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Comparative Safety Assessment of Automated
Driving Strategies at Highway

Merges in Mixed Traffic
Freddy Antony Mullakkal-Babu , Meng Wang , Member, IEEE,

Bart van Arem , Senior Member, IEEE, and Riender Happee

Abstract— We present a simulation-based approach to assess
the safety impacts of vehicles equipped with Automated Driving
Systems (ADS) in mixed traffic with Human-driven Vehi-
cles (HV). Specifically, we compare two generic longitudinal
strategies of ADS to handle a cut-in: Reactive ADS acting only
when the cut-in vehicle crosses the target lane boundary, and
Predictive ADS acting at the onset of the cut-in manoeuvre.
We identify their distinctive effects on the traffic safety under
cut-in maneuvers of adjacent human-driven vehicles at highway
merges. We employ a microscopic traffic flow simulator that
describes the lane changing process with high detail, accounting
for the vehicle interaction and consequent trajectory updates.
These high-resolution trajectories are post-processed to estimate
a set of relevant surrogate measures of safety. By analyzing
these measures, we find that the predictive ADS significantly
outperforms the reactive ADS in aspects such as temporal
proximity to crash, expected crash severity and the driving
risk (combining the two aspects), and the number of aborted
lane changes by HV. The negative safety impact of reactive
ADS becomes prominent at penetration rate > 10%. The major
difference between the two ADS approaches appears in the
dynamics of risk during the lane changing. When a vehicle
cuts in ahead of Reactive ADS, the risk peaks approximately
halfway through the maneuver; whereas with Predictive ADS the
risk remains marginal throughout. This work demonstrates the
potential of simulation-based safety assessment to differentiate
the safety impacts of automation functionalities at an early stage
of product development.

Index Terms— Traffic safety, surrogate measure of safety,
microscopic simulation, automated driving, tactical decisions.

I. INTRODUCTION

AUTOMATED Driving Systems (ADSs) have been a
prominent subject of research and development during
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the past three decades. An ADS, when engaged, drives the
vehicle without human intervention or monitoring [1]. Market
trends indicate that ADS features will be technologically
feasible in the near future [2] and the road-traffic will be
mixed with ADS equipped and human-driven vehicles for
a few decades [3]. According to the standard taxonomy,
engaged ADS should perform all the driving tasks necessary to
operate the vehicle, in real-time on a sustained basis [1]. The
driving tasks at tactical-level include event detection, maneu-
ver decision-making and at operational level include accel-
eration and steering control. The impacts of ADS-equipped
vehicles on traffic safety cannot be generalized as ADSs dif-
fer in their tactical-level and operational-level functionalities
to tackle on-road conflicts. In this context, identifying the
relationship between the ADS strategies and traffic safety has
gained increased research attention.

A. Safety Assessment Approaches for ADS-Equipped Vehicles

Safety of vehicle applications has been assessed either at the
vehicle-level, based on their potential to reduce the number of
crashes or at the traffic-level based on their potential impacts
on collective traffic safety.

An exhaustive review of vehicle-level studies was provided
in [4] which focused on the crash-reduction potential of
vehicle applications. Such studies estimate the effectiveness
of an application based on the crash involvement rate of
the equipped vehicle. The crash recordings may be derived
directly from empirical sources such as accident records [5]
or from in-lab experiments by reconstructing a set of pre-crash
scenarios that are identified from empirical sources [6]. Empir-
ical crash records provide valuable insights into the safety
performance of a given vehicle application, but crash data of
ADS-equipped vehicles are rare and often confidential. In-lab
crash reconstruction experiments, mostly comprise a standard
set of traffic situations where the behavior of neighboring
vehicles is predefined. Such a setting is not representative
of on-road situations, as it does not account for the inter-
actions with the adjacent vehicles [7], and the consequent
variations in the trajectory of the vehicles. These interactions
are fundamental to the dynamics of multi-lane traffic flow,
and the performance of automated driving applications in
laboratory experiments may not reveal their actual impact on
traffic.

1524-9050 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Traffic simulators are potential tools to evaluate the safety
impacts of a vehicle application at the traffic-level. The sim-
ulated trajectories (of equipped and non-equipped vehicles)
are post-processed to derive metrics known as Surrogate
Measure of Safety (SMoS). These metrics are analyzed to
find safety impacts. The majority of traffic safety studies
focussed on the connected vehicle applications and their
results consistently suggest that connectivity, if realized will
improve the traffic safety [4], [8]–[10]. However, connec-
tivity technology is not yet mature to be widely utilized
by ADSs and their prospects are determined by the num-
ber of vehicles that can communicate [11], [12]. Hence,
on-board sensors remain the primary source of information
for ADSs. Notably, the safety impacts of non-connected
ADSs have been less studied compared to their connected
counterparts [13], [14]. Most of the simulation-based studies,
irrespective of the assumption on connectivity, express safety
as the reduction in the likelihood of rear-end crashes, based
on metrics such as Time-To-Collision [8], [10], [14]–[16]
with very few exceptions [13], [17] where lateral conflicts
are evaluated. Recently, based on the crash record of vehicles
with level 3/4 automation, it is identified that crashes caused
by equipped vehicles are likely to be more severe than those
of non-equipped vehicles, and that equipped vehicle crashes
are more severe on highways [18]. Besides, in comparison to
urban roads, an equipped vehicle on a highway is more likely
to be involved in angular and sideswipe crashes (mostly related
to lane-changes). These findings highlight the need to examine
highway lateral conflicts involving ADS equipped vehicles in
more detail.

Lateral conflicts on a highway form a challenging sub-
ject for safety assessment, particularly those involving
ADS-equipped vehicles. This is due to simulator-related
and assessment-related challenges. In most of the traffic
simulators, the lane change execution is represented as an
open-loop process, disregarding the vehicle’s interaction with
adjacent vehicles during lane-changing execution. In real-
ity, the lane-changing vehicle may dynamically update its
lane-changing trajectory and may even abort the maneuver
in unsafe situations. However, such instances of lane change
abortion cannot be modeled in typical traffic simulators. Sec-
ond, simulators often do not provide an accessible and flexible
framework to model an ADS architecture. Several previous
works modeled ADS by adjusting the default behavioral model
of the simulators such as VISSIM, CORSIM and SUMO [9],
[17], [19]. However, these approaches may fail to capture the
differences between ADS-equipped and conventional vehicles
with respect to sensing, decision-making and vehicle control.
Common trajectory simulations are not sufficiently realistic
for safety analysis. For instance, lane-changing is typically
simulated as an event during which the vehicle jumps/drifts
between two lanes, being unresponsive to the actions of
adjacent vehicles. Such a synthetic trajectory does not provide
realistic variables such as lateral position and lateral velocity
necessary to estimate relevant SMoS. Realistic simulation
of lateral kinematics and appropriate selection of SMoS are
identified as necessary preconditions to compare the level of
safety of two-dimensional trajectories [20].

B. Automated Driving Strategies to Handle Cut-In
One of the critical events that an ADS should handle

while operating on a multi-lane highway, is a cut-in, i.e
when an adjacent vehicle pulls in ahead by merging into
its lane [21]. When a vehicle is cut in by an adjacent one,
its inter-vehicle spacing decreases around 50%. If a vehicle
fails to brake effectively when being cut in, it could crash
with the merging (cut-in) vehicle. This can be a major con-
cern on highway merging sections, where cut-ins are more
frequent. It was reported that approximately 10% of light
vehicle crashes involve a lane-changing vehicle [22]. To effec-
tively respond to a cut-in, the ADS should be informed in
real-time of the cut-in maneuver: intention, start and end of the
maneuver.

To handle a cut-in event, the ADS should perform two
tactical tasks: detect (predict) the vehicle that cuts in (the
intention of an adjacent vehicle to cut-in); decide on the
appropriate response. ADS’ response to a cut-in is typically
operationalized by its submodule: Adaptive Cruise Control
(ACC). ACC systems command the acceleration to regulate
the vehicle’s velocity to follow the preceding vehicle with
a safe spacing and desired speed. Table I describes the two
generic approaches adopted by an ADS to handle a cut-in:
reactive control and predictive control. In reactive control, the
equipped vehicle identifies a cut-in when it detects another
vehicle in its lane at a closer spacing than the preceding
vehicle it was originally following. Thereafter, the component
ACC system generates commands to follow the cut-in vehicle.
Several ADS designs adopt the reactive approach [23], [24].
The disadvantage of this approach is that the sudden drop in
inter-vehicle spacing often results in hard braking, which is
uncomfortable for the driver [23], [24]. Empirical evidence
shows that the behavior of the vehicle with ACC-engaged
during cut-in, often scares the driver, forcing him/her to take
back the control [25].

In the predictive control, the system predicts the cut-in
intentions of the adjacent vehicles and identifies the adjacent
vehicle which is most likely to cut-in. Several methods to
predict the cut-in have been proposed as listed in Table I:
turn signal-based [26]; learning-based approaches [11], [27],
[28]; Bayesian statistics-based approaches [29], [30]. Upon
cut-in prediction, the most appropriate maneuver is calcu-
lated taking into account the predicted future motion of the
cut-in candidate. Table I summarizes the prominent methods
for maneuver decision-making, such as following the virtual
leader [26], rule-based [19], [31], utility-based [11], [27],
[29], [32] and game theory-based [33], [34]. The underly-
ing motion prediction logic can be kinematic extrapolation
based on constant velocity [32]; constant acceleration [11],
[27], [29]; or model-based prediction accounting for vehicle
interactions [33]. Predictive control allows an early response
to cut-in, providing a temporal margin to smoothly regulate
the vehicle’s velocity to approach the cut-in vehicle. How-
ever, the implementation of the predictive approach entails
additional computational expense and sensing requirements.
Therefore, understanding the safety implications of these
systems will facilitate an informed choice between the two
approaches.
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TABLE I

REVIEW SUMMARY OF CUT-IN HANDLING FUNCTIONALITIES IN ADS

The ADS’ cut-in handling functionalities have been typi-
cally tested based on crash-reduction potential by simulation
and/or by test vehicles. The results show that they could
decrease the number of events with hard-braking and reduce
the average Time-To-Collision [14]. Few attempts have been
found to estimate their impact on traffic safety. At the traffic
level, it was found that ACC systems with a conservative target
time-headway (≥ 1.2 s), may result in more spacing between
vehicles and thereby invite more cut-ins [35]. Bhram et al. [14]
simulated ADS with a reactive approach. They found that such
systems create more risky situations, but the risk is dispensed
faster than human-driven vehicles. Moreover, they suggested
that few crashes in the simulation could have been avoided
if these systems had prediction capability. But none of these
studies examine the impacts of cut-in handling functionalities
on the safety of lateral conflicts and the consequences of the
vehicle interaction during the cut-in maneuver.

C. Objective, Contribution and Structure

The objective of this work is to present a simulation-based
safety assessment methodology to assess the impacts of
ADS�s longitudinal functionality on the safety and char-
acteristics of lateral maneuvers by adjacent human-driven
vehicles on the highway. We apply this methodology to
compare the reactive and predictive cut-in handling by ADS
to facilitate an informed choice between them. Towards
this, we employ a microscopic traffic simulator that pro-
vides continuous two-dimensional vehicle trajectories captur-
ing dynamic lane-change re-planning. The simulated vehicle
trajectories are post-processed to estimate surrogate metrics
of safety (SMoS) characterising the conflicts with adjacent
vehicles, expected crash severity and dynamics of the driving
risk. In addition, we identify the change in lane change
characteristics in terms of the frequency of non-successful
lane changes, spatial distribution and average velocity. Based
on simulations of several traffic scenarios, we delineate and
compare the distinct trends in the safety metrics and lane
changing characteristics under the increasing share of two
types of ADSs.

The contribution of the work is threefold. First, it uses
a recently developed traffic simulation framework that

models the lane change decision and execution as a feedback
process [36]. It captures failures of lane change maneu-
vers (abortions) and generates realistic 2D maneuvers taking
into account vehicle dynamics. The prediction of lane change
abortions is used as a new indicator to quantify turbulence at
highway merges. Second, we employ our new Probabilistic
Driving Risk Field (PRDF), which is predictive in nature
and captures the motion uncertainties of surrounding vehicles.
PRDF was shown to be more generic than existing surrogate
measures of safety in simple scenarios [37], and the current
paper demonstrates that PRDF can be effectively used to
analyze conflicts in large scale traffic simulations. Last, the
simulation results of the two generic design strategies of ADS,
being reactive and predictive, give new insights in the potential
benefits and risks of such systems at the collective traffic
level. This sheds lights for public authorities and industry to
design and manage the emerging technologies to maximize
their societal benefits and minimize associated risks.

The simulation framework, notations and mathematical for-
mulation of the distinct cut-in handling approaches employed
by ADS-equipped vehicles and Human-driven Vehicle (HV)
are described in Section II. In section III, a set of metrics for
safety analysis are selected. Section IV presents the results of
the case study, followed by Sensitivity analysis in Section V.
Finally, Section VI presents conclusions and outlines future
research.

II. MODEL FORMULATION

This section presents three distinct models for cut-in han-
dling and describes the model for manual lane-changing.
To meet the research objective, two requirements were
imposed on the microscopic traffic simulator: 1) it should
describe both HV and ADS-equipped vehicles and their
specific tactical-level and operational-level functions; 2) it
should describe the two-dimensional lane-changing trajectory
accounting for dynamic maneuver re-planning during a lane
change.

The dynamic state of a vehicle i (point mass) is described
by its position vector pi defined as pi = [xi ,yi ]T , where xi

denotes longitudinal position, and yi denotes lateral position of
the vehicle’s center of mass; and velocity vector vi defined as
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vi = [v i
x , v

i
y ]T , where v i

x denotes longitudinal velocity, and v i
y

denotes lateral velocity. The control unit of vehicle i dynami-
cally manipulates its state implementing an acceleration as the
input vector ai defined as ai = [ai

x , ai
y]T , where ai

x denotes
longitudinal acceleration and ai

y denotes lateral acceleration.
The dynamic relation of this system can be expressed in the
state space form as

d

dt

�
p
v

�
=

�
0 1
0 0

�
·
�

p
v

�
+

�
0
1

�
· a (1)

The vehicle geometry is assumed to be a rectangle of length
l and width w. The physical limitations of the vehicle motion
are implemented as a set of feasibility constraints in the model.
The velocity is constrained by −0.17vx ≤ vy ≤ 0.17vx ,
to depict the nonholonomic behavior of motor vehicles [38],
and additionally by vx ≥ 0 assuming the vehicles move strictly
in the forward direction. The mechanical limitations of the
vehicle are modeled by bounding the acceleration amin ≤
ax ≤ amax , where amax denotes the maximum and amin the
minimum feasible acceleration. In a cut-in event, the vehicle
that is being cut in, performs two tactical-level tasks: cut-in
event detection denoted by ζ , yield decision denoted by γ
and employs ax to operationalize the decision. The vehicle,
that cuts in, performs the tactical-level lane change decision
denoted by ξ and employs a to operationalize the decision.
The following are the key assumptions in the study,

• [1] The ADS-equipped vehicle operates only in the
longitudinal direction and does not change lane. Modeling
the sustained automation of the longitudinal driving task
is sufficient to meet the objective of this study.

• [2] The human-driven vehicle can change lane and
can estimate the acceleration of adjacent equipped and
non-equipped vehicles and thereby calculate the utility
of a prospective lane change.

A. Acceleration Models to Follow the Predecessor

The longitudinal acceleration behavior of HV and
ADS-equipped vehicles are differentiated by modelling them
with distinct control laws.

1) Acceleration Model of ADS-Equipped Vehicle: The lon-
gitudinal acceleration implemented by an ADS-equipped vehi-
cle to follow a leader is formulated by the ACC law in a
previous work [24]. This control law integrates both ACC and
collision avoidance control in a single non-linear formulation,
and yield smooth acceleration behavior in a cut-in or when
the leader brakes hard. The longitudinal acceleration input by
the ACC law ai

ACC is formulated as

ai
ACC(α)=

�
K1se − K2�v i

x (α)R(si (α)), if si (α) > r f

K3(v
d − v i

x ), if si (α) ≤ r f
(2)

where α is the vehicle (ADS-equipped or Human driven)
preceding i , vd is the desired velocity of i , si = xα − xi − l is
the space gap available to i with l denoting the length of the
α, �vx = v i

x −vα
x is the velocity difference of i with respect to

the vehicle α, r f is the detection range of i ’s forward sensor,
K1 K2 and K3 are the control gains. The se is the spacing

error defined as

se = min
�

si − s0 − v i
x · td , (v0 − v i

x ) · td
�

(3)

where td is the desired time headway, s0 is the minimum
space gap. R(si ) is a sigmoidal function in si that enables
collision avoidance, by evoking a strong braking response
when approaching the leader at short space gap and a milder
response when the leader is further away. R is defined as

R = −1

1 + Qe−( si
J )

+ 1 (4)

where Q and J are parameters determining the aggresiveness
of the response.

2) Model for Manual Car-Following: The longitudinal
acceleration implemented by a human driver following a
predecessor is formulated by the Intelligent Driver Model [39].
IDM is a behavioral model in which the acceleration is a
continuous function of the space gap and velocity difference
of i w.r.t α. This model has been widely used to describe
manual acceleration behavior and to replicate emergent traffic
phenomena such as capacity drop and congestion waves. The
longitudinal acceleration input by IDM ai

IDM is formulated as

ai
IDM(α) = ā

	
1 −

�
v i

x

vd

�4

−
�

s∗(v i
x ,�v i

x (α))

si (α)

�2



(5)

where ā denotes the maximum acceleration. s∗ denotes the
desired minimum space gap as follows

s∗ = s0 + v i
x td + �v i

x (α)

2
√

ab
(6)

where b is the comfortable braking.

B. Acceleration Models With Cut-In Handling

In the previous section, we presented the models of ai
x

when the sole objective of i is to follow one leader α.
In a cut-in, i confronts two vehicles: the preceding vehicle
i + 1 and the merging vehicle c. It should gradually transition
from following-the-leader to following-the-merging-vehicle,
meanwhile avoiding a crash.

First, we present the notations used to describe cut-in
handling and label the relevant vehicles. Let σ i be a discrete
variable denoting the current lane number as σ i ∈ {1, 2.., L},
with 1 denoting the leftmost lane and L denoting the total
number of lanes. Let ξ i be a discrete variable denoting the
lane change direction of vehicle i with ξ i ∈ {+1, 0,−1} :=
{move to the right lane, remain in the current lane, move to
the left lane}. Let ζ i be a binary variable with ζ i ∈ {1, 0}
such that ζ i = 1 := i is being cut in if there exists a vehicle
c defined as

ζ i =
�

1, if ∃ c, s.t. xi+1 ≥ xc ≥ xi and σ i − σ c = ξ c

0, otherwise
(7)

where c is the vehicle that cuts in i , and i + 1 is the vehicle
preceding i in its lane.

In the remainder of this section, we formulate three models
for cut-in handling: reactive and predictive (for ADS-equipped
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vehicle) and manual (for HV). These models differentiate
between the vehicles at tactical-level and control-level: 1) the
forward and backward distance on the adjacent lane that can
be sensed by i denoted by r i

a symmetric in both directions
(tactical-level); 2) the logic of an additional leader from the
adjacent vehicles that are likely to cut in (tactical-level);
3) the logic to decide whether or not to yield to the cut-in
vehicle (tactical-level) 4) the acceleration control employed to
handle a cut-in (control-level). The manual cut-in handling
differs from ADS cut-in handling at both levels. Among
ADS-equipped vehicle models, the reactive and predictive
differ in all except the first feature. They have the same sensing
range of ra = 200 m. The cut-in handling models are generic
extensions of the respective acceleration models formulated
in Section II-A, with additional variables to switch to a new
leader or include an additional leader in the control law or
even switch between two control laws to handle a cut-in.
In the remainder of the paper, we refer to ADS-equipped
vehicles that employ reactive control simply as Reactive
ADS and those which employ predictive control as Predictive
ADS.

1) Model With Reactive Cut-In Handling: A Reactive ADS
detects a cut-in only when the cut-in vehicle crosses the target
lane boundary. The binary variable ζ i

R with ζ i
R ∈ {1, 0} denotes

whether the cut-in is detected, such that ζ i
R = 1 := i detects

the cut in, based on the conditions formulated as

ζ i
R =

⎧⎪⎨⎪⎩
1, if ζ i = 1 and

xc ≤ xi + ra and |�y(i, c)| ≤ W · 0.5

0, otherwise

(8)

This formulation includes two conditions: 1) The cut-in
should occur with the sensing range of i , represented as
xc ≤ xi + ra ; 2) the center of mass of c should cross the
boundary of σ i represented as |�y(i, c)| ≤ W · 0.5, where
W denotes the lane width. The detection condition ζ i

R is then
added to the control law to model the generic acceleration
aR H with reactive cut-in handling as

ai
R H = min

�
aACC(i + 1), ζ i

R · aACC(c)
�

(9)

where i + 1 is the vehicle preceding i in its current lane and
c is the cut-in vehicle.

2) Model With Predictive Cut-In Handling: Compared to
a reactive system, the predictive system possesses enhanced
detection capabilities. Let ζ i

P be a binary variable with ζ i
P ∈

{1, 0}, denotes whether the cut-in is detected, such that ζ i
P =

1 := i detects the cut in, based on the conditions formulated
as

ζ i
P =

�
1, if ζ i = 1 and xc ≤ xi + ra

0, otherwise
(10)

This formulation includes only a single condition that cut-in
should occur within i ’s sensing range. The distinction in the
moments (during cut-in) when the event is detected by reactive
and predictive ADS-equipped vehicle is illustrated in Figure 1.
At the moment depicted in Figure 1(a), the cut-in event is not
detected by reactive ADS-equipped vehicle, whereas at the
moment in Figure 1(b) the event is detected.

Fig. 1. Example illustration of cut-in events (a) cut-in detected by Predictive
ADS and HV (b) cut-in detected by all vehicle types.

Besides cut-in detection, a predictive system possesses addi-
tional functionalities. While approaching a highway merging
section on the rightmost lane, the predictive ADS-equipped
vehicle selects an adjacent vehicle that is likely to merge
and switches its acceleration control to yield for the selected
vehicle within its predicted time of entry in the acceleration
lane.

Let O be the set of vehicles o ∈ O present on the on-ramp
with O : o ∈ O|σ o = σ ramp , with σ ramp denoting the
lane number of on-ramp. A predictive ADS-equipped vehicle
considers a set of adjacent vehicles AP on the on-ramp
AP ⊂ O, within its sensor range, i.e. AP 
 a|xi + r S

a ≥
xa ≤ xi − r S

a . Thereafter, it selects a vehicle g from AP

based on the selection rule: g ∈ AP |xi+1 ≥ x g and s(i, g) =
max {s(i, a)|a ∈ AP }. This rule prescribes that g should be
i ’s far most adjacent vehicle which is behind i + 1. The
far-most vehicle is selected as it would be the first vehicle
to reach the acceleration zone and thereby the first vehicle
that can cut-in among all the adjacent vehicles. Yielding to
nearer adjacent vehicles would cost larger velocity loss for i .
Figure 2(a) illustrates the selection of g in an example traffic
situation.

The future state of g depicted as
�

x g∗, vg∗
x

�
are predicted

at discrete time steps as xg∗ = �
x g∗

1 , x g∗
2 , . . . x g∗

P

�T
and

vg∗
x =

�
v

g∗
x,1, v

g∗
x,2, . . . v

g∗
x,P

�T
where P is the finite pre-

diction time horizon. The following sets of equation are
used to predict the future states of g over the discrete time
instances k.

xg∗(k + 1) = x g∗(k) + v
g∗
x (k) · �k

v
g∗
x (k + 1) = v

g∗
x (k) + acom f · �k (11)

acom f denotes comfortable acceleration, which is the constant
acceleration input, �k is the discrete prediction time step. Let
γ i

P be a binary variable with γ i
P ∈ {1, 0}, denoting i ’s decision

to yield such that γ i
P = 1 := i decides to yield, and is defined

as

γ i
P =

⎧⎪⎨⎪⎩
1, if ∃ g ∈ AP & [xi ≥ X | − r S

a ] & [v i
x ≥ 5]

& [x g∗
P ≥ X |] & [v i

x − v∗
e ≥ 0.5 · v i

x ]
0, otherwise

(12)
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Fig. 2. Example illustration leader selection for yielding in the vicinity of
highway merge (a) i (Predictive ADS) selects g from set of adjacent vehicles
a’s (b) i (human driver) selects g from set of adjacent vehicles a’s.

where X | is the start of the acceleration lane. This model
includes four conditions: 1) the start of the acceleration lane
should be within the detection range of i ; 2) v i

x ≥ 5 to prevent
i from reaching a complete stop in the process of yielding; 3) g
should be predicted to enter the acceleration lane, represented
as [xg∗

P ≥ X |]; 4) yielding should not entail major loss of
speed to i , represented as v i

x − ve ≥ 0.5 · v i
x .

Thereafter, the prediction xg∗ is inspected to find the dis-
crete prediction instance k∗ when g encroaches the accelera-
tion lane, i.e. xg∗

k ≥ X |. Let v∗
e be the corresponding predicted

velocity, i.e, v∗
e = v

g∗
x,k∗ . The objective of the yielding control

law is to regulate the v i
x to achieve the safe spacing si =

s0 + v i
x · td at the predicted moment of cut-in. Therefore,

the acceleration to yield aYLD in order to achieve this safety
condition is derived as

aYLD = x g(k∗) − xi (0) − s(0) − l − v i
x (0)(k∗�k + td )

0.5(k∗�k)2 + td k∗�k
(13)

By inserting the tactical commands γ i
P and ζ i

P , and aYLD in
the control law, the acceleration with predictive cut-in handling
ai

P H is modelled as

ai
P H =min

�
aACC(i + 1), ζ i

P · aACC(c), [γ i
P −ζ i

P] · aYLD(g)
�

(14)

The acceleration model of predictive cut-in handing implies
that if an adjacent vehicle cuts in, the Predictive-ADS would
treat the merging vehicle as its new leader and the yielding
behavior will be blocked.

3) Model With Manual Cut-In Handling: The manual cut-in
handling is modeled based on two assumptions: 1) the human
driver can detect a cut-in at any distance, r M

a = ∞, hence
ζ i

M = ζ i ; 2) the human driver will yield to an adjacent vehicle
on the acceleration lane. The second assumption is based on

empirical observations that human drivers yield to adjacent
vehicles before a cut-in [40].

The human driver considers a set of vehicles AM ⊂ O such
that Ai

M : a ∈ AM |xa ≥ X |. Thereafter it selects a vehicle g
from AM , such that g ∈ AM |xi+1 ≥ x g ≥ xi and s(i, d) =
min {s(i, g)|a ∈ AM }. This rule prescribes that g should be i ’s
nearest adjacent vehicle which is behind i + 1. Figure 2(b)
illustrates the selection of g by human driver in a traffic
situation. Let the binary variable γ i

M denote i ’s decision to
yield with γ i

M ∈ {1, 0} such that γ i
M = 1 := i decides to yield

and is defined as

γ i
M =

�
1, if ∃ g ∈ AM and v i

x ≥ 5

0, otherwise
(15)

By inserting the tactical commands γ i
M and ζ i

M to the control
law, the acceleration with manual cut-in handling an

M H is
modeled as

ai
M H = min

�
aIDM(i + 1), ζ i

M · aIDM(c),

[γ i
M − ζ i

M ] max{aIDM(g), agap}
�

(16)

where agap is the minimum acceleration that an HV would
apply in order to yield.

C. Model for Lane-Changing

The lane change process of HV is modeled as two steps:
lane-changing decision and lane-changing execution.

1) Lane Change Decision: We formulate the manual
lane-changing decision by the model: Minimising Overall
Braking Induced by Lane changes (MOBIL) [41]. This model
has been widely used to describe the lane-changing decision
of HVs. MOBIL specifies the manual lane-changing decision
as a set of compact rules, under the assumption that the human
driver can estimate the acceleration of its neighboring vehicle
(HV or ADS-equipped vehicle). It derives the utility and risk
of a lane change from the acceleration model of three vehicles:
the lane-changing vehicle (c), following vehicle in the current
lane (r ) and potential follower in the target lane ( f ). In this
model, the utility of a lane change is defined as

U = �ac − ac + p
��a f − a f +�ar − ar

�
(17)

where ac is the acceleration of c in the current lane and �ac is
its acceleration after the prospective lane change. Similarly, the
current and prospective accelerations of the original follower
o and potential follower f are included in the model, and p
is a model parameter representing the politeness of c. The
lane-changing decision is modeled as a dynamic variable by
the following rule,

ξ (t)

=

⎧⎪⎨⎪⎩
+1 : �a f

right (t)≥bsa f e & Uright >�ath & Uright ≥Ule f t

−1 : �a f
le f t (t)≥bsa f e & Ule f t >�ath & Ule f t >Uright

0 : otherwise

(18)
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ath the threshold of overall acceleration gain. Note that ξ (t)
is a dynamic variable which can be modified during the lane-
changing. Thereby, this formulation allows a lane change to
be aborted if the prospective acceleration of the follower is
beyond the safe limit, bsa f e [36].

2) Lane-Changing Re-Planning and Trajectory: The
lane-changing trajectory is modeled as time-based polynomial
function that is dynamically updated [36]. Polynomial
functions have been widely used to model empirical
lane-changing trajectories [42] and as reference paths for
Automated steering control systems for lane- changing [43].
The two polynomial functions representing the independent
time series of lateral and longitudinal position during the
lane-changing is given as

y(t) = a5t5 + a4t4 + a3t3 + a2t2 + a1t + a0

x(t) = b2t2 + b1t + b0 (19)

The above functions include nine unknown coefficients which
can be determined by solving for the boundary conditions of
the lane change process. Accordingly, all these unknowns can
be formulated as a function of longitudinal acceleration, ac

x ;
lane-changing duration, D; and target lateral displacement by
lane change, approximated by the lane width, W . During the
lane change, c follows the preceding vehicles in the original l
and target lanes p, and ac

x = min {aIDM(p), aIDM(t)}. The
duration of each lane-changing is estimated at the start of
the maneuver by the model of [44]. This model estimates
D as a function of traffic density and relative kinematics of
ambient vehicles, such as spacing and relative velocity. The
lane change duration given by the model is not inherently
bounded. Therefore, in the simulations, the range of D is
bounded as 2 ≤ D ≤ 8 within the empirically observed
values [40]. The lane-changing is initiated when ξ (t) = ±1.
In case of a lane change abortion, i.e if ξ (t) = 0 during an
ongoing lane change execution, the target lateral displacement
is updated to bring the vehicle back to its original lane. If the
lane changer is a merging vehicle, it will decelerate when
moving forward in the acceleration lane after the lane change
abortion and evaluate the next available gap. It will come to
standstill if it fails to find an acceptable gap before the end of
the acceleration lane.

III. SAFETY METRICS

This section presents a set of SMoS to comprehensively
evaluate the cut-in maneuvers covering aspects such as crash
likelihood, crash severity and risk dynamics. The selected
safety metrics are Post Encroachment Time (PET) to identify
the conflicts with neighboring vehicles, Delta-V as a crash
severity estimate, and Probabilistic Driving Risk Field strength
that measures the driving risk as a dynamic variable combining
both crash likelihood and crash severity.

PET represents the temporal proximity to a crash and has
been used as a measure for crash likelihood. PET is the time
elapsed between the two vehicles passing a predefined location
on the road stretch. During a cut-in, PET is measured between
the cut-in vehicle and neighboring vehicles n ∈ { f, r, p, t}
as shown in Figure 6, where f denotes the follower in the

target lane; r denotes follower in the current lane; p denotes
preceding vehicle in the current lane; and t denotes preceding
vehicle in target lane. This results in four measurements.
We adopt the method proposed in a previous study [45] to
measure PET of a cut-in. Accordingly, the PET with respect
to any n is measured based on the x coordinate of the location
at which the closest corner of c crosses the lane boundary [45].
In this study, cut-ins with PET < 0.5 s are labelled as a
conflict [20].

Delta-V is a widely used measure of crash severity, i.e.
consequences of the crash in terms of property damage. It is
defined as the change in velocity of cut-in vehicle c (See
Figure 6) between its pre-crash and post-crash trajectories if
it crashes with a neighbor n under consideration [46]. Similar
to PET, Delta-V is measured between the cut-in vehicle,
and neighboring vehicles n, resulting in four measurements.
Among the four measurements, the maximum Delta-V is used
as the representative of the maneuver. Delta-V is defined for
an inelastic crash between c and n, i.e. they stick together after
collision and that they have the same mass. Assuming that n
does not move laterally at the time of measurement, Delta-V
can be defined as

�V c =
��

vn
x − vc

x

2

�2

+
�

vc
y

2

�2

(20)

Field theory-based safety metrics represents the driving
risk as dynamic variable combining crash likelihood and
severity [20]. Such a measure would allow a straightforward
comparison of maneuver safety. Based on field-theory, we
proposed an approach to assess the driving risk: the risk
taken by a vehicle as a result of its interaction with adjacent
entities [37]. This approach-Probabilistic Driving Risk Field
(PDRF)-can describe the driving risk in interaction with both
vehicles and road-side barriers. In this study, we employ this
approach solely to quantify the driving risk with respect to f .
This approach treats f as an obstacle to c, and models f as a
finite scalar risk field formulated in the predicted configuration
space of the c. Thereby, the driving risk of c at any given
moment is the value of the risk field at the position of its
centre of mass.

Rc( f ) = Mc · |vc − v f |2 · P( f, c)

8
(21)

This risk field is formulated as the product of expected crash
energy and the collision probability. The term Mc·|vc−v f |2

8 ,
depicts the expected crash energy if c collides inelastically
with f . The second term P( f, c) describes the crash prob-
ability between the c and f . The possible states of f at a
future time step is estimated from its acceleration distribution.
P( f, c) depicts the probability of overlap in the predicted
position of c over the possible positions of f at the future
time step, which is set as 3 s in our analysis.

IV. CASE STUDY AND RESULTS

In this section, we present the simulation experiments
wherein the ADS and HV models are numerically imple-
mented as time-discrete simulations. The objective of these
experiments is to compare the impacts of ADS cut-in handling
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approaches on the safety and characteristics of HV’s lane
changes. We simulate a two-lane highway section of 7.3 km
with an on-ramp. The on-ramp merges with the highway
through an acceleration lane of 300 m starting from 5 km.
This road geometry allows controlling the number of cut-ins
(merges) disturbing the main-lane traffic. The simulation
framework assembling several behavioral component models
as described in Section II was implemented in Matlab [36].

We select two primary input parameters. First, the traffic
demand on the on-ramp was set as 250 veh/hr/lane (repre-
senting low disturbance) and 750 veh/hr/lane (representing
high disturbance) based on empirical observations on Dutch
freeways [47]. The two demands represent different levels of
disturbances and do not trigger traffic breakdown, after which
complex congestion wave formation and propagation dominate
the behaviors of vehicles and drivers tend to override ADS
systems [21]. Second, the share of ADS-equipped vehicles on
the main-lane traffic, set as 0% (reference scenario without
ADS-equipped vehicle in traffic), 10% (approximately the
current deployment rate of such systems in Europe) [48],
30%, 50% and 90% representing different levels of the mix.
Thereby, reactive and predictive cut-in handling approaches
are evaluated in two sets of traffic scenarios (varying in
the combination of the two input parameters). The resulting
scenario matrix consists of 18 scenarios. To improve the
statistical reliability of the results, we perform 10 replications
of each scenario. The simulations are randomized in terms
of the vehicle generation and the desired velocity of HV.
To ensure the comparability of the results across the scenarios,
the values all the driving model parameters (See Table II) is
fixed across all the simulations. Each scenario is simulated
for 30 minutes at a discrete-time step of 0.1 s.

A. Characteristics of Lane Changes

We evaluate the change in characteristics of lane changes
as an effect of the increasing presence of ADS-equipped
vehicles. Figure 3 plots the spatial distribution of successful
lane changes performed by humans under scenarios with an
increasing penetration rate of ADS-equipped vehicle. In all the
plots, the distribution peaks in the vicinity of merging section
(5000 - 5300 m), where on-ramp vehicles merge into the main
lane. It can be seen that HV’s perform more lane changes in
mixed traffic (See Figure 3). In traffic mixed with Reactive
ADS, the lane change frequency at the downstream end of
the merging section is higher than at the upstream end. This
indicates an increase in the number of late merges due to the
lack of cooperation by Reactive ADS (See Figure 3(a) and (c)).
In contrast, such a disparity is not observed in the presence
of Predictive ADS; the lane changes occur throughout the
merging section (See Figure 3(b) and (d)).

Figure 4 plots the average velocity at the start of a lane
change. The lane changing velocity consistently drops with
an increasing presence of reactive ADS. As most of the
lane changes are merging maneuvers, the velocity reduces
as vehicles queue up at the on-ramp dead-end, implying an
increase in difficulty to find a safe merging gap. In contrast,
Predictive ADSs increase the lane-changing velocity at low
on-ramp demand. The early yielding by ADS enables smooth

Fig. 3. Effects of ADS penetration on the spatial distribution of lane changes
at low on-ramp demand (a),(b) and high on-ramp demand (c),(d).

merging of the on-ramp vehicle. At the 90% penetration
rate, the difference in the effects of reactive and predictive
ADS, as observed by lane change velocity becomes prominent.
Interestingly, at 50% penetration rate, the effects (as observed

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2020 at 10:54:39 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MULLAKKAL-BABU et al.: COMPARATIVE SAFETY ASSESSMENT OF AUTOMATED DRIVING STRATEGIES 9

TABLE II

PARAMETER VALUES IN THE SIMULATION EXPERIMENTS

Fig. 4. Effects of ADS penetration rate on the velocity at the start of lane
change.

by the lane change velocity) are comparable between the two
cut-in handling approach. The reason is that, in 50% mixed
traffic, the number of lane changes in the vicinity of the
merge is relatively higher (see Figure 3 (c) and (d)), creating
congestion on the main lanes. Since the predictive control does
not function in a velocity of < 5 m/s, the effect of Predictive
ADSs on the merging vehicles is similar to that of Reactive
ADSs at this penetration rate.

B. Aborted Lane Changes

Figure 5 describes the effect of ADS penetration rate on
the number of aborted (unsuccessful) lane changes with high
on-ramp demand. It can be seen that the aborted lane changes
steadily increase with the presence of Reactive ADS. The
Reactive ADS cannot respond to the cut-in vehicle during the
first half of the cut-in maneuver. This creates risky situations,
i.e. �a f (t) < bsa f e in Equation 18, causing c to abort the
lane change. On the contrary, aborted lane changes are occa-
sional (< 1) in traffic scenarios with predictive ADS-equipped

Fig. 5. Effects of ADS penetration rate on the number of aborted lane
changes at high on-ramp demands.

vehicles, irrespective of their market penetration rate and
on-ramp demand. The predictive ADS begin to respond to
cut-in at least by the start of the maneuver, and therefore
risky situations are avoided. Similarly, we observed aborted
lane changes with low on-ramp demand in traffic consisting
of Reactive ADS: a maximum of six aborted lane changes at
90% penetration rate of Reactive ADS.

C. Conflicts With Neighboring Vehicles

We evaluate the conflicts between c and any of its neighbors
n ∈ { f, r, p, t} as shown in Figure 6. Figure 7 describes the
effects of the increasing penetration rate of ADS-equipped
vehicle on lane-change conflicts. The number of conflicts
increases with the market penetration rate of ADS-equipped
vehicle irrespective of the cut-in handling approach. It can be
seen that Predictive ADS results in fewer conflicts than Reac-
tive ADS. The highest number of conflicts appears between
the c and f , following vehicle in the target lane that is
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Fig. 6. Notations for the vehicles in the vicinity of the lane changer c.

handling the cut in, and with an increasing market penetration
rate, it is more likely that f is an ADS-equipped vehicle.
ADS-equipped vehicle applies a relatively milder acceleration
than HV according to their respective control laws, which
shortens the PET of the maneuver. Therefore the behavioral
distinction of ADS-equipped vehicle poorly reflects in the PET
metric. In scenarios with high on-ramp demand, the higher
number of conflicts appears between the c-r , and c-p. High
demand induces queuing in the on-ramp lane, and vehicles are
close to each other, resulting in shorter PET. This is in line
with the observed drop in lane change velocity (Figure 4).

D. Expected Severity of Crashes

Figure 8 describes the effects of increasing the
ADS-equipped vehicle share on the average maximum
Delta-V. It can be seen that the impact on the expected crash
severity (as estimated by Delta-V) is marginal, except in
90% penetration rate at low on-ramp demand. With lower
disturbance from the on-ramp, the main-lane traffic flows
at higher speed, resulting in larger Delta-V during cut-in.
Delta-V related to Predictive ADS is lower than that of
Reactive ADS. The Predictive ADS yields earlier allowing it
to lower the approach speed.

E. Driving Risk During Cut-In

The PDRF incorporates both the crash severity and
crash probability and thereby allows straightforward risk
comparison. To compare the specific effects of Reactive
and Predictive control, we solely analyze cut-ins ahead of
ADS-equipped vehicle. Figure 9 describes the effects of
increasing ADS-equipped vehicle share on the average max-
imum driving risk as estimated by PDRF strength. It can be
seen that cut-ins involving Predictive ADS are consistently at
a lower risk than those involving Reactive ADS. Besides, the
magnitude of risk with cut-in is expected to steadily increase
with the share of Reactive ADS in traffic, and the variation of
risk estimate increases with the penetration rate, suggesting the
increasing variability in the risk level of conflicts. In contrast,
the magnitude of risk and its variability in cut-ins involving
Predictive ADS remain marginal throughout all scenarios.

Figure 10 describes the effects of ADS on the risk dynamics
during an average cut-in. When the traffic is mixed with Reac-
tive ADS, the driving risk peaks halfway during the maneuver,
and drops thereafter. This effect can be due to two combining
factors: reactive ADS-equipped vehicles cannot respond to the

Fig. 7. Effects of ADS penetration rate on the frequency of conflicts between
the c (cut-in vehicle) and each of its neighbors n ∈ { f, r, p, t} at low on-ramp
demand (a),(c) and high on-ramp demand (b),(d).

cut-in vehicle during the first half of the cut-in maneuver,
causing a steep rise in crash probability; the lateral velocity
of the lane-changer is highest when halfway through the

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2020 at 10:54:39 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MULLAKKAL-BABU et al.: COMPARATIVE SAFETY ASSESSMENT OF AUTOMATED DRIVING STRATEGIES 11

Fig. 8. Effects of ADS penetration rate on mean Delta-V at low (a) and high
on-ramp demands (b).

maneuver, implying a peak of expected crash severity. During
the second half of cut-in, the follower (Reactive ADS) begins
to respond preventing a further rise in risk. In contrast, when
the traffic is mixed with predictive ADS-equipped vehicle,
there is no such intermediate peak in driving risk; instead,
the driving risk remains marginal throughout the maneuver.
Besides, it can be seen from Figure 10 that the magnitude of
the risk peak increases steadily with the penetration rate of
Reactive ADS.

V. SENSITIVITY ANALYSIS

In this section we discuss the implications of the parameter
values and model choice on the results. The length of the
acceleration lane was set to 300 m in the scenario simulations.
To evaluate the implication of this setting, we simulated
homogeneous HV traffic under high on-ramp demand with
a longer acceleration lane of 500 m. Acceleration lane lengths
are set as 300 and 500 meters according to design practices
in Europe and the Netherlands [49], [50]. In this scenario,
we observe that the expected crash severity drops to 2.11 m/s
(from 3.12 m/s), whereas the number of conflicts increases
to 39 (from 25). The increase in the number of conflicts is a
direct effect of increasing the road space available for merging.
In traffic mixed with Reactive ADS, a larger acceleration lane

Fig. 9. Mean maximum PDRF risk with low on-ramp demand (a) and high
on-ramp demand (b).

length can have a positive effect on safety. For instance, in 50%
mix of Reactive ADS at high on-ramp demand, the instances of
lane change abortion are reduced to 10 from 30 (See Figure 5),
and average maximum Delta-V reduces by 0.3 m/s.

The sensing range of Predictive ADS was set to 200 m.
We did not find a considerable improvement in the safety
performance of Predictive ADS, when the sensing range is
increased to 300 m, for instance the average maximum Delta-V
reduced marginally by 0.1 m/s.

The longitudinal acceleration control of an ADS-equipped
vehicle was modeled by a deterministic ACC law [24], and
HV was modeled by IDM with the desired velocity as a
stochastic parameter. Besides, ADS-equipped vehicle does
not change lane, whereas HV can change lane. To check
if our comparative findings hold even when the effects of
distinct acceleration and lane change models are excluded,
we analyzed simulations in which longitudinal control of all
the vehicles was modeled by IDM [39] (with a fixed desired
velocity) and lane-changing decision by MOBIL. We find
that the above findings comparing the reactive and predic-
tive ADS hold under such modeling assumptions as well.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2020 at 10:54:39 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 10. Evolution of risk during lane-changing in scenarios with ADS at
low (a) and high on-ramp demands (b).

In traffic scenarios comprising of vehicles with reactive con-
trol, we observed 23 (at low on-ramp demand) and 149 (at high
on-ramp demand) instances of aborted lane changes, but no
aborted lane changes were observed in traffic with predictive
control. With low on-ramp demand, in traffic scenarios com-
prising of vehicles with reactive control, the maximum Delta-V
was larger (5.2 m/s) than that of traffic with predictive control
(4.4 m/s). The reactive control resulted in average 62.2 (low
on-ramp demand) and 411.3 (high on-ramp demand) conflicts,
which is considerably larger than 3.7 (low on-ramp demand)
and 6.3 (high on-ramp demand) with the predictive control.

To exclude the effects of the lane-changing decision model,
we analyzed simulations of an IDM controlled traffic fleet with
high on-ramp demand. In this case, MOBIL is deactivated and
vehicles on the main lane do not change lane. The results
further strengthen our finding that predictive control is safer
than the reactive one. In traffic scenarios comprising of vehi-
cles with reactive control, we observed 90 (in high on-ramp
demand) instances of aborted lane changes, but no aborted lane
changes were observed in traffic with predictive control. The
reactive control resulted in 358 conflicts, in contrast, we did
not observe any conflict in traffic with predictive control.
Similarly, in traffic scenarios comprising of vehicles with
reactive control, the maximum Delta-V was larger (5.1 m/s)
than that of traffic with predictive control (2.5 m/s).

Models in this study strongly idealize the behavior of sen-
sors and actuators in the ADS. Similarly, a simple rule-based
algorithm was deployed to model the prediction logic of the
ADS. Under these assumptions, our results suggest that even
a simple prediction scheme could significantly outperform
reactive approaches in terms of traffic safety. However, the
quantitative accuracy of the results can be improved by relax-
ing these assumptions and rigorously modeling sophisticated
prediction algorithms or other approaches in reactive ADS to
improve the robustness of cut-in handling [51].

Another assumption underlying the lane change decision
model is that human drivers can estimate the acceleration
gain for the adjacent vehicle (human or equipped), as a
consequence of lane changes [41]. This assumption is not
realistic in mixed traffic scenarios with low ADS market
penetration, when the human drivers might not be familiar with
behavior of ADS-equipped vehicle. However, we do not expect
any influence on the comparative findings, as the assumption
applies to both sets of mixed traffic simulations.

VI. CONCLUSION AND FUTURE WORK

It is well known that ADS equipped vehicles can impact the
longitudinal driving behavior of the non-equipped vehicles and
the collective traffic flow properties. Our results suggest the
longitudinal functionalities of the ADS can impact the lateral
maneuvers of adjacent vehicles (human-driven vehicles in this
study) as well. We find that the presence of ADS-equipped
vehicles in traffic could alter the spatial distribution of lane
change events in the vicinity of the merging section; Reactive
ADS could increase the difficulty to safely merge onto the
highway, thereby increasing the level of congestion in the on-
ramp; and that Reactive ADS could increase the instances of
unsuccessful lane changes.

We find that approaches employed by ADS-equipped vehi-
cles to handle a cut-in can impact traffic safety at a highway
discontinuity. The predictive control is the key functionality to
improve safety with cut-ins. The predictive control employing
a simple rule-based decision provides a safer interaction than
reactive control. These two approaches yield distinct risk
dynamics during a cut-in. When a vehicle cuts in ahead of
Reactive ADS, the risk peaks approximately halfway through
the maneuver. This is also reflected by the instances of
lane change abortions. In contrast, the prediction function-
ality maintains the risk marginal throughout the encounter.
Regarding the variation of safety impact with the market
penetration rate of ADS equipped vehicles, we find that the
negative effects of Reactive ADS become prominent when the
penetration rate is greater than 10% and grows strongly with
penetration rate. The level of traffic safety is approximately
unaffected by the increasing share of Predictive ADS.

Our results highlight the potential of simulation-based safety
assessment in this regard. Our future efforts will be focussed
on analysing the safety impacts of a specific ADS feature
that is already deployed in passenger vehicles and to provide
more concrete estimates such as expected crash rate and
related proportion of fatalities. Moreover, the relationship
between aborted lane changes and length of acceleration lanes
deserves dedicated attention, including conditions and model
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parameters leading to aborted lane changes, such as the
length of the acceleration lane, cooperative behavior of
ADS-equipped vehicles and HVs in lane change events.
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