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Abstract In this paper, the dynamics and the buckling loads for an Euler–Bernoulli beam resting on an inho-
mogeneous elastic,Winkler foundation are studied. An analytical, asymptotic method is proposed to determine
the stability of the Euler–Bernoulli beam for various types of inhomogeneities in the elastic foundation taking
into account different types of damping models. Based on the Rayleigh variation principle, beam buckling
loads are computed for cases of harmonically perturbed types of inhomogeneities in the elastic foundation,
for cases of point inhomogeneities in the form of concentrated springs in the elastic foundation, and for cases
with rectangular inclusions in the elastic foundation. The investigation of the beam dynamics shows the pos-
sibility of internal resonances for particular values of the beam rigidity and longitudinal force. Such types of
resonances, which are usually typical for nonlinear systems, are only possible for the beam due to its inho-
mogeneous foundation. The occurrence of so-called added mass effects near buckling instabilities under the
influence of damping have been found. The analytical expressions for this “added mass” effect have been
obtained for different damping models including space hysteresis types. This effect arises as a result of an
interaction between the main mode, which is close to instability, and all the other stable modes of vibration.

Keywords Buckling load · Inhomogeneous Winkler foundation · Space hysteresis · Internal resonance ·
Added mass

1 Introduction

Buckling of an Euler–Bernoulli beam (E–B) resting on an elastic Winkler foundation has been thoroughly
studied from various points of view in many engineering fields for more than 80 years. A comprehensive
review on different theoretical elastic and viscoelastic foundation models in oscillatory systems can be found
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in [1]. The review covers the simplest foundation models to the most complicated ones, and fully describes the
recent theories on the topic of mechanical foundations. Special attention in [1] is paid to publications which
consider the dynamics of an E–B beam resting on a nonlinear elastic foundation. The dynamics and buckling
loads for an E–B beam resting on an inhomogeneous elasticWinkler foundation also plays an importing role in
the study of problems of soil–solid interaction [2]. Also E–B beams buckling is of interest for models of energy
harvesting E–B beams, in which instability is an important issue [3], and for controllable artificial devices
designing [4]. The buckling of beams on an elastic foundation has been discussed in the seminal work of [5].
Other references can be found in books such as [6,7], and in papers such as [8–10]. In [11] two methods for
solving the eigenvalue problemsof vibrations and stability of a beamonavariableWinkler elastic foundation are
presented and compared. The first is based on using the exact stiffness, consistent mass, and geometric stiffness
matrices for a beam on a variableWinkler elastic foundation. The secondmethod is based on adding an element
foundation stiffness matrix to the regular beam stiffness matrix, for vibrations and stability analysis. In [12]
free vibrations of an Euler–Bernoulli beam resting on a variable Winkler foundation is considered. Constant,
linear and parabolic variations are considered. The problem is handled for three different boundary conditions:
simply supported-simply supported, clamped–clamped and cantilever (clamped-free) beams. The governing
differential equations of the beam are solved by using differential transform method. In [13] the buckling and
free vibrations of Timoshenko beams resting on variable elastic foundation are analyzed by means of a new
finite element formulation. In [14] vibration characteristics of axially functionally graded nanobeams resting
on variable elastic foundations are investigated based on a nonlocal strain gradient theory. The authors of [14]
considered linear, parabolic, and sinusoidal variations of the Winkler foundation in longitudinal direction. The
governing equations in [14] were solved by applying a Galerkin-based solution for different boundary edges.
The eigenvalue problem for the buckling loads and natural frequencies of a braced beamon an elastic foundation
were studied in [15,16]. It was found that the location of the translational springs, which were attached to the
beam, has significant impact on the buckling loads, on the buckling shapes, and on the eigenfrequencies of the
structure. In particular it was shown that under special conditions, an ideal spring stiffness exists, such that the
elastic supports do not deflect when the beam buckles. Also, in [16] the eigenvalue problems for the buckling
loads and natural frequencies of a braced beam on an elastic foundation were investigated. The conclusion
made in [16] is that the study of the eigenvalues variation patterns can offer a design guidance for using a
lateral brace of translational springs to strengthen the structure. In [17] a tire model with a flexible belt on an
elastic multi-stiffness foundation is investigated via theoretical modeling and an experimental modal analysis.
In [18] the vibrations of an isotropic beam on a variable Winkler foundation were investigated by using a
modified differential quadrature method. In [19] the natural frequencies and the buckling stresses of a deep
beam-column resting on elastic foundations were obtained by using the method of power series expansions
of the displacement components and by using a numerical method. In [20] the general solution for a problem
describing the vibrations of a beam on a variable Winkler elastic foundation is presented. The exact solution of
the dynamic response of the beam is obtained by considering the reaction force of the foundation on the beam
as an external force acting on the beam, which is an integral equation including the displacement of the beam.
This integral equation was solved approximately and numerically. In [21] the finite difference and the finite
element methods are applied to determine the natural frequencies of non-prismatic and non-homogeneous
beams, subjected different boundary conditions and resting on a variable Winkler foundation. In this paper,
we consider the problem on how to determine the buckling load of an Euler–Bernoulli beam resting on an
inhomogeneous elastic Winkler foundation taking into account different damping models (including space
hysteresis type of models). Damping effects were considered in many studies (see, for example, [22–25]).
In contrast to previous papers, we investigate a beam on an inhomogeneous elastic foundation. Localization
phenomena in one-dimensional imperfect continuous structures were analyzed, both for dynamic cases and for
buckling cases in [26–29]. By using an asymptotic approach we find analytical formulas for the buckling load
for some particular types of inhomogeneities in the elastic foundation of the beam. The buckling load depends
on the inhomogeneities in the elastic foundation, and this effect exhibits a “space resonance,” i.e., themagnitude
of the critical force depends on the inclusion location. This result generalizes the results previously obtained in
[15,16]. Also analytically it will be shown that it is possible that a so-called added mass instability can occur
under the influence of damping. The analytical expressions for these “added masses” for different damping
models (including the space hysteresis one) will be given. These effects arise as a result of an interaction
between the main mode, which is close to instability, and all the other stable modes. This interaction is induced
by damping, and we will discuss how it depends on the type of damping model.
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2 Statement of the problem

The equation describing the beam dynamics is given by:

E Iuxxxx + auxx + b(x)u + εD[u] + mutt = 0 , (1)

where u(x, t) is the beam displacement, t ≥ 0 is the time, x ∈ [0, L] is the space coordinate in the axial
direction of the beam, m = Aρ is the mass of the beam per unit length, A is the beam’s cross sectional
area, ρ is the beam material density, E is the Young’s modulus, I is the moment of the cross-section inertia,
ε > 0 is a small parameter, a is a longitudinal force, which can have a positive (compression), or a negative
(expansion) sign, and E I is the bending rigidity of the beam. In (1) D denotes a linear operator acting on
u(x, t) and its derivatives, and defines damping. The function b(x) > 0 is an elastic foundation coefficient.
Notice that the differential equation (1), and that given boundary and initial conditions can be transformed to
a dimensionless form when we rescale the variables. For the rescaling, the following choice is made: x = x̄ L ,
u = ūL , e0 = I

AL2 , t = t̄ L
c0
, c20 = E

Aρ
, ā = a

AE , b̄ = L2b
Ac20ρ

. For simplification, the bar is omitted and the final

equation then takes the form:

e0uxxxx + auxx + b(x)u + εD[u] + utt = 0 , (2)

where x ∈ [0, 1]. The following initial conditions are considered:
u(x, 0) = v0(x), ut (x, 0) = v1(x), x ∈ [0, 1], (3)

where ||v0xx ||+ ||v1|| < ∞. Here, we use the standard notation ||v|| for the norm, || f ||2 = 〈 f, f 〉 , and 〈 f, g〉
is the scalar product in L2[0, 1]: 〈 f, g〉 = ∫ 1

0 f (x)g(x)dx .
The boundary conditions are assumed to be simply supported ones:

u(0, t) = u(1, t) = 0, uxx (0, t) = uxx (1, t) = 0. (4)

However, the applied perturbation approach, which is used in this paper, is applicable to problems with other
boundary conditions.

3 Eigenfunctions

Our first step is to consider the unperturbed equation (2) with ε = 0. The unperturbed equation (2) can be
solved by using Fourier’s method, i.e., by substitution of u(x, t) = Re ψ(x) exp(iωt) into (2) with ε = 0.
Then, for ψ we obtain the following eigenfunction problem

Lψn = λnψn, (5)

where the orthonormal eigenfunctions ψn satisfy the boundary conditions (4).
For b(x) = const the eigenfunctions are well known (see [5]). To handle the case b �= const we apply

perturbation theory [30,31] by assuming that b(x) = b0 + δbb1(x), where δb > 0 is a dimensionless small
parameter. For positive integers n and λn > 0 let us denote by ωn the natural frequencies, which are defined
by ω2

n = λn , where n = 1, 2, . . .. We set formally ω−k = −ωk . For a ≤ 0 and the given boundary conditions
(4) it is well-known that the eigenvalues λn of the operator L are always positive. In this case with ε = 0 we
have stable solutions, where the natural frequencies ωn are positive and ω2

n = λn . For the opposite case a > 0
an instability is possible, when λn < 0 for a certain n. There exists a critical value ac for the parameter a such
that for a > ac at least one eigenvalue λn < 0 occurs for some n. This can be shown, for example, by the
Raleigh variation principle for eigenvalues.

3.1 Unperturbed eigenfunctions

Let δb = 0. We denote the corresponding unperturbed eigenfunctions and eigenvalues by ψ
(0)
n and λ

(0)
n ,

respectively. In the case of hinged ends we have

λ(0)
n = e0(πn)4 − a(πn)2 + b0, n = 1, 2, . . . (6)

and ψ
(0)
n = √

2 sin(πnx).
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3.2 Perturbed eigenfunctions: non-resonance case

For small positive δb we can apply the well-known perturbation theory [30,31]. Under the assumptions

Δkn = |λ(0)
n − λ

(0)
k | 
 δb, ∀k �= n (7)

we have the asymptotical formulas for the eigenvalues

λn = λ(0)
n + δb〈b1ψ(0)

n , ψ(0)
n 〉 + O(δ2b), (8)

and for the perturbed eigenfunctions:

ψn = ψ(0)
n + δbψ

(1)
n + O(δ2b), (9)

where

ψ(1)
n = −

∑

k �=n

〈b1ψ(0)
n , ψ

(0)
k 〉ψ(0)

k

λ
(0)
k − λ

(0)
n

. (10)

Relation (8) can be used to find an approximation for the buckling load ac (see below). Note that in the
case Δkn = O(δb) for certain k �= n the relations (8), (9), (10) have to be modified. We consider this case in
the next subsections.

3.3 On condition (7)

A sufficient condition to satisfy (7), can be found as follows. Using the relation (6), we obtain

Δkn = e0
(
(πn)4 − (πk)4

) − a
(
(πn)2 − (πk)2

)
,

which implies

Δkn = (
(πn)2 − (πk)2

)(
e0

(
(πn)2 + (πk)2

) − a
)
.

For k �= n one has |(πn)2 − (πk)2| ≥ 3π2 and (πn)2 + (πk)2 > 4π2. Therefore, if, for example,

4π2e0 > a

then condition (7) is satisfied. The resonance condition reads

Δkn = O(δb), (11)

for some k �= n. It is satisfies if

|(πn)2 + (πk)2 − ae−1
0 | = O(δb) (12)

for some positive integers n and k, n �= k. Note that we are dealing here with an internal resonance. The
number of modes involved in the resonance depends on ae−1

0 π−2 and on the right-hand side of Eq. (12). It
might be possible that not 2 but 4 or even more modes satisfy Eq. (12), that is, the sum of two squares can be
in more than one way equal to the same number. In the next subsection we will consider an internal resonance
involving only two modes.
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3.4 Perturbed eigenfunctions in case of an internal resonance

Let us represent the eigenfunctions ψn and ψk as (see [31])

ψn = c1nψ
(0)
n + c1kψ

(0)
k + δbφn,

ψk = c2nψ
(0)
n + c2kψ

(0)
k + δbφk,

where c1n, c1k, c2n, c2k are unknown coefficients and the correction functions φn and φk are orthogonal in
L2[0, 1] to both ψ

(0)
n , and ψ

(0)
k . Then, the unknown coefficients and corrections to the eigenvalues can be

found from the following 2 × 2 linear algebraic eigenvalue problem:

RC = λ̄C, (13)

where

R11 =
∫ 1

0
b1(x)|ψ(0)

n (x)|2dx,

R22 =
∫ 1

0
b1(x)|ψ(0)

k (x)|2(x)dx,

R12 =
∫ 1

0
b1(x)ψ

(0)
n (x)ψ(0)

k (x)dx,

andC = (C1,C2)
tr , where tr stands for the transposed. The first eigenvalue λ̄+ of (13) gives us the perturbation

of λ
(0)
n , and the second one λ̄− is the perturbation of λ

(0)
k :

λn = λ(0)
n + δbλ̄+ + O(δ2b), (14)

λk = λ
(0)
k + δbλ̄− + O(δ2b). (15)

The λ̄± are given by

λ̄± =
R11 + R22 ±

√
(R11 − R22)2 + 4R2

12

2
. (16)

The two independent eigenvectors (C (l)
1 ,C (l)

2 )tr , l = 1, 2 are related to the coefficients cln in the following
way:

cln = C (l)
1 , clk = C (l)

2 , l = 1, 2. (17)

Note that the eigenfunctions are orthonormal, therefore the coefficients cln are also orthonormal. It is convenient
to write down cln as

c1n = sin(ξnk), c2n = cos(ξnk),

c1k = − cos(ξnk), c2k = sin(ξnk),

where ξnk is a resonance angle. Under condition R̄12 �= 0 for that angle one has the following relation:

tan ξnk = R12

R̄12
,

2R̄12 = (R11 − R22) −
√

(R11 − R22)2 + 4R2
12. (18)

If R̄12 = 0, then R12 = 0 and we have no resonance, because system (13) is diagonal and the interaction
between the modes n and k is of order O(δ2b). The parameter ξnk plays an important role, as will be shown in
the coming subsection.
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3.5 A new resonance effect: harmonics disappear for a long time

We suppose that damping is absent, i.e., ε = 0. Suppose that the initial data are given by a simple harmonic
function, for example

u(x, 0) = A sin(πnx), ut (x, 0) = 0,

where A is an amplitude (for a more general case, where ut (x, 0) = B sin(πnx), our results are similar). We
have

u(x, t) = A
∞∑

l=1

Cnl cos(ωl t)ψl(x), (19)

where

Cnl =
∫ 1

0
sin(πnx)ψl(x)dx .

The Fourier coefficient un(t) = ∫ 1
0 u(x, t) sin(πnx)dx evolves in time according to

un(t) = A
∞∑

l=1

C2
nl cos(ωl t). (20)

In the non-resonance case the main contribution in the sum (20) is given by the single term l = n and un(t)
oscillates with frequency ωn . The effect of the elastic foundation produces small contributions of order O(δb)

in all other terms in (20) for l �= n. In the resonance case [that is , when (12) is satisfied for ae−1
0 = 5π2] we

obtain that the two modes ψn and ψk give rise to significant contribution in the sum of (20), that is,

un(t) = A
(
C2
nn cos(ωnt) + C2

nk cos(ωk t) + O(δb)
)
, (21)

and
uk(t) = A

(
C2
kk cos(ωk t) + C2

nk cos(ωnt) + O(δb)
)
. (22)

From the previous subsection it follows that

Cnn = c1n = sin ξnk, Cnk = c1k = − cos ξnk

and, as a result, we have

un(t) = A
(
(sin ξnk)

2 cos(ωnt) + (cos ξnk)
2 cos(ωk t)

+O(δb)
)
. (23)

Note that in this resonance case ωn − ωk = O(δb). By introducing the mean frequency and the deviation by

ω̄ = ωn + ωk

2
, ω̃ = ωn − ωk

2

respectively, we can transform Eq. (23) as follows:

un(t) = A
(
cos(ω̄t) sin(ω̃t)

+(
sin2 ξnk − cos2 ξnk

)
cos(ω̄t) cos(ω̃t)

)
+ O(δb). (24)

Using (18) one obtains

un(t) = A
(
cos(ω̄t) sin(ω̃t)

+ R̄2
12 − R2

12

R2
12 + R̄2

12

cos(ω̄t) cos(ω̃t)
)

+ O(δb). (25)

Relation (25) shows a new internal resonance effect only possible for a beam on a Winkler foundation. It is
possible that un(t) is close to O(δb) for large times and we observe beats (see the plot in Fig. 1). The maximal
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Fig. 1 This plot shows the time evolution of the Fourier coefficient un(t) in the solution u(x, t) when u(x, 0) = A sin(πnx) and
ut (x, 0) = 0 in the resonance case. The plot is computed by using formula (24), where n = 1, k = 2 and the parameters are
ω̄ = 1, ξnk = π/4, ω̃ = 0.1 and A = 2. The correction O(δb) is approximated by the first three nonzero terms in the Fourier
series with small coefficients. We see beats induced by an internal resonance.

beat effect, when un(t) is close to 0 within a time interval, of O(δ−1
b ), arises when ξnk ≈ π/4. Note that

ξnk ≈ π/4 for |R11 − R22| = O(δb), i.e., for
∫ 1

0
b1(x) sin

2(πnx)dx −
∫ 1

0
b1(x) sin

2(πkx)dx = O(δb). (26)

We will use this condition (26) to have maximal beat effect in Sect. 4.

3.6 Strong Winkler foundation

In the case where the perturbation b1 is not small, we can apply the Rayleigh variation principle: the minimal
eigenvalue λ can be found as the minimum of the Rayleigh quotient Q over all test functions, that is,

λmin = min
ψ

Q[ψ], Q = V [ψ]
||ψ ||2 , (27)

where the test functions ψ ∈ C2[0, 1] should satisfy the boundary conditions (4), and V is given by

V [ψ] = e0||ψxx ||2 − a||ψx ||2 +
∫ 1

0
b(x)ψ(x)2dx .

We will use this approach with test functions to study so-called localized modes, in Sect. 4. In [28] a similar
problem is studied, but with a different type of method. The advantage of the use of test functions is that we
can avoid complicated integral equations.

4 Beam buckling load for localized and non-localized modes

In this section we will consider different particular types of inhomogeneities in the elastic foundation of the
beam, and we will approximately determine for which parameters values buckling occurs.

Example A a regular harmonic perturbation in the foundation. Consider a smooth perturbation b1(x) =
sin(γ x), where γ > 0. Then, (8) gives

Δλn = λn − λ(0)
n ≈ −δb

(1 − cos γ )(2πn)2

γ (γ 2 − (2πn)2)
(28)
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for γ �= 2πn. For γ = 2πn + γ̃ , where γ̃ = O(δb), we can simplify the expression in the right-hand side of
(28) by using 1 − cos(γ ) = γ̃ 2/2 + O(γ̃ 4) , yielding

Δλn ≈ −δbγ̃ /4. (29)

For the buckling load ac(n) corresponding to the stability loss for the n-th mode we approximately obtain

ac(n) = (πn)−2(b0 + Δλn) + e0(πn)2, (30)

where Δλn is defined by (28) for γ �= 2πn or by (29) for γ = 2πn + O(δb).

Example B the elastic foundation has point inhomogeneities in the form of concentrated springs with negative
or positive stiffness.

Let us consider a case which corresponds to point inhomogeneities in the form of concentrated springs
with negative or positive stiffness. We will consider an irregular perturbation b1(x) = ∑nd

j=1 β jδ(x − x j ),
where δ stands for the Dirac delta function and β j are coefficients. For this case we will also observe a “space
resonance” effect. Suppose that x j = ( j − 1/2)r + x̃ , where j = 1, . . . , nd and r = 1/nd . The parameter
β j may have negative, or positive values. So, we assume that all point inclusions of the elastic foundation are
equidistant and the parameter x̃ ∈ (0, 1/2nd) describes a shift of the inclusion coordinates with respect to the
beam edges. Under these assumptions, all inclusions lie within (0, 1). When x̃ = 0 all inclusions are located
symmetrically with respect to the beam edges. Moreover, we suppose that nd  O(δ−1

b ) .
Let β j = β for all j . Then, there two cases have to be considered. In the first case, where k = n/nd is not

an integer, the perturbation of λn depends on the number of inclusions only and does not depend on the mode
number n and the shift x̃ (see “Appendix”):

Δλn = λn − λ(0)
n = βδbnd + O(δb

2). (31)

This means that the contributions of the inclusions mutually cancel each other.
In the second case, when k = n/nd is an integer, we obtain (see “Appendix”)

Δλn = βδbnd
(
1 − (−1)k cos(2πnx̃)

) + O(δb
2). (32)

The last relation shows that a “space resonance” effect occurs, which depends on x̃ . This effect is stronger if
x̃ = 0 (see Fig. 2). Then, for the odd k we have Δλn = 2βδbnd , i.e., the effect is doubled with respect to the
case of a non-integer k, while for even k one obtains Δλn = 0. In both cases we can use (30) for ac(n). So, we
obtain a higher value for Δλn , if n/nd is an odd integer and x̃ = 0. The results are illustrated in Figs. 2, 3, 4
and 5. Figure 2 shows the effect of the “space resonances,” where we see that the number of peaks decreases
with the number of inclusions nd . Figure 3 shows the dependence of the buckling load on b0 for a given δb and
different inclusion numbers. In Fig. 4 we observe a weak effect of irregularity in the dashed and solid curves
for the dependence of ac on b0. This effect can be explained if we take into account that the number of the
critical modes is an integer depending on b0, and which makes jumps for some b0. The effect is induced by the
inclusions (nd = 3) and the “space resonances.” The dashed curve corresponds to the inhomogeneous elastic
foundation (δb = 0.1), the star curve shows the case of the foundation without inclusions, and the solid one
describes the case for a negative δb (δb = −0.1). We can observe those jumps in Fig. 5, and we see that the
jumps exactly correspond to the small irregularities in Fig. 4. In Fig. 5 we also see the most essential effect
of the inclusions in the elastic foundation: the number of the critical modes is different for the cases with
inclusions and without inclusions, and it sharply depends on the sign of δb. For negative δb we obtain more
jumps. Note that, as it follows from the Central Limit Theorem that for random x j and nd 
 1, when we are

dealing with a random perturbation, the effect of the inclusions is almost absent and δb
−1(λn − λ

(0)
n ) is small.

In fact, then the contributions of different inclusions mutually cancel each other. By the relations obtained
above we can analyze condition (26) leading to the maximal beats in the examples A and B. In example A we
use the results of “Appendix,” and the expressions (28) and (29). Then, after elementary algebra, we obtain
that (26) is satisfied for γ = 2πl + O(δb), where l is a positive integer (this integer can be equal to n or k).

In example B, expression (31) shows that (26) is satisfied for all non-integers n/nd and k/nd , i.e., periodic
delta-like inclusions practically always induces maximal beats for internal resonances.

Finally, in case of a point inhomogeneity in the form of a concentrated spring with a negative stiffness, we
note that localized modes can exist [29]. We discuss these effects related to localized modes in the following
example.
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Fig. 2 The dependence of Δλn up to O(δ2b) on the mode number n. The parameters are e0 = 10−6, L = 1, the maximal mode
number Nmax = 50, b0 = 1, δb = 0.01, and β = 1. The shift x̃ = 0. The curves correspond to the cases, where the number of
point inclusions are nd = 3 and nd = 10

Fig. 3 The dependence of the buckling load ac on the parameter b0. The value δb = 0.1 is fixed. The parameters are e0 = 10−6,
L = 1, the maximal mode number Nmax = 50, x̃ = 0, and the number of inclusions nd = 1, 3, 10

Example C Rectangular inclusions in the elastic foundation.

If b(x) is piecewise constant then so-called localized modes can occur. These modes are concentrated at
inhomogeneities of the elastic foundation. Thesemodes can also lead to beambuckling. To simplify the problem
we consider the following, simple coefficient b(x), which depends on the positive parameters x0, b0, bmin < b0,
and d:

b(x) = b0, |x − x0| > d,

b(x) = bmin, |x − x0| ≤ d,

where x0 > d and x0 + d < 1. Let us denote by Δb = b0 − bmin the “depth” of the inclusion. The quantity 2d
is its width. If d  1 then so-called localized modes concentrated at x = x0 and exponentially decreasing in
|x − x0| exist [28]. These eigenfunctions are studied in [28], where also their influence on the Euler instability
is considered. For b = const , e0  1, and for compression force a(x) depending on x , the localized modes
can be investigated by the WKB method, see [26]. Note that in the limit d → 0 we obtain a point inclusion as
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Fig. 4 The dependence of the buckling load ac on the parameter b0. We see a weak irregularities for the dashed and solid curves.
The effect is induced by the inclusions (nd = 3) and the “space resonances.” The dashed curve corresponds to the inhomogeneous
elastic foundation (δb = 0.1), the star curve shows the case of the foundation without inclusions, and the solid one describes the
case of the negative δb (δb = −0.1). The parameters are e0 = 10−6, L = 1, the maximal mode number Nmax = 50, b0 = 1,
x̃ = 0

Fig. 5 The dependence of the critical mode index nc on the parameter b0 for three different values of δb: δb = 0.1, δb = 0 and
δb = −0.1. The parameters are e0 = 10−6, L = 1, the maximal possible mode number Nmax = 50, (i.e., we take the mode
indices n from the set {1, . . . , Nmax}), b0 = 1, x̃ = 0 and the number of inclusions nd = 3

considered in [29]. For d  1 the unperturbed non-localized eigenfunctions ψn have the form
√
2 sin(πnx).

Then, we have the asymptotics, which are valid up to corrections of the order d2:

V [ψn] ≈ Φ(zn) = e0z
4
n − az2n + b0 − 2dΔb sin2(πnx0), (33)

where zn = πn, and V [ψn] is defined in (27). If a buckling mode has number n, then

ac,nloc(n) ≈ e0(πn)2 + (πn)−2(b0 − 2dΔb sin2(πnx0)
)
. (34)

For small e0 we can consider zn as a real valued parameter (since the minimum of Φ(zn) is obtained for
large n). Then we minimize Φ(z) with respect to z, which implies:

πn ≈ √
a/2e0,
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and

min V ≈ − a2

4e0
+ b0 − 2dΔb sin2(πnx0).

The value of ac can be found by the condition that min V = 0 , which implies:

ac,nloc ≈ 2
√
e0

(
b0 − 2dΔb sin2(πncx0)

)
, (35)

where the critical mode number is
nc = [(b0/e0)1/4π−1],

and where [z] stands for the integer nearest to z.
Note that under our assumptions Δb < b0. Relation (35) is the expression for the buckling load for an

infinite beam (see [29]). We see that the onset of the Euler instability can give rise to a high-frequency mode.
Moreover, we see an effect of “space resonance”: that is, the magnitude of ac, induced by the inclusion,
depends on the inclusion location. In the “space resonance” case, the change of ac is proportional to the
inclusion number nc. Let us now consider the case of the localized modes. We suppose that e0 is a small
parameter. In the Rayleigh quotient [see (27)] we substitute the test functions, which are well localized at x0,
for example,

ψtest, loc = r−1θ((x − x0)/r),

where θ(y) is a well localized function at y = 0 (for instance, we can take θ(y) = exp(−yγ ), γ ≥ 2). Here,
the parameter r defines the characteristic radius of the test mode localization. For small r  d one has:

V [ψtest, loc] ≈ Φ(r) = c0e0r
−5 − c1ar

−3 + c2bminr
−1

+O(1) (36)

for r → 0, where the positive constants c1, c2, and c0 are independent of r , and are given by

c0 =
∫ ∞

−∞

(dz2θ(z)

dz2

)2
dz, c1 =

∫ ∞

−∞

(dzθ(z)

dz

)2
dz,

c2 =
∫ ∞

−∞
θ2dz.

The same expression (36) can be obtained for an infinite beam. Thus

ac,loc = 2
√
e0 bmin(1 + o(1)), (37)

where o(1) → 0 as e0 → 0. Note that our approach does not need a solution of a complicated integral equation
and numerical simulations, and it can be extended to study more general forms for the functions b(x) . By
comparing the relations (35) and (37), we observe that for bmin  b0 the onset of the Euler instability starts
at the localized modes. If a localized mode exists then the buckling load ac, which corresponds to this mode
is always less than the buckling load for a non-localized mode. To see this, we have to compare relations (35)
and (37) and take into account that b0 > bmin. Note that the Euler beam buckling in presence of localized
modes is also studied in [28] by another method.

5 The influence of damping on buckling

Let us consider the influence of damping on the behavior of the beam near buckling. Solutions of Eq. (2) can
be expressed in an eigenfunction expansion by using the orthonormal eigenfunctions ψn:

u(x, t) =
∑

n∈N
Xn(t)ψn(x), (38)

where Xn(t) are unknown functions. Then, the coefficients Xn(t) have to satisfy:

dz2Xn

dt2
+ ω2

n Xn = −ε

〈

D

[ ∞∑

k=1

Xk(t)ψk(x)

]

, ψn(x)

〉

. (39)
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Assume that the Euler–Bernoulli beam becomes unstable for a certain a = ac. Let us consider values of
a close to this critical value ac. Let us denote by Y the magnitude of the mode corresponding to ψn∗ = Ψ ,
which is close to instability, and n∗ denotes its number. Note that it is possible that n∗ �= 1, as was shown in
the previous section. For small |a − ac| the frequency ωn∗ is small and close to zero for a certain n∗. For that
reason we introduce a new small parameter ωn∗ = μ > 0. Obviously the amplitude Y = Xn∗ of the mode for
which the beam lost its stability, is slowly varying in time.

We suppose that δb, ε and μ are small parameters which are related in the following way:

δb = εδ̃b, μ = εμ0, (40)

where μ0 and δ̃b are positive parameters, which are independent of the small, positive parameter ε. Further, to
solve the equations describing the time evolution of the stable (fast) modes Xn with n �= n∗, we use a multiple
time-scale perturbation method with fast time t and slow time T = εt . Note that the parameter δb is not
involved directly in the suggested multiple time-scale approach, but it is present in the equation for ac(δb) and
in the orthonormal eigenfunctions ψn(x), which depend on δb according to the expressions as obtained in the
previous section. To solve (39), we assume that Y = Y (t, T ) and Xn = Xn(t, T ) for n �= n∗. We obtain then
the following system of equations for Y = Xn∗ and the fast modes Xn(t) with n �= n∗ :

∂2Y

∂t2
+ BY + ε2μ2

0Y + ε〈D[YΨ ], Ψ 〉

= −ε

∞∑

n=1,|n|�=n∗
〈D[Xn(t, T )ψn], Ψ 〉, (41)

∂2Xn(t, T )

∂t2
+ BXn + ω2

n Xn

= −ε

〈

D

[

YΨ +
∞∑

k=1,|k|�=n∗
Xk(t, T )ψk

]

, ψn

〉

, (42)

where B is the following differential operator:

B = 2ε
∂2

∂t∂T
+ ε2

∂2

∂T 2 .

The+ sign in (41) before the term ε2μ2
0Y in the left-hand side of (41) corresponds to a weakly stable situation,

when a < ac. To study the weakly unstable case, when a > ac, we should put the − sign in the left-hand side
of (41) before the term ε2μ2

0Y . To fix ideas, we choose the + sign.
To find asymptotic approximations of the solutions of (41) and (42), we should define the form of the

operator D. To this end, let us discuss briefly some damping models. We will use damping models which are
for instance suggested in [25]. In this paper, two cases will be distinguished: external and internal damping.
For the external damping we have

D[u] =
∫ 1

0

∫ t

0
htd(x − ξ, t − τ)ut (ξ, τ )dzξdzτ, (43)

and for internal damping

D[u] =
∫ 1

0

∫ t

0
htd(x − ξ, t − τ)Lsut (ξ, τ )dzξdzτ, (44)

where Ls is a linear operator, Lsu = ∂4u
∂4ξ

. The simple damping (air damping) and Kelvin–Voigt damping
(referred to as the SD andKV cases) occur if htd = δ(t−τ)δ(x−ξ) in the relations (43) and (44), respectively.
For space hysteresis induced damping (that we will be referred to as the SH case) we will take the kernel hsd
[25] as a function which is well localized in |x − ξ |, for example, it may be a Gaussian function:

htd = hsd = δ(t − τ)(σ
√

π)−1 exp
( − (x − ξ)2/2σ 2),



Dynamics and buckling loads

where σ a positive parameter with σ  1. From (41) it follows that the first order part of Y (t, T ) depends
only on T . And so Eq. (42) has the following asymptotic solution:

Xn(t, T ) = X̄n(T ) + X̃n(t, T ), (45)

where
X̃n(t, T ) = An(T ) sin(ωnt) + Bn(T ) cos(ωnt)

and
X̄n(T ) = −ω−2

n 〈D[YΨ ], ψn〉, (46)

where An, Bn are functions of the slow time T , which can be found by the standard procedure [32–36]. We
suppose that An, Bn = O(1). Then, the terms X̃n(t, T ) produce small contributions in Y with respect to the
terms X̄n(T ). To see this, let us consider Eq. (41) with Xn = X̃n(t, T ) in the right-hand side. The corresponding
asymptotic solution Ỹ (t, T ) involves the harmonics sin(ωnt), cos(ωnt)with n �= n∗ and coefficients depending
on T . This part of the solution has order O(ε) because the right-hand side of Eq. (41) is proportional to ε. Now
let us consider (41) with Xn = X̄n(T ) in the right-hand side, which is proportional to ε2 and depends only on
T . The corresponding solution Ȳ is defined by

dz2Ȳ

dT 2 + μ2
0Ȳ + ε−1〈D[ȲΨ ], Ψ 〉

= −ε−1
∞∑

|n|�=n∗
〈D[X̄n(T )ψn], Ψ 〉, (47)

and, in general, has order O(1). Therefore, we conclude that Xn = X̄n(T ) and Ȳ (T ) satisfy Eqs. (41) and (42)
up to terms of higher orders in ε. In fact, let us substitute Y = Ȳ into Eq. (42), giving

∂2Xn(t)

∂t2
+ BXn + ω2

n Xn

= −ε

〈

D

[

ȲΨ +
∞∑

|k|�=n∗
Xk(t)ψk

]

, ψn

〉

.

The function Xn(t, T ) = X̄n(T ) satisfies the last equation up to

ε

〈

D

[ ∞∑

|k|�=n∗
X̄k(T )ψk

]

, ψn

〉

= O(ε2),

and since Ȳ is a function of T only, it follows that the function X̄n(T ) is of order ε.
We substitute the relations (45) and (46) into Eq. (41). Since Y (T ) is slowly varying in time, it follows for

the cases SD, KV and SH that

X̄n(T ) = αn
dzȲ

dT
,

where the constants αn determine an interaction force between the unstable mode and the n-th stable one, and
have the form:

αn =
∫ 1

0
Ψ (x)ψn(x)dnx, (48)

αn =
∫ 1

0

d4Ψ

dx4
ψn(x)dx, (49)

αn =
∫ 1

0

∫ 1

0

dz4Ψ (ξ)

dzξ4
ψn(x)hsd(x − ξ)dxdzξ, (50)

and

αn =
∫ 1

0

∫ 1

0
Ψ (ξ)hsd(x − ξ)ψn(x)dx (51)
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for SD, KV damping, internal space hysteresis damping, and for external space hysteresis damping, respec-
tively. Taking into account that in (47)

〈D[X̄n(T )ψn], Ψ 〉 ≈ −ω−2
n α2

n
dz2Ȳ

dT 2

which follows from X̄n(T ) = αn
dzȲ
dT , and from the arguments given after (47), and so we finally obtain::

(1 + madd)
dz2Ȳ

dT 2 + μ2
0Ȳ + κ

dzȲ

dT
= 0, (52)

where the relative “added mass” madd is

madd = −
∞∑

n �=n∗
ω−2
n α2

n, (53)

where

κ = 1, (54)

κ =
∫ 1

0

d4Ψ

dx4
Ψ (x)dx, (55)

κ =
∫ 1

0

∫ 1

0

dz4Ψ (ξ)

dξ4
Ψ (x)hsd(x − ξ)dxdzξ, (56)

and

κ =
∫ 1

0

∫ 1

0
Ψ (ξ)hsd(x − ξ)Ψ (x)dx (57)

for SD, KV damping, internal space hysteresis damping, and for external space hysteresis damping, respec-
tively.

So, we conclude that a weak interaction between modes produces an “added mass” effect. This “added
mass” effect diminishes when the natural frequencies increase, and is proportional to the square of the damping
magnitude. However, it does not depend on the parameter ε0, which determines the deviation between a and
the critical value ac. In fact, this effect is proportional to the coefficient αn , which is defined by the relations
(48), (49) (50) and (51). Now we can conclude the following:

(a) in the SD case αn = 0 and the added mass effect is absent at the order 1 level;
(b) in the KV damping case αn = 0 for beams on homogeneous elastic foundations, and αn is proportional to

δb for inhomogeneous elastic foundations and hinged supported beams;
(c) similar results can be obtained for the external and internal SH cases. Let σ  1. Then, we conclude that

for simply supported beams and external or internal space hysteresis damping αn = O(exp(−1/σ)) for
beams on homogeneous elastic foundations, and αn = O(δb) for inhomogeneous elastic foundations.

Note that the modal interaction does not change (up to order ε) the value of the critical Euler force ac. Indeed,
the value of ac depends on parameters involved in the self-adjoint operator L since the instability arises when
the spectrum of that operator contains 0.

To study damping effects, let us consider Eq. (52). By solving (52) we find that

Ȳ = c1 exp(θ1T ) + c1 exp(θ2T ),

where

θ1 =
−κ +

√
κ2 − 4μ2

0(1 + madd)

2(1 + madd)
,

θ2 =
−κ −

√
κ2 − 4μ2

0(1 + madd)

2(1 + madd)
. (58)
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Here, we have two regimes, the first one corresponds to the case for which the system is relatively far away
from an instability, and damping forces dominate (κ 
 4μ2

0(1+madd)).When a < ac it follows from (58) there
exists a weakly decreasing mode with Re θ1 ≈ −μ2

0κ
−1, and for a > ac we also obtain a weakly decreasing

mode with Re θ1 ≈ −μ2
0κ

−1. We conclude that in both cases the “added mass” does not affect stability. The
second regime corresponds to the case for which the damping forces are relatively small (κ  4μ2

0(1+madd)).
For a < ac we have Re(θ1) = −κ/2(1 + madd) and Im(θ1) ≈ μ0

√
1/(1 + madd). In this case we see that

the negative “added mass” effect leads to an increase in the oscillation frequency and moreover that effect
decreases the damping. For a > ac we see that the negative “added mass” effect also reinforces the instability.

6 Interaction of resonant modes and damping

6.1 Main equation

This section is “served” as an example to show additional existing and interesting phenomena. We restrict
ourselves to the case of space hysteresis damping, and we only indicate what might be expected. For sure,
there is much to be discovered, but this is outside the scope of this paper. Let ψn , ψk be two resonant modes
(see Sect. 3.4). For these modes, we introduce the detuning parameter ωnk by

ωnk = ε−1(ωn − ωk). (59)

Let us consider the most interesting case of space hysteresis damping:

Du(x, t) =
∫ 1

0

∫ 1

0
G(x, x ′)ut (x ′, t)dx ′.

To describe the mutual evolution of two resonant modes, we are restricting ourselves to the following solution
form:

u(x, t) = Xn(t)ψn + Xk(t)ψk,

where Xn, Xk are unknown functions. We neglect here effects of added mass and buckling, and we assume
that ωn, ωk = O(1) (these effects will be interesting to study in a future research). Then, for Xn, Xk we obtain
the following system of equations

d2Xn

dt2
+ ω2

n Xn = −ε

(

dnn
dXn

dt
+ dnk

dXk

dt

)

, (60)

d2Xk

dt2
+ ω2

k Xk = −ε

(

dkk
dXk

dt
+ dkn

dXn

dt

)

, (61)

where

dl1l2 =
∫ 1

0

∫ 1

0
G(x, x ′)ψl1(x)ψl2(x

′)dxdx ′,

where l1, l2 take values in the set {n, k}. This system can be solved analytically, however, to find oscillation
magnitudes, it is simpler to seek solutions in the following asymptotic form:

Xl(t) = Al(T ) exp(iωl t) + O(ε), . . . , l = n, k, (62)

where T = εt is a slow time and i = √−1. We focus our attention on the oscillation amplitude behavior.
The phase angle behavior can be studied in a similar way. Then, by applying the standard two time-scales
perturbation method one obtains for An , and Ak :

2ωn
d An

dT
= − (dnnωn An + dnkωk Ak exp(−iωnkT )) , (63)

2ωk
d Ak

dT
= −ε (dknωn An exp(iωnkT ) + dkkωk Ak) . (64)
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By using (63) we express Ak in An , giving

Ak = −d−1
nk ωnω

−1
k exp(iωnkT )

(

2
d An

dT
+ dnn An

)

,

and then, it follows from (64) that An satisfies

4
d2An

dT 2 + b
d An

dT
+ cAn = 0, (65)

where

b = 2(dnn + dkk + 2iωnk),

c = 2idnnωnk + dkkdnn − d2nk .

By using (66) we obtain

Al(T ) = C+,l exp(θ+T ) + C−,l exp(θ−T ), l = n, k,

where

θ± = 1

8

( − b ± √
D0

)
, (66)

and where D0 = b2 − 16c. For a given damping model the coefficients dnn ,dkk , and dnk can be determined,
and so, the interaction of these resonant modes can be studied in detail. The analysis performed reveals that
depending on the dl1l2 parameters, the modal interaction can lead either to an increase or a decrease in the
oscillation amplitudes. The reader should note, that the imaginary parts of the expression obtained for θ±
corresponds to a small variation of the oscillation frequency induced by damping.

7 Conclusions

In this paper, the dynamics of and the buckling load for an Euler–Bernoulli beam resting on an inhomogeneous
elastic Winkler foundation are studied. An analytical, asymptotic method is proposed to study the stability
of the Euler–Bernoulli beam for various types of inhomogeneities in the elastic foundation and for different
types of damping. Based on the Rayleigh variation principle, beam buckling loads are determined for cases
of harmonically perturbed types of inhomogeneities in the elastic foundation, and for cases of point inhomo-
geneities in the form of concentrated springs in the elastic foundation, and for cases with rectangular inclusions
in the elastic foundation. Buckling loads are influenced by inhomogeneities in the elastic foundation, and this
effect exhibits a “space resonance”: that is the magnitude of the critical load depends on the inclusion location.
We can control the magnitude of the buckling load by using this “space resonance” effect, and by taking
a particular number of inclusions. The investigation of the beam dynamics shows the possibility of internal
resonances for particular values of the beam rigidity and longitudinal force. Such types of resonances, which
are usually typical for nonlinear systems, are only possible for the beam due to its inhomogeneous foundation.
For large times also a beat effect can be observed. The maximal displacement during this beating was observed
for a specific relation between the beam rigidity and the magnitude of the longitudinal force. Instead of a beat
caused by an external force, the beat effect in the considered system is caused by modal interactions. Also
analytically it was shown that damping can give rise to “added mass” effects for beams near buckling. The
analytical expressions of this “added mass” effect for different damping models (including space hysteresis
types) have been obtained. This effect arises as a result of an interaction between the main mode, which is
close to instability, and all the other stable modes. This interaction is induced by damping, and we discussed
how it depends on the type of damping model.
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Appendix: Computation of Δλn

To find Δλn in the examples A and B in Sect. 4, we use relation (8). In the example A we obtain

Δλn = δb Jn + O(δ2b),

where

Jn = 2
∫ 1

0
sin(γ x) sin2(πnx)dx .

Using the formulas 2 sin2 x = 1 − cos(2πnx), and 2 cos a sin b = sin(a + b) − sin(a − b), we obtain

Jn = − z2(1 − cos(γ ))

γ (γ 2 − z2)
, z = 2πn,

or equivalently (28).
By using (8) for example B one obtains

Δλn = δbSn + O(δ2b),

with

Sn = 2
nd∑

j=1

sin2(πnx j+1),

where x j = x̃ + r/2 + ( j − 1)r and r = 1/nd . To compute Sn we use the relations

Sn =
nd−1∑

j=0

(1 − cos(2πnx j+1)) = nd − S̃n,

where

S̃n = Re
nd−1∑

j=0

exp(
√−1 2πnx j+1).

We observe that the quantity S̃n is the real part of sum in the geometric sequence with initial value

exp
(√−12π(x̃ + r/2)

)

and common ratio q = exp(
√−1 2πnr), leading directly to (31) and (32).
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