently sized gains.
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number of alternatives in the choice set (Van Cranenburgh et al., 2015b). Accordingly, when consulting the RUM literature to set
priors for RRM efficient designs we recommend to rescale the RUM parameters using a factor of J2/ . Note that this factor also has
been used to estimate RRM models on data sets in which the number of alternatives that are available to decision-makers varied
across choice observations (Van Cranenburgh and Chorus, 2018).

Regardless of how the prior parameters are obtained, we believe it is generally good practice to account for uncertainty regarding
the prior parameters using so-called Bayesian efficient designs (Sandor and Wedel, 2001). These designs explicitly take into account
the uncertainty regarding the prior parameters. In Bayesian designs the analyst specifies the prior as a random number rather than as
a fixed number. The efficiency of a Bayesian design is evaluated as the mean3 efficiency across all draws for the randomly drawn prior
parameters. Hence, for Bayesian efficient designs the analyst still needs to define the priors (including the shapes of their distribu-
tions). But, the idea is that these design choices are less sensitive towards misspecification. In the literature, a number of papers
provide guidance on how to obtain Bayesian priors, see e.g. Kessels et al. (2008); and Bliemer and Collins (2016).

Finally, zero priors are not permissible for RRM efficient designs (unlike for RUM efficient designs). Due to the min and max
operators in the attribute level regret function of the P-RRM model (Equation (2)), the second order derivative – which is used to
create efficient designs – does not exist at β=0. This is a trivial problem in practice. In case an analyst aims to generate a non-
Bayesian efficient design and has no particular expectation regarding the size of a parameter but some clue about the sign, we simply
recommend using a very small value (positive or negative, depending on the sign expectation). In case an analyst aims to generate a
Bayesian efficient design,4 they may simple use a random parameter, with a mean of zero (e.g. a uniform distribution between −1
and 1).

2.3. Alternative specific variables

It only makes sense to estimate RRM models when attributes are generic, i.e. attributes are shared across alternatives. After all,
behavioural phenomena which the RRM model aims to capture – like the compromise effect – may arise only for generic attributes.
However, in some instances, alternatives in SC experiments consist of attributes that are specific to particular alternatives. For
instance, in a mode choice between car, bus and train in the transportation field, having or not having access to WIFI may only be
applicable to the train alternative. RUM and RRM treatment of such variables – which are binary in the difference across alternatives
– is mathematically equivalent, see Appendix B for a formal proof. Note that for RRM models which have a logarithm in the attribute
level regret function (i.e. = +r x xln(1 exp( [ ]))ijm m jm im ) RUM and RRM treatment of variables which are binary in the difference
across alternatives is also mathematically equivalent, apart from a rescaling which has no impact on the statistical efficiency or model
fit (Chorus, 2012; Hess et al., 2014). Therefore, when creating efficient designs for RRM models which involve a combination of
generic and alternative specific attributes no special attention needs to be paid to alternative specific variables.

2.4. Efficient designs robust for decision rule uncertainty

Overwhelming empirical evidence shows that humans use a wide variety of decision rules when making choices. As a result, the
analyst usually does not know prior to conducting the choice experiment what will be the prevailing decision rule. This is a moti-
vation to take multiple decision rules into account when creating efficient designs, instead of just one. This is especially so as it is
known that efficient designs which are optimised having one particular model (with a set of priors) in mind can be highly inefficient
when another model is being estimated once the data are collected. Rose et al. (2009) have shown this in the context of different RUM
model specifications, and more recently Van Cranenburgh et al., (2018) have shown this in the context of RUM and RRM decision
rules. Both papers therefore advocate the use of designs which are robust towards multiple models (be it model specifications, or
embedded decision rules), by means of minimising a composite D-error which is based on a weighted sum of D-errors associated with
different models, see Equation (6). In the context of decision rules, a composite efficiency measure takes into account the probability
of each decision rule being the model that the analyst will estimate, once the data are collected. In case the analyst has no particular
expectation regarding the most likely decision rule in the data (and thus the models he or she will ultimately estimate and report),
equal weights wrmay be given to the considered decision rules (denoted r). Equal weights mean that the D-error of each decision rule
roughly contributes equally to the composite efficiency measure. The actual contribution to the composite D-error may not exactly
equal wr as the D-error of one model may be larger (or smaller) than the D-error of the other model. In case the analyst has
expectations regarding the most likely decision rule in the data, the analyst may adjust the weights to reflect these expectations. Like
with prior parameters, such expectations may be based on results from pilot surveys, or obtained from the literature.

= =
= =

D w D where w-error 1composite
r R

r r
r R

r
1... 1... (6)

3. New software tools

Two software tools have been developed to create efficient designs that are robust for estimating RUM and RRM models. The first

3 Note that sometimes not the mean, but the median, minimum or maximum value is used in Bayesian design.
4 Only applicable to Ngene.
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tool, Robust Design Generator, is a lean, fast and easy-to-use experimental design tool, working in a MATLAB environment. RDG is
free-of-charge, but provides relatively limited flexibility. In particular, it is confined to three alternative choice sets only. The second
tool is an implementation in the widely used Ngene software package. Ngene software has many features for the generation of
experimental designs and is far more flexible than RDG. But, Ngene is commercial software, and hence needs to be purchased. By
providing two platforms (albeit not fully equivalent), we aim to serve a broad group of users. Below, we discuss – for each tool – how
to create designs on the basis of a number of worked examples.

3.1. Robust Design Generator

RDG is dedicated to creating designs aimed for investigating RRM and RUM decision rules. More specifically, RDG allows the
analyst to create experimental designs that are efficient for P-RRM MNL and RUM MNL models, as well as for a mixture thereof. RDG
software can be downloaded from www.advancedRRMmodels.com.

There are two ways to use RDG:

1. As a MATLAB app, which runs within the MATLAB environment. Advantages of running RDG as a MATLAB app are that it allows
the analyst to extend and build upon the software code and that it is very easy to install. This approach requires the analyst to have
installed MATLAB R2017 (or higher).

2. As a stand-alone application. This approach does not require a MATLAB license. Therefore, in this form the tool can be used by
anybody, without the need to purchase any commercial software. Installation requires about 2GB hard drive space. See www.
advancedRRMmodels.com for further installation details.

Note that the MATLAB app and the stand-alone application are essentially the same: the only difference being the need for a
MATLAB license and the ability to modify the underlying code.

3.1.1. Layout and use
The layout of the RDG tool is shown in Fig. 1. The RDG tool has a single pane layout, with two panels. The left-hand side panel is

where the analyst defines the design set-up (i.e. the design dimensions). It consists of input fields for the attribute levels and the prior
parameters; it contains push buttons to select the model to optimise for, as well as a push button to start and reset the search
algorithm. Also the left-hand side panel is used for monitoring the optimisation. At the bottom of the panel, progress messages are
provided. The D-error of the last run, the lowest D-error found so far, and the S-estimate associated with the best design found are
reported. The S-estimate is a theoretical lower bound for the sample size required for finding a statistically significant parameter
estimate for a parameter, conditional on the prior for that parameter being accurate (Rose and Bliemer, 2013). Thereby, the measure
provides a useful indication to the analyst on the minimum required sample size, prior to the actual data collection. The right-hand
side panel is where the main output and the design are displayed, after invoking the software to stop searching using the ‘STOP’

Fig. 1. RDG user interface.
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button. Also, general statistics on the design are reported in the output text area.
To construct an efficient design, the analyst performs 5 steps. Firstly, the analyst enters the number of choice tasks of the design.

Secondly, the analyst inserts the attribute levels for each attribute. The interface allows for a maximum of 6 levels per attribute, and
up to four attributes. Thirdly, the analyst specifies the values of the prior parameters. To account for uncertainty regarding the prior
parameters, the analyst can tick the boxes to search for a Bayesian D-efficient design. When a box is ticked for a prior parameter, the
software will create 100 i.i.d. draws from a symmetric triangular distribution. The created triangular distribution has a domain
between zero and two times the value of the prior entered (hence, the mean of the triangular distribution is equal the prior). Of
course, other types of distributions could have been chosen. We decided to implement this distribution because of its simplicity: no
additional scale or shape parameters are needed and all its mass is either in the positive, or negative domain – which is a desirable
feature given the discontinuity of the P-RRM model at β=0.

Note that creating Bayesian D-efficient designs is considerably slower than creating non-Bayesian efficient designs. Therefore, it is
good practice to create experimental designs using non-Bayesian priors initially, to ensure that the design priors are appropriately
scaled. Fourthly, the analyst selects the model to optimise for, by selecting a model button. The analyst has three options: RUM-MNL,
P-RRM-MNL, or a mixture of both (where equal weight is given to both models). Fifthly, when the analyst has entered everything
correctly, the analyst may start the search algorithm by pressing the ‘START’ button. The status lamp will turn orange, indicating the
algorithm is searching the solution space.

The algorithm will first create the candidate set of choice tasks, which may take a few seconds to tens of minutes, depending on
the dimensions of the design set-up. Choice tasks with dominant alternatives are automatically removed from the candidate set. After
that, it will start searching the solution space using a Modified Fedorov algorithm (Fedorov, 1972), and will indicate this in the output
message box. The Fedorov algorithm starts by taking a randomly drawn design (this is termed ‘an iteration’), and continues by
replacing choice tasks in the design with those from the candidate set and evaluating its impact (see e.g. Van Cranenburgh and
Bliemer, 2018). After having exhausted the first series of replacements, a first efficient design is found. This will prompt the first D-
error at the bottom of the input panel, under ‘D-error current iter’. Also, a ‘STOP’ button becomes visible, next to the ‘START’ button.
When this button is selected by the analyst, the search algorithm stops and the best design that has been found so far will be shown in
the output panel. It is good practice to let the search algorithm do at least a few iterations. The analyst can monitor the number of
iterations and the lowest D-error that has been found, at the bottom of the input panel as well as in the lower right the progress plot.

Note that the interface may be slow to respond, when the optimisation is stopped when it searches large solution spaces (i.e. when
the dimensionality of the design is large). The reason has to do with the fact that the algorithm first creates the full candidate set,
consisting of all non-dominating choice tasks and then starts replacing choice tasks from the design with the candidate choice tasks.
The algorithm can only be stopped after having finished a full series of replacements (i.e. an iteration). The time required to perform
one such iteration increases with the dimensionality of the design, which is why the interface can be slow to respond. However, a key
advantage of this implementation (i.e. working with the full candidate set) is that from iteration 1 it finds designs that are very
efficient (i.e. close to optimal), which means the optimisation can be stopped after just a few iterations. This is different from e.g.
Ngene, which samples candidate choice tasks, and typically gradually finds better and better designs.

To see the best design that has been found, the analyst needs to press the Design tab in the right-hand side panel. When the analyst
is satisfied with the design, the analyst can export the design to a text file (named “design.txt”) by pushing the ‘Export design’ button
at the top of the output panel, which will open the file in a text editor (e.g. Notepad).5 The text file reports the design as well as
additional information on the design, including the design dimension, choice probabilities and the S-estimates. Next, we provide
three worked examples showing how this software could be used. Also, we interpret and discuss the resulting designs.

3.1.2. RDG example 1: D-efficient design for estimating RRM models
In this example we create a design which is optimised for estimating a P-RRM models in MNL form, see Fig. 2. The design consists

of 10 choice tasks per respondent. Each choice task consists of three generic attributes: Travel Time (TT), Travel Cost (TC) and Level
of Crowdedness (C). Travel Time and Travel Cost both have 6 levels; Crowdedness has two levels (not crowded or crowded). The
priors for TT, TC and C are fixed values set respectively to −0.3, −2.0 and−1.6. We stopped the search algorithm after 24 iterations,
which took about a minute.

The best design is displayed in the output panel under the Design tab, see Fig. 3. Each row corresponds to a choice task, while the
columns show the attribute levels, where Xim denotes the attribute level for attribute m of alternative i. A number of observations can
be made. Firstly, it is notable that the alternatives of the design are sorted. That is, alternative 1 is always the fastest alternative,
alternative 2 is always the middle (compromise) alternative, and alternative 3 is always the slowest alternative within the choice task.
The sorting facilitates understanding of the obtained design on the side of the analyst during the experimental design phase.
However, when the design is used in the actual SC experiment, the analyst should shuffle the order of the alternatives and choice
tasks. Secondly, we see that alternatives in the design are somewhat extreme in terms of their attribute levels. Alternative 1 and 3
almost always attain the lowest and highest levels for the travel time (respectively 23 and 43). This phenomenon is also known to
occur in efficient designs optimised for RUM (Kanninen, 2002). Thirdly, the S-estimates show that this design is very efficient: only
two respondents are needed to obtain all parameters to be significant (i.e. given that the priors were adequately chosen). However,
clearly to make inferences about a target population, a sample needs to be substantially larger than that. Fourthly, looking at the
choice probabilities – which are depicted left of the design – we see that all alternatives attract substantial choice probability. This is

5 Note that the user requires writing access to the local Temp folder (“C:\Temp”).

S. van Cranenburgh and A.T. Collins Journal of Choice Modelling 31 (2019) 104–123

109



in line with expectations based on the literature: relative to orthogonal designs efficient designs are known to generate choice tasks
which are cognitively more demanding for respondents (Louviere et al., 2008), although usually not to the extent that it becomes
burdensome.

3.1.3. RDG example 2: D-efficient design robust for estimating RUM and RRM models
In this example we use the RDG to create a design which is optimised for the situation in which the analyst has no particular

expectation regarding whether respondents are more likely to use a utility maximising or a regret minimising decision rule.

Fig. 2. RDG D-efficient design for estimating RRM models, Progress tab.

Fig. 3. RDG D-efficient design for estimating RRM models, Design tab.
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Therefore, at the time of designing the experiment the analyst does not yet know which type of model he or she will estimate (RUM or
RRM). Given that RUM designs can be highly inefficient for RRM, and vice versa (Van Cranenburgh et al., 2018), in this example we
aim to create a design which is robust for estimating both models.

In this example we use the same design dimensions as in the previous example: 10 choice tasks per respondent, each having three
alternatives, with the same attribute levels as before. To create this decision rule robust design, the ‘Mixture of RUM & P-RRM’ button
is selected, see Fig. 4. Note that both decision rules are set to contribute ‘equally’ to the composite D-error (i.e. =w r0.5r , see
Equation (6)). Furthermore, as shown in the output message box in Fig. 4, a choice set size correction is applied to downscale the
RRM model parameters towards the ‘same’ level as the RUM parameters, by multiplying them by 2/3 (see also section 2.2). Hence,
when the ‘Mixture of RUM & P-RRM’ button is selected, the software considers the priors entered in the input cells to be the priors for
the RUM model.

The results have two noteworthy aspects. Firstly, we see the design has somewhat more variation in the attribute levels, as
compared to the design optimised for P-RRM only. For instance, while in the P-RRM efficient design the fastest alternative always
costs 6, 7 or 8 euros, in the robust design in one choice task the fastest alternative costs just 5 euros. Furthermore, in only one choice
task the fastest alternative costs 8 euros (the maximum level). Secondly, the composite D-error is larger than the D-error of the design
optimised for P-RRM only, see Fig. 2. This is in line with expectations, given that this robust design is not solely optimised for P-RRM,
but also for RUM. Finally, note that for robust designs the MNL probabilities for both RUM MNL and P-RRM MNL can be seen, by
scrolling to the right.

3.1.4. RDG example 3: Bayesian D-efficient design robust for estimating RUM and RRM models
In this example we create a design which is robust towards two sources of uncertainty on the side of the analyst. The first type of

uncertainty involves the underlying decision rule used by decision-makers (in casu: RUM or RRM); the second type of uncertainty
involves the prior parameters. The analyst typically has expectations regarding the sign and sizes of the parameters, but clearly does
not know their exact values. Therefore, in this example we create a design which accounts for both these sources of uncertainty. The
‘Mixture of RUM & P-RRM’ button is selected and the tick boxes for Bayesian priors are ticked, see Fig. 5.

Fig. 5 shows the Bayesian D-efficient robust design. In line with expectations, we see that the Bayesian D-error is considerably
larger than in the non-Bayesian design (see Fig. 4). Furthermore, at face value the design (not shown) does not look very different
from the one attained in the previous example. However, in section 3.3 we will show that this design is considerably more robust
towards the analyst's decision rule uncertainty than the designs in the previous two examples.

3.2. Ngene software

The Ngene software package is a richly featured software tool for the generation of experimental designs for SC experiments. It is
far more flexible than RDG, allowing the analyst to customise the experimental design towards his or her needs. For instance, Ngene
allows the analyst to create blocked designs, pivoted designs, labelled and unlabelled designs, and constrained designs, using a range

Fig. 4. RDG D-efficient design robust for estimating RUM and RRM models.
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of model types, including MNL, Error Component, and Panel Mixed Logit models, and a variety of different efficiency measures,
including D-error, Bayesian D-error, and S-error. Initially, efficient designs for RRM models will be released as a beta feature which is
available from version Ngene 1.2.1.6 After it has been thoroughly tested, it will be formally released in version 1.3. The Ngene
software can be downloaded from www.choice-metrics.com. See this website for further details on installation and licenses.

3.2.1. Invoking RRM efficient designs in Ngene
Ngene is syntax driven, and to invoke a design optimised for estimating RRM models the ;eff property of the Design command is

used. The ;eff property defines the model type together with the efficiency measure used during the optimisation. For example, to
create an efficient design for the P-RRM model (with an MNL error structure), using the D-error as the efficiency measure, the analyst
specifies ;eff = (mnl, d, rrm), where mnl refers to the error term assumptions of the model, d refers to the efficiency measure,
and rrm refers to the assumed decision rule. Where no decision rule is explicitly inserted by the analyst, Ngene uses RUM by default.
Next, we provide three examples showing how to create such designs using Ngene. The first two examples mirror the examples of the
RDG tool. The third example goes beyond what can be done with the RDG tool. We discuss the designs and interpret the results in
light of the results obtained using the RDG tool.

3.2.2. Ngene example 1: D-efficient design for estimating RRM models
In this example we create a design which is optimised for estimating P-RRM models in the MNL form. We use the same design set-

up as we used in RDG example 1 (see section 3.1.2). This allows us to compare the outcomes of both software tools. Text box 1 shows
the Ngene syntax. The ;alts property indicates that the design is optimised for three unlabelled alternatives (alt1, alt2, alt3).
The asterisks behind the names of the alternatives indicate that dominant alternatives are not permitted in the design. At the ;eff
property, the flags mnl, d, rrm indicate that the design is optimised for an P-RRM model in MNL form, using the D-error as the
efficiency measure. To search the solution space a modified Fedorov search algorithm is used here.

Importantly, the analyst does not need to explicitly write down the regret functions under the ;model property. Doing so would
be laborious (due to the pair-wise nature of RRM models) as well as redundant. Rather, the analyst just needs to write down the
standard linear-additive utility functions. In case the rrm flag is added to the ;eff property, Ngene will automatically recognise that
the design needs to be optimised for RRM and will transform the utility specification into a regret specification.

Fig. 6 shows the Ngene output. A number of observations can be made. Firstly, Ngene has been able to generate a design which is
efficient for the P-RRM model. Looking at the D-error we see that at 0.044364 it is very close to the one found using the RDG tool
(0.04249). This gives confidence that both software tools can successfully create RRM efficient designs. To further cross check the
implementations in the two software tools, we evaluated the RDG design in Ngene and the Ngene design in RDG, and found identical
D-errors. Secondly, although more difficult to see – since the alternatives are not sorted in Ngene – Ngene also finds a design in which

Fig. 5. RDG Bayesian D-efficient design robust for RUM and RRM.

6 Ngene 1.2.1 was released in December 2018. This update is free-of-charge for Ngene users.
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the choice tasks are somewhat extreme in terms of the attribute levels. For instance, the travel time of the slowest alternative in the
choice task equals 43 minutes in nine out of ten choice tasks, while the travel time of the fastest alternative in the choice task equals
23 minutes in eight out of ten choice tasks. Although both software tools find different designs, overall the designs are very similar.

3.2.3. Ngene example 2: D-efficient design robust for estimating RUM and RRM models
In this example we create a robust design which is efficient for estimating RUM and RRM models, using the same design set-up as

in RDG example 2 (see section 3.1.3). Text box 2 shows the Ngene syntax. To create a robust design we make use of the model
averaging feature in Ngene, in two steps. Firstly, we create two models: a RUM model and a P-RRM model. Note that since Ngene
automatically transforms the utility specification into a regret specification, the utility and regret functions are the same for both
models (except for the prior parameters). Secondly, we compute the composite D-error using the ;eff property. The composite D-
error is the weighted sum of the RUM D-error and the P-RRM D-error. Mirroring the RDG example, in this case we use equal
weighting of 0.5. Furthermore, note that the prior parameters are set to different values across the two models with the RRM priors
set at 2/3 of the size of the RUM prior parameters. See Section 2.2 for setting the priors for RRM efficient designs.

From the results in Fig. 7 we see that the obtained design has a slightly worse D-error (0.065257) as compared to the D-error
obtained using the RDG tool (0.06349, see section 3.1.3). However, this is most likely due to the slight difference in the prior
parameter values. In the Ngene syntax we rounded off the RRM parameters to 4 decimals, while in the RDG tool they are not rounded
off. Looking at the design, we see that at face value it is not very different from the RDG design. Nor does the design look very

Text box 1
Ngene syntax for D-efficient design for estimating RRM models.

Design
;alts = alt1*, alt2*, alt3*
;rows = 10
;eff = (mnl,d, rrm)
;alg = mfederov
;model:

U(alt1) = btt[-0.3] * TT[23,27,31,35,39,43] + btc[-2] * TC[3,4,5,6,7,8] + bcrow[-1.6] * C[0,1]/
U(alt2 = btt * TT + btc * TC + bcrow * C/
U(alt3) = btt * TT + btc * TC + bcrow * C$

Fig. 6. Ngene output for D-efficient design for estimating RRM models.
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different from the one optimised for P-RRM only. However, as we will show in section 3.3 this design is considerably more robust for
uncertainly regarding the underlying decision rule.

3.2.4. Ngene example 3: Bayesian D-efficient design robust for estimating RUM and RRM Panel Mixed Logit models
The advantage of Ngene over RDG comes from the wide range of features that are available in Ngene. Therefore, in this final

example we create a sophisticated design that takes advantage of these features, which cannot be made using the RDG tool.
Nowadays, the Panel Mixed Logit model is increasingly becoming the standard model of choice for choice modellers. Therefore, in
this example we create a Bayesian efficient design optimised for estimating RUM and RRM Panel Mixed Logit models. Note that
generating designs which are robust for uncertainty on the side of the analyst regarding the prior parameters and are efficient for
Panel Mixed Logit models is computationally very expensive as it involves taking draws for the Bayesian priors as well as draws for
the random parameters.

The choice setting we look at consists of three labelled alternatives: bus, train and car, each defined by two attributes: Travel Time
(TT) and a Travel Cost (TC). Since the alternatives are labelled, the utility/regret functions start with an Alternative Specific Constant
(ASC), see the Ngene syntax in Text box 3. Furthermore, we account for potential correlations in the error terms caused by (1) shared
unobserved utility/regret across alternatives, and (2) unobserved alternative specific variation due to the panel nature of the SC data
collection. Specifically, we expect shared unobserved utility/regret across the Public Transport (PT) alternatives. Therefore, we add a
normally distributed error component, sigma_PT[ec,0.5], to the utility/regret functions of the PT alternatives. To account for the
panel nature of the data while handling the error component, we use the ecpanel flag in the ;eff property. This instructs Ngene to

Fig. 7. Ngene output for D-efficient design robust for estimating RUM and RRM models.
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optimise for a Panel Mixed Logit with error components (in casu with RUM and RRM decision rules). Finally, we set a number of
conditions, using the ;cond property to increase the realism of the choice tasks in the experiment. This feature allows the analyst to
impose conditions on the compositions of choice tasks. In this example we impose that the car alternative is never slower and always
equally or more expensive than the PT alternatives.

Fig. 8 shows the Ngene output. It shows that using Ngene Bayesian efficient design can be created which are robust for estimating
RUM and RRM Panel Mixed Logit models. The Bayesian D-errors and S-estimates show that a design has been found which is
simultaneously efficient for estimating RUM and RRM Panel Mixed Logit models.

Fig. 8. Ngene output for Bayesian D-efficient design robust for estimating RUM and RRM Panel Mixed Logit models.
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3.3. Robustness of designs towards decision rule and prior misspecification

This subsection aims to analyse the robustness of the newly available designs, by adapting a prior misspecification approach used
in earlier experimental design papers such as Bliemer et al. (2009) and Rose and Bliemer (2009). In subsection 3.3.1 we look at the
designs generated in RDG Examples 1 to 37; in subsection 3.3.2 we look at Ngene example 3.

3.3.1. Robustness of designs from RDG examples 1 to 3
To analyse the robustness of the newly available designs, we compute the RUM and P-RRM D-errors for a range of parameter

combinations. This shows us the impacts of both decision rule and prior parameter misspecification on the efficiency of the design.
More specifically, we vary the cost and time parameters, while keeping the crowdedness parameter constant at the true level
(βcrow=−1.6). To assess the robustness as cleanly as possible, we compute the D-errors by evaluating the part of the AVC for the cost
and time parameters only (i.e. the parameter for crowdedness is not considered in the computed D-errors). In the literature, this is
known as the DS-efficiency (Atkinson et al., 2007). The range of the cost and time parameters are chosen symmetrically around the
prior parameters which are used for optimising the designs (i.e. βtt=−0.30 with a range from −0.1 to −0.5, βtc=−2.0 with a
range from −0.5 to −3.5).

Fig. 9 shows the RUM and P-RRM D-errors as a function of the combination of the cost and time parameters, conditional on the P-
RRM optimised design (RDG example 1, see section 3.1.2). The left-hand side plot shows the D-errors in case a P-RRM MNL model is
estimated using this design; the right-hand side plot shows the D-errors in case a RUM MNL model is estimated using this design.
Based on Fig. 9 we can draw a number of conclusions. Firstly, the left-hand plot shows that the P-RRM design is efficient for
estimating P-RRM models, given that the ratio of the parameters are not too much outside the range for which the trade-offs are
optimised, which is around =/ 0.15tt tc . The design becomes considerably less efficient in case </ 0.10tt tc (upper left corner) or

>/ 0.25tt tc (lower right corner). Secondly, the right-hand side plot shows that although the design is optimised for the P-RRM
model, it is reasonably efficient for estimating RUM MNL models, given that the parameters are within the blue coloured band.
However, a particular concern here is that the blue coloured band is off the diagonal. Therefore, when in this case the true parameters
happen to be considerably larger than the analyst expected when creating the experimental design, the analyst may find he has used
an inefficient design, even though he set the ratios of the parameters well. This result supports the notion that efficient designs
optimised for one particular decision rule can be inefficient for estimating models having another decision rule.

Fig. 10 shows the RUM and P-RRM D-errors, conditional on the decision rule robust design (RDG example 2, see section 3.1.3). In
comparison with Fig. 9 we see two key differences. Firstly, at the left-hand side plot the width of the blue coloured band where the
design is efficient has substantially increased. Therefore, this design is more robust towards prior parameter misspecification. Sec-
ondly, and more crucially, the right-hand side plot shows that this design is much better suited for estimating RUMmodels than the P-
RRM optimised design shown Fig. 9. In this design the blue coloured band neatly follows the diagonal, meaning that as long at the
parameter ratios are fairly well chosen this design is efficient for estimating both RUM and RRM models. This result provides further
evidence that creating designs that are robust for multiple decision rules is sensible when the analyst does not know up front which
models (including their embedded decision rules) he or she will estimate after having collected the data.

Finally, Fig. 11 shows the P-RRM and RUM D-errors for the Bayesian efficient decision rule robust design (RDG example 3, see
section 3.1.4). In line with expectations, it shows that this design is efficient for a wide range of parameter values, both for estimating
RUM and P-RRM models. The fact that both the right and left-hand side plots are overall blue shows that designs can be generated

Fig. 9. D-error for P-RRM optimised design as a function of βtt and βtc.

7 We have also conducted these analyses using the designs from Ngene examples 1 and 2, and found virtually identical results. Therefore, for
reasons of brevity we do not show them here. However, an overview of the statistics of all the created designs can be found in Appendix A.
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which are robust towards uncertainty regarding the underlying decision rule and regarding the values of the model parameters at the
same time, at fairly limited statistical cost. Therefore, in case the analyst is uncertain about the models, including their embedded
decision rules, he or she will estimate using the data, as well as the size and ratios of the model parameters, it is sensible to use
Bayesian efficient designs which are robust towards multiple decision rules (in casu RUM and RRM).

3.3.2. Robustness of design from Ngene example 3
In section 3.2.4 we showed that Bayesian efficient designs robust for estimating RUM and RRM Panel Mixed Logit models can be

created using Ngene. However, it does not immediately follow that creating such decision rule robust designs is worthwhile in this
context (especially considering that creating such designs is computationally heavy). Hence, one could question whether a Bayesian
efficient design optimised for estimating a RUM Panel Mixed Logit model would work (almost) as well, in terms of its robustness
towards the two different decision rules.

To answer this question, ideally we would conduct the same analysis as in the previous subsection as this would give us insights
on the robustness towards decision rule and prior parameter misspecification. However, conducting that sort of analysis is compu-
tationally infeasible. Therefore, in this sub section we look at the robustness towards decision rule misspecification only. To do so, we
have created seven Bayesian D-efficient design specifications robust for estimating RUM and RRM Panel Mixed Logit models, using
the syntax in Text box 3. But, here we varied the decision rule weights, wRUM and wRRM. Specifically, we let wRUM range from 0 to 1 in
six intervals, while imposing that the sum of the weights equals 1 (i.e., wRUM + wRRM=1). Each design was optimised during a
period of 12 full hours. Furthermore, to avoid presenting results that are due to a particular manifestation of random draws or starting
designs we ran each code to generate the designs fifteen times.

Fig. 12 shows the results. The left-hand side plot and middle plot show respectively the RUM Bayesian D-efficiency and the P-RRM
Bayesian D-efficiency of the 7×15=105 designs, as a function of the decision rule weights: wRUM at the bottom of the x-axis, wRRM
at the top. The key insight these two plots provide is that also for complex Bayesian efficient designs, like this one, misspecification of
the decision rule can have considerable impact on the statistical efficiency. This can readily be seen by looking at the differences in

Fig. 11. D-error for decision rule robust Bayesian design as a function of βtt and βtc.

Fig. 10. D-error for decision rule robust design as a function of βtt and βtc.
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the D-errors between the outer left (wRUM=0) and right (wRUM=1) side of each plot. Specifically, the left-hand side plot shows that
for estimating a RUM model the design optimised for RUM attains (on average) a D-error of 0.229, while a design optimised for P-
RRM attains (on average) a D-error of 0.274. Hence, a full P-RRM design is almost 20% (0.274/0.229= 1.20) less efficient to
estimate a RUM model than a design optimised for RUM only. Likewise, the middle plot shows that for estimating a P-RRM model the
design optimised for P-RRM attains (on average) a D-error of 0.218, while a design optimised for RUM attains (on average) a D-error
of 0.295. This implies that a full RUM design is on average about 37% (0.295/0.215=1.37) less statistically efficient to estimate the
P-RRM model than a design optimised for P-RRM only.

In the right-hand side plot of Fig. 12, the RUM and P-RRM Bayesian D-efficiency are scattered against each other. This plot shows
that also in the context of complex Bayesian designs, the use of a decision rule robust design is a sound strategy. Specifically, it shows
that designs that are optimised for both RUM and P-RRM (depicted in yellow) are doing relatively well across the board. To highlight
this we grouped the designs into three categories: (1) RUM optimised designs (green), where wRUM= {1, 0.9}, (2) Decision rule robust
designs (yellow), where wRUM= {0.7, 0.5, 0.3}, and P-RRM optimised designs (purple), where wRUM= {0.1, 0}. Then, for each category
a convex hull is plotted. The boundaries of the convex hulls show that the decision rule robust designs (yellow) are at the frontier.
That is, they are located more towards the lower left corner than the other two categories. For instance, a particularly good design is
the one in the lower left corner: {0.228, 0.217}. This design is just 3% (0.228/0.222=1.03) less efficient than the most efficient
RUM optimised designs (green), and just 7% less efficient (0.217/0.203=1.07) than the most efficient P-RRM optimised designs
(purple). This shows that decision rule robust designs can come at fairly limited statistical cost.

4. Conclusions and discussion

In this paper we have presented two new software tools that can be used to generate SC experimental designs that are si-
multaneously efficient for estimating RUM and RRM models. Therefore, these designs are robust towards uncertainty on the side of
the analyst – at the time of creating the experimental design – regarding the underlying decision rule (in casu: RUM and RRM). To
facilitate creating such decision rule robust designs, in this paper we have discussed practical issues encountered when generating
such designs, such as how to obtain priors for RRMmodels, and presented worked examples. Finally, we have analysed the robustness
of the designs that we have created using the newly available software tools. Our results provide new evidence that designs optimised
for one decision rule can be inefficient for another. Earlier studies have shown this using local (i.e. non-Bayesian) designs. Our results
indicate this also holds for Bayesian efficient designs. These results highlight the added value of decision rule robust designs.

The new software tools presented in this paper enable scrutinisation of outstanding and new research questions in the fields of
experimental design and choice modelling. A first outstanding and in our view highly relevant empirical question that can be
scrutinised is whether certain types of designs increase the prevalence of certain decision rules. It is clear that designs can be created
which trigger a specific behavioural phenomena, such as the compromise effect, see for instance Guevara and Fukushi (2016).
However, at present it is not clear whether designs that are statistically optimised for one particular decision rule also trigger that
decision rule on the side of the respondent (while keeping the design dimensions constant). Van Cranenburgh et al. (2018) report
some evidence for this. On their data, they find that the RUM model obtains the best model fit when a RUM optimised design is
presented to the respondents, while the P-RRM model obtains the best model fit when a P-RRM optimised design is presented (to the
same group of respondents). In case more empirical evidence is found that designs statistically optimised for RUM increase the
prevalence of a RUM decision rule on the side of the respondents, this would shed new light on the existing literature on decision
rules based on SP data.

A second outstanding research question that can be scrutinised using the new software tools concerns the statistical efficiency of
P-RRM efficient designs for other types of RRM and non-RUM models, such as the G-RRM, μRRM, and RAM model (Chorus, 2014;
Leong and Hensher, 2015; Van Cranenburgh et al., 2015a). Conceptually, it seems intuitive that a design which is efficient for P-RRM
is also fairly efficient for other types of RRM models. However, currently this is not established as a fact. We believe further in-
vestigation is warranted.

Fig. 12. Effect of the decision rule weights.
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A third research question relates to the best way to create designs which are jointly optimised for multiple decision rules. In this
paper, we have used a relatively straightforward averaging approach, in which equal weights wr are given to the decision rules.
However, their actual contributions to the composite D-error have not been equal, due to the fact that the D-errors are not equally
large. Future research may explore the impact of this on the robustness, as well as find methods to account for it, for example by
means of iteratively rescaling the weights.

Statement of contribution

Stated Choice (SC) experiments are widely used to acquire understanding of choice behaviour in a variety of research fields,
including but not limited to transportation, marketing, and health and environmental economics. Software to create efficient ex-
perimental designs for SC experiments have exclusively been based on the (often implicit) assumption that decision-makers make
choices using a (linear-additive) Random Utility Maximisation (RUM) decision rule. However, a growing number of studies have
found overwhelming evidence that decision-makers may opt for other types of decision rules when making choices. In light of this,
recently a method to create efficient experimental designs for one alternative decision rule, namely Random Regret Minimisation
(RRM), has been proposed. This development opens up the possibility to create designs that are simultaneously efficient for both
decision rules (RUM and RRM). However, although the theory to devise such decision rule robust designs has been established, the
burden to actually create them is currently high: it requires extensive software coding on the side of the analyst.

The contribution of this work is that it lowers the burden for analysts who wish to create experimental designs that are si-
multaneously efficient for estimating RUM and RRM models. In particular, it presents two software tools in which such decision rule
robust designs can be created. The first software tool –called Robust Design Generator (RDG)– is a lean, easy-to-use and free-of-charge
experimental design tool. This tool is confined to the design of unlabelled experiments with three alternatives. The second tool
constitutes a newly developed extension of Ngene. Ngene is an established, highly versatile software package dedicated to the design
of SC experiments. To facilitate the use of the new software tools, this paper presents worked examples and focusses on practical
issues encountered when generating such decision rule robust designs.

Acknowledgements

The authors would like to thank Prof. Michiel Bliemer, Dr. Marco Kouwenhoven and Prof. Caspar Chorus for their valuable
contributions to the development of the software tools.

Appendix A. Overview of the statistics of designs

D-errors S-estimates

Model to estimate RUM P-RRM RUM-P-
RRM

tt RUM tc crow tt P-RRM tc crow

RDG designs
1 P-RRM N/A 0.043 N/A N/A N/A N/A 0.837 0.816 1.136
2 Robust design RUM-P-RRM 0.088 0.039 0.064 0.975 0.931 1.872 0.462 0.460 0.812
3 Bayesian robust design RUM-P-RRM 0.167I 0.072I 0.119I 0.928 0.852 1.609 0.505 0.489 0.757

Ngene designs
1 P-RRM N/A 0.046 N/A N/A N/A N/A 0.920 0.882 1.116
2 Robust design RUM-P-RRM 0.088 0.042 0.065 1.032 0.960 1.792 1.057 1.087 1.885
3 Bayesian D-efficient design robust design for Panel Mixed Logit
models

0.223I 0.232I 0.227I 0.759 0.669 N/A 1.054 0.774 N/A

I Bayesian D-error.

Appendix B. Alternative Specific Constants in P-RRM models

For RRM models that have a logarithmic attribute level regret function, it has been noticed in the literature that RUM and RRM
treatment of ASCs, and other variables which are binary in the difference across alternatives, is mathematically equivalent, apart
from a rescaling which has no impact on the statistical efficiency or model fit (Chorus, 2012; Hess et al., 2014). In this appendix we
extent this result, and show that RUM and P-RRM treatment of such variables is mathematically fully equivalent, i.e. without a
rescaling.

Proof

If RUM and P-RRM treatment of variables which are binary in the difference across alternatives is mathematically equivalent, then
RUM and P-RRM should generate the same choice probabilities in choice tasks comprising of such variables only. In discrete choice
models the absolute level of utility is irrelevant, and only utility differences matter. Therefore, it should hold that

=V V R R( )j i j i .
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For reasons of exposition, let's consider the simple situation in which there are three alternatives consisting of two variables which
are binary in the difference across alternatives (Table B1).

Table B1

Alternative 1 Alternative 2 Alternative 3

Attr. 1 0 1 0
Attr. 2 0 0 1

RUM model

In case the DGP is linear-additive RUM, then the observed utilities are:

= = =V V V0, ,1 2 1 3 2

The utility differences are given by:

= =V V V V,2 1 1 3 1 2

P-RRM model

In case the DGP is P-RRM, then the observed regrets are:

= + + + = +
= + + + =
= + + + =

R
R
R

max(0, [1 0]) max(0, [0 0]) max(0, [0 0]) max(0, [1 0])
max(0, [0 1]) max(0, [0 1]) max(0, [0 0]) max(0, [1 0])
max(0, [0 0]) max(0, [1 0]) max(0, [0 1]) max(0, [0 1])

1 1 1 2 2 1 2

2 1 1 2 2 2

3 1 1 2 2 1

The regret differences are given by:

= + =
= + =

R R
R R

( ) ( ( ))
( ) ( ( ))

2 1 2 1 2 1

3 1 1 1 2 2

Test of equivalence

Equating utility differences to regret difference, yields:

= =
= =

V V R R
V V R R

( )
( )

2 1 2 1 1 1

3 1 3 1 2 2

This result shows that RUM and P-RRM treatment of variables which are binary in the difference across alternatives is mathe-
matically equivalent. Hence, an analyst will obtain exactly the same model fit and parameter estimates, regardless of whether he or
she treats the binary in the difference variables as RUM or P-RRM. Note that by extension, it is impossible for an analyst to tell which
decision rule (RUM or P-RRM) better explains the observed choices, based on data consisting of binary in the difference variables
only. Finally, it can easily be seen that this proof generalises towards more than three alternatives and more than two binary in the
difference variables.
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