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Abstract

Physical interaction between two proteins is strong evidence that the proteins are involved

in the same biological process, making Protein-Protein Interaction (PPI) networks a valuable

data resource for predicting the cellular functions of proteins. However, PPI networks are

largely incomplete for non-model species. Here, we tested to what extent these incomplete

networks are still useful for genome-wide function prediction. We used two network-based

classifiers to predict Biological Process Gene Ontology terms from protein interaction data

in four species: Saccharomyces cerevisiae, Escherichia coli, Arabidopsis thaliana and Sola-

num lycopersicum (tomato). The classifiers had reasonable performance in the well-studied

yeast, but performed poorly in the other species. We showed that this poor performance can

be considerably improved by adding edges predicted from various data sources, such as

text mining, and that associations from the STRING database are more useful than interac-

tions predicted by a neural network from sequence-based features.

Introduction

One of the main challenges of the postgenomic era is how to extract functional information

from the vast amount of sequence data that are available. As the number of known protein

sequences grows at a very fast pace (currently >185 million in UniProtKB), experimentally

determining the functions of all proteins has become practically infeasible. This creates the

need for accurate Automatic Function Prediction (AFP) methods, which can predict a pro-

tein’s function(s) using the knowledge that has been accumulated in the past. To this end, the

Gene Ontology (GO) is a very valuable resource that provides a systematic representation of

function in the form of three ontologies: Biological Process (BP), Molecular Function (MF)

and Cell Component (CC) [1].

The Critical Assessment of Functional Annotation (CAFA) is a community-driven bench-

mark study that compares a large number of available AFP methods in an independent and
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systematic way [2–4]. One of the main conclusions that one can draw from the several editions

of CAFA is that top-performing methods tend to use a combination of different data sources

and not only the amino acid sequence. For example, MS-kNN, one of the best methods in

CAFA2, combined sequence similarity with human gene co-expression and protein-protein

interaction (PPI) data [5]. GOLabeler, which was the best in CAFA3, combined six different

data sources with a powerful algorithm that predicts how suitable a GO term is for the input

protein [6]. More recently, the authors of GOLabeler introduced an extension named NetGO

which also uses PPI networks as an extra data source, reporting even better performance than

GOLabeler on the CAFA3 dataset [7]. These observations show that PPI networks are infor-

mative data sources for AFP, which can be understood, since if two proteins physically inter-

act, they are likely to be involved in the same biological process or pathway.

However, almost all PPI networks are incomplete. The best-characterized model species,

Saccharomyces cerevisiae (baker’s yeast), has one of the densest PPI networks, with 116,209

experimentally-derived, physical interactions in the BIOGRID database [8]. Given the fact that

S. cerevisiae has about 6,000 protein-coding genes [9], this means that roughly 0.6% of all pos-

sible pairs of proteins are known to interact. The human interactome is also quite well charac-

terized, with 424,074 experimental interactions in BIOGRID (about 0.2% of all possible

interactions). Moreover, a recent study identified an additional 52,569 high-quality interac-

tions of 8,275 human proteins [10]. On the other hand, in Arabidopsis thaliana, the most well-

studied plant species, there are about 27,000 protein coding genes and 48,786 experimentally-

derived physical interactions in BIOGRID, i.e. only 0.01% of the possible interactions are

known. This is not likely due to protein interactions being less common in A. thaliana, but

rather because it is not as well-studied as yeast.

The number of known edges is orders of magnitude smaller in other plant species, even in

important crops. For example, in tomato (Solanum lycopersicum), there are only 107 interac-

tions in BIOGRID as of June 2019 (<<0.01% of the total number of possible interactions). In

rice (Oryza sativa japonica), there are 330 and in corn (Zea mays) 13. This phenomenon is not

restricted to plants, but is also true for non-model animal species, such as economically impor-

tant species like cow (Bos taurus, 529) and pig (Sus scrofa, 88 interactions).

Most methods that employ PPI networks in AFP predict functions by propagating the GO

annotations through the network [5, 7]. The simplest of such methods transfers the annota-

tions of a protein to its immediate neighbors. This is also known as Guilt-By-Association

(GBA). Fig 1a illustrates the GBA method in an example network with 6 proteins: Proteins 1

and 2 are annotated with a GO term, while protein 6 is not. We are asked to predict whether

proteins 3-5 should be annotated with that GO term. As seen in Fig 1a, for all three of these

proteins we are at least 66.6% certain that they should be assigned that GO term. Fig 1b shows

the same example network, assuming that some of its edges are missing. In this case, protein 5

has no known interacting partners, so it is impossible to determine its function. Similarly, pro-

tein 1 has a known function, but is disconnected from the rest of the network, so its function

cannot be propagated to other proteins. This example shows that when interactions in a PPI

network are missing, function prediction cannot benefit from PPI information (as most pro-

teins will have few or no connections to other proteins).

A way to counter the lack of edges is to predict them using other data sources. The STRING

database contains a large collection of protein associations predicted using different sources,

such as gene co-expression and text mining [11]. Moreover, the recent rise in popularity of

deep learning has caused an increase in methods that attempt to predict protein-protein

interactions purely from protein sequence. One of the first examples was from Sun et al. [12],

followed by DPPI [13], PIPR [14] and the work of Richoux et al. [15]. The advantage of pre-

dicting edges from sequence is that it is—at least in theory—not biased towards previous
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experiments. In contrast to, for example, predictions within the STRING database that still

require other people to have previously studied a specific protein or its orthologues. Having an

accurate sequence-based predictor of PPIs means that for all possible pairs of proteins we can

obtain a score for how probable an interaction between each pair of proteins is. This would

enable us to find possible interacting partners for proteins that have not been previously stud-

ied at all.

In this study, we are interested in quantifying the influence of missing edges in a PPI net-

work on protein function prediction. Moreover, we are interested in how well (deep learning

based) sequence-based PPI predictors can recuperate this missing information, and how that

translates in improvements of the function prediction. We hypothesize that using such a

model to predict interactions would be more effective than STRING in the downstream task of

network-based protein function prediction.

Materials and methods

Protein-protein interaction networks

We compared PPI networks in S. cerevisiae, Escherichia coli, A. thaliana and S. lycopersicum
using three types of PPIs: 1) Physical interactions that have been experimentally derived. 2)

Predicted interactions based on non-experimental protein association data from the STRING

database, and 3) Sequence-based predicted interactions based on the amino acid sequence of

two proteins using PIPR.

Physical interactions. For the experimental interactions we used the BIOGRID (ver-

sion 3.5.171) [8] and STRING databases [11]. We only used physical interactions and

ignored the genetic interactions. Of note, the STRING database contains a collection of

experimental protein-protein interactions from different databases, including BIOGRID

(marked with the “experiments” data source code) and we found edges in BIOGRID that

Fig 1. Toy PPI network with 6 nodes. Nodes annotated with a GO term are shown in blue and nodes not annotated in red. Unlabeled (test) nodes are

shown in white. In (a) the entire network is known and the posterior probabilities for each unlabeled node can be calculated accurately. In (b) some of the

edges are missing (signified by the dashed lines), making the calculation of posterior probabilities either erroneous or even impossible (e.g. node 5).

https://doi.org/10.1371/journal.pone.0242723.g001
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were not present in STRING. From STRING, we only chose experimental protein-protein

interactions with association scores larger than the median score over the non-zero scores

for each species individually. The node degree distributions of these networks are shown in

S1 Fig in S1 File.

Predicted interactions. Besides the experimental evidence, STRING contains protein

associations from 12 data sources in total: “neighborhood”, “neighborhood transferred”,

“co-occurrence”, “database”, “database transferred”, “experiments transferred”, “fusion”,

“homology”, “co-expression”, “co-expression transferred”, “text mining” and “text mining

transferred”. We use these data as features predictive of two proteins interacting and/or

being functionally associated to add edges to the experimental network. We refer to these

edges as “predicted edges”. S1 Table in S1 File shows the number of interactions per species

and per data type. In each species, we ignored data sources that did not add any new edges.

We also removed “database”, as it includes protein associations that were identified by using

the GO annotations of proteins and these edges would cause circular reasoning if used to

predict GO terms, leading to a biased evaluation. This left us with 9 data sources from which

we could infer PPIs in yeast, E. coli and A. thaliana and 8 in tomato (S1 Table in S1 File).

The interaction scores have different distributions in different data sources. Therefore,

instead of applying a fixed threshold, we selected the protein pairs with the 50% highest

non-zero scores for each data source and species individually. Next to individually using the

data sources as proxies for the protein-protein interactions, we also combined data sources.

This was done by first integrating the STRING scores from different sources as described in

[16] (see S1 File for more information) and then keeping the 50% top non-zero scores for

every combination, as before. To combine a binary STRING network with the experimental

one, we applied an element-wise logical OR to the corresponding adjacency matrices, so an

interaction is added to the combined network if it is present in at least one of the original

networks.

We also examined the possibility of using all STRING edges by creating weighted graphs

whose edge weights correspond to the STRING interaction scores. We then added these

weighted graphs to the binary experimental network.

Sequence-based predicted interactions. We used PIPR [14] to predict PPIs from protein

sequence. It uses a Siamese twin architecture with both convolutional and recurrent units and

three fully connected layers at the end. PIPR also makes use of predefined amino acid embed-

dings, obtained from both chemical properties of amino acids and their co-occurence in pro-

tein sequences. PIPR had an accuracy of about 97% in predicting yeast PPIs when trained on a

large, balanced dataset from the DIP database. After having trained the model, we feed it all

pairs of proteins. For each pair we get a score in the range [0, 1] denoting the probability that

these two proteins interact. We add an edge to our predicted PPI network if the score for that

edge is greater than or equal to 0.5.

GO annotations

We obtained GO annotations from the GOA website [17] and only used the experimental

annotations and curated annotations (evidence codes “EXP”, “IDA”, “IPI”, “IMP”, “IGI”,

“IEP”, “IBA”, “IBD”, “IKR”, “IRD” and “TAS”). We used the entire GO graph (not the smaller

GO slim versions). Annotations were propagated towards the ontology root, so that when a

protein is annotated with a term, it is also annotated with all its ancestors in the GO graph. We

focused on the Biological Process Ontology (BPO), as it is the most difficult ontology to predict

[3] and also is the most commonly used in further analyses such as gene set enrichment.

Table 1 gives an overview of the different dataset sizes for the four species.
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Function prediction methods

We represent the protein-protein interactions as a network with the proteins as nodes and the

interactions as binary, undirected edges. Using this network, we can make predictions about

the functions of unannotated proteins using the proteins with known function. To do so, we

used a simple Guilt-By Assosciation (GBA) method and a more complicated one that uses

node embeddings learned using node2vec [21]. We compared these methods to the BLAST
and naive baselines, which are commonly used in the CAFA challenges [2, 3]. Each method

computes the probability P(pi, t) that a GO term t should annotate protein pi. Below we pro-

vide details about how each method makes this computation. When P(pi, t) is undefined, e.g.

because a protein has no neighbors in a PPI network or no significant BLAST hits, we set it to

zero to indicate that this term cannot be assigned to this protein.

Guilt-By-Association (GBA). This method assigns a GO term to a protein with posterior

probability equal to the fraction of the protein’s interacting partners annotated with that term.

More formally, let A be the network’s adjacency matrix, Vtrain a set of training proteins and

Vtest a set of test proteins. Moreover, let T(p) be the set of GO terms assigned to p 2 Vtrain. For

a protein pi 2 Vtest, we define its neighborhood N(pi) as all its interacting partners that are in

the training set:

NðpiÞ ¼ fp : p 2 Vtrain ^ A½p; pi� ¼ 1g ð1Þ

For a GO term t, the probability it is assigned to test protein pi is given by Eq 2:

Pðpi; tÞ ¼
P

p2NðpiÞ
Iðt 2 TðpÞÞ
jNðpiÞj

ð2Þ

Where I(x) = 1 iff x is a true statement and |S| denotes the number of elements in set S.

For weighted graphs, Eq 2 was adapted so that each neighbor transfers its annotations with

a weight equal to the edge weight and we divide by the total sum of the weights instead of the

number of neighbors.

node2vec. The node2vec algorithm learns a fixed-length embedding for every node, such

that the similarity in the embedding space reflects the similarity of neighborhoods in the

graph, as defined by random walks [21]. We used these embeddings as feature vectors on

which we applied standard machine learning methods; specifically the k-Nearest Neighbors

(kNN) and the ridge classifiers. For kNN, we look for the k training proteins with the most

similar feature vectors to a query protein pi and set P(pi, t) equal to the fraction of these k
proteins annotated with t. The ridge classifier models protein function prediction as a multi-

output regression problem and learns a linear mapping from the feature space to the label

space. We use X 2 RN�d to denote the node2vec feature matrix, where each row contains the

feature vector of one protein, and Y 2 {−1, 1}N×L to denote the label matrix, where each row

represents the GO annotations of each protein and a value of 1 in the matrix denotes that the

Table 1. Number of proteins and known PPIs per species in BIOGRID. (version 3.5.171).

Yeast E. coli Arabidopsis Tomato

approximate #protein-coding genes 6,000 [9] 4,400 [18] 27,029 [19] 34,727 [20]

#proteins with BPO annotations (N) 4,997 2,869 10,648 651

#BIOGRID edges between proteins with BPO annotations 149,659 17,540 23,371 57

#pairs of proteins with BPO annotations (N(N − 1)/2) 12,482,506 4,114,146 56,684,628 211,575

% annotated protein pairs interacting 1.20 0.43 0.04 0.03

% disconnected proteins 0.4 23.1 43.4 96.9

https://doi.org/10.1371/journal.pone.0242723.t001
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corresponding protein is annotated with the corresponding GO term. The ridge classifier tries

to find a linear mapping W 2 Rd�L, such that Y� XW. We also add L2 regularization to the

model with coefficient λ which leads to the optimal solution W� = (XT X + λI)−1 XT Y. To

bring the predictions (XW�) in the range [0, 1], we apply a sigmoid function s(a) = (1 + e−a)−1

to each predicted value a. We did not post-process the predictions of the ridge method so it is

possible that it makes predictions that are inconsistent with the GO hierarchy.

Naive. The naive method of CAFA [2] assigns a GO term to a protein with probability

equal to the fraction of training proteins annotated with that term (Eq 3).

Pðpi; tÞ ¼
jfp : p 2 Vtrain ^ t 2 TðpÞgj

jVtrainj
ð3Þ

This means that all test proteins get the same annotation using this method (making it a quite

weak baseline).

BLAST. We ran BLAST with default settings and set P(pi, t) equal to the maximum

sequence identity between pi and its hits annotated with t.
Combining two classifiers. Given the posterior probabilities of two classifiers P1(pi, t)

and P2(pi, t) we combined them using Eq 4, which gives a high score for a protein-term pair if

at least one of the two methods gives a high score.

Pcomboðpi; tÞ ¼ 1 � ð1 � P1ðpi; tÞÞ � ð1 � P2ðpi; tÞÞ ð4Þ

Experimental set-up

Evaluation metrics. To compare function prediction across the differently constructed

protein-protein interaction networks, we applied a 5-fold cross-validation. As evaluation met-

rics we used the protein-centric Fmax and Smin that are extensively used in the CAFA chal-

lenges. Definitions for these metrics are provided S1 File. We also measured the coverage of

each algorithm, defined as the fraction of test proteins for which at least one term has a non-

zero posterior probability.

As the GO term distributions and frequencies are different in each species, directly compar-

ing the performances across species is not trivial. To counter the effect of GO term frequencies,

we use the concept of Prediction Advantage (PA) [22], which is defined as the improvement

on the classification loss of a classifier c (Lc) with respect to the naive classifier (Lnaive). The PA,

which is defined in Eq 5, can be calculated for any classification loss, so here we used L = 1 −
Fmax.

PAðc; LÞ ¼ 1 �
Lc
Lnaive

ð5Þ

In each fold, we discarded the GO terms that had no positive examples in either the training

or the test set.

Experimental PPI (EXP). We started from the experimental PPI network of a given spe-

cies. This network includes as nodes all proteins that have at least 1 functional annotation,

even if they have no interacting partners. Proteins without functional annotations were

removed, even if they had known interactions.

node2vec is an unsupervised feature extraction step that only depends on the network and

not the functional annotations. We additionally tested whether also including the unannotated

proteins as nodes in the network would possibly lead to better features in the first step of the

node2vec procedure, as it leads to a better neighborhood estimation. To this end, we ran
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node2vec on the entire EXP network (including unannotated proteins) and then used the

extracted (unsupervised) features of the annotated proteins only in the supervised phase. We

repeated this experiment for all four species and compared the performance with that of the

original node2vec which learned the (unsupervised) features on a network of only annotated

proteins.

Combined experimental and predicted PPI (EXP+STRING). We added predicted edges

to the experimental network from the different data sources in STRING. We evaluated all pos-

sible combinations of the 9 STRING data sources (8 for tomato): First, we added each data

source individually. Then, we tested all combinations of 2 data sources (36 possibilities), all

combinations of 3 (84 possibilities) and so on, until we have included all 9 data sources. So, in

total, we tested
P9

i¼1
9

i

� �
¼ 511 combinations of data sources (255 for tomato) along with the

experimental network.

Sequence-based predicted PPI (EXP+SEQ). We used edges predicted by PIPR for pre-

dicting function. We tested the performance of a network with the experimental edges com-

bined with the PIPR predictions.

Optimization of node2vec classification. node2vec has hyperparameters that can have a

large influence on the learned features. We tuned these hyperparameters on the experimental

PPI network of each species, by splitting the training set of each cross-validation fold into a

new training (80% of initial training set) and a validation set (20% of intial training set). For

each hyperparameter combination, we generated node features which we fed to the kNN and

ridge classifiers for different values of their parameters (k and λ respectively). Finally, for each

cross-validation fold, we identified the combination of hyperparameters, classifier and classi-

fier parameter that maximized the Fmax, trained it on the whole training set and used the

trained model to make predictions on the test set. Details about the hyperparameters that were

tuned and the values considered are provided in S1 File.

When running node2vec on all proteins with known interactions (and not only the ones

with functional annotations), we again used 5-fold cross-validation as before. The training, val-

idation and test splits in each fold were kept identical. We also repeated the hyperparameter

optimization step, as changes in the network topology might call for different hyperparameter

values.

Results

Only the yeast experimental PPI network has acceptable function

prediction performance

Fig 2a–2d compare the Fmax achieved by the GBA method on the EXP network to the baseline

performances in four species using 5-fold cross-validation. In yeast, this simple approach sig-

nificantly outperforms both naive (p-value < 10−5, paired t-test, FDR-corrected) and BLAST
(p-value = 0.5 � 10−3, paired t-test, FDR-corrected). In E. coli, A. thaliana and tomato, the pic-

ture is quite the opposite, with even the naive method largely outperforming GBA (p-val-

ues = 0.026, 0.3 � 10−5, 0.2 � 10−3 respectively, paired t-test, FDR-corrected). In tomato, the

network is so sparse and disconnected that the maximum F1 score is achieved by assigning all

GO terms to all proteins. The Prediction Advantage (PA, see Methods) between GBA and

naive classifier follows a linear trend with respect to the fraction of existing edges. The calcula-

tion was based on only four points, but it still lies under the statistical significance threshold of

0.05 (Fig 2e, Pearson’s ρ = 0.98, p-value = 0.016).

To better characterize the effect of missing edges, we simulated the phenomenon in yeast

by removing edges either uniformly at random or by an approach that makes nodes with the

lowest degree more likely to lose their edges first (S1 File). We found that the Fmax is relatively
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robust to uniform edge removal up to 40-50%, but Smin deteriorates more quickly (S2 Fig in S1

File), meaning that predicting more specific terms suffers even under this simplified missing

edges scenario. The coverage also drops very slowly (at least initially), which implies that most

edges are removed from “dense” parts of the network so that the remaining edges can partly

make up for this loss. In the degree-based sampling strategy, which is more realistic, we

observed a much steeper drop for all three metrics. In this case, poorly-studied proteins lose

their connections very quickly making it impossible to make predictions for them, as indicated

by the steep decline in coverage. As a result, the average performance also reduces very fast.

The PA values calculated from the degree-based downsampling did not confirm the linear

relationship between PA and fraction of known edges (green dots in Fig 2e).

Fig 2. Function prediction performance of PPI networks in four species. (a-d): On the x-axis, are the different PPI networks. The height of the bars

denotes the Fmax in each species. The naive and BLAST baselines are shown as a red and a black horizontal line respectively, with dashed lines showing the

corresponding standard deviations. EXP, GBA is shown in blue, EXP+STRING, GBA in cyan and EXP+SEQ in green. The improvement of node2vec on

EXP and EXP+STRING is shown as an orange bar. Absence of an orange bar denotes that the two algorithms performed equally. The combinations of EXP,

GBA and EXP+STRING, GBA with BLAST are shown in gray and yellow respectively. The error bars denote the standard deviation over the 5 cross-validation
folds. e) Prediction Advantage (PA) of Fmax as a function of the fraction of known interactions. Each species is shown as a blue dot and red line shows the least
squares linear fit. PA values calculated by downsampling the original yeast network at different levels of missing edges are shown as green dots. f) The fraction
of annotated proteins for which each method can make predictions (y-axis) for each species (x-axis). On top, the number of total proteins is shown. Different
methods are shown in the same colors as in a-d. Note that the naive method has a coverage of 100% by design.

https://doi.org/10.1371/journal.pone.0242723.g002
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Combining PPI networks with homology. In many function prediction pipelines, PPI

networks are combined with other data sources and used in ensemble algorithms. Experiments

with a simple method that fuses the posterior probabilities of BLAST with those of the PPI clas-

sifier (Eq 4) showed minimal performance gains (2-6%) with respect to stand-alone BLAST,

for all species except for S. cerevisiae (43%, Fig 2). The difference with respect to BLAST was

found statistically significant using the paired t-test. However, after correcting for multiple

testing using the False Discovery Rate method, the p-values for E. coli, A. thaliana and tomato

lie just below the 5% significance threshold (0.0468, 0.0468 and 0.0486 respectively), whereas

for yeast the corrected p-value is 1.5 � 10−5. These results confirm that using experimental PPI

networks with many missing edges is not helpful for function prediction.

node2vec results. The GBA method is very simple and therefore unlikely to be able to cap-

ture all the functional signal present in complicated biological networks. We therefore tested

whether a more complicated classifier based on node2vec could outperform it. In the same

cross-validation loop, we used a validation set to tune the hyperparameters of node2vec and

used the same unseen test set as before to evaluate the model. The optimal hyperparameter val-

ues varied per cross-validation fold and per species. The 1NN classifier was the optimal choice

in yeast and tomato, while the ridge with moderate regularization in E. coli and A. thaliana.

More importantly, node2vec performed better than GBA on the EXP network in all species

except for tomato, where assigning all terms to all proteins still maximizes the Fmax (Fig 2a–2d,

S2 Table in S1 File). Evaluation based on Smin gave similar results (S3 Table in S1 File).

We also tested whether including proteins with known interactions but no functional anno-

tations during the feature learning step could improve the performance of node2vec. We used

the t-test to compare the Fmax, Smin and coverage of these networks to the ones that consist of

only annotated proteins. We found that doing so lead to a small but significant increase in cov-

erage in E. coli and A. thaliana (paired t-test, corrected for the FDR), but there was no signifi-

cant difference in Fmax or Smin in any of the four species (FDR> 0.05, S4 Table in S1 File).

This means that although we can make predictions for more proteins the predictions become

less accurate when including these edges. Therefore, for the rest of our experiments we only

refer to node2vec trained on the proteins that have GO annotations.

Performance per protein. Comparing the performance for each individual protein, we

observed a large non-linear dependency between the performance and the number of anno-

tated neighbors. This dependency was consistently smaller for node2vec (a Spearman correla-

tion of 0.30, 0.60 and 0.81 for yeast, E. coli and A. thaliana respectively) than for GBA (0.41,

0.65 and 0.85 for yeast, E. coli and A. thaliana respectively). We also found that node2vec con-

sistently outperforms GBA regardless of the number of annotated (training) neighbors in E.

coli and A. thaliana (Wilcoxon rank sum test, FDR< 0.05, Fig 3 and S4 Table in S1 File). In S.

cerevisiae, node2vec is significantly better than GBA for 6 out of 9 bins and significantly worse

in 1 bin, while for two bins there were no significant differences (Wilcoxon rank sum test,

FDR< 0.05, Fig 3 and S5 Table in S1 File). Finally, node2vec can make predictions for proteins

that do not have any training neighbors as long as they are not completely disconnected, as its

feature vectors are learned in an unsupervised way using the entire network. This means that,

for not too sparse networks, node2vec is the preferred option compared to GBA.

Adding predicted edges is more useful than using a complex classifier

We then tested to what extent predicted interactions from STRING can improve upon the pro-

tein function prediction performance of the EXP networks. As we can see in Fig 2a–2d, the

GBA classifier performed considerably better on the EXP+STRING network than on EXP for

all species. It also significantly outperformed the naive and BLAST baselines. As shown in
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Fig 3, the STRING edges offer a performance boost for both nodes that have and nodes that do

not have annotated neighbors in the experimental network for all species. However, for hub

yeast proteins with more than 20 experimental edges, applying node2vec on the EXP network

was more effective than adding predicted edges (Fig 3a). The fraction of proteins that can be

annotated by the STRING networks approaches 100% for E. coli and A. thaliana and 80% for

tomato (Fig 2f).

Using a weighted STRING network with all available interactions instead of a binary one

lead to small performance improvements, but mainly for the combinations that performed less

well (S3–S6 Figs in S1 File). The effect sizes were rather small for the top-performing combina-

tions (S6 Table in S1 File). This shows that STRING edges possibly contain useful functional

signal even at confidence levels lower than those we considered here.

Combining STRING edges with homology. Moreover, combining the predictions of the

GBA classifier on this network with BLAST predictions (see Methods) leads to significant

improvement (28-76%) over BLAST for all species (Fig 2). The combined model gave

Fig 3. Performance per protein. Fmax achieved per protein (y-axis) as a function of the number of training neighbors in the EXP network (x-

axis) for EXP, GBA (blue), EXP, node2vec (orange) and EXP+STRING, GBA (cyan). The median of each group is denoted by a horizontal line

and the 5th and 95th percentiles by the whiskers. The number of proteins in each group is shown at the top of each group and an asterisk (�) next

to the number signifies that the difference between EXP, GBA and EXP, node2vec is statistically significant at a False Discovery Rate of 5%. For

the EXP+STRING network, we show the performance of the combination of data sources that had the best performance in each species.

https://doi.org/10.1371/journal.pone.0242723.g003
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significant improvements (10-26%) over its PPI component in yeast, E. coli and A. thaliana
and performed equally well in tomato (Fig 2). Smin results show similar trends, with the excep-

tion that in yeast, the optimal Smin is achieved by GBA on the EXP+STRING network and not

by the combination with BLAST (S3 Table in S1 File). These show that adding predicted edges

is very beneficial for all tested PPI networks.

node2vec on STRING edges. Similar to the EXP network, we compared the GBA classifier

to the one based on node2vec on EXP+STRING. We again observed that the more complex

classifier achieved higher Fmax in yeast, E. coli and A. thaliana (Fig 2a–2d), but in terms of Smin

only yeast showed an improvement (S3 Table in S1 File). In addition, Fig 2b–2d show that in

not so well-studied species, using a more complicated classifier on the EXP network performs

considerably worse than a simple classifier on a more complete network with predicted edges.

Effect of individual STRING data sources. We also examined which STRING data

sources were responsible for the observed increase in performance. As shown in Fig 4 and S7–

S9 Figs in S1 File, the vast majority of data sources when individually added to the EXP net-

work lead to better function prediction in terms of both Fmax and Smin, with the exception of

“experiments transferred” in yeast. Fig 4 and S7–S9 Figs in S1 File also show that “text mining”

(in S. cerevisiae and A. thaliana), “text mining transferred” (in E. coli and S. lycopersicum) and

“homology” (in all four) were by far the most useful sources. A more in-depth analysis of the

results showed that these three data sources alone are actually enough to obtain the maximum

performance of the GBA method on the EXP+STRING network (S7–S14 Tables in S1 File) and

that removing all of them leads a to significant performance drop (S15 and S16 Tables in S1

File). Moreover, including all nine data sources (eight for tomato) lead to worse Fmax and Smin

in all species (Fig 4 and S7–S9 Figs in S1 File).

Edges predicted from protein sequences by a neural network are less useful

than STRING edges

The PIPR model for predicting protein-protein interactions from sequence was reported to

have 97% cross-validation accuracy on a balanced dataset with about 11,200 data points from

S. cerevisiae proteins from the DIP database, a result that we also replicated. This model, how-

ever, was not able to generalize to predict BIOGRID edges in yeast, as it achieved an accuracy

of 0.59 on a balanced dataset. We also measured the model’s recall, i.e. its ability to identify

true interacting pairs, and it was comparable to random guessing (0.51).

We therefore set out to train PIPR for predicting BIOGRID edges, keeping the architecture

and the training procedure the same. As positive training examples, we used all yeast protein

pairs reported to be physically interacting in BIOGRID and as negative examples, an equal-

sized set of randomly selected protein pairs that are not reported as interacting. This proved to

be a more challenging task for PIPR, as the best validation accuracy achieved was 0.77 (S17

Table in S1 File).

The sequence-based predicted PPI network combined with the experimental one (EXP
+SEQ) hampers the AFP performance in yeast as compared to EXP (Fig 2a). This is probably

due to the addition of many false positive edges, as it predicts that more than 41% of all possi-

ble protein pairs are interacting, which is about 10 times more than expected [16]. In contrast,

in E. coli, A. thaliana and tomato the EXP+SEQ PPI network seems to be more useful, provid-

ing significant improvements over EXP (Fig 2b–2d). However, these improvements are not

enough to surpass even the BLAST baseline in E. coli and A. thaliana. Contrary to our expecta-

tion, the EXP+STRING network performed significantly better than EXP+SEQ for all species

(Fig 2a–2d). This was true even when we removed edges from text mining from the STRING
networks.
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In tomato, the EXP+STRING network cannot make predictions for roughly one fifth of the

proteins (Fig 2f). Adding the SEQ edges only for these proteins improved the overall Fmax from

0.61 to 0.67. This shows that SEQ edges are useful, but they are surpassed by the higher quality

of STRING edges.

Finally, we trained PIPR on A. thaliana edges from BIOGRID and obtained new networks

in A. thaliana and S. lycopersicum. Although this network worked slightly better in tomato

than the one trained in yeast data, it was still worse than BLAST and EXP+STRING (S18

Table in S1 File).

Discussion

The aim of this work was to investigate ways of addressing the problem of missing edges in

experimental protein-protein interaction networks for the downstream task of genome-wide

function prediction. Our main hypothesis was that a deep learning model that can identify

Fig 4. Performance of STRING edges in A. thaliana. Fmax (left) and Smin (right) (y-axis) as a function of the number of STRING data sources included (x-

axis). Each dot corresponds to one combination of data sources added to the experimental network. Combinations that include “text mining” and/or “text

mining transferred” are shown in yellow, combinations that include “homology” in black and combinations that include both in black with yellow border.

The rest of the combinations are shown in blue. To ease visibility, we added a random number in the range [-0.5, 0.5] to each combination of the same

number of sources. Zero data sources corresponds to the EXP network and the orange line shows the average performance for a specific number of data

sources. Horizontal lines denote the performance of the naive (black), BLAST (red) and the combination of BLAST with the EXP PPI network (dashed

green).

https://doi.org/10.1371/journal.pone.0242723.g004
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interacting proteins from sequence with very high accuracy would be a good solution to this

issue.

We demonstrated how the sparsity of experimental PPI networks leads to poor function

prediction performance, using the simple GBA classifier. We did not compare this classifier to

any state-of-the-art methods, such as GOLabeler [6] or INGA [23], but rather to the naive and

BLAST baselines from the CAFA challenges. The naive classifier, as its name suggests, does not

use any information to relate specific proteins to GO terms, rather it only uses the frequency of

each GO term in the training set. In the machine learning literature, this classifier is also called

the “Bayesian Marginal Predictor” [22] and is the optimal classifier when the distributions of

the classes (P(y)) are known, but information about the relationship between the data and the

classes (p(x|y)) is missing. This means that any classifier that uses any kind of (informative)

data is expected to outperform the naive one.

However, we clearly demonstrated the failure of the GBA classifier in predicting BPO terms

in E. coli, A. thaliana and tomato, as it performed considerably worse than the naive method.

This was not the case in yeast, where the GBA classifier outperformed both baselines. When

examining the performance for individual proteins, we found a high correlation between the

number of known interacting partners and the prediction accuracy.

The GBA method has proven to be very useful in function prediction [5], but it is a very

simple approach and therefore heavily relies on the correctness of the given network. We thus

expected that using a more complicated approach that captures broader network patterns

might (partly) overcome the sparsity. Several such node classification methods exist [24].

Recently, Graph Convolutional Networks (GCNs) have been shown to be effective in such

tasks [25]. We chose to use node2vec to generate node features, as it has been successfully

applied to protein-protein interaction networks [21] and used these features to train standard

classifiers for function prediction. Although, we observed a clear improvement in A. thaliana
and E. coli with respect to GBA, the performance remained below that of the baselines, mean-

ing that these models can only partly compensate for missing edges. To make matters worse,

we did not observe any improvement in the even sparser tomato network. This difference can

be explained by the fact that when tuning the node2vec hyperparameters we rely on the perfor-

mance on a validation set, which in tomato is very small and only includes “easy” proteins,

leading to an apparent high performance for a large number of hyperparameter combinations.

This makes it hard to select the optimal hyperparameters for node2vec in tomato, but it is still

possible that an improvement could be observed if the correct parameters were known. Using

the optimal hyperparameters from another species with a more complete network, e.g. A.

thaliana, might be an alternative. However, since the topologies of the two networks are vastly

different, the optimal hyperparameters for one species are not necessarily good for the other.

Taken together, these observations validated our hypothesis that a sparse PPI network is detri-

mental to genome-wide AFP.

It is worth noting that node2vec can make predictions for nodes that have no annotated

neighbors, as opposed to GBA, which helps increase the coverage. Nevertheless, including

unannotated proteins with known interactions during the node2vec feature learning step did

not lead to better function prediction performance. This hints that -apart from the lack of

known interactions- the lack of GO annotations for training proteins also has a considerable

negative effect on the accuracy of function prediction algorithms.

Many methods have been proposed that try to complete a network by predicting edges.

Reviews of such methods can be found in [26] for social and in [27] for biomedical networks.

More specifically, the computational prediction of protein-protein interactions has been an

active research area for many years [28, 29]. Our work is the first to evaluate the contribution

of predicted edges in protein function prediction in a species-specific way. We used the
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STRING database as a proxy for predicting interaction using omics data such as genome fea-

tures, homology, co-expression and text mining. In sparse experimental PPI networks, the

STRING-derived edges contribute a great deal, increasing the performance of the GBA classi-

fier 1.8-fold in E. coli, more than 2.5-fold in A. thaliana and about 30-fold in tomato. They also

outperformed the node2vec method on the EXP network. This is because these extra edges

connect proteins that were previously disconnected from the rest of the graph, but also because

they can discover new functions for already connected proteins, leading to a performance

boost regardless of the number of neighbors. Using these edges was enough to significantly

outperform the naive and BLAST baselines. In the case of yeast, which has a more “complete”

network, the STRING-derived edges also improved the prediction performance, but to a lesser

extent. In fact, in yeast, node2vec on the EXP network and GBA on the EXP+STRING network

performed similarly on average, with node2vec being more useful for hub proteins that have a

complicated neighborhood. As expected, combining a better network (EXP+STRING) with a

better classifier (node2vec) lead to even better performance, though this was not observed in

the small tomato dataset.

To combine the different STRING data sources, we used the simple algorithm described in

[16]. This algorithm (also described in S1 File) assumes independence between the data

sources and applies a Bayesian framework to join them into a final score for each protein-pro-

tein association. Some more advanced methods have been proposed to perform this integra-

tion, such as Mashup [30] and deepNF [31]. Both of these approaches, which are conceptually

similar to each other and to node2vec, perform a number of random walks separately for each

network derived by each data source to estimate the neighborhood similarity of each node to

all other nodes. Then, they learn a feature vector for every node (protein) in order to approxi-

mate this similarity as closely as possible. The main difference between the two methods is

that Mashup learns these vectors using matrix factorization [30], while deepNF using an auto-

encoder neural network [31]. Both of these methods outperformed the simple integration

strategy in yeast and human PPI networks [31], which means that the performance of the

EXP+STRING network could be enhanced by using one of these two methods. On the other

hand, these methods—and especially deepNF that has many parameters to be learned—are not

guaranteed to work well in a small dataset such as the tomato one. Furthermore, as STRING
networks have weighted edges, instead of using thresholds to make them binary, it might be

more helpful to employ algorithms that classify nodes directly on weighted graphs, such as

those described in [32] and [33]. Our small-scale experiments in that direction gave mixed

results, so more research is needed on this issue.

Notably, text mining of scientific literature and homology were the most informative

STRING data sources for all species. Although removing the text mining edges did lead to a

decrease in the maximum performance of EXP+STRING networks, we showed that it did not

change the main conclusions of this study. Moreover, we found that edges from “text mining

transferred”, i.e. associations that have been discovered through text mining in other species

and then transferred based on sequence homology, are very useful in E. coli and tomato. Given

that we did not consider GO annotations inferred automatically due to sequence similarity, it

is likely that text mining indeed captures true functional information that is conserved across

species. This perhaps means that text mining is an underrated data source for functional anno-

tation. We hypothesize that since scientific knowledge is mainly disseminated by publishing

articles, text mining on these articles compiles all of this information into one resource. This

would explain why otherwise very informative resources such as gene co-expression or oper-

ons (in bacteria) are individually useful when added to the EXP network, but are rendered

redundant in the presence of text mining edges. Although homology is the most commonly

used data source for function prediction, from the descriptions of the methods submitted to

PLOS ONE PPI networks for protein function prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0242723 November 25, 2020 14 / 18

https://doi.org/10.1371/journal.pone.0242723


the CAFA challenges, we know that only a small minority of them make use of text mining [4].

Two of these methods are described in [34, 35]. A more recent study showed that integrating

homology-based predictors with neural-network-based text models leads to a significant per-

formance boost [36], so we expect the role of text mining in function prediction research to be

expanded in the future.

We also applied a sequence-based neural network model (PIPR) for PPI edge prediction.

Firstly, we noticed that although PIPR was very accurate in predicting edges in one yeast data-

set, it did not immediately generalize to another dataset from the same species, performing

very close to random guessing. Richoux et al. have reported that overfitting and information

leaks from the validation set are common when training protein-protein interaction predictors

[15]. Although a certain protein pair from the test set cannot be present in the training set too,

the two individual proteins can be in the training set in other pairs. This can have an effect for

hub proteins with many interacting partners, as in an extreme case the network could learn to

always predict this protein to interact with any other protein [15]. The result of these findings

as well as ours is that caution is required when using these deep models, despite their high

accuracy in one dataset.

Nevertheless, PPIs predicted from the PIPR model can be useful for the downstream task of

network-based function prediction, as they outperformed the naive baseline. However, our

hypothesis that such a model could accurately produce the entire or a big part of the interac-

tome of a species leading to very accurate predicted annotations was not validated, as STRING
edges proved more useful. Our experiments in tomato showed that for proteins that were dis-

connected in the EXP+STRING network, adding SEQ edges gave a significant performance

increase, while this was not the case for combining the EXP+STRING network with BLAST.

This implies that SEQ can be a useful resource for species with very few protein associations

known in STRING.

Another limitation of our study is that except for the variable degree of unknown PPIs

among the tested species, there is also a large variability in the amount of missing experimental

annotations, with yeast being the most well-characterized species and tomato by far the least.

This means that it is much more likely that a correctly predicted protein-GO term pair is

flagged as a false positive in tomato than in yeast, simply because that annotation has not been

discovered yet. Moreover, the GO terms have different frequencies in the four species, mean-

ing that is virtually impossible to compare performances across species. For example, yeast

contains a lot more specific annotations than e.g. tomato. This is also demonstrated by the

large differences in Smin of the naive method, which means that the total information content

of the terms present in each species is vastly different. Calculating the Prediction Advantage

with respect to the naive method [22] can correct for differences in term frequencies, but the

different degree of missing annotations is harder to correct for while only using experimental

annotations. This is not a big issue in our analyses because we did not focus on the exact per-

formance values, but rather on how the performances of different networks (i.e. networks with

different edge types) compare to each other within a species. Also, we have shown that the

same conclusions can be drawn when evaluation is done using the semantic distance [37],

which punishes shallow predictions.

Although Fmax and Smin are the most widely-used evaluation metrics for function predic-

tion, a recent study has raised concerns about them [38]. The concerns, which were based on

artificially generated predicted annotations, mainly have to do with these metrics being overly

lenient to false positive predictions. This might not be a big problem, as due to missing annota-

tions most proteins are likely to be under-annotated. The same study showed that both metrics

correlate highly with the signal to noise ratio of the predictions [38]. Based on that we argue

that our conclusions do not rely on the choice of evaluation measures, but we believe that
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proper evaluation of function prediction algorithms is a pressing issue that requires further

research.

Conclusion

Our work highlights the difficulty of applying PPI networks in AFP for less well-studied spe-

cies. We show that predicted PPIs can partially compensate for the sparsity of the networks,

with STRING-predicted edges to be the most useful, especially text mining and homology, and

sequence-based deep learned predictions mostly to be useful when nodes are still not con-

nected when combining experimental and STRING based PPI edges.

Supporting information

S1 File.

(PDF)

Author Contributions

Conceptualization: Stavros Makrodimitris.

Formal analysis: Stavros Makrodimitris.

Funding acquisition: Roeland van Ham.

Methodology: Stavros Makrodimitris, Marcel Reinders, Roeland van Ham.

Software: Stavros Makrodimitris.

Supervision: Marcel Reinders, Roeland van Ham.

Visualization: Stavros Makrodimitris.

Writing – original draft: Stavros Makrodimitris.

Writing – review & editing: Marcel Reinders, Roeland van Ham.

References
1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unifi-

cation of biology. Nature Genetics. 2000; 25(1):25–29. https://doi.org/10.1038/75556 PMID: 10802651

2. Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, et al. A large-scale evaluation of

computational protein function prediction. Nature Methods. 2013; 10(3):221–227. https://doi.org/10.

1038/nmeth.2340 PMID: 23353650

3. Jiang Y, Oron TR, Clark WT, Bankapur AR, D’Andrea D, Lepore R, et al. An expanded evaluation of

protein function prediction methods shows an improvement in accuracy. Genome biology. 2016;

17(1):184. https://doi.org/10.1186/s13059-016-1037-6 PMID: 27604469

4. Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ, Crocker AW, et al. The CAFA challenge reports

improved protein function prediction and new functional annotations for hundreds of genes through

experimental screens. Genome Biol. 2019; 20(1):244. https://doi.org/10.1186/s13059-019-1835-8

PMID: 31744546

5. Lan L, Djuric N, Guo Y, Vucetic S. MS-kNN: protein function prediction by integrating multiple data

sources. BMC bioinformatics. 2013; 14 Suppl 3(Suppl 3):S8. https://doi.org/10.1186/1471-2105-14-S3-

S8

6. You R, Zhang Z, Xiong Y, Sun F, Mamitsuka H, Zhu S. GOLabeler: Improving sequence-based large-

scale protein function prediction by learning to rank. Bioinformatics. 2018;. https://doi.org/10.1093/

bioinformatics/bty130 PMID: 29522145

7. You R, Yao S, Xiong Y, Huang X, Sun F, Mamitsuka H, et al. NetGO: improving large-scale protein func-

tion prediction with massive network information. Nucleic Acids Research. 2019;. https://doi.org/10.

1093/nar/gkz388 PMID: 31106361

PLOS ONE PPI networks for protein function prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0242723 November 25, 2020 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242723.s001
https://doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
https://doi.org/10.1038/nmeth.2340
https://doi.org/10.1038/nmeth.2340
http://www.ncbi.nlm.nih.gov/pubmed/23353650
https://doi.org/10.1186/s13059-016-1037-6
http://www.ncbi.nlm.nih.gov/pubmed/27604469
https://doi.org/10.1186/s13059-019-1835-8
http://www.ncbi.nlm.nih.gov/pubmed/31744546
https://doi.org/10.1186/1471-2105-14-S3-S8
https://doi.org/10.1186/1471-2105-14-S3-S8
https://doi.org/10.1093/bioinformatics/bty130
https://doi.org/10.1093/bioinformatics/bty130
http://www.ncbi.nlm.nih.gov/pubmed/29522145
https://doi.org/10.1093/nar/gkz388
https://doi.org/10.1093/nar/gkz388
http://www.ncbi.nlm.nih.gov/pubmed/31106361
https://doi.org/10.1371/journal.pone.0242723


8. Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, et al. The BioGRID interaction data-

base: 2019 update. Nucleic Acids Research. 2019;. https://doi.org/10.1093/nar/gky1079 PMID:

30476227

9. Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, et al. The Reference

Genome Sequence of Saccharomyces cerevisiae: Then and Now. G3: Genes, Genomes, Genetics.

2014;. https://doi.org/10.1534/g3.113.008995

10. Luck K, Kim DK, Lambourne L, Spirohn K, Begg BE, Bian W, et al. A reference map of the human pro-

tein interactome. bioRxiv. 2019;. https://doi.org/10.1101/605451

11. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–pro-

tein association networks with increased coverage, supporting functional discovery in genome-wide

experimental datasets. Nucleic Acids Research. 2018; 47(D1):D607–D613. https://doi.org/10.1093/nar/

gky1131

12. Sun T, Zhou B, Lai L, Pei J. Sequence-based prediction of protein protein interaction using a deep-

learning algorithm. BMC Bioinformatics. 2017; 18(1). https://doi.org/10.1186/s12859-017-1700-2

PMID: 28545462

13. Hashemifar S, Neyshabur B, Khan AA, Xu J. Predicting protein-protein interactions through sequence-

based deep learning. In: Bioinformatics. vol. 34; 2018. p. i802–i810. https://doi.org/10.1093/

bioinformatics/bty573

14. Chen M, Ju CJT, Zhou G, Chen X, Zhang T, Chang KW, et al. Multifaceted protein-protein interaction

prediction based on Siamese residual RCNN. In: Bioinformatics; 2019. https://doi.org/10.1093/

bioinformatics/btz328 PMID: 31510705
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