
 
 

Delft University of Technology

A Comparative Study of Ontology Matching Systems via Inferential Statistics

Mohammadi, Majid; Hofman, Wout; Tan, Yao Hua

DOI
10.1109/TKDE.2018.2842019
Publication date
2018
Document Version
Final published version
Published in
IEEE Transactions on Knowledge and Data Engineering

Citation (APA)
Mohammadi, M., Hofman, W., & Tan, Y. H. (2018). A Comparative Study of Ontology Matching Systems via
Inferential Statistics. IEEE Transactions on Knowledge and Data Engineering, 1-14.
https://doi.org/10.1109/TKDE.2018.2842019

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TKDE.2018.2842019
https://doi.org/10.1109/TKDE.2018.2842019


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



A Comparative Study of Ontology Matching
Systems via Inferential Statistics

Majid Mohammadi , Wout Hofman, and Yao-Hua Tan

Abstract—Ontology matching systems are typically compared by comparing their average performances over multiple datasets.

However, this paper examines the alignment systems using statistical inference since averaging is statistically unsafe and

inappropriate. The statistical tests for comparison of two or multiple alignment systems are theoretically and empirically reviewed.

For comparison of two systems, the Wilcoxon signed-rank and McNemar’s mid-p and asymptotic tests are recommended due to their

robustness and statistical safety in different circumstances. The Friedman and Quade tests with their corresponding post-hoc

procedures are studied for comparison of multiple systems, and their [dis]advantages are discussed. The statistical methods are then

applied to benchmark andmultifarm tracks from the ontology matching evaluation initiative (OAEI) 2015 and their results are reported

and visualized by critical difference diagrams.

Index Terms—Ontology alignment evaluation, paired t-test, Wilcoxon signed-rank, McNemar, Friedman, Quade, post-hoc, Nemenyi,

Holm, Shaffer, Bergmann

Ç

1 INTRODUCTION

THERE has been an increasing interest in ontology match-
ing (or alignment) over the last years. As data come

from various sources these days, the heterogeneity among
them is inevitable. One solution to such an issue is to align
the ontologies, which has a broad range of applications
from data integration and agent interoperability in com-
puter science [1], [2] to matching ontologies in biomedical
and geoscience [3], [4]. Therefore, plenty of research has
been dedicated to finding the correspondences between two
different ontologies stating the same concepts. As a result,
numerous alignment systems have been proposed claiming
that they are better than, or competitive with, other state-of-
the-art systems.

To recognize the alignment systems with superior perfor-
mance, the ontology alignment evaluation initiative (OAEI)
has taken place which makes it possible to compare ontol-
ogy alignment systems in various conditions precisely. In a
typical ontology matching paper, a new alignment method
or a pre- or post-processing has been proposed, and an
implicit hypothesis has been made that such an approach
might have an enhanced performance over the existing
ones. The comparison is typically based on the straight-
forward measures - precision, recall or F-measure - and a com-
mon way of reporting such measures is to put the

performance scores of various systems over different data-
sets (typically OAEI datasets) in a table. The problem with
such an approach, however, is that it is impossible to claim
if one system is better than one another (of course not by
100 percent guarantee, but with reliable confidence.) There-
fore, the remaining step, which is to statistically verify
if there is a significant difference among systems, is the
primary motivation of this paper.

Currently, the average performance of the ontology
alignments systems over multiple datasets is the only yard-
stick toward which various ontology matching systems are
compared. However, averages are sensitive to outliers. The
existence of outliers is seemingly inevitable in the ontology
matching since some systems have poor performance on
particular datasets due to either the difficulty of datasets or
their incapability to produce a correct alignment. On top of
that, the poor performance of a system on one single dataset
would cancel out the fair performances over the remainder
of datasets (and vice versa), thereby influencing the overall
average performance. Further, one system is claimed to
have superior performance over one another either the dis-
crepancy between their averages is small or large. However,
the slight difference between averages can be ignored and
claiming the systems are significantly different might be
wrong. Also, the sole comparison of averages is not substan-
tiated by any evidence. In this paper, the appropriate statis-
tical procedures are empirically and theoretically studied,
which allow verifying the claim of significant difference
among alignment systems. These methods also enable us to
compare robustly the results of alignment systems which
are obtained from multiple datasets, and to determine if one
system is better than one another. In the case of comparing
multiple systems, the chances are that they are declared
insignificantly different; therefore, no single system might
be the best as the result of the statistical analysis.
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Careful readers might refute the claim of the superior
performance of an alignment system based on the no free
lunch theorem [5], [6]. According to the NFL theorem, there
is no single system which performs well in all scenarios [5].
However, there are usually background knowledge avail-
able which can distinguish the performance of one system
over the rest in one particular domain, e.g., one system per-
forms better on biomedical ontologies and one on geosci-
ence ontologies. Therefore, the outcome of this paper is not
in contradiction to the no free lunch theorem as it is sought
to find the superior system in a particular domain.

This article aims to leverage statistical tests that could be
utilized for comparison of two or more systems upon multi-
ple datasets. To this end, suppose that k systems are tested
over N datasets (by datasets, we mean a pair of ontologies).
Let Pj

i be the performance score on the ith dataset for the
jth system. The goal is to decide if the systems are different
from each other based on their performance scores Pj

i ,
which inherently indicates that one system is better. It has
been considered that the content of this article should be
read and understood independently from other resources;
therefore, examples are presented in crucial sections.

Such an approach has been scrutinized in other areas of
research [7], [8], [9], [10], [11], [12], [13]. Dem�sar [7] studied
the statistical procedures for comparing two or more classi-
fiers over multiple datasets. Garcia et al. [8], [9] extended
the Dem�sar work and proposed more advanced non-
parametric tests and their corresponding post-hoc proce-
dures for comparison of multiple classifiers. Trawiski et al.
[12] compared the regression learning algorithms and uti-
lized various statistical tests to do so. Similar approaches
are applied to other areas such as information retrieval [10]
and evolutionary algorithms [13]. To the best of our knowl-
edge, it is the first paper considering the statistical inference
for comparison of two or more ontology matching systems.

The performance analysis of alignment systems is differ-
ent from the areas of research which have been already con-
sidered the statistical inference. First and foremost, the
number of datasets for matching, especially in the OAEI, is
either large enough (roughly speaking more than 30 data-
sets) or very small (less than ten datasets.) In contrast, the
number of datasets in other areas is usually assumed to be
moderate, e.g., more than ten but less than 30. Such an
assumption is valid due to either the lack of datasets or the
difficulties of running the methods over a large number of
datasets. From the statistical point of view, the moderate
and small sample size put an obstacle in the way of check-
ing the presumptions of the statistical tests and invalidate
the results of parametric tests. Therefore, the current trend
is to favor the non-parametric statistics for comparison. In
ontology alignment, on the other hand, it is possible to
check the presumption of parametric tests as there are
enough datasets in several tracks such as benchmark and
multifarm. We further investigate the case that a few data-
sets, e.g., less than ten, are available, and propose utilizing
the McNemar’s test for comparison. For the moderate num-
ber of datasets, the Wilcoxon signed-rank test is recom-
mended as it is the case in other fields [7].

Another crucial point is the performance scores obtained
from each dataset. In comparison of classifiers, for instance,
the scores over a dataset are not independent of each other

since the re-sampling methods (e.g., cross-validation) are usu-
ally exploited. In ontology alignment, however, there is no
such a problem which facilitates the utilization of statistical
tests. The thorough discussion about the usage of tests under
various circumstances is presented in the experimental section.

This article is structured as follows. In Sections 2 and 3,
the core concepts of ontology matching evaluation and sta-
tistical hypothesis testing are reviewed, respectively. The
paired t-test, Wilcoxon signed-rank and McNemar’s tests
are studied in Section 4 for comparison of two systems. The
Friedman and Quade tests are reviewed in Section 5 and fol-
lowed by their post-hoc tests and the ways of p-value
adjustment for dealing with family-wise error rate. The exten-
sive experimental results are presented in Section 6, and the
paper is concluded in Section 7.

2 PRELIMINARIES

Ontologies are strong tools to model a domain formally. An
ontology consists of a set of entities such as classes, object
and data properties, and instances. The aim of ontology
matching is to find the identical entities of two given
ontologies.

A correspondence is the mapping of an entity from one
ontology to one entity from the other. Correspondences are
obtained by using several similarity metrics such as string,
linguistic, and structural similarity measures [14]. The out-
come of a matching system is a set of correspondences,
called alignment.

The evaluation of an alignment is usually performed by
three widely-used criteria precision, recall, and F-measure.
When there are multiple datasets, these scores can be
obtained by comparing the reference alignment and the
alignment produced by a system. The precisionmeasure is the
ratio of the number of correctly discovered correspondence
to the total number of correspondence found by an alignment
system. Similarly, recall is the proportion of the number of
successfully found correspondences to the total number of
actual correspondences. Let A be the set of correspondences
identified by a system andR be the reference alignment. Pre-
cision P ðA;RÞ and recallRðA;RÞ are defined as

P ðA;RÞ ¼ jA \Rj
jAj

RðA;RÞ ¼ jA \Rj
jRj ;

where j:j is the cardinality operator. F-measure is the har-
monicmean of precision and recall, i.e.,

F ðA;RÞ ¼ 2 � P ðA;RÞ �RðA;RÞ
P ðA;RÞ þRðA;RÞ :

The statistical tests proposed here require only single
performance score. The performance score for statistical sig-
nificance testing might be any of above-mentioned ones (or
even a measure which has not mentioned here). However, it
must be warned that employing different performance mea-
sure can lead to entirely different outcomes form statistical
tests. As an instance, precision of a system might be one as
all discovered correspondences by this system is correct. At
the same time, this system could be unable to identify all

616 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 4, APRIL 2019

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2020 at 12:09:40 UTC from IEEE Xplore.  Restrictions apply. 



the correspondences in the reference alignment so that its
recall can be quite different from its precision. Therefore,
the results of the statistical tests will be very different for
two measures precision and recall. Also, the selection of the
performance score must be justified by the expert: The per-
formance score covers the needs of a problem, or it is an
important yardstick in the particular domain.

The focus of this article is to compare the alignment sys-
tems when multiple datasets are available. Such a compari-
son is the case of various tracks in the OAEI such as
benchmark and multifarm. However, there are several other
tracks, i.e., the anatomy track, with only a pair of ontologies
for alignment. The comparison over one mapping task has
been the topic of the recent study [15]. As a complementary
study, the methodologies in this paper are suitable for com-
parison over multiple alignment tasks.

The experiments of tests revised here are applied to
benchmark and multifarm tracks. In the benchmark track, a
test generator based on a seed ontology is utilized [16]. This
generator creates various ontologies by changing the seed
while it keeps the actual alignment between the seed and
the generated ontologies. This track aims to verify the
advantages and pitfalls of systems in distinct circumstances.

The multifarm track [17] concerns with the alignment of
ontologies of different natural languages. Originally, it
included seven different ontologies in eight different lan-
guages. Recently, more ontologies in other languages are
also added so that ontologies in 10 different languages par-
ticipated in the OAEI 2015. In the OAEI 2015, two types of
alignment tasks were performed for this track: (a) The align-
ment of one ontology in different languages; (b) The align-
ment of different ontologies from different languages. The
good results obtained for the first case does not indicate the
decent performance in dealing with cross-lingual ontologies
since the structures of both ontologies are the same. The lat-
ter case where two different ontologies of various languages
are matched would indicate the real performance of systems
in coping with ontologies in various languages.

3 STATISTICAL SIGNIFICANT TESTING

The hypothesis testing is of the essence in the realm of sta-
tistical inference. Here, we aim at utilizing this technique to
compare alignment systems and to identify the systems
with superior performances.

To leverage the hypothesis testing, a null hypothesis is
required. The null hypothesis (shown by H0) states that
there is no significant difference between two or more popu-
lations according to available samples. The alternative
hypothesis (shown by Ha), on the other hand, is the oppo-
site of the null hypothesis and states that there is a meaning-
ful difference between two or more populations based on

available samples. Thus, it is desirable to reject the null
hypothesis and instead, accept the alternative.

In the ontology matching case, especially in the OAEI, it
is usually the case that the performance of various systems
over a range of datasets are available and it is sought to ver-
ify which system is better than the others.

To compare k systems, the null and the alternative
hypotheses are

H0 : P̂
1 ¼ P̂ 2 ¼ � � � � ¼ P̂ k

Ha : at least one P̂
i differs;

(1)

where P̂ i is the average performances of the ith system. This
paper reviews relevant tests to find the probability of occur-
ring the performances givenH0 is correct (this probability is
called p-value.) If the p-value is less than the nominal signif-
icance level a, which must be determined before performing
the test, the null hypothesis is rejected, and it is drawn that
systems are significantly different. Otherwise, it fails to
reject the null hypothesis. The first test proposed in compar-
ison of two systems is the paired t-test, but it could be statis-
tically unsafe due to its strong presumptions. Therefore, the
non-parametric tests, the Wilcoxon signed-rank [18] and
McNemar’s [19] tests, are proposed to be utilized since they
have fewer and easy-to-satisfy presumptions.

The comparison of multiple systems is more challenging.
The null hypothesis, in this case, is that all systems perform
equally, and if it is rejected, it is drawn that there is at least
one system with different performance. However, it cannot
be determined what systems are significantly different. A
post-hoc procedure is then applied to indicate where exactly
the difference among performance scores are. The former
test is called the omnibus test, and the latter is referred to as
the post-hoc test. The repeated measures ANOVA [20],
Friedman [21] and Quade [22] tests and their corresponding
post-hoc procedures are discussed in details. The family-
wise error rate (FWER), which is a serious issue in multiple
comparisons, is studied and the ways of preventing such an
error are scrutinized.

4 COMPARISON OF TWO SYSTEMS

This section is dedicated to comparing two systems over
multiple datasets. The tests are summarized in Table 1.

4.1 Paired t-Test

A common way to detect the difference between two sys-
tems is to compute the paired t-test statistic. Let di ¼ P 1

i �
P 2
i be the difference between the performances of two align-

ment systems over the ith dataset. The t statistic is com-
puted as

t ¼ d̂=ŝd; (2)

where d̂ and ŝd are the average of differences di and stan-
dard deviation of samples, respectively. This statistic is dis-
tributed according to the Student’s t-distribution with
N � 1 degrees of freedom where N is the number of data-
sets. After obtaining the probability of observing the per-
formances given H0 being true (p-value) according to the
Student’s t-distribution, H0 can be rejected if p-value � a.

TABLE 1
The Tests for Comparison of Two Systems overN Datasets

Test Presumptions Applicability

Paired t Normality of differences N > 30
Signed-rank symmetry of differences w.r.t median N > 10
McNemar - N < 10

Applicability is roughly the situation that test can be used and its results are
valid and differences refer to the differences in performance scores.
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The rejection of the null hypothesis indicates the superiority
of the system with a higher average performance.

The major drawback of using the paired t-test is the
imposed assumption on the performance differences di.
According to this test, the performance differences must be
normally distributed in order for the obtained results to be
reliable. In the case of comparison among alignment sys-
tems, however, there is no provision on the normality of the
performance differences. One way to overcome this is to
provide the paired t-test with large enough samples (�30
datasets) so that the normality can be assumed according to
the central limit theorem. Another way is to check the normal-
ity of distribution using various tests. Ironically, these tests
have less power on small samples; therefore, it is unlikely
that such tests detect abnormalities.

Another pitfall of the paired t-test is the sensitivity to out-
liers. Outliers can skew the test statistic and increase the esti-
mated standard error which adversely influences the power
of the test. The existence of outliers can lower the power of
the paired t-test as the averaging operator. In the case of nor-
mality violation, as a result, then non-parametric tests are
considered due to their robustness and the fewer presump-
tions they impose on the sample distribution and robustness
against outliers.

To verify the applicability of the paired t-test for the
OAEI, we took pairs of systems from various tracks (e.g.,
benchmark, multifarm, etc.) and applied the normality test
[23]. As there are large sample sizes in several tracks, such
as benchmark and multifarm, the normality test might have
a reliable outcome. Our investigation showed that in less
than 7 percent of cases, the normality assumption holds. On
top of that, it is usually the case that some systems fail to
produce acceptable results for some particular task. There-
fore, the existence of outliers seems to be inevitable.

4.2 Wilcoxon Signed-Rank Test

The non-parametric alternative to the paired t-test is Wil-
coxon signed-rank test [18]. This method ranks the absolute
values of performance differences between two systems.
Then, it compares the average rank of positive and negative
differences.

After computing the difference between two systems
over the ith dataset, e.g., di, the differences are ranked based
on the values of di, disregarding its sign. The number of
di ¼ 0 are evenly split between the sum of ranks. Let Wþ

andW� be

Wþ ¼
X
di > 0

rankðdiÞ þ 1

2

X
di¼0

rankðdiÞ

W� ¼
X
di < 0

rankðdiÞ þ 1

2

X
di¼0

rankðdiÞ;
(3)

and T ¼ minðWþ;W�Þ. If fewer than 25 datasets are avail-
able, then a table consisting critical values for T must be uti-
lized [20]. If the number of datasets exceeds 25, then the
statistics

z ¼ T � 1
4NðN þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
24NðN þ 1Þð2N þ 1Þ

q ; (4)

follows the standard normal distribution and thereby calcu-
lating the p-value accordingly. If the p-value is less than a,
then we reject the null hypothesis and accept that there is a
significant difference between the performances of two sys-
tems. Consequently, it is drawn that the system with the
higher sum of ranks is better.

An example elaborates the procedure of the test. Table 2
shows F-measure of two systems, edna [24] and GMap [25],
over 20 tasks from the benchmark track along with the differ-
ence in their performance measures and the rank obtained
by the Wilcoxon signed-rank test. According to this test,
T ¼ minð200; 10Þ ¼ 10 and N ¼ 20; therefore, the p-value is
nearly zero and the null hypothesis is rejected with a high
confidence. As a result, GMap is claimed to have outper-
formed edna.

This test assumes the symmetry of differences between
the performances score concerning its median [26]. This
assumption is not as strong as the normality assumption
but can decrease the power of the test if not satisfied. The
difference in performances is also considered in this test by
assigning higher ranks to datasets over which the difference
between two systems is bigger. In the next section, various
McNemar’s tests are proposed for comparison. The
McNemar’s test does not impose any presumptions for con-
ducting the test. Further, the difference between performan-
ces are not taken into account and only the number of tasks
which one outperformed the other matters.

4.3 McNemar’s Test

The McNemar’s test applies to a 2� 2 contingency table.
The test is usually applicable when there are two experi-
ments over N samples. For such a test, the contingency table
would be as Table 3.

Almost all versions of the McNemar’s tests only consider
the discordant pair, i.e., n01 and n10 [27]. Therefore, one

TABLE 2
The F-Measure Scores, Their Differences, and Ranks over
Each Dataset Obtained by the Wilcoxon Signed-Rank Test
of Two Systems, Edna [24], GMap [25], over 20 Datasets

from the Benchmark Track

edna GMap di rank

1 0.70 0.98 �0.28 13
1 0.70 0.98 �0.28 13
2 0.02 0.80 �0.78 20
3 0.62 0.95 �0.33 14
4 0.47 0.90 �0.43 17
5 0.31 0.86 �0.55 18
6 0.17 0.83 �0.66 19
7 0.01 0.00 0.01 1
8 0.62 0.87 �0.25 10
9 0.47 0.73 �0.26 12
10 0.31 0.56 �0.25 11
11 0.16 0.33 �0.17 5
12 0.78 0.98 �0.2 7
13 0.77 0.99 �0.22 9
14 0.78 0.98 �0.2 7
15 1.00 0.98 0.02 2.5
16 0.78 0.98 �0.2 7
17 0.55 0.96 �0.41 15.5
18 1.00 0.98 0.02 2.5
19 0.55 0.96 �0.41 15.5
20 1.00 0.96 0.04 4
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drawback of these tests is that the accordant pair, i.e., n11

and n00, is not taken into account while the bigger values of
n00 and n11 indicate the proximity of systems. Ironically,
such feature is in favor of comparison across multiple data-
sets because it is possible to easily find the discordant pair
and then apply the test.

For comparison of two systems A and B over N datasets,
n01 is the number of datasets over which the performance
score of B is greater than A. By the same token, n10 is the
number of datasets where the performance score of A is
higher than B. As stated before, the cases of equal perform-
ances are not considered in this test.

The McNemar’s asymptotic test statistic [19] is

x2 ¼ ðn01 � n10Þ2
n01 þ n10

; (5)

which is distributed according to the x2 distribution with one
degree of freedomunder the null hypothesis. TheMcNemar’s
asymptotic test is undefinedwhen n01 ¼ n10 ¼ 0.

Edwards [28] modified the asymptotic test and proposed
the following statistics

x2 ¼ ðjn01 � n10j � 1Þ2
n01 þ n10

: (6)

This statistic is arguably the most common one among other
types of McNemar’s test. However, it is pointed out that
this test has higher type I and type II errors which makes it
inappropriate [27]. This test is also undefined when
n01 ¼ n10 ¼ 0.

According to the McNemar’s exact test, n01 is distributed
according to the binomial test with parameters n ¼ n01þ n10

and p = 0.5. Thus, one-sided p-value would be as

one-sided p-value ¼
Xminðn01;n10Þ

x12¼0

n
x12

� �
1

2

� �2

: (7)

For the two-sided p-value, one can multiply the one-sided
p-value by two. The McNemar’s exact test never exceeds
the nominal level; however, it is utterly conservative which
results in generating large p-values and detecting fewer dif-
ferences [27].

A mid-p-value is calculated by first subtracting half the
point probability of the observed n01 from the exact one-
sided p-value, then double it to obtain the two- sided mid-
p-value [27], [29], e.g.,

mid-p-value ¼ 2 one-sided p-value� 1

2

n

n01

� �
1

2

� �n� �

¼ two-sided p-value� n

n01

� �
1

2

� �n

:

(8)

If the null hypothesis is rejected, then it is concluded that
the system which has won more dataset is better. The
McNemar’s asymptotic test is not considered in the rest of
the paper due to its high type I and type II errors [27]. The
McNemar’s exact test is so conservative; therefore, it is
unlikely to detect a difference among samples unless they
are extremely different. As a result, the McNemar’s asymp-
totic and mid-p tests are suitable for comparison of align-
ment systems. The similar conclusion will be drawn from
the empirical evaluation of tests in further sections.

5 COMPARISON OF MULTIPLE SYSTEMS

In this section, the simultaneous comparison of multiple
alignment systems is discussed. The null hypothesis here is
that the performances of all systems are the same and the
alternative one is that there is at least one systems behaves
differently. In statistics, the comparison of multiple popula-
tions consists of two phases: The omnibus and post-hoc tests.
The former test only detects if there is a significant difference
among performances while the latter precisely indicates dif-
ferent groups. Table 4 summarizes the tests of this section.

5.1 Omnibus Tests

It is sometimes seen that omnibus tests are ignored, and
post-hoc tests are only performed to detect the differences
among various populations. However, it is statistically safer
and recommended to carry out the omnibus test first. The
three tests repeated measures ANOVA [20], Friedman [21]
and Quade [22] tests are discussed in this section.

5.1.1 Repeated Measures ANOVA

The most well-known test for detecting the difference
among more than two related samples is the repeated meas-
ures ANOVA. The null hypothesis is that all systems per-
form equally well. In the repeated measures ANOVA, the
total variability is divided into variability between systems,
variability between benchmarks and the residual error vari-
ability [7]. The between systems’ variability is a measure
between the variances of the means of the alignment sys-
tems [20]. The residual variability, on the other hand, is
viewed as the variability by chance. The repeated measures
ANOVA would reject the null hypothesis if the between-
systems’ variability was significantly larger than the resid-
ual variability.

As any parametric test, the repeated measures ANOVA
is predicated on several assumptions whose violation can
invalidate the obtained results. The first assumption is that
the data are normally distributed. Although there is no
guarantee that the data are normally distributed, statisti-
cians do not ignore the ANOVA for abnormality of distribu-
tion unless the distribution is bi-modal [7], [30]. The most

TABLE 3
A Simple Contingency Table

Experiment 2

� + sum

Experiment 1 � n00 n01 n0:

+ n10 n11 n1:

sum n:0 n:1 N

TABLE 4
The Tests for Comparison of Multiple Systems overN Datasets

Test Presumptions Applicability

ANOVA t Sphericity N > 30
Friedman - N > 10
Quade - N < 10

Applicability is roughly the situation that test results are valid.
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important assumption of this test is sphericity. Sphericity
refers to the conditions where the variances of the differen-
ces between each possible pair of groups are equal. This
assumption is more likely to be violated as there is no guar-
antee for the parity of differences’ variances. The violation
of sphericity invalidates the obtained results and conse-
quently influences the post-hoc test.

The well-known test for checking sphericity is Mauchly’s
test [31]. We have conducted this test over the results of the
OAEI in recent years, and the assumption of sphericity is
unexceptionally repudiated with an extremely-significant
p-value. Even if the sphericity assumption is not rejected,
Mauchly’s test is reprimanded as it is not able to detect the
transgression against sphericity in small samples and falsely
detect it in large samples. As a result, it is recommended to
exploit the non-parametric tests for comparison.

5.1.2 Friedman Test

The Friedman test [21] is the non-parametric counterpart of
the repeated measures ANOVA and is the extension of the
binomial Sign test (or the McNemar’s exact test with p=0.5).
Instead of using the scores themselves for computing the
statistic, it first ranks the scores and uses them in the calcu-
lation of the statistic. The ranking procedure is among the
scores of different systems over one specific dataset in a
way that the best performance score takes the rank of 1 and
the worst takes the rank of k, where k is the number of meth-
ods. The average rank is assigned if the scores tie.

Let rji be the rank of the jth systemon the ith dataset. If two
systems perform equally, it is expected that their average
ranks across all datasets are the same. The Friedman statistic

x2
F ¼ 12n

kðkþ 1Þ
X
j

R2
j �

kðkþ 1Þ2
4

" #
; (9)

is x2 distributed with k� 1 degrees of freedom. It is investi-
gated that the type II error of Eq. (9) is undesirably high;
therefore, a better statistic is derived by Iman-Davenport [32]

FF ¼ ðN � 1Þx2
F

Nðk� 1Þ � x2
F

; (10)

which is distributed according to the F-distribution with
k� 1 and ðk� 1Þðn� 1Þ degrees of freedom. An example in
the next section elaborates the procedure of finding the
Friedman statistic.

5.1.3 Quade Test

The Friedman test is only predicated on the ranks of sys-
tems over one single dataset. The Quade test [33], on the
other hand, takes into account the performance variation
among datasets and it is suitable when the number of data-
sets is small (roughly less than ten datasets). The underlying
assumption behind the Quade test is that if the scores’ varia-
tion over a dataset is larger, then it is a more challenging one
to be aligned. Thus, the success of a system over such data-
sets indicates much better performance.

To find the ranks of each method, the range of scores
over one dataset is computed by subtracting the maximum
score from the minimum one. Then, the minimum and the
maximum range takes the rank 1 and n, respectively. Let

Q1; Q2; . . . ; Qn be the rank of n datasets and rji be the ranks
obtained by the Friedman test for each score. The Quade
rank of each score is obtained as Sj

i ¼ Qiðrji � kþ1
2 Þ. Finally,

the test statistic is

FQuade ¼
ðn� 1ÞPk

j¼1ðSjÞ2
A� 1

n

Pn
j¼1ðSjÞ2 ; (11)

where

Sj ¼
X
i

Sj
i A ¼ n2ðnþ 1Þð2nþ 1Þkðkþ 1Þðk� 1Þ

72
;

and FQuade is distributed according to F-distribution with
k� 1 and ðk� 1Þðn� 1Þ degrees of freedom. The next sec-
tion includes an example of the calculation of this statistic.

5.1.4 An Example

In this section, the procedure of Friedman and Quade tests
are elaborated by an example. Table 5 tabulates the precision
of five methods, namely edna [24], GMap [25], LogMap [34]
and XMap [35] across the OAEI benchmark track. The num-
bers in the parenthesis are the Friedman ranks of each
method over the corresponding dataset. Then, the Friedman
statistic can be calculated as

ðFriedmanÞ x2
F ¼

12� 20

4� 5
3:2752 þ 1:7252 þ 2:82 þ 2:22 � 4� 52

4

� �
¼ 16:575

ðIman DavenportÞ FF ¼ 7:25:

As the experiment consists of four methods over 20 data-
sets, x2

F has x2 distribution with 4� 1 ¼ 3 degrees of

TABLE 5
The F-Measure Scores and the Friedman Ranks

(in the Parenthesis) of the Four Methods over 20 Tasks
of the OAEI Benchmark Track

edna GMap LogMap XMap

1 0.70 (4) 0.98(2) 0.95(3) 1 (1)
2 0.02 (2) 0.80 (1) 0.00(3.5) 0 (3.5)
3 0.62 (4) 0.95(1) 0.87 (2) 0.66 (3)
4 0.47 (4) 0.90 (1) 0.72 (2) 0.65 (3)
5 0.31 (4) 0.86 (1) 0.52 (2) 0.51 (3)
6 0.17 (3) 0.83 (1) 0.28 (2) 0.15 (4)
7 0.01 (1) 0.00 (3) 0.00 (3) 0.00 (3)
8 0.62 (4) 0.87(1.5) 0.87 (1.5) 0.65 (3)
9 0.47 (4) 0.73 (1) 0.71 (2) 0.65 (3)
10 0.31 (4) 0.56 (1) 0.50 (2) 0.42 (3)
11 0.16 (4) 0.33 (1) 0.31 (2) 0.19 (3)
12 0.78 (4) 0.98 (2) 0.95 (3) 1.00 (1)
13 0.77 (3) 0.99 (1) 0.00 (4) 0.8 (2)
14 0.78 (4) 0.98 (2) 0.95 (3) 1.00 (1)
15 1.00 (1.5) 0.98 (3) 0.94 (4) 1.00 (1.5)
16 0.78 (4) 0.98 (2) 0.95 (3) 1.00 (1)
17 0.55 (4) 0.96 (2) 0.92 (3) 1.00 (1)
18 1.00 (1.5) 0.98 (3) 0.95 (4) 1.00 (1.5)
19 0.55 (4) 0.96 (2) 0.92 (3) 1.00 (1)
20 1.00 (1.5) 0.96 (3) 0.92 (4) 1.00 (1.5)

Rj 3.2750 1.7250 2.8000 2.2000

Each row and each column correspond to a dataset and a system, respectively.
The last column shows the average Friedman rank.

620 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 4, APRIL 2019

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2020 at 12:09:40 UTC from IEEE Xplore.  Restrictions apply. 



freedom and FF is distributed according to the F-distribu-
tion with 4� 1 ¼ 3 and ð4� 1Þð20� 1Þ ¼ 57 degrees of free-
dom. The p-values calculated for the Friedman and Iman-
Davenport tests are 8:65� 10�4 and 3:33� 10�4, respec-
tively. Thus, the null hypothesis is rejected in both cases.

We perform the Quade test on the scores in the above
table. Table 6 displays the datasets’ ranks and scores’ ranks
of the Quade test. The test statistic is

FQuade ¼ 10:16;

which is distributed according to the F-distribution with
ð3; 57Þ degrees of freedom. The corresponding p-value is
1:84� 10�5 which results in rejecting the null hypothesis.

5.2 Post-Hoc Analysis

If the null hypothesis in multiple comparisons is rejected, a
post-hoc test will be employed to say where exactly the dif-
ferences occurred among performances of systems. For each
of the tests mentioned in the previous section, a post-hoc
test exists.

The following statistics must be computed for each pair
of systems (i; j)

Friedman z ¼ Ri �Rjffiffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ
6n

q
Quade z ¼ Ti � Tjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðkþ1Þð2nþ1Þðk�1Þ
18nðnþ1Þ

q ;

(12)

where Ri is the average ranks in the Friedman test and

Ti ¼
2
P

i;j
Qir

j
i

nðnþ1Þ in the Quade test. The probability of systems i
and j having the same performance can be calculated using
above mentioned statistics which are distributed according
to the standard normal distribution. Similar to comparison

of two systems, one can reject the null hypothesis and
conclude that the two systems are significantly different
provided that the computed probability is less than a. If the
null hypothesis is rejected, then the system with lower aver-
age rank, in both Friedman and Quade tests, is claimed to
be better.

In multiple comparisons, however, the family-wise error
rate would increase the type I error if the p-value was not
adjusted. With the significance level a, the probability of
making type I error for each comparison is 1� a and
m ¼ kðk� 1Þ=2 comparison must be performed when k sys-
tems are available. Thus, the probability of making at least
one type I error in m comparisons is 1� ð1� aÞm which is
way higher than the nominal significance level a. For exam-
ple, for a ¼ 0:05 and k ¼ 5 the probability of making type I
error is 0.4, which is undesirably high.

To adjust the p-values, suppose p1; . . . ; pm are the proba-
bilities of m hypotheses H1; . . . ; Hm. There are various ways
for the p-value adjustment in order to prevent FWER. The
most straightforward one is the Nemenyi correction [36]
which divides a by the number of comparisons. Dividing the
p-value by the number of comparisons prevent the FWER.
The adjusted p-value (APV) for each hypothesis i by the
Nemenyi correction is:APVi ¼ minfm � pi; 1g. However, the
Nemenyi correction is highly conservative and has high type
II error. It means that there are several null hypotheses which
must be rejected but they are retained if the Nemenyi APV is
employed. Other than the Nemenyi correction which adjusts
the value of a in one single step, there are other ways that
adjust the p-values in a sequential manner.

The Holm procedure [37] takes the most significant
p-value (let it be p1) and compares it with a

m�1 and m ¼
kðk� 1Þ=2. If p1 < a

m�1 then it rejects the corresponding null
hypothesisH1 and compare the next most significant p-value,
p2, with a

m�2 and so forth. This procedure is terminated when
a certain null hypothesis cannot be rejected. In other words,
let p1 � p2 � p3 . . . � pm be the ordered p-values and
H1;H2; . . . ;Hm be the corresponding hypotheses. The Holm
procedure rejects the hypotheses H1; . . . ;Hi�1 if pi > a

m�1 for
the smallest i. As theHolm procedure startswithmost signifi-
cant p-value, it is called a ‘step-down’method.

Akin to the Holm procedure, Shaffer [38] is a sequential
method for the p-value adjustment. However, this method
instead uses the logical relationship among the family of
hypotheses. In Shaffer procedure at stage j, the null hypoth-
esis Hj is rejected if the corresponding p-value is less than
a=tj, where tj is the maximum number of hypotheses which
are possible to be retained given that j� 1 hypotheses are
false. Shaffer proposed to find the maximum number of
possibly correct hypotheses. The possible number of true
hypotheses can be recursively obtained as

SðkÞ ¼
[k
j¼1

(
2
j

� �
þ x : x 2 Sðk� jÞ

)
; (13)

where SðkÞ is the set of possible numbers of true hypotheses
with k systems being compared. tj is then calculated using
SðkÞ.

Similar to Shaffer correction, Bergmann and Hommel
[39] proposed a method which finds the maximum number

TABLE 6
The F-Measure Scores and the Quade Ranks
(in the Parenthesis) of the Four Systems over

20 Tasks of the OAEI Benchmark Track

Range Qi edna GMap LogMap XMap

1 0.22 7.5 0.78 (11.25) 0.98 (-3.75) 0.95(3.75) 1(-11.25)
2 0.8 19 0.02 (-9.5) 0.8 (-28.5) 0 (19) 0 (19)
3 0.33 13 0.62 (19.5) 0.95 (-19.5) 0.87 (-6.5) 0.66 (6.5)
4 0.43 14 0.47 (21) 0.9 (-21) 0.72 (-7) 0.65 (7)
5 0.55 17 0.31 (25.5) 0.86 (-25.5) 0.52 (-8.5) 0.51 (8.5)
6 0.68 18 0.17 (9) 0.83 (-27) 0.28 (-9) 0.15 (27)
7 0.01 1 0.01 (-1.5) 0 (0.5) 0 (0.5) 0 (0.5)
8 0.25 10 0.62 (15) 0.87 (-10) 0.87 (-10) 0.65 (5)
9 0.26 12 0.47 (18) 0.73 (-18) 0.71 (-6) 0.65 (6)
10 0.25 11 0.31 (16.5) 0.56 (-16.5) 0.5 (-5.5) 0.42 (5.5)
11 0.17 5 0.16 (7.5) 0.33 (-7.5) 0.31 (-2.5) 0.19 (2.5)
12 0.22 7.5 0.78 (11.25) 0.98 (-3.75) 0.95 (3.75) 1 (-11.25)
13 0.99 20 0.77 (10) 0.99 (-30) 0 (30) 0.8 (-10)
14 0.22 7.5 0.78 (11.25) 0.98 (-3.75) 0.95 (3.75) 1 (-11.25)
15 0.06 3 1 (-3) 0.98 (1.5) 0.94 (4.5) 1 (-3)
16 0.22 7.5 0.78 (11.25) 0.98 (-3.75) 0.95 (3.75) 1 (-11.25)
17 0.45 15.5 0.55 (23.25) 0.96 (-7.75) 0.92 (7.75) 1 (-23.25)
18 0.05 2 1 (-2) 0.98 (1) 0.95 (3) 1 (-2)
19 0.45 15.5 0.55 (23.25) 0.96 (-7.75) 0.92 (7.75) 1 (-23.25)
20 0.08 4 1 (-4) 0.96 (2) 0.92 (6) 1(-4)

Each row corresponds to a dataset. The first column is the range and the second
is Qi of the Quade test. The rest columns are the systems under comparison.
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of possibly correct hypotheses dynamically. They defined
the exhaustive set to formulate their procedure. An index
set of hypotheses I 	 f1; . . . ;mg is called exhaustive if
exactly allHj; j 2 I could be true.

Any hypothesis Hj is rejected if j =2 A, where A is the
acceptance set defined as

A ¼
[

fI : I exhaustive; minfPi : i 2 Ig > a=jIjg; (14)

containing all the retained hypotheses. Theoretically speak-
ing, this is the most powerful method for adjusting p-values
for all pairwise comparisons. Our experiments also confirm
that this method would detect more significant differences
compared to the three methods discussed above. However,
Bergmann method is not time-wise efficient especially
when there are more than nine systems for comparison.

6 EXPERIMENTAL STUDY

In this section, the experiments regarding the statistical tests
are discussed. First, the measures for power and replicabil-
ity of tests are reviewed based on which various tests are
compared. Then, the comparison of multiple systems are
applied to the OAEI 2015 benchmark and multifarm tracks,
and the corresponding results are reported.

6.1 Comparison of Two Systems

The power of statistical tests is formally defined as the prob-
ability of rejecting false null hypotheses. In reality, however,
it is impossible to say if the null hypothesis is wrong before-
hand; therefore, it is not possible to gauge the power of sta-
tistical tests from the formal definition. Instead, there are
two ways to compare statistical tests concerning their
power. First, the number of rejected null hypotheses in one
thousand experiments are counted with a nominal signifi-
cant level a. Another way is the average p-value in one
thousand experiments; the lower the average is, the better
the test will be.

For each way of the power estimation, there is a corre-
sponding replicability measure. Bouckaert [40] defined the
replicability as the probability that two experiments with
the same pair of algorithms produce the same results. He
estimated this probability as (in n experiments)

RðeÞ ¼
X

1�i�j�n

Iðei ¼ ejÞ
nðn� 1Þ=2 ; (15)

where I is the indicator function, and ei is the outcome of
the ith experiment (0 if the null hypothesis in the ith experi-
ment is rejected, and 1 otherwise.) If the hypothesis is
accepted in p and rejected in q experiments, RðeÞ can be eas-
ily computed as

RðeÞ ¼ pðp� 1Þ þ qðq � 1Þ
nðn� 1Þ : (16)

Instead of using the number of rejected or retained hypothe-
ses, Dem�sar [7] proposed a robust estimator based on the
p-value obtained in each experiment. Dem�sar defined the
replicability RðpÞ as

RðpÞ ¼ 1� 2varðpÞ ¼ 1� 2

P
iðp� p̂Þ2
n� 1

; (17)

where p̂ is the mean of the p-values and pi is the p-value of
the ith experiment.

Since no single ontology matching system performs bet-
ter than others in all scenarios [5], [6], it is usually the case
that researchers would like to show the superiority of a
system in one specific domain. In this case, there are some
systems which perform better than others. To show this
in simulation, some datasets are randomly selected from
the OAEI 2015 benchmark track so that the probability of
selecting the ith dataset is proportional to 1=ð1þ e�kdiÞ,
where di is the difference between the performances and k
is the bias [7]. For k ¼ 0, the probability of selecting all
datasets are the same. With higher values of k, it is more
likely to pick the sets in favor of one system. This proce-
dure is only considered for the simulation study because
doing such experiments with datasets chosen in favor of
one system is, in one way or another, cheating.

For the above procedure, three different situations with
5, 20 and the whole datasets are considered. In each of this
situation, the suitable tests are recommended for utilization.

First of all, 20 datasets are selected from the OAEI 2015
benchmark track with the procedure mentioned above. The
comparison is between top two systems with two systems
with mediocre performances so that the various numbers of
k will effectively change the selected datasets. Fig. 1 plots
the power estimation defined by the average p-value (left-
hand side) and the number of rejected null hypotheses
(right-hand side) in thousand experiments on five statistical
tests studied in this paper. The x-axis in all plots is k as
defined above, and the y-axis is the average p-value for
the left plot and the number of rejected hypotheses for the
right one. The McNemar’s test with continuity correction is

Fig. 1. Comparison of the paired t-test, Wilcoxon signed-rank, and
McNemar’s (exact, asymptotic, andmid-p) tests from the power perspective
in 1,000 experiments. The x-axis is k, and the y-axis is: (a) Left plot: The
average p-value. (b) Right plot: The number of rejected null hypotheses.
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dismissed because there is no guarantee that its type I error
be below the nominal significance level [27]. The average
p-value of the Wilcoxon signed-rank test is lower than or
competitive with the paired t-test. This is probably because
of the number of selected datasets is relatively high and pre-
sumptions of the paired t-test are likely to be satisfied
through the central limit theorem. However, the number of
rejected null-hypotheses in the Wilcoxon signed-rank test is
higher than the paired t-test in both cases. Therefore, we
suggest using the Wilcoxon signed-rank test when the com-
parison of two alignment systems is desired under this cir-
cumstance. It can also be readily seen that the McNemar’s
exact test (or the Sign test) is the most conservative one;
thus, it should not be considered as means of comparison.
Another interesting point is that the McNemar’s mid-p and
asymptotic tests are slightly different regarding the average
p-values but almost the same with respect to the number of
rejected null hypotheses. Further, these two tests are com-
petitive with the paired t-test especially in terms of the num-
ber of rejected null hypotheses. As McNemar’s tests are
non-parametric, their utilization is recommended as an
alternative to the Wilcoxon signed-rank test.

For the second scenario, five datasets are selected accord-
ing to the above procedure. Fig. 2 shows the power estima-
tions when five datasets are selected while the horizontal
and vertical axes are the same as Fig. 1. Interestingly, the
power of the Wilcoxon signed-rank test is less than
McNemar’s asymptotic and mid-p tests. The McNemar’s
asymptotic test shows high power, especially from the view
of rejected hypotheses. When few datasets are available,
McNemar’s asymptotic and mid-p tests are preferred.

In addition to the power comparison, the statistical tests
are compared concerning the replicability. Fig. 3 shows

RðeÞ on the right-hand side and R(p) on the left-hand side
when 20 datasets are selected. Interestingly, the results of
two measures are in contradiction. The Wilcoxon signed-
rank test is (slightly) better than other methods regarding R
(p). In terms of R(e), on the other hand, it is the least reliable
one. However, the shape of this graph and Fig. 1 show that
the test is less reliable in terms of R(e) when the p-value is
in the proximity of a (here a ¼ 0:05). Thus, it can be drawn
that the Wilcoxon is unreliable with respect to RðeÞ because
of its higher power.

For the case of selecting five datasets, the McNemar’s
asymptotic test indicates the better replicability regarding
both perspectives while the Wilcoxon signed-rank test
shows less replicability concerning both measures as shown
in Fig. 4. Another interesting point is the paradoxical repli-
cability of the Wilcoxon signed-rank and McNemar’s exact
tests. These tests could not reject any null hypothesis as can
be observed from Fig. 2; therefore, the corresponding R(e) is
one in all scenarios. Regarding R(p), on the other hand, the
average p-values in thousand experiments shows their
unreliability in comparison to others.

The final scenario is the case when the number of data-
sets is large enough. There are seemingly enough datasets
so that the presumption of the paired t-test must be met. We
paired various systems together from benchmark and mul-
tifarm tracks and performed Jarque-Bera test [23] to check
the normality assumption required for the paired t-test.
Ironically, the normality assumption is held in less than 7
percent; therefore, it is safer to conduct the Wilcoxon
signed-rank test if all datasets are selected for comparison.

Table 7 tabulates the comparison of all pairs of systems
with k ¼ 15. The below diagonal numbers indicate the

Fig. 2. Comparison of the paired t-test, Wilcoxon signed-rank, and
McNemar’s (exact, asymptotic, andmid-p) tests from the power perspective
in 1,000 experiments. The x-axis is k, and the y-axis is: (a) Left plot: The
average p-value. (b) Right plot: The number of rejected null hypotheses.

Fig. 3. Comparison of the paired t-test, Wilcoxon signed-rank, and
McNemar’s (exact, asymptotic, and mid-p) tests via the replicability point
of view. The x-axis is k and the y-axis is: (a) Left plot: The replicability
estimation R(p). Right plot: The replicability estimation R(e).
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average p-value and the corresponding replicabiliy measure
R(p), and the above diagonal shows the number of rejected
null hypotheses and the corresponding replicability mea-
sure R(e). The average p-value of the Wilcoxon signed-rank
test is much lower than other methods in almost all cases. It
is also recommendable by replicability measure R(p), but R
(e) prefers other tests with the p-value higher than the criti-
cal value 0.05.

6.2 Comparison of Multiple Systems

In this section, the experiments across multiple alignment
systems are studied. First, the power of various post-hoc pro-
cedures is reviewed and then the aforementioned multiple
comparisons are applied to the OAEI 2015 benchmark and
multifarm tracks and the corresponding results are reported.

Fig. 5 shows the results over the benchmark track of five
methods by the Friedman test and various post-hoc proce-
dures. The x-axis in this figure is the parameter k and the
y-axis is the overall number of the rejected hypotheses with
respect to a correction method. The Bergmann correction
performs better than other methods as its number of
rejected null hypothesis is consistently outweigh the num-
ber of rejected hypotheses of other methods. At the other
extreme, the Nemenyi correction is the weakest method and
must be ignored. Further, Holm and Shaffer methods are
competitive with each other.

6.2.1 Benchmark Track

The benchmark track consists of artificially constructed ontol-
ogies based on a seed ontology [16]. In the OAEI 2015, two

seed ontologies were employed: biblio and energy. We per-
form the statistical analysis of the results obtained from 94
datasets generated from the seed ontology biblio. The com-
petition was among ten systems with their variation (e.g.,
AML and AML2014) in this track. Two of these systems did
not produce any readable result so that they are not selected
for comparison in this section. The remaining systems
are edna [24], AML2014 [41], CroMatcher [42], GMap
[25], Lily [43], XMap [35], LogMapLite [34] and Mamba
[44]. The comparison is conducted based on the F-mea-
sure as it considers both undiscovered and falsely-
discovered correspondences.

Table 8 tabulates the average ranks obtained by Fried-
man and Quade tests.

The Friedman statistic is 385.73 with 7 degrees of free-
dom; thus the corresponding p-value is 1:8� 10�10. The
Quade statistic (with ð7; 651Þ degrees of freedom) and its
p-value are 91.60 and 1:22� 10�92, respectively. The null
hypothesis which is the equivalence of performances of sys-
tems is rejected by both tests.

Table 9 shows the adjusted p-values obtained by various
correction procedures for Friedman and Quade tests for all
pairs of systems. Based on this table, the rejected hypotheses
can be simply discovered by the comparison of the adjusted
p-values with the nominal significance level a while the
FWER is inherently controlled. With a ¼ 0:05 and with the

Fig. 4. Comparison of the paired t-test, Wilcoxon signed-rank, and
McNemar’s (exact, asymptotic, and mid-p) tests via the replicability point
of view. The x-axis is k, and the y-axis is: (a) Left plot: The replicability
estimation R(p). (b) Right plot: The replicability estimation R(e).

TABLE 7
Comparison of the Paired t-Test, Wilcoxon Signed Rank
and McNemar’s (Asymptotic, Mid-p) Tests with k=15

Below diagonal: The average p-value and the corresponding RðpÞ. Above diag-
onal: The number of rejected null hypotheses in thousands experiments and the
corresponding RðeÞ.
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Friedman test, the first 18 hypotheses are rejected with the
Nemenyi correction while 19 hypotheses are rejected with
more advanced methods.

In the Quade test, on the other hands, the first 12 hypothe-
ses are rejected with all correction methods. As mentioned
above, the Quade test is more suitable when few datasets are
available. In the benchmark track, which 94 pairs of ontolo-
gies exist, the Friedman test is expected to be more powerful,
as can be readily drawn from Table 9. The sequential p-value
adjustment methods reject the same number of hypotheses
which means that they have the same power with respect to
RðeÞ. From the RðpÞ view, however, the Bergmannmethod is
more powerful as it results in smaller adjusted p-values.

To better visualize and understand these results, Figs. 6
and 7 show the critical difference (CD) plot of the Friedman
and Quade tests with various correction methods for
a ¼ 0:05. The non-significant systems are connected to each
other by a line. The results drawn from the table can be

easily viewed from the CD diagrams as well. One difference
between the Nemenyi and other sequential ways of p-value
adjustment is the fixed critical difference in the former. It
means that if the difference between any two methods is
less than the critical difference shown at the top of the plot,
then they are not significantly different. This is the reason
we distinguish the plot of the Nemenyi correction with
other methods.

The Quade test with four correction methods indicates
that Lily and CroMatcher are together better than the
remaining ones, and the rest are not significantly
different (with a ¼ :05). The Friedman test also confirms
the superiority of Lily and CroMatcher. With the Neme-
nyi correction, the Friedman test shows that Gmap,
XMap, and AML2014 are not significantly different while
GMap indicates better performance in comparison with
AML2014 when other sequential-based correction meth-
ods are applied. Another difference between the Neme-
nyi correction and sequentially-corrected methods is the
significant difference between AML2014 and LogMa-
pLite: The Nemenyi correction cannot detect any differ-
ence between them whereas they are significantly
different when Holm, Shaffer, or Bergmann correction is
applied.

Fig. 5. The comparisons of correction methods for the Friedman test for
various numbers of k in x-axis; Two different scenarios: (a) Selection of
10 datasets. (b) Selection of 40 datasets.

TABLE 8
The Average Ranks of All Systems Computed

by Friedman and Quade Tests over
the Benchmark Track

Algorithm Friedman Quade

Lily 1.51 1.37
CroMatcher 1.81 1.75
GMap 4.35 4.29
XMap 4.78 5.18
AML2014 5.37 5.56
Mamba 5.68 5.42
edna 6.09 6.24
LogMapLite 6.41 6.18

TABLE 9
The Adjusted p-Values by Four p-Value Adjustment Methods
Across the OAEI 2015 Benchmark Track: (a) The Friedman

Test and (b) the Quade Test
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The results of this track are in accordance with the the-
ory. First, the Nemenyi correction is so conservative and
detect fewer differences among alignment systems. Further,
the Friedman test has more power than the Quade test
when a sufficient number of datasets is available.

Last but not least, the results of this section is compared
with the averaging. The average of Lily and CroMatcher
systems, which are top two systems in the OAEI 2015
benchmark track is 0.90 and 0.88, respectively. These are
indiscernibly the top systems from the statistical analysis
point of view as well. At the other extreme, edna and Log-
MapLite are the worse ones with the average 0.41 and 0.46,
respectively. Similarly, these systems are also the worst
ones regarding the statistical analysis.

There are some small difference between the ranking of
systems from averaging and the statistical analysis. For
instance, AML2014 has a lower rank than Mamba from the
statistical view while the latter system is claimed to have
outperformed the other one with respect to averaging.
However, the major difference between averaging and the

statistical analysis is that several systems are declared insig-
nificant. This seems rational since we cannot indicate the
superiority of one system merely if its average is slightly
higher than one another.

6.2.2 Multifarm Track

Another track in the OAEI which is considered here is multi-
farm. There are 47 pairs of ontologies which are matched by
various systems. We take 4 of them (AML [45], CLONA [46],
LogMap [34] and XMap [35]) which could produce accept-
able mappings in the OAEI 2015. Then, we apply the statisti-
cal procedures over F-measure obtained for each dataset to
determine the systemswith improved performance.

The ranks computed by the Friedman and Quade tests
are presented in Table 10.

The Friedman statistic (with 3 degrees of freedom) and
its p-value are 98.80 and 5:80� 10�11, respectively. Simi-
larly, the Quade statistic is computed as 138.30 with ð3; 46Þ
degrees of freedom, and the corresponding p-value is
approximately zero. Thus, both tests reject the null hypothe-
sis, and it is concluded that there is a significant difference
among the performances.

The post-hoc procedure is applied to F-measure of the
aforementioned methods over the datasets in the multifarm
track. The adjusted p-values of various post-hoc procedures
are presented in Table 11. Based on this table, it can be easily
understood what systems are significantly different from
each other given the significance level a.

Similar to the benchmark track, we visualize the results
obtained over this track. The critical difference diagrams of

Fig. 6. The critical difference diagrams for the Friedman test with four
p-value adjustment methods on the benchmark track: (a) The Nemenyi
correction. (b) The Holm, Shaffer, and Bergmann correction. The x-axis
is the average rank of each system obtained by the Friedman test.

Fig. 7. The critical difference diagrams for the Quade test with four
p-value adjustment methods on the benchmark track: (a) The Nemenyi
correction. (b) The Holm, Shaffer, and Bergmann correction. The x-axis
is the average rank of each system obtained by the Quade test.

TABLE 10
Average Rankings of Systems Computed

by Friedman and Quade Tests

AML LogMap CLONA XMap

Friedman 1.07 2.48 2.68 3.77
Quade 1.05 2.51 2.56 3.88

TABLE 11
The Adjusted p-Values by Four p-Value Adjustment Methods:

(a) The p-Value Adjustment for the Friedman Test and
(b) the p-Value Adjustment for the Quade Test

Fig. 8. The critical difference diagrams for the Friedman test with four
p-value adjustment methods on the multifarm track: (a) The Nemenyi
correction. (b) Holm, Shaffer, and Bergmann correction methods. The
x-axis is the average rank of each system obtained by the Friedman test.
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statistical tests with correction methods are plotted in Figs. 8
and 9 where the x-axis indicates the rank of each system
obtained by Friedman and Quade tests. In this plot, the
methods which are not significantly different are connected
to each other by a line. The results of various tests over this
track are the same. The Friedman and Quade tests with
each method of correction indicate that AML is the best and
XMap is the worst system. Further, CLONA and LogMap
are not significantly different, but they are better than
XMap and worse than AML.

6.3 Summary

The recommendation for utilization of tests are summarized
as the following

� For comparison of two systems and with large
enough datasets (> 30 datasets), the normality test
is first conducted to check the normality of differen-
ces. If the normality assumption holds, the paired t-
test is the most appropriate statistic. Otherwise, the
Wilcoxon signed-rank test is preferred.

� For comparison of two system with a moderate num-
ber of datasets (less than 30 but above 10), the test of
normality is not reliable. Among the nonparametric
tests, the Wilcoxon signed-rank test is preferred.
In addition, if the number of datasets is less than
ten, McNemar’s asymptotic or mid-p tests are
recommended.

� For the case of comparison among multiple systems,
the repeated measures ANOVA is not recommended
and its use must be prohibited. Instead, Friedman
and Quade tests are recommended for the moderate
or large (more than 10) and the small (less than 10)
number of datasets, respectively.

� For controlling FWER, Bergmann correction is the
most powerful one and is highly recommended.
However, it takes a lot of time to conduct the com-
parison if there are more than ten systems. If there is
any time restriction and there are more than ten sys-
tems, Shaffer correction is recommendable which is
powerful and fast. The Nemenyi correction is too
conservative, and its use should be prohibited.

7 CONCLUSION

The statistical methodologies for comparison of two or more
alignment systems were studied in this paper. For compari-
son of two systems, three different situations related to the

number of datasets were considered and an appropriate test
was recommended for each of the case. For comparison of
multiple systems, the use of ANOVA was prohibited due to
its severe presumption sphericity. Instead, Friedman and
Quade tests were proposed for comparison. For comparison
of multiple systems, the family-wise error rate and the ways
to prevent it are elaborated in details.
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