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Preface

In 2020, the 32nd edition of BNAIC—the annual Benelux Conference on Artificial Intelligence—is organized together

with the 29th edition of BeneLearn—the annual Belgian-Dutch Conference on Machine Learning—by the Leiden Institute

of Advanced Computer Science (LIACS) of Leiden University, under the auspices of the Benelux Association for Artificial

Intelligence (BNVKI).

The conference was scheduled to take place in Corpus, Leiden, but due to the corona virus pandemic and limitations on the

organization of events, the conference was organized fully online, for the first time in its history. It took place on Thursday,

November 19 and Friday, November 20, 2020. The conference included keynotes by invited speakers, so-called FACt talks,

research presentations, a social programme, and a “society and business” afternoon.

The three keynote speakers at the conference were:

• Joost Batenburg, Leiden University

Challenges in real-time 3D imaging, and how machine learning comes to the rescue

• Gabriele Gramelsberger, RWTH Aachen University

Machine learning-based research strategies — A game changer for science?

• Tom Schaul, Google DeepMind, London

The allure and the challenges of deep reinforcement learning

Three FACt talks (FACulty focusing on the FACts of Artificial Intelligence) were scheduled:

• Luc De Raedt, Katholieke Universiteit Leuven

Neuro-Symbolic = Neural + Logical + Probabilistic

• Nico Roos, Maastricht University

We aren’t doing AI research

• Yingqian Zhang, Eindhoven University of Technology

AI for industrial decision-making

Authors were invited to submit papers on all aspects of Artificial Intelligence. This year we have received 83 submissions

in total. Of the 41 submitted Type A regular papers, both short and long, 24 (59%) were accepted for presentation. All

19 submitted Type B compressed contributions were accepted for presentation. From the Type C demonstrations, 2 out

of 3 were accepted. Of the submitted 20 Type D thesis abstracts, 17 were accepted for presentation. Together there are

38 accepted contributions from Type B, C and D. The selection was made based on a single-blind peer review process.

Each submission was assigned to three members of the program committee, and their expert reviews were the basis for our

decisions. We would like to thank all program committee members (listed on the previous pages) for their time and effort

to help us with this task.

All accepted submissions appear in these electronic proceedings, and are made available on the conference web site during

the conference. The 12 best accepted regular papers are invited to the postproceedings, to be published in the Springer

CCIS series after the conference.

We are grateful to our sponsors for their generous support of the conference:

• SIKS: Netherlands research school for Information and Knowledge Systems

• SNN Adaptive Intelligence: Dutch Foundation for Neural Networks

• BNVKI: Benelux Association for Artificial Intelligence

• SKBS: Stichting Knowledge Based Systems

• ZyLAB

• LIACS: Leiden Institute of Advanced Computer Science

Finally, we would like to thank all who contributed to the success of BNAIC/BeneLearn 2020.

Lu Cao, Walter Kosters and Jefrey Lijffijt

Program Chairs
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Evaluating the Robustness of Question-Answering

Models to Paraphrased Questions

Paulo Alting von Geusau[0000−0002−3189−4380] and

Peter Bloem[0000−0002−0189−5817]

Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands

p.geusau@gmail.com

vu@peterbloem.nl

Abstract. Understanding questions expressed in natural language is a funda-

mental challenge studied under different applications such as question answering

(QA). We explore whether recent state-of-the-art models are capable of recognis-

ing two paraphrased questions using unsupervised learning. Firstly, we test QA

models’ performance on an existing paraphrased dataset (Dev-Para). Secondly,

we create a new annotated paraphrased evaluation set (Para-SQuAD) containing

multiple paraphrased question pairs from the SQuAD dataset. We describe quali-

tative investigations on these models and how they present paraphrased questions

in continuous space. The results demonstrate that the paraphrased dataset con-

fuses the QA models and leads to a decrease in their performance. Visualizing

the sentence embeddings of Para-SQuAD by the QA models suggests that all

models, except BERT, struggle to recognise paraphrased questions effectively.

Keywords: natural language · transformers · question answering · embeddings.

1 Introduction

Question answering (QA) is a challenging research topic. Small variations in semanti-

cally similar questions may confuse the QA models and result in giving different an-

swers. For example, the questions “Who founded IBM?” and “Who created the com-

pany IBM?” should be recognised as having the same meaning by a QA model. QA

models need to understand the meaning behind the words and their relationships. Those

words can be ambiguous, implicit, and highly contextual.

The motivation for writing this paper springs from the observation that QA models

can provide a wrong answer to a question that is phrased slightly different compared to

a previous question. Despite the questions being semantically similar. This sensitivity to

question paraphrases needs to be improved to provide more robust QA models. Modern

QA models need to recognise paraphrases effectively and provide the same answers to

paraphrased questions.

Despite the release of high-quality QA datasets, test sets are typically a random sub-

set of the whole dataset, following the same distribution as the development and training

sets. We need datasets to test the QA models’ ability to recognise paraphrased ques-

tions and analyse their performance. Therefore, we use two datasets, based on SQuAD

BNAIC/BeneLearn 2020 2



2 Paulo Alting von Geusau and Peter Bloem

(Rajpurkar et al., 2016), to conduct two separate experiments on BERT (Devlin et al.,

2018), GPT-2 (Radford et al., 2019) and XLNet (Zhilin Yang et al., 2019).

The first dataset we use is an existing paraphrased test set (Dev-Para). Dev-Para is

publicly available, and we use it to evaluate the models’ over-sensitivity to paraphrased

questions.1 Dev-Para is created from SQuAD development questions and consists of

newly generated paraphrases. Dev-Para evaluates the models’ performance on unseen

test data to gain a better indication of their generalisation ability. We hypothesise that

adding new paraphrases to the test set will result in the models suffering a drop in per-

formance. This paper will search for properties that the models learn in an unsupervised

way, as a side effect of the original data, setup, and training objective.

In addition, we introduce a new paraphrased evaluation set (Para-SQuAD) to test

the QA models’ ability in recognising the semantics of a question in an unsupervised

manner. Para-SQuAD is a subset of the SQuAD development set, whereas Dev-Para is

much larger and consists of newly added paraphrases. Para-SQuAD consists of question

pairs that are semantically similar but have a different syntactic structure. The question

pairs are manually annotated and picked from the SQuAD development set. We analyse

all sentence embeddings of Para-SQuAD in an embedding space with the help of t-

SNE visualisation. For each model, we calculate the average cosine similarity of all

question pairs to gain an understanding of the semantic similarity between paraphrased

questions.

The contributions of this paper are threefold:

1. We test the QAmodels’ performance on an existing paraphrased test set (Dev-Para)

to evaluate their robustness to question paraphrases.

2. We create a new paraphrased evaluation set (Para-SQuAD) that consists of question

pairs from the original SQuAD development set, the question pairs are semantically

similar but have a different syntactic structure.

3. We create and visualize useful sentence embeddings of Para-SQuAD by the QA

models, and calculate the average cosine similarity between the sentence embed-

dings for each QA model.

2 Methodology

In this section, we describe the models and sentence embeddings used, and we introduce

our method to create Para-SQuAD.

2.1 BERT, GPT-2 and XLNet

We use QA models that are based on the transformer architecture from Vaswani et al.

(2017). The models have been pre-trained on enormous corpora of unlabelled text, in-

cluding Books Corpus and Wikipedia, and only require task-specific fine-tuning. The

first model we use is Google’s BERT. BERT is bidirectional because its self-attention

1 https://github.com/nusnlp/paraphrasing-squad

BNAIC/BeneLearn 2020 3
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layer performs self-attention in both directions; each token in the sentence has self-

attention with all other tokens in the sentence. The model learns information from both

the left and right sides during the training phase. BERT’s input is a sequence of pro-

vided tokens, and the output is a sequence of generated vectors. These output vec-

tors are referred to as ‘context embeddings’ since they contain information about the

context of the tokens. BERT uses a stack of transformer encoder blocks and has two

self-supervised training objectives: masked language modelling and next-sentence pre-

diction.

The second model used in this paper is OpenAI’s GPT-2. GPT-2 is also a trans-

former model and has a similar architecture to BERT; however, it only handles context

on the left and uses masked self-attention. GPT-2 is built using transformer decoder

blocks and was trained to predict the next word. The model is auto-regressive, just like

Google’s XLNet.

XLNet, the third model used in this paper has an alternative technique that brings

back the merits of auto-regression while still incorporating the context on both sides.

XLNet uses the Transformer-XL as its base architecture. The Transformer-XL extends

the transformer architecture by adding recurrence at a segment level. XLNet already

achieves impressive results for numerous supervised tasks; however, it is unknown if

the model generates useful embeddings for unsupervised tasks. We explore this question

further in this paper.

We use the small GPT-2, BERT-Base, and XLNet-Base, all consisting of 12 layers.

The larger versions of BERT and XLNet have 24 layers; the larger version of GPT-2

has 36 layers.

2.2 Embeddings

Classic word embeddings are static and word-level; this means that each word receives

exactly one pre-computed embedding. Embedding is a method that produces continu-

ous vectors for given discrete variables. Word embeddings have demonstrated to im-

prove various NLP tasks, such as question answering (J. Howard and S. Ruder., 2018).

These traditional word embedding methods have several limitations in modelling the

contextual awareness effectively. Firstly, they cannot handle polysemy. Secondly, they

are unable to grasp a real understanding of a word based on its surrounding context.

Advances in unsupervised pre-training techniques, together with large amounts of

data, have improved contextual awareness of models such as BERT, GPT-2, and XL-

Net. Contextually aware embeddings are embeddings that not only contain information

about the represented word, but also information about the surrounding words. The

state-of-the-art transformer models create embeddings that depend on the surrounding

context instead of an embedding for a single word.

Sentence embeddings are different from word embeddings in that they provide em-

beddings for the entire sentence. We aim to extract the numerical representation of a

question to encapsulate its meaning. Semantically meaningful means that semantically

similar sentences are clustered with each other in vector space.

The network structures of the transformer models compute no independent sentence

embeddings. Therefore, we modify and adapt the transformer networks to obtain sen-

tence embeddings that are semantically meaningful and used for visualization. We use

BNAIC/BeneLearn 2020 4



4 Paulo Alting von Geusau and Peter Bloem

The Broncos took an early lead in Super Bowl 50 and never

trailed. Newton was limited by Denver’s defense, which

sacked him seven times and forced him into three turnovers,

including a fumble which they recovered for a touchdown.

Denver linebacker Von Miller was named Super Bowl MVP,

recording five solo tackles, 2½ sacks, and two forced fum-

bles.

Who was the Super Bowl 50 MVP?

Ground Truth Answers: Von Miller, Miller

Fig. 1. Example of SQuAD 1.1 development set with context, question, and answers.

QA models that are deep unsupervised language representations. All QA models are

pre-trained with unlabelled data.

Feeding individual sentences to the models will result in fixed-size sentence embed-

dings. A conventional approach to retrieve a fixed size sentence embedding is to average

the output layer, also called mean pooling. Another common approach for models like

BERT and XLNet is to use the first token (the [CLS] token). In this paper, we use the

mean pooling technique to retrieve the fixed-size sentence embeddings.

2.3 SQuAD

To create Para-SQuAD, we use the Stanford Question Answering Dataset (SQuAD)

(Rajpurkar et al., 2016), which consists of over 100.000 natural question and answer

sets retrieved from over 500 Wikipedia articles by crowd-workers. The SQuAD dataset

is widely used as a popular benchmark for QA models. The QA models take a question

and context as input to predict the correct answer. The two metrics used for evaluation

are the exact match (EM) and the F1 score. The SQuAD dataset is a closed dataset; this

means that the answer to a question exists in the context. Figure 1 illustrates an example

from the SQuAD development set.

SQuAD treats the task of question answering as a reading comprehension task

where the question refers to a Wikipedia paragraph. The answer to a question has to

be a span of the presented context; therefore, the starting token and ending token of the

substring is calculated.

2.4 Para-SQuAD

To evaluate the robustness of the models on recognising paraphrased questions, we

create a new dataset called Para-SQuAD, using the SQuAD 1.1 development set. The

SQuAD development set uses at least two additional answers for each question to make

the evaluation more reliable. The human performance score on the SQuAD develop-

ment set is 80.3% for the exact match, and 90.5% for F1.2

The first author manually analysed all the questions inside the SQuAD develop-

ment set to acquire all paraphrased question pairs used in Para-SQuAD. Humans have

2 https://rajpurkar.github.io/SQuAD-explorer/
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a consistent intuition for “good” paraphrases in general (Liu et al., 2010). To be spe-

cific, we consider questions as paraphrases if they yield the same answer and have the

same intention. The main criteria for well-written paraphrases are fluency and lexical

dissimilarity. Moreover, word substitution is sufficient to count as a paraphrase.

Questions in the SQuAD development set relate to specific Wikipedia paragraphs

and are grouped together. We manually select paraphrased question pairs that already

exist in the SQuAD development set without creating new questions. This method en-

sures that Para-SQuAD is a typical subset of the SQuAD development set without in-

ducing dataset bias. Moreover, the data distribution and dataset bias in Para-SQuAD and

the SQuAD development set remains identical. Para-SQuAD consists of 700 questions,

350 paraphrased question pairs, and 12 different topic categories.

After paraphrase collection, we performed post-processing to check for any mis-

takes. The paraphrased questions are checked on English fluency using context-free

grammar concepts.3 We used spaCy4 to conduct a sanity check after manually collect-

ing all paraphrased questions. SpaCy provides paraphrase similarity scores of the ques-

tion pairs. SpaCy is an industrial-strength natural language processing tool and receives

sentence similarity scores by using word embedding vectors.

Using Para-SQuAD for visualisation has a significant advantage compared to using

Dev-Para. Namely, the data distribution of Dev-Para changes after the addition of new

sentences. On the contrary, the data distribution of Para-SQuAD remains the same be-

cause we do not add new sentences; we only annotate the existing paraphrases in the

SQuAD development set.

2.5 Para-SQuAD Sentence Embeddings

We present a proof-of-concept visualization of the models’ capability to represent se-

mantically similar sentences closely in vector space. Previous research by Coenen et

al. (2019) reveals that much of the semantic information, of BERT and related trans-

former models, is visible and encoded in a low-dimensional space. Therefore, we map

all the paraphrased questions from Para-SQuAD to a sentence embedding space for

every pre-trained model. Distance in the vector space can be interpreted roughly as

sentence similarity according to the model in question.

We calculate the fixed-length vectors for each question using the Flair framework,5

with mean pooling, to receive the final token representation. Mean pooling uses the

average of all word embeddings to obtain an embedding for the whole sentence.

All transformer models produce 768-dimensional vectors for every question, and

t-SNE (Laurens van der Maaten and Geoffrey Hinton, 2008) is applied to transform the

high-dimensional space to a low-dimensional space in a local and non-linear way. The

dimensionality is first reduced to 50 using Principal Component Analysis (PCA) (Karl

Pearson, 1901) to ensure scalability, before feeding into t-SNE.

We use a perplexity of 50 for all models, after tuning the ‘perplexity’ parameter, to

capture the clusters. Perplexity deals with the balance between global and local aspects

3 https://www.nltk.org/
4 https://spacy.io/
5 https://github.com/flairNLP/flair
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of the data. We tested diverse perplexity values to ensure robustness. We also explore

the traditional word-based model GloVe (Pennington et al., 2014) and compare its sen-

tence embeddings to the state-of-the-art transformer models. We investigate if GloVe

captures the nuances of the meaning of sentences more effectively as compared to the

transformer models.

3 Results

In this section, we evaluate the two experiments. The first experiment measures the

performance of the QA models on Dev-Para. The second experiment visualises the

sentence embeddings of Para-SQuAD for each QA model.

3.1 Experiments on QA Models

We conduct experiments on three pre-trained models: BERT, GPT-2, and XLNet. The

training code of the models is based on the Hugging Face implementation, which is

publicly available.6 In addition to using the pre-trained models directly, we fine-tuned

the models on the SQuAD 1.1 training set. We first measure the performance of the pre-

trained models on Dev-Para. Secondly, we use the three pre-trained models and GloVe

to visualize the sentence embeddings of Para-SQuAD in an embeddings space. Both

experiments are performed in an unsupervised manner.

3.2 Dev-Para Performance

We illustrate the performance of all three pre-trained QA models on Dev-Para. Dev-

Para consists of the original set and the paraphrased set. The original set contains more

than 1.000 questions from the SQuAD development set; the paraphrased set contains

between 2 and 3 generated paraphrased questions for each question from the original

set (Wee Chung Gan and Hwee Tou Ng, 2019).

The QA models’ performance on Dev-Para is presented in Table 1. Although the

original set of Dev-Para is semantically similar to the paraphrased set, we see a drop in

performance of all three models. Especially GPT-2 and XLNet are suffering a signifi-

cant drop in performance.

Model
EM Score F1 Score

Original Paraphrased Original Paraphrased

BERT 82.2 78.7 89.2 86.2

GPT-2 71.6 62.9 80.4 72.7

XLNet 89.4 82.6 93.7 85.3

Table 1. Performance of the QA models on Dev-Para.

6 https://github.com/huggingface/transformers

BNAIC/BeneLearn 2020 7



Evaluating the Robustness of Question-Answering Models to Paraphrased Questions 7

The drop in performance is unexpected since the meaning of the questions did not

change between the original set and the paraphrased set of Dev-Para. One possible

explanation is that the model is exploiting surface details in the original set that are not

reproduced by the protocol used to create Dev-Para. If true, this demonstrates a lack of

robustness in the models. Moreover, the added questions could be more complicated,

therefore allowing for more variability in the syntactic structure, and those questions

for which there are paraphrases are variants of more frequent questions.

3.3 Visualization Para-SQuAD

For the following continuous space exploration of Para-SQuAD, we focus on the BERT,

GPT-2, XLNet, and GloVe sentence embeddings. Each point in the space represents a

question; the 12 colours in Figure 2-5 represent the different categories. The lines in

Figure 6-9 illustrate the distance between the paraphrased question pairs. Figure 6-

9 all consist of the same amount of lines; however, some lines are difficult to see if

both paraphrased question pairs appear close to each other in the embedding space.

Paraphrased question pairs that represent the same location in the embedding space

appear as a single dot without lines. As a result, it seems that Figure 6 contains fewer

lines compared to figure 8, which is a false assumption.

Using visualization as a key evaluation method has important risks to consider. Rel-

ative sizes of clusters cannot be seen in a t-SNE plot as dense clusters are expanded,

and spare clusters are shrunk. Furthermore, distances between the separated clusters in

the t-SNE plot may mean nothing. Clumps of points in the t-SNE plot might be noise

coming from small perplexity values.

The visualization of Para-SQuAD consists of all 350 paraphrased question pairs.

We argue that the semantics of the questions occupy different locations in continuous

space. This hypothesis is tested qualitatively by manually analysing the t-SNE plots

of the models. As a sanity check, all sample points in the plots have been manually

analysed with the corresponding sentences to check for mistakes (e.g., wrong colour or

pairs).

We explore sample points within clusters to gain relevant insights. If two sample

points are far from each other in the plot, it does not necessarily imply that they are

far from each other in the embedding space. However, the number of long distances

between paraphrased question pairs, coming from different clusters, can reveal infor-

mation on the robustness of the models to recognise paraphrased question pairs and

their semantics.

Figure 2 illustrates that BERT creates clear and distinct clusters for every category;

we only observe a few errors. Most paraphrased questions are within the same cluster

and close to each other (Figure 6). Therefore, it seems that BERT can capture similar

semantic sentences effectively.

GPT-2 has trouble clustering the different categories (Figure 3). After manually

analysing the sentences in the different clusters, it seems that GPT-2 offers special at-

tention to the first tokens in the sentence. The paraphrased question pairs are close to

each other in vector space if they start with the same token. The starting token is often

the ‘question word’ in Para-SQuAD. It seems that GPT-2 organises questions by their

structure instead of their semantics.

BNAIC/BeneLearn 2020 8
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Fig. 2. BERT sentence embeddings. Fig. 3. GPT-2 sentence embeddings.

Fig. 4. XLNet sentence embeddings. Fig. 5. GloVe sentence embeddings.

Fig. 6. BERT sentence embeddings. Fig. 7. GPT-2 sentence embeddings.

Fig. 8. XLNet sentence embeddings. Fig. 9. GloVe sentence embeddings.
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XLNet forms one large cluster, with smaller clusters within (Figure 4). However,

these clusters are not that clear when compared to BERT. The different categories are

all spread out, and no apparent clusters are formed.

Figure 5 suggests that GloVe clusters the different categories more effectively than

GPT-2 and XLNet, despite using static embeddings. This finding is interesting, since

contextualised embedding are thought to be superior compared to traditional static em-

beddings. At the same time, the paraphrased questions that appear close to each other in

Figure 9 have similar words in the sentence and can be considered as easy paraphrases.

GloVe is unable to recognise more complex paraphrases, which can be explained by the

model’s architecture and not providing contextualised embeddings.

Model Average Cosine Similarity

BERT 0.875

BERT (fine-tuned) 0.939

GPT-2 0.987

XLNet 0.981

Table 2. Average cosine similarity of the QA models.

In this paper, we use the cosine similarity to measure the closeness between para-

phrased question pairs. For each model, we calculate the average cosine similarity for all

the paraphrased question pairs in Para-SQuAD to see if the fine-tuned models perform

better than the pre-trained models (Table 2). Calculating the average cosine similarity

was only relevant for comparing the pre-trained BERT and the fine-tuned BERT. The

cosine similarity of the fine-tuned BERT increased with 7.3%. The plots of the fine-

tuned models reveal no interesting findings; therefore, we only illustrate the sentence

embeddings of the basic pre-trained models.

The average cosine similarity of GPT-2, as illustrated in Table 2, is almost perfect.

However, after further investigating the cosine similarity between all paraphrased ques-

tion pairs, we notice that even two semantically dissimilar sentences have a high cosine

similarity. Therefore, this high average reveals extreme anisotropy in the last layers

of GPT-2; sentences occupying a tight space in the vector space. We also notice the

same effect in XLNet. We can, therefore, suggest that GPT-2 and XLNet are the most

context-specific models. This observation is in line with the work of Kawin Ethayarajh

(2019).

4 Related Work

Recent research on deep language models and transformer architectures (Vaswani et

al., 2017) has demonstrated that context embeddings in transformer models contain

sufficient information to perform various NLP tasks with simple classifiers, such as

question answering (Tenney et al., 2019; Peters et al., 2018). They suggest that these

models produce valuable representations of both syntactic and semantic information.

BNAIC/BeneLearn 2020 10
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Attention matrices can encode significant connections between words in a sentence, as

illustrated with qualitative and visualization-based work by Jesse Vig (2019). Multiple

tests to measure how effective word embeddings capture syntactic and semantic infor-

mation is defined in the work of Mikolov et al. (2013). Furthermore, the recent work of

Hewitt et al. (2019) analysed context embeddings for specific transformer models.

Sentence embeddings can be helpful in multiple ways, analogous to word embed-

dings. Common proposed methods are: InferSent (Conneau et al., 2017), Skip-Thought

(Kiros et al., 2015) and Universal Sentence Encoder (USE) (Cer et al., 2018). Hill et

al. (2016) prove that training sentence embeddings on a specific task, such as question

answering, impact their quality significantly.

Conneau et al. (2018) presented probing tasks to evaluate sentence embeddings in-

trinsically. Evaluation of sentence embeddings happens most often in ’transfer learning’

tasks, e.g., question type prediction tasks. The study measures to what degree linguistic

features, like word order or sentence length, are accessible in a sentence embedding.

This study was continued with SentEval (Alexis Conneau and Douwe Kiela, 2018),

which serves as a toolkit to evaluate the quality of sentence embeddings. This qual-

ity is measured both intrinsically and extrinsically. SentEval proves that no sentence

embedding technique is flawless across all tasks (Perone et al., 2018).

Recently, numerous QA datasets have been published (e.g., Rajpurkar et al., 2016;

Rajpurkar et al., 2018). However, defining a suitable QA task and developing method-

ologies for annotation and evolution is still challenging (Kwiatkowski et al., 2019). Key

issues include the metrics used for evaluation and the methods and sources used to

obtain the questions.

Our analysis focuses on three specific transformer models; however, there are nu-

merous transformer models available. Other notable transformer models are XLM (Lam-

ple et al., 2019) and ELECTRA (Clark et al., 2020). Recent papers have focused on

generalisability by evaluating different models on several datasets (Priyanka Sen and

Amir Saffari, 2020), but not for paraphrasing specifically.

5 Conclusion

This paper presents an initial exploration of how QA models handle paraphrased ques-

tions. We used two different datasets and performed tests on each dataset. Firstly, we

used an existing paraphrased test set (Dev-Para) to test the QA models’ robustness to

paraphrased questions. The results demonstrate that all three QA models drop in perfor-

mance when exposed to more unseen paraphrased questions. The drop in performance

could be explained by exposing the models to new paraphrased questions that devi-

ate from the original SQuAD questions. The experiments underline the importance of

improving QA models’ robustness to question paraphrasing to generalise effectively.

Moreover, increased robustness is necessary to increase the reliability and consistency

of the QA models when tested on unseen questions in real-life world applications.

Secondly, we constructed a paraphrased evaluation set (Para-SQuAD) based on

SQuAD to illustrate interesting insights into QA models handling paraphrased ques-

tions. The findings reveal that BERT creates the most promising and informative sen-

tence embeddings and seems to capture semantic information effectively. The other
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models, however, seem to fail in recognising paraphrased question pairs effectively and

lack robustness.

5.1 Discussion

The models’ drop in performance on Dev-Para is unexpected. We hypothesise that the

original SQuAD training set does not consist of enough diverse question paraphrases.

This lack of variation leads to the QAmodels not learning to answer different questions,

that have the same intention and meaning, correctly. The QA models fail to recognise

some questions that convey the same meaning using different wording. Exposing the

QA models to more different question phrases would be a logical step to improve the

QA models’ robustness to question paraphrasing.

Generating paraphrases and recognizing paraphrases are still critical challenges

across multiple NLP tasks, including question answering and semantic parsing. A rel-

atively robust and diverse source for generating paraphrases is through neural machine

translation. We can make larger datasets consisting of paraphrased questions with the

help of machine translation: the question is translated into a foreign language and then

back-translated into English. This back-translation approach achieved remarkable re-

sults in diversity compared to paraphrases created by human experts (Federmann et al.,

2019).

5.2 Limitations

One limitation of the performed experiments is the small size of Para-SQuAD. Increas-

ing Para-SQuAD with data augmentation could be achieved with the use of neural

machine translation to generate more paraphrases. Increasing the size of Para-SQuAD

would lead to more reliable results, but we would lose the advantage of keeping the data

distribution intact.

Another downside is the simplicity of Para-SQuAD. The paraphrases used are rel-

atively simple and basic. Therefore, models achieving excellent results on the set does

not guarantee their robustness to question paraphrases.

In general, there is no inter-annotator agreement measure to ensure consistent anno-

tations because we only have one annotator. However, we consider this justified due to

the simple task of selecting paraphrased question pairs in the SQuAD development set.

Using visualization as the primary evaluation method has its risks. A common pitfall

includes pareidolia; to see structures and patterns that we would like to see. As an

example, we can see that BERT forms clear clusters that are known to us; however,

other models could form divergent cluster structures to represent patterns. We could,

therefore, easily overlook those cluster structures that are unfamiliar to us. Furthermore,

clusters can disappear in the t-SNE transformation.

Lastly, with the performed method, it is hard to distinguish whether BERT recog-

nizes the actual semantics of the questions or merely the Wikipedia extracts. Further

research is needed to investigate this distinction.
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Abstract. We propose a novel pruning method which uses the oscil-
lations around 0 (i.e. sign flips) that a weight has undergone during
training in order to determine its saliency. Our method can perform
pruning before the network has converged, requires little tuning effort
due to having good default values for its hyperparameters, and can di-
rectly target the level of sparsity desired by the user. Our experiments,
performed on a variety of object classification architectures, show that it
is competitive with existing methods and achieves state-of-the-art per-
formance for levels of sparsity of 99.6% and above for 2 out of 3 of the
architectures tested. For reproducibility, we release our code publicly at
https://github.com/AndreiXYZ/flipout.

Keywords: deep learning · network pruning · computer vision.

1 Introduction

The success of deep learning is motivated by competitive results on a wide range
of tasks ([3,9,24]). However, well-performing neural networks often come with the
drawback of a large number of parameters, which increases the computational
and memory requirements for training and inference. This poses a challenge
for deployment on embedded devices, which are often resource-constrained, as
well as for use in time sensitive applications, such as autonomous driving or
crowd monitoring. Moreover, costs and carbon dioxide emissions associated with
training these large networks have reached alarming rates ([21]). To this end,
pruning has been proven as an effective way of making neural networks run more
efficiently ([5,6,13,15,18]).

Early works ([6,13]) have focused on using the second-order derivative to
detect which weights to remove with minimal impact on performance. However,
these methods either require strong assumptions about the properties of the
Hessian, which are typically violated in practice, or are intractable to run on
modern neural networks due to the computations involved.

One could instead prune the weights whose optimum lies at or close to 0
anyway. Building on this idea, the authors of [5] propose training a network until

⋆ Supported by BrainCreators B.V.
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convergence, pruning the weights whose magnitudes are below a set threshold,
and allowing the network to re-train, a process which can be repeated iteratively.
This method is improved on in [4], whereby the authors additionally reset the
remaining weights to their values at initialization after a pruning step. Yet, these
methods require re-training the network until convergence multiple times, which
can be a time consuming process.

Recent alternatives either rely on methods typically used for regularization
([17,18,26]) or introduce a learnable threshold, below which all weights are
pruned ([16]). All these methods, however, require extensive hyperparameter
tuning in order to obtain a favorable accuracy-sparsity trade-off. Moreover, the
final sparsity of the resulting network cannot be predicted given a particular
choice of these hyperparameters. These two issues often translate into the fact
that the practitioner has to run these methods multiple times when applying
them to novel tasks.

To summarize, we have seen that the pruning methods presented so far suffer
from one or more of the following problems: (1) computational intractability, (2)
having to train the network to convergence multiple times, (3) requiring extensive
hyperparameter tuning for optimal performance and (4) inability to target a
specific final sparsity.

We note that by using a heuristic in order to determine during training
whether a weight has a locally optimal value of low magnitude, pruning can be
performed before the network reaches convergence, unlike the method proposed
by the authors of [5]. We propose one such heuristic, coined the aim test, which
determines whether a value represents a local optimum for a weight by monitoring
the number of times that weight oscillates around it during training, while also
taking into account the distance between the two. We then show that this can be
applied to network pruning by applying this test at the value of 0 for all weights
simultaneously, and framing it as a saliency criterion. By design, our method is
tractable, allows the user to select a specific level of sparsity and can be applied
during training.

Our experiments, conducted on a variety of object classification architectures,
indicate that it is competitive with respect to relevant pruning methods from
literature, and can outperform them for sparsity levels of 99.6% and above.
Moreover, we empirically show that our method has default hyperparameter
settings which consistently generate near optimal results, easing the burden of
tuning.

2 Method

2.1 Motivation

Mini-batch stochastic gradient descent ([2]) is the most commonly used optimiza-
tion method in machine learning. Given a mini-batch of B randomly sampled
training examples consisting of pairs of features and labels {(xb, yb)}

B
b=1

, a neural
network parameterised by a weight vector θ, a loss objective L(θ,x,y) and a
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Fig. 1: Over- and under-shooting illustrated. The vertical line splits the x-axis into
two regions relative to the (locally-)optimal value θ∗j . Overshooting corresponds
to when a weight gets updated such that its new value lies in the opposite region
(blue dot), while undershooting occurs when the updated value is closer to the
optimal value, but stays in the same region (green dot).

learning rate η, the update rule of stochastic gradient descent is as follows:

gt =
1

B

B∑

b=1

∇θtL(θt, xb, yb)

θt+1 ← θt − ηgt

Given a weight θtj , one could consider its possible values as being split into two
regions, with a locally optimal value θ∗j as the separation point. Depending on

the value of the gradient and the learning rate, the updated weight θt+1

j will lie
in one of the two regions. That is, it will either get closer to its optimal value
while remaining in the same region as before or it will be updated past it and
land in the opposite region. We term these two phenomena under- and over-
shooting, and provide an illustration in Fig. 1. Mathematically, they correspond
to η|gtj | < |θ

t
j − θ∗j | and η|gtj | > |θ

t
j − θ∗j |, respectively.

With the behavior of under- and over-shooting, one could construct a heuristic-
based test in order to evaluate whether a weight has a local optimum at a specific
point without needing the network to have reached convergence:

1. For a weight θj , a value of φj is chosen for which the test is conducted
2. Train the model regularly and record the occurrence of under- and over-

shooting around φj after each step of SGD
3. If the number of such occurrences exceeds a threshold κ, conclude that θj

has a local optimum at φj (i.e. θ∗j = φj)

We coin this method the aim test.
Previous works have demonstrated that neural networks can tolerate high

levels of sparsity with negligible deterioration in performance ([4,5,16,18]). It is
then reasonable to assume that for a large number of weights, there exist local
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(a) Deceitful observations of under-shooting.(b) Deceitful observations of over-shooting.

Fig. 2: In the plots above, the dotted vertical line represents the value at which
the aim test is conducted (i.e. a value we would like to determine as a local
optimum or not), while the red dot represents the value of a true local optimum.
When testing for a value which is not a locally optimal value φj 6= θ∗j , over-
or under-shooting around φj can be merely a side-effect of that weight getting
updated towards its true optimum θ∗j . These observations would then contribute
towards the aim test returning a false positive outcome, i.e. φj = θ∗j . Whether we
observe an over-shoot or an under-shoot in this case depends on the relationship
between φj and θ∗j . In (a), we have φj > θ∗j , where if the hypothesised and true
optimum are sufficiently far apart, we observe an under-shoot. Conversely, in (b),
we have φj < θ∗j and observe over-shooting.

optima at exactly 0, i.e. θ∗j = 0. One could then use the aim test to detect these
weights and prune them. Importantly, when using the aim test for φj = 0, the
two regions around the tested value are the set of negative and positive real
numbers, respectively. Checking for over-shooting then becomes equivalent to
testing whether the sign of θj has changed after a step of SGD, while under-
shooting can be detected when a weight has been updated to a smaller absolute
value and retained its sign, i.e. (|θt+1

j | < |θtj |) ∧ (sgn(θtj) = sgn(θt+1

j )).
However, under-shooting can be problematic; for instance, a weight could be

updated to a lower magnitude, while at the same time being far from 0. This can
happen when a weight is approaching a non-zero local optimum, an occurrence
which should not contribute towards a positive outcome of the aim test. By
positive outcome, we refer to determining that φj = 0 is indeed a local optimum
of θj . A similar problem can occur for over-shooting, where a weight receives
a large update that causes it to change its sign but not lie in the vicinity of
0. These scenarios, which we will refer to as deceitful shots going forward, are
illustrated in the general case, where φj can take any value, in Fig. 2a and Fig.
2b. Following, we make two observations which help circumvent this problem.

Firstly, one could reduce the impact of deceitful shots by also taking into
account the distance of the weight to the hypothesised local optimum, i.e. |θj−φj |,
when conducting the aim test. In other words, the number of occurrences of under-

BNAIC/BeneLearn 2020 18



FlipOut: Uncovering Redundant Weights via Sign Flipping 5

and over-shooting should be weighed inversely proportional to this quantity, even
if they would otherwise exceed κ.

Our second observation is that by ignoring updates which are not in the
vicinity of φj , the number of deceitful shots are reduced. In doing so, one could
also simplify the aim test; with a sufficiently large perturbation to θj , an update
that might otherwise cause under-shooting can be made to cause over-shooting.
Adding a perturbation of ±ǫ is, in effect, inducing a boundary around the tested
value, [φj − ǫ, φj + ǫ]; all weights that get updated such that they fall into that
boundary will be said to over-shoot around φj . With this framework, checking
for over-shooting is sufficient; updates that under-shoot and are within ǫ of the
tested value are made to over-shoot (Fig. 3a) and updates which under-shoot
but are not in the vicinity of φj , i.e. a deceitful shot, are now not recorded at all
(Fig. 3b). This can also be seen as restricting the aim test to only operate within
a vicinity around φj .

2.2 FlipOut: applying the aim test for pruning

Determining which weights to prune Pruning weights that have local
optima at or around 0 can obtain a high level of sparsity with minimal degradation
in accuracy. The authors of [5] use the magnitude of the weights once the network
is converged as a criterion; that is, the weights with the lowest absolute value
(i.e. closest to 0) get pruned. The aim test can be used to detect whether a point
represents a local optimum for a weight and can be applied before the network
reaches convergence, during training. For pruning, one could then apply the aim
test simultaneously for all weights with φ = 0 . We propose framing this as a
saliency score; at time step t, the saliency τ tj of a weight θtj is:

τ tj =
|θtj |

p

flipstj
(1a)

flipstj =
t−1∑

i=0

[sgn(θij) 6= sgn(θi+1

j )] (1b)

With perturbation added into the weight vector, it is enough to check for over-
shooting, which is equivalent to counting the number of sign flips a weight has
undergone during the training process when φj = 0 (Eq. 1b); a scheme for adding
such perturbation is described in Section 2.2. In Equation 1a, the denominator
|θtj |

p represents the proximity of the weight to the hypothesised local optimum,
|θtj −φj |

p (which is equivalent to the weight’s magnitude since we have φj = 0 for
all weights). The hyperparameter p controls how much this quantity is weighted
relative to the number of sign flips.

When determining the amount of parameters to be pruned, we adopt the
strategy from [4], i.e. pruning a percentage of the remaining weights each time,
which allows us to target an exact level of sparsity. Given m, the number of times
pruning is performed, r the percentage of remaining weights which are removed
at each pruning step, k the total number of training steps, dθ the dimensionality
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(a) Under-shooting can become over-
shooting by adding perturbation.

(b) Ignoring deceitful shots.

Fig. 3: (a) All weights that under-shoot but are within ǫ of φj will be made to
over-shoot. (b) When testing at a value which is not a local optimum for θj ,
i.e. φj 6= θ∗j and adding a perturbation ǫ to θj , not taking under-shooting into
account means that if the weight gets updated such that it does not lie in the
boundary around φj induced by the perturbation, an event that would otherwise
contribute to a false positive outcome for the aim test will not be recorded, so
the likelihood of rejecting φj as an optimum increases.

of the weights and || · ||0 the L0-norm, the resulting sparsity s of the weight tensor
after training the network is simply:

s = 1−
||θk||0
dθ

= (1− r)m (2)

This final sparsity can then be determined by setting m and r appropriately.

Perturbation through gradient noise Adding gradient noise has been shown
to be effective for optimization ([19,25]) in that it can help lower the training
loss and reduce overfitting by encouraging an exploration in the parameter
space, thus effectively acting as a regularizer. While the benefits of this method
are helpful, our motivation for its usage stems from allowing the aim test to
be performed in a simpler manner; weights that get updated closer to 0 will
occasionally pass over the axis due to the injected noise, thus making checking
for over-shooting sufficient. We scale the variance of the noise distribution by
the L2 norm of the parameters θ, normalize it by the number of weights and
introduce a hyperparameter λ which scales the amount of noise added into the
gradients. For a layer l and dl its dimensionality, the gradient for the weights in
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that layer used by SGD for updates will be:

ĝt,l ← gt,l + λǫt,l (3a)

ǫt,l ∼ N (0, σ2
t,l) (3b)

σ2
t,l =

‖θt,l‖22
dl

(3c)

As training is performed, it is desirable to reduce the amount of added noise
so that the network can successfully converge. Previous works use annealing
schedules by decaying the variance of the Gaussian distribution proportional
to the current time step. Under our proposed formulation, however, explicitly
using an annealing schema is not necessary. By pruning weights, the term in the
numerator in Eq. 3c decreases, while the denominator remains constant. This
ensures that annealing will be induced automatically through the pruning process,
and there is no need for manually constructing a schedule.

Pruning periodically throughout training according to the saliency score in
Eq. 1a in conjunction with adding gradient noise into the weights forms the
FlipOut pruning method.

3 Related work

3.1 Deep-R

In Deep-R ([1]), the authors split the weights of the neural network into two
matrices, the connection parameter θk and a constant sign sk with sk ∈ {−1,+1};
the final weights of the network are then defined as θ⊙ s. The connections whose
θk is negative are inactive; whenever a connection changes its sign, it is turned
dormant and another randomly sampled connection is re-activated, ensuring the
same sparsity level is maintained throughout training. Gaussian noise is also
injected into the gradients during training.

Two similarities with our method can be observed here, namely the fact
that the authors also use sign flipping as a signal for pruning a weight, and the
addition of Gaussian noise. However, our methods differ in that we do not impose
a set level of sparsity throughout training; instead, we use the number of sign
flips of a weight in order to determine its saliency, while in Deep-R a single sign
flip is required for a weight to be removed. Our method of injecting noise into the
gradients also differs in that it does not explicitly encode an annealing scheme,
allowing for the pruning process itself to reduce the noise throughout training.
Finally, in Deep-R, the network is initialized with a specific level of sparsity
which is maintained throughout training, while our method prunes gradually.

3.2 Magnitude and uncertainty pruning

The M&U pruning criterion is proposed in [11]. Given a weight θj , its uncertainty
estimate σ̃θj and a parameter λ controlling the trade-off between magnitude and
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uncertainty, the M&U criterion will evaluate the saliency of the weight as:

τj =
|θj |

λ+ σ̃θj

Uncertainty is estimated as the standard deviation across the previous n values
of that weight, via a process called pseudo-bootstraping. This criterion is a
generalization of the Wald test, and is equivalent to it when λ = 0.

Our method is similar in that our saliency score also normalizes the weight’s
magnitude by a function of its past values. However, this method assumes
asymptotic normality. While this is the case when using negative log-likelihood or
an equivalent as the loss function, this property does not necessarily hold when
using modified variants of the SGD estimator, such as Adam ([10]) or RMSprop
([22]). In contrast, FlipOut is not derived from the Wald test and does not make
any assumptions about the weight distribution at convergence.

4 Experiments

4.1 General Setup

Baselines As baselines, we consider a slightly modified version of magnitude
pruning ([5]) (Global magnitude), due to the similarity between its saliency
criterion and that of our own method, SNIP ([14]) due to it being an easily
applicable method which does not suffer from any of the issues that are commonly
found in pruning methods (Section 1) and Hoyer-Square, as introduced in [26],
for the state-of-the-art results that it has demonstrated. We also include random
pruning (Random) as a control. For FlipOut, Global magnitude and Random,
pruning is performed periodically throughout training. We compare these methods
at five different compression ratios, chosen at regular log-intervals (Table 1); for
Hoyer-square, the performance at those points is estimated by a sparsity-accuracy
trade-off curve. Magnitude pruning, in its original formulation, performs pruning
only once the network has reached convergence. However, employing this strategy
can create a confounding variable: training time. Since we would like to compare
all methods at equal training budgets, we have opted to simply perform pruning
after a fixed number of epochs for these methods. Note that the training budget
that we allocate allows all of the networks that we consider to reach convergence
when trained without performing any pruning. We make an exception to this
equal budget rule for Hoyer-Square, since it prunes after training and would
otherwise not benefit from any SGD updates after sparsification. As such, we
have performed an additional 150 epochs of fine-tuning without the regularizer,
as per the original method, although we have observed negligible benefits to this.
All baselines were modified to rank the weights globally when a pruning decision
is made, as per the strategy from [4], in order to avoid creating bottleneck layers.
The models that we test on are ResNet18 ([7]) and VGG19 ([20]) trained on the
CIFAR-10 dataset ([12]), and DenseNet121 ([9]) trained on Imagenette ([8]).
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Table 1: Compression ratios, resulting sparsity levels and prune frequencies used in
the experiments, assuming 350 epochs of training and that 50% of the remaining
weights are removed at each step.

Compression ratio ( dθ

||θ||0
) Resulting sparsity (1− ||θ||0

dθ
) Epochs before pruning

2
2

75% 117

2
4

93.75% 70

2
6

98.43% 50

2
8

99.61% 39

2
10

99.9% 32

Hyperparameters The training parameters for all experiments are taken from
[23]; specifically, we use a learning rate of 0.1, batch size of 128, 350 epochs of
training and a weight decay penalty of 5e− 4. The learning rate is decayed by
a factor of 10 at epochs 150 and 250. The networks are trained with the SGD
optimizer with a momentum value of 0.9 ([2]). For the methods that perform
iterative pruning (Global magnitude, Random, FlipOut), we remove 50% of the
remaining weights at each pruning step, with the pruning frequencies chosen
such that the compression ratios from Table 1 are achieved; we use the same
pruning rates and frequencies across all three methods. SNIP accepts a single
hyperparameter, namely the desired final sparsity, which we have chosen such
that it matches the aforementioned compression ratios. For Hoyer-Square, which
does not allow for a specific level of sparsity to be chosen and, instead, relies on
parameter tuning, we generate a sparsity-accuracy trade-off curve by using 15
different values for the regularization term, ranging from 1e− 7 to 6e− 3 with 3
values at each decimal point (e.g. 1e− 7, 3e− 7, 6e− 7, 1e− 6 etc.) and a fixed
pruning threshold of 1e− 4. Finally, for FlipOut, we use the values of p = 2 (Eq.
1) and λ = 1 (Eq. 3) for all experiments, a choice we motivate in Section 4.2.

4.2 Choosing the hyperparameters for FlipOut

We have experimented with different values of the two hyperparameters and
found that p = 2 (Eq. 1a) and λ = 1 (Eq. 3a) offer consistent, strong results for
all networks tested. In the following paragraphs, we detail the procedure used in
determining these values.

Choosing λ For λ, we have run all networks at 15 different values, ranging from
0.75 to 1.5 in increments of 0.05. The value of p = 2 was used. The networks are
evaluated on a validation set, created by removing a random subset of samples
from the training set. The size of the validation set was 10000 for CIFAR10 and
2000 for Imagenette. For our subsequent experiments, (Sections 4.3 and 4.4),
the networks have been trained on the full training set. As a metric, we have
used the accuracy of the networks at the end of training for the sparsity levels of
93.75% and 99.9%. We provide in Table 2 the accuracies generated by the optimal
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Table 2: Accuracies when using the best value of λ discovered by grid search and
the value of λ = 1 at two levels of sparsity. The parantheses indicate the gain
offered by the optimal parameter.

Acc. at sparsity 93.75% Acc. at sparsity 99.9%

Model λ∗ λ = 1 λ∗ λ = 1

ResNet18 94.58(+0.02) 94.56 83.75(+1.68) 82.07
VGG19 93.07(+0.11) 92.96 87.72(+0.48) 87.24
DenseNet121 89.75(+0.0) 89.75 73.5(+1.45) 72.05

Table 3: Table of results for different values of p at two levels of sparsity.

Acc. at sparsity 93.75% Acc. at sparsity 99.9%

Model p = 0 p =
1

2
p = 1 p = 2 p = 4 p = 0 p =

1

2
p = 1 p = 2 p = 4

ResNet18 93.71 88.39 94.18 94.26 94.11 72.69 77.08 79.83 82.07 83.15

VGG19 91.68 82.44 92.56 92.96 92.57 81.48 80.69 86.01 87.24 86.64
DenseNet121 10.35 77.40 88.9 89.75 88.86 10.35 10.35 70.85 72.05 60.55

value of λ, as discovered through this process, and the ones generated at λ = 1.
Notice that the differences are almost negligible at 93.75% sparsity. For the larger
sparsity level the disparity increases, although the default value still remains
within 2 percentage points of the optimum value for all networks considered. The
largest gap can be seen for ResNet18 and DenseNet121, at approximately 1.7
and 1.5 percentage points, respectively. Since there are only two out of six cases
in which optimizing λ has helped beyond a negligible amount, we have used the
value of 1 for this hyperparameter throughout our experiments.

Choosing p We perform similar experiments for p on five values, p ∈ {0, 1

2
, 1, 2, 4}.

Note that the value of p = 0 corresponds to the case when the magnitudes of the
weights are not taken into account; that is, the pruning decisions will be made
solely based on the number of sign flips. As can be seen in Table 3, the value
of p = 2 consistently outperforms all other tested values, with the exception of
ResNet18 at 99.9% sparsity, for which the value of p = 4 achieves better results
by approximately 1 percentage point. Another interesting observation is that
the values of 1, 2 and 4 tend to perform better than 0 and 1

2
; we conjecture

that this is due to the fact that deceitful shots (Section 2.1) occur when not
taking into account the distance between the weight and its hypothesised local
optimum, which have a negative impact on the pruning decision. This can be
especially observed at the higher sparsity level and in the case of DenseNet121,
where pruning with p = 0 causes the network to not perform better than random
guessing. Given that the value of p = 2 is favored in 5 out of 6 cases, we have
decided to use it as a default value in our subsequent experiments.
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(a) ResNet18 on CIFAR10 (b) VGG19 on CIFAR10

(c) DenseNet121 on Imagenette

Fig. 4: Results of pruning ResNet18 and VGG19 on the CIFAR10 dataset. Each
point is averaged over 3 runs; error bars indicate standard deviation.

4.3 Comparison to baselines

The results for the three models tested are found in Figure 4. FlipOut obtains
state-of-the-art performance on ResNet18 and VGG19 for sparsity levels of 99.61%
and beyond. For the highest tested sparsity level, it outperforms the second-best
method by 1.9 and 4.5 percentage points, respectively (Fig. 4a, 4b). Notably,
when using FlipOut on VGG19 for this sparsity, the drop in accuracy compared
to the unpruned model is only 6.2 percentage points. At the same time, it remains
competitive with other baselines for lower degrees of sparsity, staying within a 1
percentage point difference compared to the best method and with a minimal
drop relative to the unpruned model. For DenseNet121, however, Hoyer-Square
dominates all other methods tested in most cases (Fig. 4c), with FlipOut as
second best for the highest sparsity level.

Interestingly, the simple criterion of magnitude pruning, when modified to rank
the weights globally instead of a layer-by-layer basis, is competitive with other,
more recent, baselines, and even obtains state-of-the-art results for moderate
levels of sparsity. However, at high levels of sparsity, which correspond to more
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frequent and implicitly earlier pruning steps (Table 1) there is a performance
degradation. This suggests that the magnitude of a weight by itself is not a good
measure of saliency when the network is far from reaching convergence. It is also
worth noting that SNIP collapses at high levels of sparsity, causing the network
to perform no better than random guessing. Upon inspecting these cases (not
shown for visibility) we noticed that at least one layer has been entirely pruned,
effectively blocking any signal from passing. Interestingly, this does not happen
for any of the other baselines (except for Random). We conjecture that this
collapse as well as the cases where SNIP performs worse than random pruning
(Fig. 4b) are a result of pruning at initialization; pruning too too early can cause
the saliency criterion to be inaccurate, but also impedes training in and of itself.

During our experiments, we empirically observed that Hoyer-Square requires
extensive hyperparameter tuning for optimal performance. Our method, however,
has strong default values and can also target the final sparsity directly, while
also not requiring additional epochs of fine-tuning. Finally, SNIP, the only other
baseline which does not suffer from any of the issues commonly found among
pruning methods (Section 1) compromises on performance for high levels of
sparsity, whereas FlipOut does not.

4.4 Is it just the noise?

The performance of FlipOut could simply be a result of the noise addition,
which is known to aid optimization ([19,25]). To investigate this, we perform
experiments with global magnitude as the pruning criterion in which we add
noise into the gradients using the recipe from Equation 3c and compare it to our
own method. Notably, the saliency criterion of these two methods differ only in
that FlipOut normalizes the magnitude by the number of sign flips (denominator
in Eq. 1a). The hyperparameters were kept at their default values of p = 2 for
FlipOut and λ = 1 for both methods. We also include runs of FlipOut where no
noise was added (i.e. λ = 0). These serve as a control, decoupling the two novel
components of our method: noise addition and scaling magnitudes by the number
of sign flips. The same pruning rates and frequency of pruning steps have been
used as before (Table 1). The results are illustrated in Fig. 5.

For sparsity levels up to 98.44%, adding gradient noise causes a slight deterio-
ration on performance, as can be seen by the fact that both global magnitude and
FlipOut with λ = 0 outperform their noisy counterparts. It can also be seen that
FlipOut with λ = 1 performs comparably to noisy global magnitude, indicating
that measuring saliency by sign flips does not benefit accuracy in these regimes
compared to using only the magnitude, and the performance gap between the
noisy and non-noisy methods is likely a result of noise addition. For sparsity
levels of 99.61% and above, however, the opposite is true. It seems that gradient
noise disproportionately benefits networks with a small number of remaining
parameters; we conjecture that this is due to the fact that the exploration in
parameter space induced by noise is more effective when that space is heavily
constrained. Focusing on the highest level of sparsity, FlipOut outperforms noisy
global magnitude on VGG19 (Fig. 5b) and DenseNet121 (Fig. 5c) by 1.2 and
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(a) ResNet18 on CIFAR10 (b) VGG19 on CIFAR10

(c) DenseNet121 on Imagenette

Fig. 5: Results of the ablation study on the noise. Each point is averaged over 3
runs. Global magnitude without adding noise is also shown for comparison.

8.2 percentage points, respectively, while being outperformed by 0.8 percentage
points on ResNet18 (Fig. 5a). The standard deviation of FlipOut at this point is
lower than for noisy global magnitude for all networks tested, making it more
robust to initial conditions and the noise sampling process. At this level, the
addition of gradient noise to FlipOut also shows performance boosts compared
to its non-noisy counterpart, namely 9.3 percentage points for ResNet18, 3.2 for
VGG19 and 3.7 for DenseNet121. The benefits caused by adding noise to global
magnitude as compared to adding it to FlipOut are similar for VGG19; however,
it is relatively small for ResNet18 at 2.6 percentage points and even causes a 2
percentage point drop in performance for DenseNet121.

Since FlipOut with λ = 1 outperforms noisy global magnitude in 2 out of 3
cases for the highest level of sparsity while maintaining similar performance in all
other cases as well as being less sensitive to the choice of seed, we conclude that
its results cannot be explained only by the addition of noise and is also caused
by the sign flips being taken into account when computing saliency.
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Additionally, we conjecture that occurrences of under-shooting are indeed
converted into over-shooting when adding gradient noise, allowing FlipOut to
more accurately compute saliencies. This is evidenced by the fact that gradient
noise addition benefits FlipOut more so than it does global magnitude, and
implies that our method of dealing with deceitful shots is sound.

5 Discussion

In this work, we introduce the aim test, a general method for determining whether
a point represents a local optimum for a weight during training, and propose
using it for pruning by applying the test for all weights simultaneously and
framing it as a saliency criterion. This method, coined FlipOut, demonstrates
several desirable qualities: it is computationally tractable, allows for an exact
level of sparsity to be selected, requires a single training run and has default
hyperparameter settings which generate near optimal results, easing the burden
of hyperparameter search.

We compare the performance of FlipOut to relevant baselines from literature
on a variety of object classification architectures. We show that it achieves state-
of-the-art performance at the highest levels of sparsity tested for 2 out of 3
networks, and maintains competitive performance in less sparse regimes. Finally,
we conduct an ablation study on the two components of our algorithm, gradient
noise addition and the saliency criterion, and find that both play an important
role in yielding this performance performance.
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Abstract. Human emotion detection has received increasing attention over the last decades for a variety of applica-

tions and systems. However, detecting the intensity of the expressed emotion has not been investigated as much as

detecting the type of the expressed emotion. To fill this gap, we investigate the utility of different facial and speech

features for emotion intensity detection. To this end, we designed different Deep Neural Network based models and

applied them to the RAVDESS dataset. Obtained results show that speech signal features are better indicators of

emotion intensity than facial features. However, in the absence of speech signals, finding emotion intensity by facial

expressions is more accurate for males in comparison to females.

The difference between the accuracy of emotion intensity detection for two genders motivated us to use speech sig-

nals for the gender detection task. The obtained results confirm that the proposed model achieves higher accuracy in

emotion intensity detection and is more robust in gender detection than the state-of-the-art.

Keywords: Emotion Intensity Detection · Gender Detection · Deep Learning.

1 INTRODUCTION

Detecting human emotions is crucial in developing cognitive and adaptive behaviors for artificial intelligent systems,

robots, and (virtual) agents. Emotion detection is the ability to recognize another’s affective state, which typically

involves the integration and analysis of human expressions through different modalities, like facial expression, speech,

body movements, and gestures [5]. Mehrabian [21] showed 55% of human emotions are conveyed through facial

expression and 38% through speech, therefore, facial and speech emotion recognition received significant attention

during the last decades. Although finding the type of expressed emotion is essential to adapt to a user’s affective state,

it is not enough, and a difference in intensity has been proven to be important to distinguish different emotional states

[13]. For instance, a polite smile versus embarrassed smile [1] and posed versus spontaneous smile are separable by

differences in their expression intensities [7]. Since there is not much research on emotion intensity detection, in the

following sections, the state-of-the-art in speech emotion recognition and facial emotion recognition are discussed.

1.1 Speech Emotion Recognition (SER)

The effect of emotions can be seen in both acoustic characteristics and lexical content of speech. Some examples of

acoustic features are Mel-Frequency Cepstral Coefficients (MFCC), energy, jitter, and shimmer, which are known as

Low-Level Descriptors (LLDs) [14] 1. Some examples of lexical features are the presence/absence of word stems,

and bag-of-words sentiment categories [28]. However, when the linguistic content is not emotionally rich, recognizing

emotion from the transcript is very difficult [28], thus, in this study, our focus is on the acoustic characteristics for

recognizing the emotion intensity.

In traditional SER methods, the acoustic features are first extracted and then different machine learning algorithms

like Support Vector Machine (SVM) [23], K-nearest neighbor [15] and Hidden Markov model [26] are applied to the

obtained features to classify them into considered emotion classes. To obtain these features from utterance-level, each

signal is broken into shorter frames of 20 to 50 milliseconds, and their features, i.e., frame-level features, are extracted.

However, emotional contents are not in static values of these features but are in their temporal variations. Thus, different

statistical functions, e.g., minimum, maximum, mean, variance, linear regression coefficients, etc., are applied to these

1 Some other investigated acoustic characteristics, i.e., LLDs, are zero-crossing rate, duration, and higher-order formants, Mel-

filterbank features, spectral features, formant locations/bandwidths, perceptual linear prediction, fundamental frequency, and

pitch.
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features to illustrate their temporal variations and contours. The obtained results, afterward, are unified in a vector to

achieve utterance-level features [22].

Due to the success of deep learning in different fields like image, video, and natural language processing, the interest

in applying Deep Neural Networks (DNN) for speech emotion recognition also increased. Authors in [11] and [17]

used deep feed-forward and recurrent neural networks to learn the frame-level acoustic features, and used extreme

learning machines for the utterance-level aggregation. Mirsamadi et al. [22] used Rectified Linear Unit (ReLU) dense

layers to learn frame-level features, and Bidirectional Long Short-Term Memory (BiLSTM) recurrent layers to learn

the temporal aggregation. Neumann et al. [25] used a Convolutional Neural Network (CNN) with one convolutional

layer and one pooling layer, to learn the representation of the audio signal, and an attention layer to compute the

weighted sum of all the information extracted from different parts of the input. Lim et al. [18] transformed the speech

signal into 2D representation using Short Time Fourier Transform and sent them to concatenated CNN and LSTM

architectures without using any traditional hand-crafted features. Trigeorgis et al. [32] applied two BiLSTM layers

to balance the frame-level characterization and utterance-level aggregation and transform frame-level convolutional

features directly into continuous arousal and valence output so that the model learned direct mapping from time-

domain speech signals into the continuous model of emotion. The temporal model proposed in [12] used BiLSTM to

represent forward/backward contextual information of temporal dynamics of the speech signal and conducted a CNN

and a capsule net to learn temporal clusters and classify the extracted patterns. Mustaqeem et al. [24] obtained the

spectrogram of signals and then used CNN and LSTM to classify the speech.

1.2 Facial Emotion Recognition (FER)

Ekman [8] showed six basic emotions2 are expressed universally the same through facial muscles. He introduced the

Action Unit (AU) to indicate fundamental movements of a single or group of muscles through the facial expression

of a special emotion 3. He also defined the Facial Action Coding System (FACS) to encode the movements of these

AUs [10]. One way to recognize a facially expressed emotion is detecting the status of all individual AUs and then

analyzing the combination of the activated AUs to obtain the expressed emotion. On the other hand, promising results

of DNN based approaches in comparison with classical machine learning algorithms lead to the proposal of numerous

DNN based FER methods in the research community. For instance, Bagheri et al. [2] used facial muscle activities as

raw input for a Stacked Auto Encoder (SAE). The applied SAE returns the best combination of muscles in describing a

particular emotion, which is then sent to a Softmax layer to fulfill the multi-classification task. Liu et al [19] proposed

a sign-based DNN architecture to investigate the effect of AUs in emotion recognition. The proposed model consists of

three sequential modules, where the first module generates a complete representation of all expression-specific appear-

ance variations by a convolution layer stacked by a max-pooling layer. The second module finds the best simulation of

the combination of the AUs and the last module learns hierarchical features by Restricted Boltzmann Machines (RBM).

Finally, a linear SVM classifier is used to recognize the six basic emotions. However, AU-aware layers, in the second

module, are not able to detect all FACS in images. Pitaloka et al [27] used CNN to extract features from an input image,

which is then passed to a max-pooling layer to reduce the image size. A fully connected layer, in the end, classifies the

input image into one of the six basic emotions. However, the performance of the proposed algorithm decreases when

the dimension of the input image increases regarding the complexity of the high dimensional images.

Research on emotion intensity detection has been focused on the estimation of the intensity of Action Units (AU),

e.g., [6, 13] and FERA 20154, however, there is no conclusion about the intensity of the expressed emotion, thus, the

goal of this study is developing a model by which the intensity of the expressed emotion in a given image, speech

signal or video can be identified.

The remainder of this paper is structured as follows: the applied models, dataset, and extracted features are explained

in Section 2. Section 3 demonstrates the conducted experiments and obtained results. Finally, Section 4 concludes this

paper.

2 Happiness, sadness, fear, anger, surprise, and disgust.
3 https://imotions.com/blog/facial-action-coding-system/
4 Facial Expression Recognition and Analysis challenge
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Table 1

The architectures of the proposed DNN based models.

LSTM BiLSTM CNN

Simple Attention Simple Attention Simple BiLSTM/LSTM BiLSTM/LSTM+Attention

LSTM LSTM BiLSTM BiLSTM CNN CNN CNN

Dropout Attention Dropout Attention CNN CNN MaxPooling

Dense Dropout Dense Dropout Dropout MaxPooling CNN

Dense Dense MaxPooling Flatten MaxPooling

Flatten BiLSTM/LSTM Flatten

Dense Dense BiLSTM/LSTM

Dense Attention

Dropout

Dense

2 METHODOLOGY

2.1 Applied Models

Table 1 shows the number, type, and order of layers of proposed models that are applied to fulfill the emotion intensity

detection task. The parameter settings are as follows: convolution layers are all 1D and have 64 filters and kernel size

of three. ReLU activation function is applied for adding non-linearity. Dropout layers are used as regularizers and their

ratio is set to 0.1. 1D max-pooling layers, with a kernel size of four are used to introduce sparsity in the network

parameters and to learn deep feature representations. Dense layers are used with the activation functions of sigmoid for

finding the predicted binary distribution of the target class. The number of epochs is selected as 250 and the batch size

is set to 128. The number of units in applied LSTM and BiLSTM networks is five.

2.2 Dataset

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) [20] is used to train and test the

proposed models. RAVDESS contains videos which provide both facial and speech features. Each video lasts approx-

imately three seconds and contains frontal face poses of twelve female and twelve male, all north American actors and

actresses, speaking and singing two lexically-matched sentences while expressing six basic emotions plus calmness,

and neutral. In this study, we only used speaking records. Further, expressed emotions in RAVDESS are categorized

into two levels of normal and strong intensities, which makes it a good option for emotion intensity detection.

The dataset is partitioned, in a subject independent manner, into the train and test sets, i.e., the videos related to the

first eighteen actors (nine female, nine male) are used for training, and the videos of the next six subjects (three female,

three male) are used for testing. Since videos are recorded with 30 fps, 30 images are extracted per second for facial

analysis. However, as each video starts from a neutral state, reaches an apex, and goes back to a neutral state, the first

and last twenty obtained frames per video are discarded.

Since the expressions of neutral are not categorized as normal or strong, this emotional state is not considered for

emotion intensity detection. Additionally, the normal and strong expressions of calmness are only marginally different,

therefore, they are omitted from the emotion intensity detection.

2.3 Features and Data Pre-processing

To obtain facial and speech features, two open-source toolkits, i.e., OpenFace [3] and openEAR [9], are used. Open-

Face is able to return different features including facial landmarks, head pose, facial action units activity, and eye-gaze

from both video and image inputs. The applied features in this study are facial landmarks, facial action units activity,

and face rigid and non-rigid shape parameters leading to a vector of 378 elements 5. The obtained feature values are

normalized between zero and one.

5 Other features provided by OpenFace were also investigated, however, the mentioned features resulted in the highest classification

accuracy.
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Table 2

The obtained accuracies for emotion intensity detection by proposed models on RAVDESS dataset based on

facial and speech features (without neutral and calmness expressions). The results were obtained over ten repe-

titions.

(a) Facial features.

Data LSTM BiLSTM CNN CNN

Simple Attention Simple Attention Simple LSTM BiLSTM LSTM+Attention BiLSTM+Attention

Female and Male 53.34 52.46 53.27 54.13 55.96 55.06 54.79 55.31 56.24

Female 51.67 50.31 50.14 51.12 52.50 53.52 51.72 50.63 54.72

Male 54.24 53.72 52.81 53.66 58.38 56.45 54.26 56.97 58.31

(b) Speech features.

Data LSTM BiLSTM CNN CNN

Simple Attention Simple Attention Simple LSTM BiLSTM LSTM+Attention BiLSTM+Attention

Female and Male 63.5 61.70 67.65 69.03 69.45 68.54 69.46 60.53 73.53

Female 68.51 67.62 67.41 69.52 72.61 72.45 72.43 59.83 75.67

Male 57.36 55.30 55.97 55.21 59.73 59.18 59.72 58.87 65.5

openEAR is the open-source toolkit that is used for speech feature extraction. It analyses the speech signals and

returns three different sets of features based on the applied configuration, i.e., INTERSPEECH 2009, emobase, and

INTERSPEECH 2013. In this study, the INTERSPEECH 2009 (emo-IS09) [29] configuration is used, which leads

to 384 features including minimum, maximum, and mean values of different speech features. In this study, only the

MFCC and PCM set of features are used, which lead to a vector of 156 elements 6. The obtained feature values are

normalized between zero and one.

3 EXPERIMENTAL SCENARIOS AND OBTAINED RESULTS

3.1 Experiment I: Emotion Intensity Detection

As the main goal of this study is to identify the intensity of an expressed emotion by a user, the facial and speech

related features of all subjects are extracted and pre-processed (as explained in Section 2.3) and are given to the pro-

posed models (Table 1). The obtained results in Table 2 show that speech features lead to higher accuracy in emotion

intensity detection than facial features. Further, Table 1 shows the combination of convolutional layer with the BiL-

STM and Attention layers (CNN+BiLSTM+Att) achieves the highest performance, i.e., 73.53%, which is higher than

state-of-the-art, i.e., 70.4% [12] (Table 4).

Although speech features lead to higher accuracy than facial features, Table 2.a shows that the accuracy of the mod-

els in identifying the intensity of the expressed emotions by males is higher than expressed emotions by females

when facial features are used, i.e., 58.31% vs 54.72%. In comparison, when speech features are used, the obtained

accuracy for females is higher than for males, i.e., 75.67% vs 65.5% (Table 2.b). La Mura [16] showed some of the

speech features related to emotion recognition are related to the subject’s gender. Thus, one explanation can be that

females convey more details about the intensity of their emotions through their speech. To verify this hypothesis, the

CNN+BiLSTM+Att model is separately applied to both the facial and speech features of each individual subject. The

obtained results (Table 3.a) show that for males obtaining the emotion intensity by facial expressions is more accurate

than for females, i.e., the minimum and maximum accuracies for males are 63.92% and 78.79%, respectively, while

the corresponding values for females are 58.26% and 71.15%. On the other hand, Table 3.b shows finding emotion

intensity via speech features for females is more accurate than males, i.e., the minimum and maximum accuracies for

females are 71.49% and 95.83% while the corresponding values for males are 59.29% and 85.71%, respectively.

6 Different combinations of features were used, however, the highest accuracy was obtained for the the applied feature set, thus,

we did not use the other features. In addition, since openEAR is able to analyze a file, we did not trim the videos into smaller

intervals, which reduced the running time remarkably.
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Table 3

Accuracy of emotion intensity detection based on facial and speech data for males and females. The results

obtained over ten repetitions.

(a) Facial features.

Male Acc STD Female Acc STD

Sub#1 64.97 2.3 Sub#2 68.36 1.6

Sub#3 77.53 2.5 Sub#4 66.05 2.5

Sub#5 78.79 1.3 Sub#6 69.46 1.4

Sub#7 75.85 2.6 Sub#8 62.17 5.3

Sub#9 72.62 1.8 Sub#10 67.55 1.2

Sub#11 72.71 2.1 Sub#12 68.42 4.7

Sub#13 63.92 3.1 Sub#14 69.19 2.2

Sub#15 66.03 2.5 Sub#16 63.11 3.6

Sub#17 67.78 2.1 Sub#18 71.15 2.1

Sub#19 73.23 2.3 Sub#20 69.32 2.8

Sub#21 74.91 1.9 Sub#22 61.62 1.4

Sub#23 73.84 2.7 Sub#24 58.26 1.9

(b) Speech features.

Male Acc STD Female Acc STD

Sub#1 82.86 8.3 Sub#2 88.46 4.2

Sub#3 84.21 3.0 Sub#4 87.85 4.8

Sub#5 59.29 4.8 Sub#6 85.57 4.1

Sub#7 80.71 5.8 Sub#8 75.49 4.9

Sub#9 85.71 6.3 Sub#10 71.49 3.3

Sub#11 70.49 7.3 Sub#12 78.57 6.7

Sub#13 70.01 11.0 Sub#14 74.29 3.6

Sub#15 60.00 7.6 Sub#16 79.23 5.1

Sub#17 85.71 6.7 Sub#18 95.83 4.3

Sub#19 74.29 6.9 Sub#20 67.17 8.8

Sub#21 67.50 7.3 Sub#22 72.5 9.6

Sub#23 83.50 9.8 Sub#24 95.38 5.3

Table 4

Comparison between the proposed model and the state-of-the-art for emotion intensity detection over RAVDESS

on speech features in a subject independent manner.

Research Architecture Accuracy

Jalal [12] CNN + BiLSTM + CapsuleNet 70.4%

Proposed model CNN + BiLSTM + Attention 73.53%

3.2 Experiment II: Gender Detection

Since the obtained accuracies for emotion intensity detection for males and females are noticeably different, in this

experiment we investigated the speech and facial features for the task of gender detection. As the results of the pro-

posed models (Table 1) by using facial features were not promising, a new model was designed for this experiment.

The new proposed model uses raw images of 200× 200 pixels as input and consists of four layers, wherein each a 2D

convolutional layer is followed by a max-pooling and a dropout layer. The kernel size of the convolution layers is 3×3,

with the same padding size, and ReLU is used as the activation function. The max-pooling layer is 2 × 2 and dropout

rates in different layers are set to 0.6, 0.4, 0.2, and 0.2, respectively. The batch size during the train and test is set to 32.

The first eighteen subjects are used for training and the last six subjects are used for testing (subject independent and

gender balance). The obtained accuracy of this model is 70.46%.

Repeating the experiment with the speech features led to higher accuracy for gender detection via the proposed models

in Table 1. More specifically, CNN+BiLSTM+Att model obtained an accuracy of 89.8% for gender detection using the

MFCC and PCM feature sets, which is the highest obtained accuracy in comparison with the other proposed models in

Table 1. Table 5 shows the obtained confusion matrix by the proposed model for gender detection. We noticed that 20

of the female samples that are wrongly predicted as male belong to one subject.

A straightforward comparison between the proposed model and the state-of-the-art for gender detection task, using

speech signals of RAVDESS dataset, is difficult. For instance, Singh et al. [31] performed gender detection in each in-

dividual emotion class assuming the emotion class is known. Bansal et al. [4] used only four expressions of RAVDESS

for gender detection and obtained an accuracy of 94.12%, and Shaqra et al. [30] considered six emotions and obtained

an accuracy of 98.67%, while a gender detection model should be robust to various emotions. Thus, in this study, we

used all expressed emotional states in RAVDESS dataset, i.e., eight emotional states, for the task of gender detection.

Table 6 compares the obtained accuracy by the proposed model with the state-of-the-art. Although the proposed model

could not beat the state-of-the-art, it is more robust since it considers more emotional states.
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Table 5

Confusion matrix for gender detection.

Predicted Female Predicted Male

Actual Female 143 25

Actual Male 9 159

Table 6

Comparison between the proposed model and the state-of-the-art for gender detection over RAVDESS on speech

features in a subject independent manner.

Research Model Accuracy

Bansal et al. [4] (four emotional states) SVM 94.12%

Shaqra et al. [30] (six emotional states) MLP 98.67%

Proposed model (eight emotional states) CNN + BiLSTM + Attention 89.8%

4 CONCLUSION

In this study, we designed different deep neural network based models for emotion intensity and gender detection using

features obtained by open-source toolkits. The RAVDESS dataset was used to evaluate the proposed models because it

is, to the best of our knowledge, the only dataset that categorizes emotions based on their intensity.

The obtained results showed a difference between the obtained accuracy of emotion intensity detection for females and

males based on the applied feature set, i.e., using facial features led to more accurate results for males than for females,

while using speech features led to higher accuracy for females’ emotion intensity detection. Additionally, the results

showed that the MFCC and PCM feature sets led to higher accuracy than facial features in emotion intensity detection.

Further, we used the proposed models for gender detection task using facial and speech features. The obtained results

showed that gender detection is also more accurate by using speech features than facial features for the RAVDESS

dataset. In addition, the obtained results showed that the proposed model is comparable with the state-of-the-art while

it is more robust in terms of handling more emotional states.
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Abstract. In this paper we seek the minima of performance metrics
for binary classification to facilitate comparison between metrics and
applications, and to assess the quality of inferential statistics made from
non-probability samples. We use these minima to min-max normalize
the performance metrics so that they can be interpreted as a percentage
of the perfect classifier relative to the proverbial chimps at the zoo†

guessing at random. We compare our results with the balanced metrics
that have been introduced recently, which are corrected for bias due to
class imbalance.

Keywords: Inferential statistics · Non-probability samples · Statistical
learning · Supervised machine learning · Binary classification.

1 Introduction

Imagine you have to do a school exam. The test consists of one hundred multiple
choice questions. At each question you can choose from four possible answers (A,
B, C or D). In the Netherlands, students pass when they score 6 points or more
on a scale from 0 to 10. Is it sufficient to answer sixty questions correctly to
pass the test? Maybe not, because the proverbial chimps at the zoo that choose
answers randomly will on average answer twenty five questions correctly. The
teacher could correct for that minimum by grading twenty five correct answers
a 0 and then scaling linearly to maintain a perfect score when no mistakes are
made by the student, Then, a student answering sixty questions correctly fails
the test, having a score of 4.7 on the scale from 0 to 10. The student would
now have to answer at least seventy questions correctly to pass the test. From a
statistical point of view, an advantage of this so-called min-max normalization,

†Inspired by Swedish physician Hans Rosling (1948–2017).
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is that the students’ grades are now comparable with the grades at a second
school where the students can choose between two possible answers (A or B).
The proverbial chimps at the zoo that answer randomly will then answer fifty
question correctly, on average. After min-max normalization, a student at that
second school will only pass the test when answering eighty or more questions
correctly.

In supervised machine learning, algorithms instead of students are trained
to find the right answer to a multiple choice question. The algorithm learns, for
example, that in the case of a drawing the subject is a ‘moon’, ‘rose’ or ‘fish’.
(These are the first words Dutch children learn to read. Many algorithms are
still in elementary school and it is nice to use something else than pictures of
cats and cars as an example.) What final grade does an algorithm get for its
answers to new drawings? For this purpose a considerable list of performance
metrics has been developed (see, e.g., [7]). For some of them it is unclear what
the score of the control group would be: how well would the chimps at the zoo
perform?

In this paper, we will provide an answer to that question. The answer is
important from a statistical point of view: as students’ grades should preferably
be comparable between subjects and schools, we would like the performance of
algorithms to be comparable between metrics and applications. Moreover, we
would like to have a statistical interpretation of the actual value of a perfor-
mance metric, such that the interpretation is independent of the metric and
application, similar to the min-max normalized grade of a multiple-choice test:
a grade equal to 6 can always be interpreted as 60 percent between guessing and
perfection. That statistical interpretation is essential when employing supervised
machine learning algorithms at national statistical institutes, such as Statistics
Netherlands, to produce official statistics.

Official statistics provide quantitative information about the status and de-
velopment of well-defined populations such as businesses or households. One of
the challenges is to produce such information at reasonable accuracy, cost and
time. A burning question in official statistics is how to make inference from non-
probability (NP) samples [8]. NP samples like social media messages or sensor
data can offset some disadvantages of questionnaires sent to units in a proba-
bility sample, such as response burden, high costs and a considerable time lag
between data collection and dissemination [1]. However, not all units in the pop-
ulation of interest have a positive and known probability of being included in an
NP sample. This rules out design-based estimators from sampling theory.

Alternatively, the data-generating mechanism of NP samples can be deduced
by modeling the relationship between features and the target variable in the NP
sample and use it to predict the missing data, assuming they are missing at ran-
dom. Statistical models could then be deployed, but more often machine learning
algorithms are used, because they are designed for prediction or extrapolation
and scale better with the number of features.

To assess the quality of the extrapolations, the quality of the predictions are
assessed on test sets for which the actual value is known. A range of performance
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metrics exists to this end [7]. However, as noted before, it remains unclear what
the proverbial chimps at the zoo would achieve by randomly guessing the value of
the target variable. A typical example is high accuracy in imbalanced datasets: if
a class has a relative frequency of 95%, it is easy to obtain a seemingly impressive
accuracy of 95% by always ‘predicting’ the most common class.

In this paper we seek the minima of performance metrics for binary clas-
sification to facilitate comparison between metrics and to assess the quality of
inferential statistics made from NP samples. We use these minima to min-max
normalize the performance metrics so that they can be interpreted as percent-
age of perfection relative to the performance of the proverbial chimps at the zoo.
We compare our results with balanced metrics [6], which have been corrected
for bias due to class imbalance. In our view, the paper is a methodological con-
tribution with preliminary simulation results that encourage a more thorough
experimental study in the future.

2 Imbalanced performance metrics

We assume that we have a test set of n data points, n1 of which are labeled
positive: yi = 1, where yi is the observed class of instance i. The fraction α =
n1/n is referred to as the base rate. The algorithm trained on a training set of
N − n data points predicts for all n instances the probability that instance i
belongs to the positive class: p̂i = P(yi = 1). By choosing a cutoff 0 ≤ c ≤ 1
above which the probability p̂i is assigned to the positive class, a 2×2 contingency
table or confusion matrix can be constructed (Table 1). Optimizing cutoff c is
discussed in Section 4.

Table 1. Confusion matrix for cutoff c. Cells highlighted in gray can be used to derive
all other cells and metrics.

Predicted
Positive Negative

∑

Actual Positive Xc n1 −Xc n1 TPRc = Xc

n1

Negative Yc n2 − Yc n2 := n− n1 TNRc = n2−Yc

n2
= 1− Yc

n2
∑

Xc + Yc n−Xc − Yc n

PPVc = Xc

Xc+Yc
NPVc = n2−Yc

n−Xc−Yc
α = n1

n

From this confusion matrix the following well-known performance metrics
are derived (left two columns of Table 2). Accuracy (ACCc) is the fraction of
all cases that is predicted correctly. The true positive rate (TPRc), also known
as sensitivity or recall, is the fraction of positively labeled cases that is pre-
dicted correctly and the true negative rate (TNRc), also known as specificity,
is the fraction of negatively labeled cases that is predicted correctly. The posi-
tive predictive value (PPVc), also known as precision, is the fraction of predicted
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positive cases that is actually labeled ‘positive’ and the negative predictive value
(NPVc) is the fraction of predicted negative cases that is actually labeled ‘neg-
ative’. The receiver operating characteristic curve, or ROC curve, plots TPRc

against the complement of TNRc for 0 ≤ c ≤ 1. The area under the ROC curve
(AUC) is used as a performance metric. Note that TPRc will decrease with
c whereas TNRc will increase with c. This trade-off is captured by Youden’s
J index (Jc) or Peirce Skill Score, which is also the vertical distance between
the ROC curve and the diagonal. Note also that PPVc will become unstable
at higher values of c, whereas NPVc will become unstable at lower values of c,
because the respective denominators decrease there. This trade-off is captured
by markedness (MRKc). The Matthews correlation coefficient (MCCc) is the
correlation between the actual and predicted binary classifications. The positive
F1 score (PF1c) is the harmonic mean of TPRc and PPVc. Analogously, the
negative F1 score (NF1c) is the harmonic mean of TNRc and NPVc. The har-
monic mean is more sensitive to one of the values being low than the arithmetic
mean.

Table 2. Imbalanced performance metrics and their expected value when randomly
guessing the positive class with probability g.

Metric Q Definition [7] E[Q(g)]

ACCc
n2+Xc−Yc

n
αg + (1− α)(1− g)

TPRc
Xc

n1
g

TNRc 1− Yc

n2
1− g

PPVc
Xc

Xc+Yc
α+O( 1

n2 )

NPVc
n2−Yc

n−Xc−Yc
1− α+O( 1

n2 )

AUC
∫ 1

c=0
TPRcdTNRc

1
2

Jc TPRc + TNRc − 1 0
MRKc PPVc +NPVc − 1 0 +O( 1

n2 )

MCCc
n2Xc−n1Yc√

n1n2(Xc+Yc)(n−Xc−Yc)
0 +O( 1

n2 )

PF1c
2

1

TPRc
+ 1

PPVc

= 2Xc

n1+Xc+Yc
2αg

(

1
α+g

−
α(1−g)

n(α+g)3

)

+O
(

1
n2

)

NF1c
2

1

TNRc
+ 1

NPVc

= 2(n2−Yc)
n+n2−Xc−Y c

2(1− α)(1− g)
(

1
2−α−g

−
(1−α)g

n(2−α−g)3

)

+O
(

1
n2

)

We will now formally introduce how to model the outcome of the predictions
made by the proverbial chimps at the zoo. To that end, let g be the probability
that a chimp at the zoo predicts the positive class. We assume that the chimps
will all guess according to one and the same strategy out of the following three:
they may toss a fair coin, throw a dice with n sizes, n1 of which are labeled
‘positive’, or always guess the most common class (the mode), i.e.:
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gunif =
1

2
gprop = α

gmode =

{

1 if α > 1
2

0 otherwise

Then, let X and Y be independently distributed random variables with bino-
mial distributions X ∼ Bin(n1, g) and Y ∼ Bin(n2, g). Each evaluation metric
is a random variable as well. Table 3 gives the expected confusion matrix. The
third column of Table 2 shows how to compute the expected value of each per-
formance metric. The proofs are provided in Appendix A.1. Five of the metrics
are linear functions in the random variables X and Y , hence, it is trivial to
compute their expected value. The expected value of the other six metrics take
the form E[f(X,Y )] for a nonlinear, real-valued function f . If n is very small,
these expectations could in theory be computed by the closed form expression

E[f(X,Y )] =

n1
∑

l=0

n2
∑

m=0

f(l,m)P(X = l)P(Y = m).

In practice, however, it might take a relatively long time to evaluate this expres-
sion if n gets large. So, unless n is small, the approximations given in Table 2
should be used. In addition, note that both X and Y have a (very small, but
strictly) positive probability of being 0, in which case f might not be defined
(e.g., for PPV we find 0/0). Mathematically, the correct way to deal with this
is to exclude the event by conditioning the expectations on its complement. In
practice, in particular for larger values of n, the obtained value will be very close
to simply skipping the terms in the summation where f is not defined.

Table 3. Expected confusion matrix when randomly guessing the positive class with
probability g.

Predicted
Positive Negative

∑

Actual Positive n1g n1(1− g) n1

Negative n2g n2(1− g) n2
∑

ng n(1− g) n

3 Balanced performance metrics

Some performance metrics are biased due to class imbalance. Balanced perfor-
mance metrics are obtained by rewriting the imbalanced performance metrics
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as a function of the imbalance coefficient δ = 2α − 1 and setting δ to 0, i.e. α
to 1

2 [6]. Table 4 shows the balanced metrics and an approximation of their ex-
pected value when randomly guessing the positive class with probability g. The
derivations of the formulas in the third column can be found in Appendix A.2.

Table 4. Balanced performance metrics and their expected value when randomly guess-
ing the positive class with probability g.

Metric Qb Definition [6] E[Qb(g)]

ACCb
c

TPRc+TNRc

2
1
2

TPRb
c TPRc g

TNRb
c TNRc 1− g

PPV b
c

TPRc

TPRc−TNRc+1
1
2
+ δ(1−g)

2n(1+δ)(1−δ)g
+O

(

1
n2

)

NPV b
c

TNRc

TNRc−TPRc+1
1
2
−

δg

2n(1+δ)(1−δ)(1−g)
+O

(

1
n2

)

AUCb 2AUC − 1 0

Jb
c Jc 0

MRKb
c PPV b

c +NPV b
c − 1 δ(1−2g)

2n(1+δ)(1−δ)g(1−g)
+O

(

1
n2

)

MCCb
c

TPRc+TNRc−1
√

(TPRc−TNRc+1)(TNRc−TPRc+1)

δ(1−2g)

2n(1+δ)(1−δ)
√

g(1−g)
+O

(

1
n2

)

PF b
1c

2TPRc

TPRc−TNRc+2
2g





1
1+2g

−

2

(

1−δ(1+2g)

)

(1−g)

n(1+δ)(1−δ)(1+2g)3



+O
(

1
n2

)

NF b
1c

2TNRc

TNRc−TPRc+2
2(1− g)





1
3−2g

−

2

(

1+δ(3−2g)

)

g

n(1+δ)(1−δ)(3−2g)3



+O
(

1
n2

)

4 Min-max normalization and optimization

After establishing E[Q(g)], min-max normalization can be applied to rescale each
metric so that the proverbial chimps at the zoo score 0, on average:

Qmmn
c (g) =

Qc − E[Q(g)]

1− E[Q(g)]
. (1)

Note that ACCmmn(g) equals the Heidke Skill Score [4] or Cohen’s κ [3] if g is
set to X+Y

n
. This g is, however, not a random guessing probability. The Heidke

Skill Score min-max normalizes accuracy with the expected cell frequencies,
which depend on the model.

Through K-fold cross validation or bootstrapping, we obtain the quality of
K classifiers trained on different partitions or bootstrap samples of the data. We
propose to first average Qmmn

kc per cutoff to determine the overall optimal cutoff
c∗, that is:

c∗ = argmax
c

Q
mmn

c , (2)
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in which

Q
mmn

c =
1

K

K
∑

k=1

Qmmn
kc . (3)

Then, we propose to use the distribution of Qmmn
k (c∗) as a proxy for the quality

of the predictions when applied to unlabeled data for making statistical inference.

5 Example: normalized F1 scores

Figure 1 shows the F1 performance of a fictitious binary classifier that predicts
60% of the actual positive instances correctly (TPR = 0.6) and 80% of the actual
negative cases (TNR = 0.8), using gunif for normalization. Similar figures for
accuracy and F1 with gprop can be found in Appendix B. When the test set is
balanced (δ = 0, i.e. α = 0.5), this classifier scores PF1 = 2

3 and NF1 = 8
11 . The

more abundant the positive class relative to the negative class, the higher the
classifier scores on PF1 and the lower on NF1 (thin red line in left panels). One
solution to this sensitivity to class imbalance is to balance the metric (thin red
lines in right panels) by correcting for the bias. The alternative we propose is
to min-max normalize the metric (thick red line in left panels) by relating it to
the expected value when randomly guessing the positive class with probability
g (thin blue lines).

Two interesting observations can be made. First, data sets with a different
imbalance coefficient can be compared. The classifier performs best at δ ≈ −0.18
where PFmmn

1 ≈ 0.34, i.e. 34% from perfection relative to tossing a fair coin. A
classifier with the same TPR and TNR in an application with a higher δ scores
better on PF1 (up to 3

4 ), the same on PF b
1 but worse on PFmmn

1 . Second, metrics
can be compared. Before min-max normalization, the classifier scores equally well
on PF1 and NF1 at δ = 1

7 (small white points). After min-max normalization,
however, the classifier scores equally well on PFmmn

1 and NFmmn
1 at δ ≈ 0.5

(large white points). Between 1
7 < δ < 0.5, PF1 > NF1 but PFmmn

1 < NFmmn
1 .

Note that E[F1] is sensitive to sample size n (see Tables 2 and 4), which be-
comes apparent when the metric is balanced and the sample is highly imbalanced
(Fig. 1, right panel, blue line).

6 Conclusion

In this paper, we propose to rescale performance metrics through min-max nor-
malization, where the minimum is set to the expected value when randomly
guessing the positive class with probability g. It should be explicitly specified
which expected value the algorithm is trying to defeat. Our proposed normaliza-
tion yields different results than correcting for bias due to class imbalance [6] or
balancing the sample [e.g. 2; 5]. The min-max normalized metrics allow for a bet-
ter comparison between applications and between metrics. Moreover, we propose
to use the distribution across test sets of a normalized metric at the overall opti-
mal cutoff as performance metric for inferential statistics. Future research could
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Fig. 1. Performance of a fictitious binary classifier in relation to imbalance coefficient
δ. g = 0.5, TPR = 0.6, TNR = 0.8, n = 1000. White points show where positive and
negative F1 intersect.
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focus on generalizing the results from binary classification to multi-class classi-
fication and regression, and on metrics that compare the predicted probability
directly with the actual label, without a cutoff for constructing the confusion
matrix.
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A Appendix - Proof of expected values

This appendix belongs to the paper by Burger & Meertens titled ”The algorithm
versus the chimps: On the minima of classifier performance metrics”. It contains
the proofs of the formulas provided in the third column of Table 2 and Table 4.

The key idea is to approximate an expectation of the form E[f(X,Y )], in
which X and Y are random variables and in which f is an infinitely differentiable
real-valued function, by inserting the Taylor series of f at (E[X],E[Y ]). More
specifically, let x0 = E[X] and y0 = E[Y ] and consider the second-order Taylor
series of f at (x0, y0):

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1

2
fxx(x0, y0)(x− x0)

2 +
1

2
fyy(x0, y0)(y − y0)

2

+ fxy(x0, y0)(x− x0)(y − y0). (4)

We then approximate the expectation E[f(X,Y )] by taking the expectation of
the right-hand side of the above equation. Then, assuming that X and Y are
uncorrelated, we find

E[f(X,Y )] ≈ f(x0, y0) +
1

2
fxx(x0, y0)Var(X) +

1

2
fyy(x0, y0)Var(y). (5)

In the proofs below we will specify the order of the approximation in terms of
the size n of the test dataset.

In the remainder of the appendix, n1 and n2 are positive integers that sum
up to n and g ∈ (0, 1) represents the probability that class 1 is predicted by the
proverbial chimps at the zoo. Moreover, X will be a random variable distributed
as Bin(n1, g) and Y a random variable distributed as Bin(n2, g). The random
variables X and Y are assumed to be independent. The expectation and variance
are given by

x0 = E[X] = n1g, Var(X) = n1g(1− g), (6)

and

y0 = E[Y ] = n2g, Var(Y ) = n2g(1− g). (7)

Finally, we will use the notation α = n1/n (and hence 1 − α = n2/n) and
δ = 2α− 1 = (n1 − n2)/n.

A.1 Expected value of imbalanced metrics

This appendix contains the derivations of the approximations of the expected
values of the imbalanced performance metrics, as presented in Table 2 of the
main text.

BNAIC/BeneLearn 2020 48



12 J. Burger and Q. Meertens

Expected Positive Predictive Value (E[PPV ])

The positive predictive value PPV can be written as f(X,Y ) with f(x, y) =
x/(x+ y). Check that

fxx(x, y) =
−2y

(x+ y)3
, fyy(x0, y0) =

2x

(x+ y)3
. (8)

It follows that

E[PPV ] ≈ n1g

ng
− n2g

(ng)3
· n1g(1− g) +

n1g

(ng)3
· n2g(1− g) =

n1

n
= α. (9)

The higher order terms in the Taylor series of PPV are in O(1/n2). It can be
shown by looking at the terms or order 3 in the Taylor series. Only fxxx and
fyyy remain, which are both O(1/n3) when evaluated at (x0, y0), and the third
central moment of both X and Y are O(n).

Expected Negative Predictive Value (E[NPV ]) The negative predictive
value NPV can be viewed as the positive predictive value for the negative class,
i.e., to compute NPV we first swap the roles of n1 and n2 and replace g by 1−g
and then compute PPV . It follows that

E[NPV ] = 1− α+O

(

1

n2

)

. (10)

Expected Area under the ROC curve (E[AUC]) If the threshold value c
is equal to 1, then any coin toss prediction by the chimps is considered as tails,
corresponding to the point (0, 0) on the ROC curve. Similarly, c = 0 corresponds
to the point (1, 1) on the ROC curve. For any other value of the threshold
value c, the predictions by the chimps do not depend on c, and thus we have
TPRc = X/n1 and 1 − TNRc = Y/n2, for any 0 < c < 1. The ROC curve can
be obtained by connected these three points, resulting in (the random variable!)

AUC =
1

2

Y

n2

X

n1
+

(

1− Y

n2

)

X

n1
+

1

2

(

1− Y

n2

)(

1− X

n1

)

=
1

2

(

X

n1
+ 1− Y

n2

)

. (11)

It then follows that E[AUC] = 1
2 .

Expected Matthews Correlation Coefficient (E[MCC]) The Matthews
Correlation Coefficient (MCC) can be written as f(X,Y ) in which

f(x, y) =
n2x− n1y

√

n1n2(x+ y)(n− x− y)
. (12)
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Introducing the function D(x, y) = n(x+ y)− (x+ y)2, the above simplifies to

f = (n1n2)
−

1
2 (n2x− n1y)D

−
1
2 . (13)

Both first order partial derivatives of D are equal to n− 2(x+ y). The identity
n2x0−n1y0 = 0 then implies that only the following term remains in fxx(x0, y0):

fxx(x0, y0) = 2 · (n1n2)
−

1
2 · n2 · (− 1

2 ) ·D
−

3
2 (x0, y0) · (2− n(x0 + y0))

=
−n2(1− 2g)

n2
√

n1n2g3(1− g)3
. (14)

Notice that fxx(x0, y0) = O(1/n2), and hence fxx(x0, y0)Var(X) = O(1/n).
Similarly, we obtain

fyy(x0, y0) = 2 · (n1n2)
−

1
2 · (−n1) · (− 1

2 ) ·D
−

3
2 (x0, y0) · (2− n(x0 + y0))

=
n1(1− 2g)

n2
√

n1n2g3(1− g)3
. (15)

Interestingly, we have derived that

fyy(x0, y0)Var(Y ) = −fxx(x0, y0)Var(X). (16)

In particular, we have fyy(x0, y0)Var(Y ) = O(1/n). Finally, as f(x0, y0) = 0, we
have shown that

E[MCC] = 0 +O

(

1

n2

)

. (17)

Expected Positive F1 (E[PF1]) The positive F1 score (PF1) can be written
as f(X,Y ) for f(x, y) = 2x/(n1 + x+ y). Check that

fxx(x, y) =
−4(n1 + y)

(n1 + x+ y)3
, fyy(x, y) =

4x

(n1 + x+ y)3
. (18)

We leave it to the reader to check that fxxx(x0, y0) = O(1/n3) and fyyy(x0, y0) =
O(1/n3). It follows that

E[PF1] =
2n1g

n1 + ng
− 2(n1 + n2g)

(n1 + ng)3
· n1g(1− g) +

2n1g

(n1 + ng)3
· n2g(1− g) +O

(

1

n2

)

=
2n1g

n1 + ng
− 2n2

1g(1− g)

(n1 + ng)3
+O

(

1

n2

)

= 2n1g

(

1

n1 + ng
− n1(1− g)

(n1 + ng)3

)

+O

(

1

n2

)

= 2αg

(

1

α+ g
− α(1− g)

n(α+ g)3

)

+O

(

1

n2

)

. (19)

Notice that E[PF1(X,Y )]−PF1(E[X],E[Y ]) = O(1/n) and not O(1/n2). More-
over, the difference is strictly negative.
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Expected Negative F1 (E[NF1]) The approximation of the expectation of
the negative F1 score (NF1) can be obtained from that of PF1 by first swapping
n1 and n2 and replacing g by 1− g. In particular, we find

E[NF1] = 2(1− α)(1− g)

(

1

2− α− g
− (1− α)g

n(2− α− g)3

)

+O

(

1

n2

)

, (20)

Again, notice that E[NF1(X,Y )]−NF1(E[X],E[Y ]) = O(1/n) and not O(1/n2),
and that the difference is strictly negative.

A.2 Expected value of balanced metrics

This appendix contains the derivations of the approximations of the expected
values of the balanced performance metrics, as presented in Table 4 of the main
text. The derivations are similar to those in Appendix A.1, although the out-
comes are slightly different.

Expected balanced Positive Predictive Value (E[PPV b]) The balanced
positive predictive value PPV b can be written as f(X,Y ) with f(x, y) = (x/n1)/(x/n1+
y/n2). Check that

fxx(x, y) =
−2y/n2

n2
1(x/n1 + y/n2)3

, fyy(x0, y0) =
2x/n1

n2
2(x/n1 + y/n2)3

. (21)

It follows that

E[PPV b] =
1

2
− n1g

2(1− g)

n2
1(2g)

3
+

n2g
2(1− g)

n2
2(2g)

3
+O

(

1

n2

)

=
1

2
+

(n1 − n2)(1− g)

8n1n2g
+O

(

1

n2

)

=
1

2
+

δ(1− g)

2n(1 + δ)(1− δ)g
+O

(

1

n2

)

. (22)

Observe that E[PPV b(X,Y )] − PPV b(E[X],E[Y ]) = O(1/n), in contrast to
E[PPV (X,Y )] − PPV (E[X],E[Y ]) = O(1/n2). However, the absolute value of
the term of order 1/n can be bounded from above by (1− g)/(8g).

Expected balanced Negative Predictive Value (E[NPV b]) The balanced
negative predictive value NPV b can be viewed as the balanced positive predic-
tive value for the negative class, i.e., to compute NPV b we first swap the roles
of n1 and n2 and replace g by 1− g and then compute PPV b. It follows that

E[NPV b] =
1

2
− δg

2n(1 + δ)(1− δ)(1− g)
+O

(

1

n2

)

. (23)

Again, observe that E[NPV b(X,Y )]−NPV b(E[X],E[Y ]) = O(1/n), in contrast
to E[NPV (X,Y )]−NPV (E[X],E[Y ]) = O(1/n2). However, the absolute value
of the term of order 1/n can be bounded from above by g/(8(1− g)).
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Expected balanced Markedness (E[MRKb]) The expectation of the bal-
anced markedness (MRKb) can be approximated as follows:

E[MRKb] = E[PPV b] + E[NPV b]− 1

=
1

2
+

δ(1− g)

2n(1 + δ)(1− δ)g
+

1

2
− δg

2n(1 + δ)(1− δ)(1− g)
− 1 +O

(

1

n2

)

=
δ(1− 2g)

2n(1 + δ)(1− δ)g(1− g)
+O

(

1

n2

)

. (24)

It shows that E[MRKb(X,Y )] −MRKb(E[X],E[Y ]) = O(1/n), in contrast to
E[MRK(X,Y )] −MRK(E[X],E[Y ]) = O(1/n2). However, if g = 1

2 , then the
term of order 1/n is zero. If g 6= 1

2 , then the absolute value of the term of order
1/n can be bounded from above by (1− 2g)/(8g(1− g)).

Expected balanced Matthews Correlation Coefficient (E[MCCb]) The
balanced Matthews Correlation Coefficient (MCCb) can be written as f(X,Y )
in which

f(x, y) =
x/n1 − y/n2

√

(x/n1 + y/n2)(2− x/n1 − y/n1)
. (25)

Introducing the function D(x, y) = 2(x/n1 + y/n2)− (x/n1 + y/n2)
2, the above

simplifies to

f = (x/n1 − y/n2)D
−

1
2 . (26)

The first order partial derivatives of D are equal to 2/n1 · (1−x/n1−y/n2). The
identity x0/n1− y0/n2 = 0 then implies that only the following term remains in
fxx(x0, y0):

fxx(x0, y0) = 2 · (1/n1) · (− 1
2 ) ·D

−
3
2 (x0, y0) · 2/n1 · (1− x0/n1 − y0/n2))

=
−(1− 2g)

4n2
1

√

g3(1− g)3
(27)

Similarly, we obtain

fyy(x0, y0) = 2 · (−1/n2) · (− 1
2 ) ·D

−
3
2 (x0, y0) · 2/n2 · (1− x0/n1 − y0/n2))

=
(1− 2g)

4n2
2

√

g3(1− g)3
. (28)

Finally, as f(x0, y0) = 0, it follows that

E[MCCb] =
−(1− 2g)n1g(1− g)

8n2
1

√

g3(1− g)3
+

(1− 2g)n2g(1− g)

8n2
2

√

g3(1− g)3
+O

(

1

n2

)

=
(n1 − n2)(1− 2g)

8n1n2

√

g(1− g)
+O

(

1

n2

)

=
δ(1− 2g)

2n(1 + δ)(1− δ)
√

g(1− g)
+O

(

1

n2

)

. (29)
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Once again, observe that E[MCCb(X,Y )] −MCCb(E[X],E[Y ]) = O(1/n), in
contrast to E[MCC(X,Y )]−MCC(E[X],E[Y ]) = O(1/n2). However, if g = 1

2 ,
then the term of order 1/n is zero. If g 6= 1

2 , then the absolute value of the term

of order 1/n can be bounded from above by (1− 2g)/(8
√

g(1− g)).

Expected balanced Positive F1 (E[PF b

1
]) The balanced positive F1 score

(PF b
1 ) can be written as f(X,Y ) for f(x, y) = (2x/n1)/(x/n1+y/n2+1). Check

that

fxx(x, y) =
−4(y/n2 + 1)

n2
1(x/n1 + y/n2 + 1)3

, fyy(x, y) =
4x/n1

n2
2(x/n1 + y/n2 + 1)3

. (30)

It follows that

E[PF b
1 ] =

2g

1 + 2g
− 2n1(1 + g)g(1− g)

n2
1(1 + 2g)3

+
2n2g

2(1− g)

n2
2(1 + 2g)3

+O

(

1

n2

)

= 2g





1

1 + 2g
−

(

n2 − (n1 − n2)g
)

(1− g)

n1n2(1 + 2g)3



+O

(

1

n2

)

= 2g





1

1 + 2g
−

2
(

1− δ(1 + 2g)
)

(1− g)

n(1 + δ)(1− δ)(1 + 2g)3



+O

(

1

n2

)

(31)

The term of order 1/n is bounded from above by 2g2(1 − g)/(2g + 1)3, which
is at most 8/243 ≈ 0.033 at g = 2/5. Moreover, it is bounded from below
by −2g(1 − g2)/(2g + 1)3, which is at least −4/243 · (7

√
7 − 10) ≈ −0.14 at

g = (
√
7− 2)/3 ≈ 0.22.

Expected balanced Negative F1 (E[NF b

1
]) The approximation of the ex-

pectation of the balanced negative F1 score (NF b
1 ) can be obtained from that of

PF b
1 by first swapping n1 and n2 and replacing g by 1− g. In particular, we find

E[NF b
1 ] = 2(1− g)





1

3− 2g
−

2
(

1 + δ(3− 2g)
)

g

n(1 + δ)(1− δ)(3− 2g)3



+O

(

1

n2

)

, (32)

The term of order 1/n is bounded from above by 2g(1 − g)2)/(2(1 − g) + 1)3,
which is at most 8/243 ≈ 0.044 at g = 3/5, and bounded from below by −2(1−
g)(1− (1− g)2)/(2(1− g) + 1)3, which is at least −4/243 · (7

√
7− 10) ≈ −0.14

at g = (5−
√
7)/3 ≈ 0.78.

B Appendix - Performance of fictitious binary classifier

This appendix shows how a fictitious binary classifier with TPR = 0.6 and
TNR = 0.8 performs on accuracy (Figs. 2 and 3) and F1 (Figs. 1 and 4 when
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it is min-max normalized with the expected value when randomly guessing the
positive class with probability g = 0.5 (Figs. 2 and 1) or g = α (Figs. 3 and
4), as a function of imbalance coefficient δ. Shown are imbalanced metrics (left
panels) and balanced metrics (right panels), which have been corrected for bias
due to class imbalance.

When gunif = 1
2 is chosen as control, E[ACC(gprop)] = 1

2 (Fig. 2, left panel,
blue line). When gprop = α is chosen as control, E[ACC(gprop)] is a quadratic
function (Fig. 3, left panel, blue line; see Table 2). As a result, the classifier is
outperformed (ACCmmn(gprop) < 0) by this strategy when imbalance is large

(here when δ < −1−
√
41

10 ≈ −0.74 or δ > −1+
√
41

10 ≈ 0.54).
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Fig. 2. Accuracy of a fictitious binary classifier in relation to imbalance coefficient δ.
g = 0.5, TPR = 0.6, TNR = 0.8, n = 1000.

Before min-max normalization, the classifier scores equally well on PF1 and
NF1 at δ = 1

7 (Fig. 4, small white points). After min-max normalization using
gprop, however, the classifier scores equally well on PFmmn

1 and NFmmn
1 at

δ = − 1
3 (large white points). For δ < − 1

3 and δ > 1
7 , the regular F1 and

normalized Fmmn
1 (gprop) disagree on whether the model performs better on the

positive or the negative class.
By definition, the balanced F1 is insensitive to class imbalance. After min-

max normalization with gprop, however, it is sensitive again to class imbal-
ance. The larger the imbalance coefficient, the lower the classifier scores on
PFmmn,b

1 (gprop) and the higher on NFmmn,b
1 (gprop) (Fig. 4, right panels).
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Imbalanced Balanced
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Fig. 3. Accuracy of a fictitious binary classifier in relation to imbalance coefficient δ.
g = α, TPR = 0.6, TNR = 0.8, n = 1000.
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Fig. 4. F1 of a fictitious binary classifier in relation to imbalance coefficient δ. g = α,
TPR = 0.6, TNR = 0.8, n = 1000. White points show where positive and negative F1

intersect.
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Abstract. A growing number of private companies and public admin-
istrations is adopting Internet of Things (IoT) technologies to monitor
resources, spaces, activities and events. Ensuring the required levels of
quality of service and security is a key aspect in managing a service
based on IoT. We introduce Philéas, a joint project between Degetel
Belgium and the IRIDIA laboratory of the Université Libre de Bruxelles
to develop a framework to analyze the activity of IoT systems and to
identify possible issues via anomaly detection. In this paper we describe
our framework, and we present as a demonstration two real cases that
have been tackled using this framework.

Keywords: Anomaly Detection · Industrial applications · Internet of
Things · Machine Learning · Quality of Service · Security.

1 Introduction

Internet of Things (IoT) devices are increasingly deployed to address a variety
of real world tasks. The umbrella term Internet of Things encompasses a vari-
ety of technologies that collect, elaborate and transfer data over a network to
other devices and servers in an automated and pervasive fashion [2]. They find
application in a variety of domains from smart homes [42, 45] to smart cities [35,
50], from agriculture [18, 47] to manufacturing [23, 34], from healthcare [3, 29,
49] to transportation and mobility [17, 43], and many more. Due to the poten-
tial impact on society, public administrations also take a great interest in these
technologies, from local to international scale [22, 37]. Though estimates on the
actual number of devices vary wildly, there is strong consensus on the fact that
the exponential growth will only continue in the next years, reaching the tens of
billions of devices in the very near future [12, 36].

The growth of IoT technologies is however not without concerns. The com-
plexity and scale of their applications, their ubiquity and interconnection, the
heterogeneity and limited capabilities of technologies involved, the collection
and treatment of personal and/or sensitive data are all factors that pose serious

∗A.F., R.G. and J-C.N. contributed equally to this work.
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challenges regarding energy management, security and privacy [15, 19]. IoT tech-
nologies offer several vulnerabilities for malicious actors to exploit or, simply, for
faults and issues to happen [7]. The timely detection of such issues plays a key
role in the management of an IoT network and application.

Big Data technologies and Artificial Intelligence (AI), in particular Machine
Learning (ML), techniques are instrumental in assisting human operators in
the monitoring, analysis and resolution of such issues [21, 26, 28, 31, 32, 40, 46,
52]. Devices collect a huge amount of data that is sent to other devices and
central servers, where it is stored to be processed. While the data collected can
be analyzed for the specific application, the metadata consisting in the message
headers is useful to understand the state of the network and application. In large
amounts of data, patterns of behaviour are likely to emerge, and deviations from
them can be an indication of potential problems.

In this work we introduce Philéas, a framework conceived to assist managers
and operators of IoT networks and applications in the analysis of IoT data. In
particular, while in this project we have analyzed several different cases and ap-
plications, our main focus is the detection of anomalies in the metadata received
from the devices. Philéas focuses on the analysis of anomalies from a centralized,
application perspective, as independent as possible from the technical details of
the devices and the network protocol, and not relying on external information
about the network status. Philéas is a joint project between Degetel,1 a con-
sulting and services group specialized in digital transformation in France and
Belgium with 15 years of experience in the IoT domain, and IRIDIA, the AI
laboratory of the Université Libre de Bruxelles (ULB). Philéas answers spe-
cific market demands from the clients of Degetel regarding the management and
securitization of IoT infrastructures. The project is funded by Innoviris, the in-
stitute of the Brussels Capital Region for technological innovation, with the goal
of transferring academic knowledge into the industrial domain, and aims at ex-
ploring advanced AI solutions that can accompany more traditional approaches.

In the following Section we review the context of this project, the challenges
in IoT systems that we address within this project and some existing relevant
approaches. In Section 3 we describe the Philéas framework, including its infras-
tructure and the algorithms we implemented. In Section 4 we present two real
world cases tackled in this project, before concluding in Section 5.

2 Background and related work

2.1 Internet of Things

Internet of Things (IoT) is a set of technologies based on uniquely identifiable
devices capable of communicating with each other over a network without human
interaction [2, 7]. Though the definition is rather broad, with IoT we usually refer
to low power embedded devices with limited computational capabilities devoted
to one task, or a specific set of tasks. A common characteristic of IoT devices

1https://www.degetel.com
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is their pervasivity, that is, the possibility of deploying them in countless places
and applications. They enable the collection of huge amounts of data, which is
usually collected and analyzed. IoT devices include sensors and smart meters
that measure one single value or event (e.g. temperature, humidity, the opening
of a door, the failure of a mechanical component in an industrial machine) and
transmit it to a central server. The use of IoT in the industry is at the base of
the so-called fourth industrial revolution [23]. But in IoT we can also include
vehicles capable of communicating with other vehicles and the environment (e.g.
road infrastructure) [20]. IoT is also progressively entering private homes, with
home automation and intelligent appliances [45].

From an economic perspective, IoT technologies create a new market, whose
actors are device manufacturers, network and service providers, and application
developers. Public administrations also play a role in this: for example, in Brus-
sels public entities provide support for a smart city initiative2 and for companies
and start-ups to bring AI and IoT solutions to the market. There is also great
public interest in the next generation of IoT networks, based on 5G.

Alongside with the many opportunities, the deployment of IoT solutions
presents several technical challenges, from the non-interoperability of solutions,
to device obsolescence, to the computational challenges of big data analysis [4].
But also the pervasivity of the devices, the possible threats to privacy and se-
curity and their implications, even at international level, are key concerns for
developers, institutions and regulators [14, 16, 30].

Technical specifications of IoT devices and their interconnection encompass
the full stack from the design of the electronic components of a device to the
platform and application. Issues can happen at various levels of the IoT system
– physical, network, application. Among the several problems that affect IoT
systems, here we review the ones that concern the scope of Philéas, and we
compile the following list from the management and application perspective,
that is, from the central administration of the system.

2.2 Issues and challenges in IoT system administration

Device-related issues A very common situation, especially when using technolo-
gies that are inexpensive or with low capabilities, is the malfunctioning of a
device, which could fail in some of its parts (e.g. measuring a wrong value, being
unable to send or receive messages) or stop working altogether.

Network failure Similarly, a system can fail at the network level, e.g. because
of a malfunctioning gateway. Packets can also be lost simply because of a poor
network status, caused for example by bad weather conditions. In this case we
typically observe a deviation from the usual patterns for a group of devices
belonging to the same network, or connected to each other.

2https://smartcity.brussels/
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Malicious action IoT systems can be the target of criminals with the goal of
stealing information, or simply disrupt a service to cause financial damage. Sev-
eral kinds of attacks are possible on an IoT system, for example, Distributed
Denial of Service (DDoS) attacks can compromise a gateway, while the lack of
end-to-end message integrity check could be exploited to alter the payload [39].

However, from the perspective of this project, the effect of malicious action
results in issues that affect the system at the device or network level, or both. In
fact, for both network and device failure a mere log analysis is usually insufficient
to distinguish the causes of the failure, whether accidental or caused by malicious
actors, and additional knowledge is required to establish the causes of the issue.

System heterogeneity The huge variety in the technologies available makes it
very difficult to provide generalized solutions, even for the same kind of task.
As an example, and the case that concerns Philéas the most, there are several
communication protocols that can be implemented to transmit messages between
devices in a network, many of which are proprietary.

2.3 Anomaly detection for IoT system management

The complexity of IoT systems is a perfect application for AI technologies and,
in particular, data mining and ML techniques that can be used to process the
vast amount of data and metadata collected [26, 28, 46, 52]. A complete review
is beyond the scope of this project and of this work; here we limit our discussion
to an overview of the techniques that have been applied to monitor the state of
IoT systems from the data collected, notably anomaly detection.

An anomaly (or outlier) is an observation, or a group of observations, that
exhibits two characteristics: it differs significantly from the majority of other
observations, and it appears rarely in the dataset [5, 25, 27]. Anomalies can take
many different forms: the simplest way to define what an anomaly is is therefore
to define what normal observations (inliers) are, and to mark as anomalies all
the observations that cannot be considered inliers. The nature of the deviation
depends on the particular context and application. We can search for observa-
tions that deviate from the regular behaviour in the entire dataset; in this case
we are considering global anomalies. But anomalies can also occur with respect
to a subset of the data, and in this case we identify them as local anomalies.

Clustering and neighbourhood-based methods Clustering often is the first step
taken to make sense of the data collected. By associating related observations,
we can identify groups of devices that exhibit similar behaviour, for some suit-
able definition of similarity that takes into account relevant features. There are
however many possible similarity criteria, and many clustering techniques avail-
able, each one possibly entailing different outcomes. Popular techniques include
centroid-based algorithms, such as the k-means algorithms, where some obser-
vations are chosen as representatives (centroids) of the clusters they belong, and
the remaining observations are associated to the closest centroid. Another ap-
proach is based on density, where a cluster is composed by points that have a
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minimum amount of neighbouring points under a certain distance; in algorithms
from this class, such as DBSCAN, sparse points can be considered outliers. For
thorough reviews of clustering algorithms, we refer to [1, 48].

In the case of IoT log analysis, to cluster similar observations we usually need
to define a distance function based on a subset of the packet fields. For example,
we can group observations by the behaviour they describe, e.g. the number of
packets sent by each device in a certain interval of time. But we can also analyze
the aggregate of the packets sent by one device, or the devices of a specific client
or a certain geographic area.

A notion of proximity between observations is also at the base of the Local
Outlier Factor (LOF) algorithm, an anomaly detection technique based on the
notion of local density, that is, how close each point is to its k neighbours [8].
In a nutshell, LOF classifies as anomalies data points whose local density differs
from the local density of its neighbours. LOF is a generic technique that can be
applied to various tasks for which we can define a distance between observations.

One-class learning Another approach to anomaly detection is to have a model
learn only the “normal” behaviour; this corresponds to a classification task with
a single target class. Anomalies are then the observations for which the model
performs poorly. Techniques in this family include one-class Random Forests [24]
and one-class Support Vector Machines [11]. Isolation Forests exploits the low
frequency of outliers to isolate them in leaves of decision trees [33].

A family of artificial neural networks called autoencoders is another effective
approach to anomaly detection [51]. Autoencoders perform two subsequent ac-
tions: first they map (encode) the input to a reduced space of neurons, in order
to approximate the input; then they try to re-generate (decode) the input from
this approximation. During the training phase they effectively learn a noise-free
version of the original model, hence, in general, the reconstruction error will be
smaller for observations that match the input model relatively well, rather than
for observations that deviate significantly from the majority of the other points
in the dataset; the first ones can therefore be considered inliers, while the latter
will be identified as outliers.

Time series analysis As devices send packets to the central server either periodi-
cally or based on events, the data collected can often be modeled as multivariate
time series. A multivariate time series is an ordered set of k-dimensional vectors
X = {xt}t∈T where each vector xt = {x1

t
, x2

t
, . . . , xk

t
} contains the values ob-

served at time t. In our case, the values are the values of the different features we
receive, or that we are interested to monitor in the given situation. Anomalies
in time series can take different forms. We can look for a point or a sequence of
points that deviates from the rest of the points in the time series (point outliers
and subsequence outliers), or for a time series that exhibits a different behaviour
from other time series in one or more features (outlier time series). Anomaly
detection in time series is a rich and active field of research, thanks also to the
huge importance of this task for the industry [41], and we refer to [6, 10] for
detailed reviews of anomaly detection techniques for time series.
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Batch vs real time analysis vs prediction Depending on the context and the
specific applications, there are two possible ways of looking for anomalies in log
data, batch analysis and real time analysis. Batch analysis processes data about
past event, and is performed periodically or occasionally to discover anomalies
occurred in the past, e.g. in the context of forensic analysis. Real time analysis is
instead applied to the data as it arrives, or in small batches of recent data, and
is continuously performed to ensure that potential problems are immediately
spotted and taken care of. When a machine learning model is trained on the
data available, it can be used to predict the future status of the IoT system,
for example the reception of a packet, or the failure of a device or a network.
Prediction is always applied to one single instance of the desired target.

Domain expertise Domain expertise is crucial to properly understand and eval-
uate the results of a data analysis, as the data alone is often not sufficient to
fully understand a situation. In particular, in our applications the client needs
to be involved in the process and has to analyze the outcome.

3 The Philéas framework

3.1 Scope

In Philéas we implement algorithms to detect anomalies in IoT metadata, pro-
cessing logs of messages from different sources both in batch and in real time.
Philéas provides a framework that can be used not only as stand-alone software,
but also to develop specific solutions for different clients. Key elements in the
design of the framework are the separation between the data and the AI algo-
rithms and at the identification of common features in the various data sources.
Therefore, while we can provide algorithms tailored for specific cases, in general
we favour general techniques that can be applied in a variety of contexts. A spe-
cific application is then instantiated for each client, selecting the infrastructure
and the algorithms that best serve the specific needs for the tasks required. The
results of the anomaly detection task are meant to accompany domain expert
analyses, to obtain meaningful insights about the status of the IoT system.

3.2 Network protocols

We consider two of the most common options for the communication between the
devices and the central infrastructure, Sigfox [53] and LoRaWAN [13, 44]. Both
are proprietary technologies, developed in France and available mostly in Europe.
They operate in the ISM (Industrial, Scientific and Medical) band, at 867 −
869 MHz in Europe. The protocols have similar architectures: devices transmit
packages to gateway nodes, which in turn communicate with the network server,
devoted to manage the data for the various applications. The devices are not
associated to a specific gateway, but rather initiate a communication by looking
for an available gateway, and continue communicating with a responding one.
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Sigfox is a protocol designed to be simple and robust to interference. Its
packets contain only nine fields in total including the payload, with additional
information about the client, and only the device ID, transmission time and
RSSI of the network at the transmission as metadata usable for analysis on the
receiving end. It uses an asymmetric link for transmission and reception, so it is
a good choice in case of network of sensors that transmit infrequent data (e.g.
temperature sensors).

LoRaWAN (Long Range Wide Area Network) is the medium access control
and network layer protocol defined in the LoRa standard, designed for long
range, low power connectivity: a device can function for over eight years before
having to replace its battery. A LoRaWAN packet contains several metadata
fields additionally to the payload. These fields include information about the
gateway and the antenna, and for both uplink and downlink. LoRaWAN uses a
symmetric link, so it is a better choice in case of bidirectional communication.

For more technical details about the specifications of these two protocols,
we refer to their official documentations. At the moment we do not consider
alternative protocols such as 5G, GPRS or NB-IoT, but the Philéas application
is designed to be possibly extended to work with different packet formats.

To provide solutions as general and reusable as possible, we base our analyses
on the common fields of both the Sigfox and LoRaWAN packet formats. For
Sigfox, the relevant fields include, aside from the payload, the device ID, the
client ID, the timestamp, and the RSSI (Received Signal Strength Indicator), a
measure of the power of the radio signal, and thus on the quality of the network
at the moment of the transmission. Analyzing the content of these fields can
already provide several insights on the status of the IoT system. In addition to
this, LoRaWAN provides several other information about the network, such as
the uplink and downlink gateways, and the connection status, that can be used
for deeper analyses when needed.

3.3 Algorithms

Simple rule-based and statistical analyses are very effective in several scenarios.
For example, if a device did not send a message in the last x hours, or sent y%
more (or less) messages than the other devices in its network, it may considered a
problem. The values of x and y are to be determined by the specific application,
either as fixed values provided by the client or after a preliminary data analysis.
We can also compare the current behaviour of a device with its past behaviour,
to observe whether it changed significantly, according to some threshold values.

In IoT networks the chances of losing a packet are comparatively high with
respect to other network technologies, without this necessarily being related
to actual problems. Hence, point outliers in metadata, especially multivariate
(a single packet received or lost) are at high risk of being false positives. We
therefore focus on subsequence outliers and outlier time series, as indications of
possible persistent problems.

We use the k-means clustering to identify devices based on their transmission
behaviour. For the same task in a big data context we also implement a MapRe-
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duce version of the k-center clustering algorithm [9]. The distance function may
depend on the specific case, protocol and application, and can therefore be de-
fined with the user. We also use the Local Outlier Factor algorithm to identify
devices that have an abnormal frequency of messages, or an abnormal amount
of messages received.

While statistical and clustering methods cover most of the needs in our prac-
tical cases to characterize, respectively, individual and group behaviour of the
devices. However, one of the goals of this project was to investigate more ad-
vanced machine learning models for analysis of IoT metadata, for advanced
analyses of large batches of data, but also to replace manually-crafted rules and
to predict future issues at the device level. We implement autoencoder neural
networks, whose hyperparameters are to be set for each specific case.

3.4 Infrastructure note: exchanged place with Algorithms

The database used depends on the amount of data to be collected for each client.
We have the option of using the Hadoop infrastructure for managing big data,
and PostgreSQL and MongoDB as databases otherwise. Streaming data can be
collected using Kafka.

The algorithms of Section 3.3 are built on top of the common Python stack
of scientific libraries, based on Spark (Pyspark), Pandas and Scikit-learn for
data analysis, feature augmentation and machine learning tasks. We use Tensor-
Flow for implementing deep learning solutions, and Spark for big data analysis.
Whenever possible, we use the algorithms available in the Python libraries; we
however implement custom algorithms for statistical and time series analyses.

The interface for the application is built using Django and node.js. Commu-
nication with the backend is handled by REST services.

4 Use cases

Here we present two examples of issues tackled using the Philéas framework,
to showcase the set of algorithms we have currently available. As they refer to
specific situations of Degetel clients, the data and some of the specific details are
covered by non-disclosure agreements, and we will thus omit from the following
presentation any detail that may identify situations, clients or any other party in-
volved unless specifically authorized. We can however present the computational
problems, and the approaches we implemented to tackle them.

4.1 Quality of Service

The first case is about Shayp3, a Brussels-based startup that deploys IoT water
telemetry sensors to monitor water consumption in indoor locations. The sensors
measure the amount of water used and transmit this value to the central server

3http://www.shayp.com
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using Sigfox packets, with a frequency of one packet every hour. Some packets
are lost, either singularly or in bursts: this normally happens due to poor network
conditions. Sometimes packets from a certain device may disappear completely,
in case of a faulty device or external intervention (e.g. a device is misplaced after
being accidentally hit). To avoid too many false positives, we do not consider
a single lost packet as an anomaly; in fact, this can situation can happen for
several reasons, and it is not considered problematic in itself. However, two or
more consecutive expected packets lost are considered as an anomaly to note.

The dataset for the analysis we report includes anonymized logs of 500 devices
for one year of activity, each observation corresponding to one Sigfox packet
received (∼ 2.6M packets in total). No information available regarding users is
available, and the payload is encrypted. Given the simplicity of the transmission
protocol, the relevant information in each packet is only the device ID, the RSSI
of the network and the timestamp of the message. The expected periodicity
allows us to detect the loss of one or more packets by measuring the time elapsed
between two consecutive packets received from the same device.

Monitoring the status of the network and of the devices can be done, in large
part, using simple time series and statistical analyses, analyzing the time of each
message, and the associated RSSI. We implement rules to detect devices with
an anomalous behaviour, with respect to both the other devices in the network
and the device expected behaviour.

We use this case also to describe our autoencoder approach to track lost
packets. The relevant information for each message is: (i) the device ID, (ii) the
RSSI value measured, and (iii) the elapsed time since the previous packet from
the same device. Starting from these information, for each device we build two
sequences, Rn with the n last RSSI values measured for the device (normalized in
the [0, 1] interval, relative to the entire dataset), and Tn, the (normalized) elapsed
time between each of the last n packets received. For the autoencoder to learn the
“normal” behaviour, we include in the training set only data that corresponds
to packages that have at most one packet lost among its predecessors.

The input features for the autoencoder are the two sequences Rn and Tn.
The autoencoder has a symmetrical architecture with an input and an output
layer of 2n nodes, a first and last hidden layer of n nodes and a third and fourth
hidden layer of ⌈n/2⌉ nodes. In our experiments we used n = 5, for a total of
ten input features. More precisely, the network architecture is the following one:

input layer 10 nodes with ReLu activation;
first hidden layer fully connected, 5 nodes, ReLu with ℓ1 regularization;
second hidden layer fully connected, 3 nodes, ReLu activation;
third hidden layer fully connected, 3 nodes, ReLu activation;
fourth hidden layer fully connected, 5 nodes, ReLu activation;
output layer fully connected, 10 nodes, ReLu activation.

The autoencoder then computes the reconstruction error of its input. Sequences
corresponding to packets considered having normal behaviour have a lower re-
construction error than packets belonging to sequences where many previous
packets have been lost. We can thus fix a threshold for the reconstruction error
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network status, with the main statistics and a list of the devices that lost too
many packets, while the second one is a plot that reports, for a given day, the
hourly amount of packets expected but not received.

4.2 Distributed Denial of Service

The second case we present comes from a French company, a major actor in
the local IoT market with thousand of clients throughout the entire country.
They deploy LoRa sensors for a variety of tasks; with no regular frequency,
these devices transmit the information they collect to the central server via
LoRaWAN packets. The company requested an analysis of their logs, following an
occasional service failure experienced by several of their clients on a certain day
da, whose devices were unable to connect to the network. The company reported
that, overall, nearly 45% of the connections failed, contrarily to a circa 1% of
probability of connection failure under normal circumstances. The hypothesis to
verify is that this was a case of DDoS [38]. Here we report the analysis on the
beginning of the attack.

Due to energy considerations, devices in LoRaWAN networks are not con-
tinuously connected to the network, but rather they send a join request to the
network when they have to transmit data. If the request is accepted by the server,
the device will be assigned a private token to be used during the communication,
that will be checked by the gateway. The connection is closed when they stop
transmitting, or if they get disconnected from the network. Join requests, both
accepted and rejected, are normally received and stored by the central server.
Gateways are configured to cap the number of join requests they can handle in a
given amount of time; when the limit is exceeded, the gateway will reject all the
new incoming join requests, to preserve the central server from the additional
load. The recommended practice is therefore to minimize the number of con-
nections, and to avoid repeated retries when a join request fails or in case of a
network failure, in order to minimize the load on a network. Unfortunately, IoT
protocols only enforce limited secure practices by design, so it is relatively easy
for a malicious actor to disrupt a service by making some devices perform an
excessive amount of join requests. When this exceeds the network capacity, also
non-infected devices are impacted, experiencing more join failures than usual.

We were provided six months of anonymized LoRaWAN logs, for a total of
approximately two terabytes of data. The LoRaWAN packets are composed of 12
downlink fields and 60 uplink ones, only one of which is the actual payload; the
other ones include many accessory information that is not necessarily useful in
many contexts. Moreover, several fields have been anonymized before giving us
access to the data, so only partial information was available to us. The relevant
fields for this task are the device ID, the client to which the device is associated,
the timestamp, and the success status. The first step is to count the packages
received by each device, and by the devices of each client. We use Spark to
aggregate records in the dataset by device ID, day, and client, to count daily
connections. Additionally, the aggregated data is now manageable without big
data algorithms or technologies.
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Fig. 2. Number of connections and connection error percentage for the main fifteen
clients, on days da (the day the DDoS attack started, left plot) and da + 1 (when the
attack continued, right plot). Each circle represent a client, the size of the circle is
proportional to the number of devices controlled by that client. The colors indicate the
outcome of the Local Outlier Factor analysis: in blue the clients that are considered
inliers, in orange the client with anomalous behaviour (conventionally called Alpha).

The analysis by client shows clearly how the attack on one client impacted the
other clients of the network. In Figure 4.2 we report the number of connections
(on the y axis) and the error percentage (on the x axis) experienced by each
client. The client that we call Alpha is the one hit by the attack and on day da
it starts requesting an unusually high number of connections; on this day, the
network load is still under control, and the other clients do not experience any
particular issue. However, as the attack continues on day da+1 and the network
load increases to an excessive level, not only Alpha experiences a higher ratio
of rejected joins, but also other clients become affected. In fact, all the clients
experience, to various extents, an increase in the number of rejected connections.
A consequence is the need for the devices to issue more join request than usual,
in order to be able to transmit the information, even if, respecting the protocol
recommendations, they do not issue nearly as many new join requests as the
compromised client. The same outcome is observed with a Local Outlier Factor
on the number of connections, normalized in the [0, 1] interval, which confirms
the abnormal behaviour of the devices of client Alpha.

This ex-post analysis serves also as a blueprint for the periodic monitoring
of the network status. We can in fact periodically aggregate the data and spot
anomalous behaviour by one or more clients; thanks to the reduced size of the
aggregated dataset this can be done almost in real time.

5 Conclusions

With the growing interest in IoT technologies and applications, there is also a
growing request in the market for data-based solutions to monitor IoT services.
We introduced Philéas, a framework to analyze IoT logs to find anomalies in the
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Philéas: Anomaly Detection for IoT Monitoring 13

metadata, as an indication of potential problems in an IoT network. In Philéas
we implemented several machine learning and anomaly detection techniques, and
we have applied them to real-world cases of Degetel clients.

The framework can be used to implement custom solutions for clients with
particular requirements; to this purpose, and depending on the requests, we
are also going to include additional anomaly detection techniques, and network
protocols.

Acknowledgements

The work has been made possible by the Innoviris project 2018-SHAPE-25a
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Abstract. We present neatures, a computational art system exploring
the potential of digitally evolving artificial organisms for generating aes-
thetically pleasing artifacts. Hexapedal agents act in a virtual environ-
ment, which they can sense and manipulate through painting. Their cog-
nitive models are designed in accordance with theory of situated cogni-
tion. Two experimental setups are investigated: painting with a narrow-
and wide perspective vision sensor. Populations of agents are optimized
for the aesthetic quality of their work using a complexity-based fitness
function that solely evaluates the artifact. We show that external eval-
uation of artifacts can evolve behaviors that produce fit artworks. Our
results suggest that wide-perspective vision may be more suited for max-
imizing aesthetic fitness while narrow-perspective vision induces more
behavioral complexity and artifact diversity. We recognize that both se-
tups evolve distinct strategies with their own merits. We further discuss
our findings and propose future directions for the current approach.

Keywords: aesthetic evaluation · artificial intelligence · artificial life
· autonomous behavior · computational creativity · embodied agents ·
evolutionary art · neural networks · situated action · situated cognition

1 Introduction

Computational systems that produce artworks with high levels of autonomy have
always provoked discussion about the definition of art and creativity. Researchers
and artists working in the field of evolutionary and generative art cede control to
autonomous systems that produce artworks, often intending to eliminate human
intervention where possible [17]. Digital evolution is an established algorith-
mic process that has proven very capable of innovation [18]. In art and design,
appropriate implementation of this technique can aid the generation of novel,
valuable and surprising artifacts [4][2] that may be deemed creative by unbiased
observers [8]. It has also been essential in the field of artificial life (a-life) [26]
where researchers have been consistently surprised by creative solutions invented
by artificial organisms evolving in computational environments [28]. Naturally,
the process of digital evolution merely imitates life itself. The biological mecha-
nism of natural selection is known to find and cause inventive adaptations that
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enhance the survival and reproduction of organisms [15]. Consequently, these
may lead to the appearance of design without a designer [10]. Adaptations may
include changes in behavior. We aim our attention at a particular behavior in
some non-human organisms, namely the creation of artifacts.

Several species in the natural world are known to decorate and produce struc-
tures that resemble visual art in the sense that they are intended to be attractive
to potential mates. This structure creation is an important behavioral character-
istic of male bower birds [12] and white-spotted pufferfishes [31]. In this paper,
we explore whether artificial organisms could adapt to similar, but digitally in-
duced pressures as a consequence of constructing artifacts. The following sections
briefly discuss some challenges related to building such a computational system.

1.1 Computational aesthetic evaluation

Early examples of evolutionary art include the highly influential work of Sims [41]
and Latham [47], who used genetic algorithms to mutate symbolic expressions
for the composition of unpredictable yet interesting visual shapes and patterns.
Both adopted a top-down approach that relies on human aesthetic judgment for
the evaluation of artifacts using an interactive genetic algorithm (IGA). This
technique facilitates easy exploration of large parameter spaces [44] but suffers
from significant limitations: (1) IGAs rely on human evaluation at every itera-
tion and so suffer from the fitness bottleneck [46], and (2) human fatigue and
inconsistency make it difficult to capture universal measures [44]. Attempts to
overcome these limitations have included massively multi-user systems [39] and
the application of machine learning to capture user preferences [33].

Challenges in IGA helped inspire the research field of computational aes-
thetic evaluation (CAE), where people seek computational solutions for the as-
sessment of human aesthetics [23]. Machado and Cardoso [29] created NEvAr,
an autonomous system that evolves Sims’ symbolic expressions with an auto-
mated evaluation procedure for images that focuses exclusively on form. Here, a
speculative fitness function inspired by the study of information aesthetics [35]
was designed which favors images that are “simultaneously, visually complex
and that can be processed (by our brains) easily”. In the science of aesthetics,
NEvAr ’s fitness function indicates a formalist theory as it proposes aesthetic
experience relies on the intrinsic beauty of the artifact. In contrast, a conceptual

theory relies on other factors that may be more important for aesthetic prefer-
ence like socio-cultural contexts of the work and the previous experience of the
artists and observers [40]. In a more recent publication, Redies [36] proposes a
model of visual aesthetic experience that unifies these two theories. Ultimately,
there is currently no agreement on which paradigm offers the most effective
computational framework of human aesthetics.

1.2 Embodiment

Theorists in situated cognition view the environment as highly significant to
driving human cognitive processes. Clark and Chalmers [7] suggest that the
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environment directly influences an agent’s behaviors as part of a two-way in-
teraction between action and perception. Here, embodiment is key because it
allows us to manipulate it to our needs. Biological brains have evolved to take
advantage of the environment by offloading cognition to it through the body.
Simultaneously, our visual systems evolved to rely on it more. This perspective
supports the view of externalism, in which the cognitive process is considered
something that occurs in- and outside of the mind [7]. In this context, embod-
iment is key to the creation of art and can be imagined as a feedback loop of
action and perception occurring through a body. Brinck [5] states that the pro-
duction (and consumption) of visual art can be accounted for by the theory of
situated cognition [6]: ”Artist and canvas form a coupled system. Artistic prac-
tice starts with gaze, and then comes the gesture that accomplishes itself when
the artist is in touch with the piece [they are] working on.”[5]

Experiments in the use of embodied artificial organisms and situated cogni-
tion for computational art and creativity have largely been unexplored. Thus,
we present neatures: a prototype for an autonomous art system that simulates
artificial organisms capable of producing visual art in their environment.

2 Related work

There have been several interesting art and research projects involving the use
of embodied agents to create visual art. Jean Tinguely experimented with me-
chanical drawing machines in the 50s, exploring notions of automated artists and
artificial creative processes [13]. Influences to his work can be seen in the field
of swarm painting, which involves the simulation of agents supplied with some
form of cognition producing emergent artworks. Robotic Action Painter [34] is
an autonomous abstract art system based on behavioral studies of ants and other
social insects. An artwork is created by employing several small wheeled robots
that leave colored lines (pheromone) as they travel. A color detection sensor
on each robot recognizes these lines in the environment and triggers specified
behaviors for particular colors—a process analogous to stigmergy ; a form of self-
organization [14]. The result is a painting with chaotic structures that are free
from preconceptions and merely represent the actions themselves. McCormack
developed similar experiments using biological processes of niche construction to
enhance the diversity and variation of agents’ behaviors in his art system [32].

Drawing machines that take a more anthropomorphic approach can be clas-
sified as robot painters. eDavid [11] is an industrial robot that simulates the
human painting process using a visual feedback loop to explore painterly ren-
dering on a real canvas. Explorations in expanding its artistic skill demonstrated
the possibility of expressing a given collection of images in a different style [48].
With neatures, we take inspiration from the flexibility of robot painters and
the emerging complexity of swarms to explore the effects of aesthetic selection
pressures in an evolutionary art system.
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3 Implementation

Neatures1 is a prototype computational visual art system that was developed in
an attempt to employ artificial organisms for the production of visual artifacts.
The current implementation is heavily inspired by the seminal work of Sims
(1994), Evolving Virtual Creatures, in which a genetic algorithm was used to
guide the evolution of specific abilities such as locomotion and jumping. Nea-
tures’ artificial organisms ‘live’ in three-dimensional space and are subject to
physically plausible simulation. This is achieved using the Bullet physics engine
[9]. The software comprises of a controller server which stores the population and
commands the complete evolutionary process. A simulator client can connect to
a controller and receive queries for queued rollouts. This component features a
graphical user interface, allowing the user to observe the virtual organisms in
real-time. The following sections briefly cover the system implementation.

3.1 Agent morphology

Virtual organisms situated in physically plausible environments are subject to
strict laws of physics and, like real organisms, require an appropriate body to
fulfill their purpose. Designing such a body is a difficult task, and perhaps best
suited for an evolutionary process to solve. Sims [41] used a genotypic encod-
ing of nodes and connections for the morphology of his creatures, and genetic
operators, allowing for the evolution of morphology alongside control policy. In
this system, a genotypic encoding scheme is used to generate a hexapod at the
start of a simulation and remains fixed. The reason for this is that evolutionary
optimization of morphology dramatically increases the complexity of the search
landscape and is incompatible with fixed-topology neural network architectures.

Fig. 1: Agent morphology genotype (left) and phenotype (right).

Each element stores some information about their phenotypic transforma-
tions such as size, attachment points, and node or joint type. A phenotype
generation algorithm recursively traverses the graph and builds a hierarchical

1 Neatures is open-source and available at https://github.com/lshoek/creative-evo-
simulator
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structure of boxes connected to each other by joints. Fig. 1 depicts the morphol-
ogy encoding and phenotype of a hexapod. The algorithm in the current work
was implemented after Krčah’s example [25] with some alterations tailored to
suit this work’s purpose. One notable difference, for instance, is that we use a
single degree of freedom per joint for simplicity.

3.2 Agent control policy

In every simulation rollout, agents are tasked to produce an artifact in their en-
vironment. In order to achieve this in neatures, we chose to implement a painting
system. Each agent is equipped with a single brush-type node capable of apply-
ing virtual ink drops to the canvas; a specified surface area in the environment
that the agent can sense and manipulate. Four invisible walls are located at a
specified distance from the canvas edges to prevent agents from moving too far
away from the center. Ink is only released under the conditions that the brush
node is in contact with the canvas, and the agent has decided to activate it.

An agent’s decision-making process and behavior are determined by its con-
trol policy. This is defined by a neural controller that continuously accepts sen-
sory data as input, and based on this data, outputs a set of activation values.
Agents sense their environment through two types of sensors: (1) a propriocep-
tive sensor, implemented by tracking the current joint angles and storing these
in a ∈ IRj , where j is equal to the number of joints in the agent’s morphology
and (2) a vision sensor capturing a 64x64px grayscale bitmap representation of
the current canvas’ content. The data of both sensors is appended to form an ob-
servation to be fed to the neural controller at regular time intervals. The physics
engine and control policy are updated 60 and 20 times per second of simulated
time, respectively. Fig. 2 presents the complete cognitive model of an agent.

The neural controller involves two cognitive modules; a vision model V for
processing visual data inside the incoming observation, and an action model C
to generate the agent’s next action. V is a convolutional variational autoencoder

(CVAE), pre-trained to compress the canvas data to a latent vector z ∈ IR32. C

Fig. 2: Cognitive model of an agent.
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is a simple linear model that takes as input a combination of latent vector z, a
joint angle vector, and an additional value to stimulate continuous movement.
Compression of the visual data allows the action controller to be kept small,
which alleviates the credit assignment problem in difficult reinforcement learning
(RL) tasks and tends to iterate faster [19]. The output layer of C uses a tanh
activation function to output to produce a vector of effector values, including
target joint angles used to update the motor parameters of the agent’s joints and
a value indicating the stroke width of the brush. Finally, a stimulation output
value connects to a central pattern generator (CPG) after which a feedback
connection to the corresponding action model input is made for the next time
the neural controller is queried [24]. This minimal recurrent network structure
is set up this way to evoke changing joint angle outputs. Without it, the agent
would cease to move in cases where its observations remain unchanged over
multiple frames and its body incidentally has zero momentum. Additionally,
as sensory input drives neural excitation, it grants C control over the agent’s
movement speed, which could bring about more interesting behaviors. Section
4.3 describes the training procedure for V and C.

4 Experiment

We carry out two experiments where an artificial organism is evolved by optimiz-
ing for the aesthetic quality of its artifacts. The artistic medium of expression
chosen for this task is painting. The main reason for this is that there exists a
multitude of interesting theories and evaluation techniques of visual human aes-
thetics—suitable for two-dimensional content—that could be pursued to design
an acceptable fitness function [16].

Fig. 3: The neatures simulator showing an agent painting.

As stated in Section 3.1, we decided to exclude morphology from evolution-
ary optimization, meaning we must formulate an appropriate body design for
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the current experiment ourselves. We take inspiration from behavioral robotics
research, where it has long been common practice to use biologically based robot
designs to study artificial organisms [1]. As a matter of course, the insect-like
hexapod was chosen for the current task. This design is a popular benchmark
that we suppose will allow for an adequate degree of flexibility required to ex-
plore the possibilities of the virtual environment. Fig. 3 shows a screenshot of
the agent as it appears in the simulator client of the system.

4.1 Setup

The following is a brief description of the realized experiments. In the first setup,
the agent is supplied with a wide-perspective vision sensor. This is defined as a
64x64px grayscale bitmap representation of the environment that is equal to the
size of the canvas. The orientation of this representation is at all times aligned
with the facing direction of the agent and centered around the point where it
last touched the canvas with its brush node. Fig. 4a shows an example of how
the canvas is sensed with this perspective. The second setup supplies the agent
with a narrow-perspective vision sensor, encompassing 6,5% of the canvas area
as shown in Fig. 4b.

(a) (b)

Fig. 4: The mapping from canvas (left) to visual field (right), marked in red, for
wide-perspective (4a) and narrow-perspective (4b).

The vision capabilities of the agent exist in a separate conceptual space from
the one it is situated in. Agents’ visual capabilities exist in artifact space, whereas
their neural controllers output actions in effector space. The former is a two-
dimensional representation of the environment, cultivated by the agent itself.
The latter relates to objects in the three-dimensional virtual environment. Other
than muscle memory (the action controller parameters), an agent has no other
capabilities of memorization. As a result, the environment is the only cognitive
resource to the agent by which an approximate model of situated cognition is
realized. The key idea to this experiment is that, under the given conditions, a
mapping between these two may be learned. If successful, the creature would be
able to produce an aesthetically pleasing artifact in artifact space by means of
its motor function in effector space.
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4.2 Measuring aesthetic quality

After a rollout has ended, the resulting artifact is queued for fitness evaluation.
In our computational environment, the fitness function is a proxy for natural
selection pressures that cause the evolution of adaptations [15]. As outsiders
to this virtual world, we can design this function externally, and observe what
behaviors emerge from evolutionary optimization. Taking inspiration from some
animal species’ mate selection indicators that are attributed to external artifacts,
we intentionally ignore any behavioral aspects of an agent’s existence. Our fitness
function is designed to evaluate images in accordance with speculative visual
aesthetic theory, essentially assuming the role of an art critic.

To measure the aesthetic quality of an artifact, we use a metric closely related
to Birkhoff’s [3] formalist aesthetic measure, defining the formula M = O/C,
where M is the aesthetic effectiveness, O is the degree of order and C is the
degree of complexity. Birkhoff theorizes that aesthetic response to an object is
stronger when the degree to which psychological effort is required to perceive
it—induced by its complex features—is met with a higher degree of tension be-
ing released as the perception is realized—originating from orderly features such
as symmetry and self-similarity. This formula has been disputed early and is
generally regarded as inaccurate [49]. Scha & Bod [37], for instance, note that it
penalizes complexity too considerably and is better suited as a measure of the
degree of self-similarity. Galanter [16], however, notes that at least two aspects of
Birkhoff’s work remain legitimate today; the intuitive connection between aes-
thetic value and order/complexity relationships, and the search for a neurological
base of aesthetic behavior. These aspects are reflected in the fitness function of
Machado & Cardoso [29], defined in Eq. 1. Inspired by information aesthetics
[35], Machado & Cardoso speculate an image’s intrinsic aesthetic value to be
equal to the ratio of image complexity IC to processing complexity PC.

rewardaesthetic =
IC

PC
(1)

PC is measured at two temporal instances (t0 and t1) in the time it takes to
perceive an image and provide Eq. 2. The processing complexity is maximized
as PCt1 and PCt0 approach each other.

PC = (PCt0PCt1)
a

(

PCt1 − PCt0

PCt1

)b

(2)

In order to find PCt0 and PCt1, we calculate the inverse of the root mean
square error (RMSE) between the original image i, and the same image after
fractal compression Fractal(i), as shown in Eq. 3.

PCtn =
1

RMSE(Fractal(i), i)
(3)

Machado et al. [30] compared several complexity measures with human rat-
ings across a selected set of images in five distinct stylistic categories. Among
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the results of their feature extraction experiments, their JPEG-Sobel method
was found to correlate the most with human ratings, especially those related to
the abstract artistic category. We calculate IC following this method as shown
in Eq. 4. First, the Sobel [42] edge detection operator is applied to i horizontal
and vertical directions, after which the resulting gradients are averaged. Then,
JPEG compression is performed on the edges. In the dividend, size defines the
total number of bytes required to store the image data.

IC =
RMSE(Sobel(i), JPEG(Sobel(i)))

size(Sobel(i))size(JPEG(Sobel(i)))
(4)

Taylor et al. [45] note the fractal qualities of late-period action paintings by
Jackson Pollock and suggests their fractal dimensions are correlated with their
aesthetic qualities. Therefore, we decided to parameterize Eq. 2 using a = 0.6
and b = 0.3, increasing bias towards artifacts with more orderly features with
respect to the reference implementation [29]. We argue that this suits the current
experimental setup by countering excessive levels of image complexity in the
artifacts due to the generally chaotic nature of agents’ behaviors that generate
complex and incidental painting patterns by default.

In early experiments, we found that additional encouragement to act through
an easily attainable coverage reward could help agents to advance faster in early
generations. This has the added benefit that a minimum specified amount of
content is imposed on the artifacts. Eq. 5 defines rewardcoverage(x), where x
is the mean of all normalized pixel intensities of the artifact and p is the peak
coverage rate. It is essentially a smooth interpolation between x and p, ensuring
a result of 1 when x ≥ p.

rewardcoverage (x) = 1− sin

(

π

1

p
x+ 1

2

)4

(5)

with initial condition

x = min(x, p) (6)

In our experiments, we use p = 0.0625, meaning that the maximum coverage
reward is already reached when 6,25% of the canvas area is painted. Finally, the
total artifact fitness is calculated as defined in Eq. 7. This shows the aesthetic
reward is proportional to the coverage reward until peak reward p is reached,
thus penalizing paintings that have little content. Table 1 presents a set of images
and their fitness values.

fitness = 100 rewardcoverage + rewardaesthetic × rewardcoverage (7)

We find these results to be satisfactory for our purposes. Although the fitness
function is arguably too generous on Gaussian noise (Table 1d), such an artifact
is practically impossible for an agent to produce. The Pollock-snippet (Table 1e)
is evaluated far more positively and represents a more plausible result.
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Table 1: A set of images and their fitness: (a) perfect symmetry, (b) an early-
generation artifact with little variability in stroke width, (c) an early-generation
artifact with high variability in stroke width, (d) Gaussian noise, (e) a contrast-
enhanced snippet of No. 26A: Black and White by Jackson Pollock (1948).

(a) (b) (c) (d) (e)

Fitness 101.2 116.2 145.9 399.5 871.5
Coverage 27.7% 15.5% 12.4% 18.2% 46.0%
IC 0.0697 0.4042 0.8046 44.269 48.443
PC 0.0561 0.0250 0.0175 0.0148 0.0063

4.3 Training procedure

Before any control policies can be evolved, visual model V must be pre-trained
to discern between visual observations. First, 20,000 artifact samples (256x256
grayscale bitmaps) were collected in a preliminary run using an untrained visual
model V . Then, a new dataset was generated by applying random affine trans-
formations to each collected sample. This new dataset is more representative of
an agent’s visual observations. Finally, using the updated dataset, V was trained
to encode visual observations into latent vector z ∈ IR32 for 200 epochs.

Agents’ control policies are optimized through evaluation of the quality of
their work, rather than the means by which it was achieved. This indirect cor-
respondence between goal and action may reduce credit assignment accuracy
of gradient-based numerical optimization algorithms as adaptations to action
controller C could have unanticipated effects on an artifact’s fitness. Therefore,
gradient-free methods such as evolution strategies [38] might be best suited for
solving this problem. Neuroevolution methods have a long history of success with
evolutionary robotics and have recently increased in popularity as they have been
found to perform considerably well on deep RL tasks [43]. With this in consid-
eration, we chose covariance matrix adaptation evolution strategy (CMA-ES)
[20] for the optimization of C’s parameters. Evidence shows that the algorithm
performs relatively well on deceptive landscapes or sparse-reward functions up
to a couple of thousands of parameters [22]. We use an open-source Python
implementation of the algorithm by Hansen [21].

At the start of every evolution process, the weights of every action controller
C in the population are randomly initialized with µ = 0 and σ = 0.1. A popu-
lation size of 32 is used, where each candidate’s behavior is determined by their
corresponding C, comprising 658 trainable parameters each. Every generation,
one rollout is performed per agent and results in 32 artifacts. A rollout is defined
as 240 seconds of simulated time an agent spends in the environment. Evalua-
tions occur immediately after each rollout in a separate process. After all rollouts
and evaluations are finished, CMA-ES uses the collected fitness values to update
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each candidate’s action controller parameters for the next generation. Both ex-
periments are performed using an evolutionary process of 350 generations.

Our training setup marks several notable limitations. Foremost, the experi-
ments are carried out separately on two mid-range laptops (i7-7700HQ/GTX1050
and i7-8750H/GTX1070), each running a single simulator client and controller
server at the same time. The most significant bottleneck comes from the frac-
tal compression procedure required for each artifact evaluation. In the current
setup, we simulate two populations of 32 candidates for 350 generations and
takes about 40 hours to complete. More reliable results could be collected by
increasing the population size and averaging fitness over multiple rollouts for
a more representative metric of the agent’s general painting strategy. This is
however outside of the scope of this research.

Fig. 5: Fitnesses of the narrow- (left) and wide-perspective populations (right).

5 Results

Fig. 5 presents the fitness results of the narrow- and wide-perspective vision ex-
periments. Here, we see that the narrow-perspective population’s mean fitness
starts with a steep positive trend and converges towards a local optimum before
the 50th generation. The wide-perspective population’s mean fitness improves
gradually up to around the 100th generation before a local optimum is reached.
We also see that the wide-perspective population is generally about 150 points
ahead of the narrow-perspective population. From these results, it is evident that
the wide-perspective population performs better in terms of fitness. However, it
barely shows any signs of improvement after a local optimum has been reached,
until the final generation of the simulation. This is unlike the narrow-perspective
population, which shows a slight upward trend around the 300th generation, and
some new best-ever artifacts of the population. Table 2 presents the highest-rated
artifacts of both experiments along with some key statistics. Almost every ar-
tifact shows a clear trajectory on the canvas that is telling of the strategy that
was used to produce it. Fig. 6 below shows the highest-rated artifacts of the first
64 generations of both populations. We see that the sort of artifacts produced by
both populations can easily be distinguished from approximately the 40th gener-
ation. From there on, we see that nearly all artifacts of the wide-vision population
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Table 2: The highest-rated artifacts of all generations of wide-perspective and
narrow-perspective populations and their key statistics.

Pers. Fitness Cov. IC PC Gen.

Wide 401.05 36.05% 2.8339 0.0094 194
Narrow 251.82 21.33% 1.7714 0.0116 335

Wide Narrow

indicate a circular movement strategy, with little diversity among paintings. The
fitness results and artifacts of this population show that this strategy is further
exploited in subsequent generations, likely because of its effective contribution
to maximizing fitness. In contrast, the narrow-perspective population struggles
to escape a local optimum early on but demonstrates far more diversity among
its artifacts in all generations. This suggests that potentially fit strategies are
being explored rather than being exploited.

Fig. 6: The best artifacts of the first 64 generations (top-left to bottom-right)
of the narrow- (left) and the wide-perspective population (right).

The discrepancy between the fitness results and the type of artifacts pro-
duced by both populations led us to believe that coverage and fitness may be
strongly positively correlated. To investigate, we plotted coverage against fit-
ness (Fig. 7) and observed that coverage is an accurate predictor of fitness in
the wide-perspective population, but not necessarily for the narrow-perspective
population.
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Fig. 7: Mean coverage and fitness in narrow- (left) and wide-perspective popu-
lations (right).

6 Discussion

Our results of the current experiment demonstrate a notable distinction between
the narrow- and wide-perspective setup. In our experiment, we observe that vir-
tual organisms with narrow-perspective vision trigger explorative search of the
fitness landscape by the evolutionary algorithm and demonstrate more complex
and distinct behavior. We also see that this is not necessarily in the interest of
maximizing fitness. One explanation for this could be that relatively small adap-
tations to a narrow-perspective controller’s weights lead to greater variations in
the emerging painting strategy. In the agent’s cognitive model, perception and
action are closely coupled together. Therefore, distinct actions may be more likely
to be triggered when visual observations are more volatile, as is the case with
the narrow-perspective agents. This is in line with Brinck’s [5] argument that art
creation is a situated activity, noting that what the artist perceives is directly
transformed into action. We further observe that narrow-perspective agents gen-
erally appear more sensitive to the environment in their painting strategies than
wide-perspective agents. Narrow-perspective agents show more effective correc-
tive behavior such as turning near the edge of the canvas. This is not as apparent
in wide-perspective agents who barely appear to discernibly change their behav-
ior near edges. Little response to edges is likely induced by the exploitation of
circular movement patterns—evidently an effective strategy for painting highly
fit artifacts. We further think that the widespread coverage of paint in the en-
vironment reinforces an agent’s behavioral pattern. This may be due to the
relatively poor compression quality of global features in visual observations of
developed circular patterns, leading to similar encodings of z. Incidentally, this
fact may have greatly contributed to finding the circular movement strategy.

From our observations, we theorize that volatile visual information, as demon-
strated by the narrow-perspective experiment, considerably complicates the shape
of the fitness landscape. For instance, a consistent circular movement strategy
would be much more difficult to sustain over the length of a rollout, and over
multiple generations, with narrow-perspective vision than with wide-perspective
vision. Even more so, this automatically concerns any potential strategy. Al-
though volatile visual information may impede the evolution of consistent ac-
tion and perception, it does have creative merit in the sense that it elicits greater
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behavioral complexity in agents. Hence, the narrow-perspective population has
explored the greatest artifact space. This is demonstrated in Fig. 8 which presents
two random selections of artifacts created in both populations.

Fig. 8: Two random selections of artifacts drawn from all of the narrow-
perspective population (left) and the wide-perspective population (right).

Considering our evaluation procedure; if we, hypothetically, consider Pol-
lock’s work as an aesthetic benchmark for this system (Table 1e), we consider
the current fitness function helpful at guiding agents’ technique towards this
aesthetic up to a certain point. Fig. 7 however suggests a possible perverse in-
stantiation problem; at least one strategy exists in which coverage can be ex-
ploited to maximize fitness. However, we believe an adjustment to the fitness
function would be premature. This is because, as the fitness function is based
on complexity, coverage cannot be positively correlated with fitness as it ap-
proaches 50%. The highest recorded coverage of all artifacts in both populations
is 36%, whereas the coverage of our Pollock example (Table 1e) is measured at
46%. We are confident that under the current time pressure of 240 seconds, it
is physically not possible for agents to cover a significantly greater part of the
canvas. Therefore, we believe that agents should be assigned sufficient time so
that 50% coverage could be achieved. After this is explored, we believe that a
worthwhile addition to the fitness function would be a novelty reward term to
overcome local optima by encouraging exploration [27].

In our experiment, we see that a proxy for selection pressures based in aes-
thetic properties of an external artifact can evolve a virtual organism with some
success. Our agents’ artificially emergent and autonomous behaviors resemble
those of simple biological organisms in some ways on a superficial level and
are rather interesting to observe. Whether some of the resulting artifacts are
aesthetically pleasing is up to the beholder. Their chaotic patterns and compo-
sitions certainly parallel abstract expressionist action paintings to some degree.
The agents’ paintings share an interesting connection to this art movement as
all brushstrokes represent nothing but the actions themselves. With that, one
could argue for their artistic value.
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6.1 Future work

We briefly propose future directions for the current research. Foremost, the sys-
tem would highly benefit from a more robust visual model, as emphasized by
the poor reconstruction quality of wide-perspective visual observations. This can
be achieved by using a larger dataset of intermediate visual observations. Fu-
ture work could assess whether granting a virtual organism continuous agency
over its visual perspective, approximating the cognitive process of attention, is
a worthwhile approach. This feature is trainable and could explore the nuance
between the benefits of the demonstrated visual perspectives.

The morphology and environmental setup we chose for the task of painting
is by no means the most suitable. We recommend that future work in embodied
agent art should keep exploring the evolution of morphologies. This prevents
authors from making predisposed choices about the most suitable body for a
given task. A significant downside to this is that it requires a flexible network
structure for the action controller model that is significantly more difficult to
train. A search algorithm for appropriate morphology choice is another separate
topic that could be further explored in the context of art-producing artificial
organisms [27]. Furthermore, agents in the current work are limited to a single
type of brush, paint color, and environment to explore. Therefore, future exten-
sions could try implementing physically based painting systems, color palettes,
and varying environments, each of which could bring about interesting new arti-
facts and behaviors. Ultimately, painting is only one method of artistic practice,
and by no means the most suitable for embodied agents to practice. Computa-
tional organisms and environments allow for other artistic modes of expression
to be explored such as sculpture, dance, music, poetry, etc. The possibilities are
far-reaching and may one day perhaps exceed our imagination.

7 Conclusion

We have demonstrated that virtual organisms can be evolved to make aestheti-
cally pleasing paintings using selection pressures based on aesthetic properties of
the painting. The results from our experiments show notable behavioral differ-
ences between agents employed with wide-perspective and narrow-perspective vi-
sion. The wide-perspective population achieved the best results in terms of fitness
by evolving a circular movement strategy effective at maximizing fitness early
on, but later showing barely any signs of improvement. The narrow-perspective
population performed worse and did not evolve an exploitable strategy. Instead,
it brought about a diverse set of artifacts across all generations. From this we
conclude that the wide-perspective setup may be more suited for maximizing aes-
thetic fitness while the narrow-vision setup induces more behavioral complexity
and artifact diversity. Although, the scope of this research is limited, our results
provided some interesting insights and discussions which provide directions for
future applications of computational art systems employing virtual organisms.
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Abstract. One method to solve expensive black-box optimization problems is to

use a surrogate model that approximates the objective based on previous observed

evaluations. The surrogate, which is cheaper to evaluate, is optimized instead to

find an approximate solution to the original problem. In the case of discrete prob-

lems, recent research has revolved around surrogate models that are specifically

constructed to deal with with discrete structures. A main motivation is that litera-

ture considers continuous methods, such as Bayesian optimization with Gaussian

processes as the surrogate, to be sub-optimal (especially in higher dimensions)

because they ignore the discrete structure by e.g. rounding off real-valued so-

lutions to integers. However, we claim that this is not true. In fact, we present

empirical evidence showing that the use of continuous surrogate models displays

competitive performance on a set of high-dimensional discrete benchmark prob-

lems, including a real-life application, against state-of-the-art discrete surrogate-

based methods. Our experiments on different discrete structures and time con-

straints also give more insight into which algorithms work well on which type of

problem.

Introduction

A principal challenge in optimization is to deal with black-box objective functions.

The objective function is assumed to be unknown in this case, in contrast to traditional

optimization that often utilizes an explicit formulation to compute the gradient or lower

bounds. Instead, we assume to have an objective y = f(x) + ǫ with some unknown

function f(x) together with additive noise ǫ. Furthermore, f(x) can be expensive to

evaluate in terms of time or another resource which restricts the number of evaluations

allowed.

One type of method to solve these black-box optimization problems is the use of

surrogate models. Surrogate-based algorithms approximate the objective function in

search of the optimal solution, with the benefit that the surrogate model is cheaper to

evaluate. Bayesian optimization [22] is an example of such a surrogate-based algorithm.

An active field of research is how to deal with discrete black-box optimization

problems with an expensive objective function. There are many real-world examples

of this, such as deciding on the architecture of a deep neural network [7] or design-

ing molecules with desirable properties [15]. Furthermore, optimization over structured

domains was highlighted as an important problem to address from the NIPS 2017 work-

shop on Bayesian optimization [10].
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Discrete optimization problems can be solved with a continuous surrogate model,

e.g. Bayesian optimization with Gaussian processes [22], by ignoring the discrete struc-

ture and rounding off the real-valued input to discrete values. However, literature in

this field generally considers this to be a sub-optimal approach [1, 8]. Therefore, re-

search has revolved around inherently discrete models such as density estimators or

decision trees, e.g. HyperOpt [2] or SMAC [12]. Another approach is to use continuous

models that guarantee discrete optimal solutions, such as the piece-wise linear model

IDONE [4].

In contrast to common belief, we present an empirical study that displays that con-

tinuous surrogate models, in this case Gaussian processes and linear combinations of

rectified linear units, show competitive performance on expensive discrete optimization

benchmarks by outperforming discrete state-of-the-art algorithms. Firstly, we will in-

troduce the problem, the related work, and the considered benchmark problems. Then,

in the remainder of the paper we 1) perform a benchmark comparison between contin-

uous and discrete surrogate-based algorithms on optimization problems with different

discrete structures (including one real-life application), 2) investigate why continuous

surrogate models perform well by transforming the different discrete problem struc-

tures and visualizing the continuous surrogate models, and 3) perform a more realistic

analysis that takes the time budget and evaluation time into account when comparing

the algorithms. We conclude that continuous surrogates applied to discrete problems

should get more attention, and leave some questions for interesting directions of future

research in the domain of discrete expensive black-box optimization.

Problem Description

Consider the following class of d-dimensional discrete optimization problems:

minimize
x

f(x)

subject to x ∈ Z
d

li ≤ xi ≤ ui, i = 1, . . . , d

(1)

where li and ui are the lower and upper bound for each integer-valued decision

variable xi. For black-box optimization problems, we assume to have no closed form

expression for f : Z
d → R. The only information which can be gathered about f

comes from observing the output when evaluating f(x) given some input x. However,

in many real-world applications we will also have to deal with some noise ǫ ∈ R such

that we are given the output y = f(x) + ǫ. Obtaining an evaluation is also assumed to

be expensive: it could require large computational power, human interaction with the

system or time consuming simulations. Therefore it is of interest to obtain a solution

within a limited amount of evaluations B, also known as the budget.

One way of solving this class of problems is to make use of a so called surro-

gate model. A surrogate model is an auxiliary function M that approximates the ob-

jective function based on the points evaluated so far. This model is cheaper to evaluate

in comparison to the original black-box objective function. Given a number m of al-

ready evaluated points, the surrogate model is constructed using the evaluation history
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H = {(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))}. The surrogate can be utilized to

predict promising points to evaluate next on. The next feasible solution x
(m+1) to eval-

uate on can be chosen based on this prediction. These steps, which are also described

in Algorithm 1, are repeated until the budget B is reached.

Typically, an acquisition function A(M,x) is used to propose the next point x(m+1)

to evaluate with the objective function. It predicts how promising a new point x is,

based on a trade-off of exploitation (searching at or near already evaluated points that

had a low objective) and exploration (searching in regions where the surrogate has

high uncertainty). In general, the next point is chosen by finding the global optimum

x
(m+1) = argmax

x

A(M,x).

Algorithm 1 Surrogate-based optimization

Require: budget B, surrogate model M , acquisition function A

1: Initialize x
(1) randomly and an empty set H

2: for m = 1 : B do

3: y(m) ← f(x(m)) + ǫ

4: H ← H ∪ {(x(m), y(m)))}
5: M ← fit surrogate model using H

6: x
(m+1) ← argmax

x

A(M,x)

7: end for

8: return optimal (x∗, y∗) ∈ H

Related Work

Although discrete problem structures are difficult to handle in black-box optimization,

multiple approaches have been proposed. A survey by M. Zaefferer [24] presents dif-

ferent strategies for dealing with discrete structures in surrogate-based algorithms. The

first strategy is the naive way by simply ignoring the discrete structure. Another strat-

egy is to use inherently discrete models such as tree-based models [2, 12]. These models

can however fail if the problem structure is too complex or if there are both discrete and

continuous variables involved [24]. Lastly, discrete structures can be dealt with by using

a certain mapping. Although this strategy does not apply directly to a surrogate model, a

suitable mapping can make the problem easier. For example, encoding integer solutions

with a binary representation can be easier for some regression models to handle.

There are also other strategies such as using problem-specific feature extraction or

customizing the model. However, these violate the black-box assumption which is why

we will not discuss them.

We now discuss several surrogate-based optimization algorithms that can solve the

expensive discrete optimization problem in eq. (1) and that also have their code avail-

able online.

Bayesian optimization has a long history of success in expensive optimization prob-

lems [13], and has been applied in many domains such as chemical design and hyper-
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parameter optimization for deep learning [9, 14]. It typically uses a Gaussian process

as a surrogate to approximate the expensive objective. Several acquisition functions ex-

ist to guide the search, such as Expected Improvement, Upper Confidence Bound, or

Thompson sampling [21], information-theoretic approaches such as Predictive Entropy

Search [11], or simply the surrogate itself [5, 18]. Though Gaussian processes are typ-

ically used on continuous problems, they can be adapted for problems with discrete

variables as well. The authors of [8] suggest three possible approaches, namely round-

ing to the nearest integer 1) when choosing where to evaluate the objective function, 2)

when evaluating the objective function, or 3) inside the covariance function of the Gaus-

sian process. The latter provides the best results but gives an acquisition function that

is hard to optimize. The first option leads to the algorithm getting stuck by repeatedly

evaluating the same points, although this can be circumvented by carefully balancing

exploration and exploitation [17]. In this work, we will consider only the simpler second

option, for which we do not need to modify any existing implementations.1

BOCS2 [1] transforms the combinatorial problem into one that can be solved with

semi-definite programming. It uses Thompson sampling as the acquisition function.

However, it suffers from a large time complexity, which was only recently overcome by

using a submodular relaxation called the PSR method3 [6].

COMBO4 [23] uses an efficient approximation of a Gaussian process with random

features, together with Thompson sampling as the acquisition function. Though this

gives increased efficiency, COMBO deals with discrete search spaces by iterating over

all possible candidate solutions, which is only possible for small-dimensional problems.

HyperOpt5 [2] makes use of a tree of Parzen estimators as the surrogate model. It

can naturally deal with categorical or integer variables, and even with conditional vari-

ables that only exist if other variables take on certain values. The algorithm is known

to perform especially well on hyperparameter tuning problems with hundreds of di-

mensions [3]. This is in sharp contrast with Bayesian optimization algorithms using

Gaussian processes, which are commonly used on problems with less than 10 dimen-

sions. A possible drawback for HyperOpt is that each dimension is modeled separately,

i.e., no interaction between different variables is modeled. HyperOpt uses the Expected

Improvement acquisition function.

SMAC6 [12] is another surrogate-based algorithm that can naturally deal with inte-

ger variables. The main reason for this is that the surrogate model used in this algorithm

is a random forest, which is an inherently discrete model. A point of critique for SMAC

is that the random forests have worse predictive capabilities than Gaussian processes.

Nevertheless, like HyperOpt, SMAC has been applied to problems with hundreds of

dimensions [16]. SMAC uses the Expected Improvement acquisition function.

1 We consider the implementation from https://github.com/fmfn/BayesianOptimization in this

work, which uses the Upper Confidence Bound acquisition function.
2 https://github.com/baptistar/BOCS
3 https://github.com/aryandeshwal/Submodular Relaxation BOCS
4 https://github.com/tsudalab/combo
5 https://github.com/hyperopt/hyperopt
6 https://github.com/automl/SMAC3
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IDONE7 [4] uses a linear combination of rectified linear units as its surrogate model.

This is a continuous function, yet it has the special property that any local minimum of

the model is located in a point where all variables take on integer values. This makes the

method suitable for expensive discrete optimization problems, with the advantage that

the acquisition function can be optimized efficiently with continuous solvers. IDONE

uses the surrogate model itself as the acquisition function, but adds small perturba-

tions to the optimum of the acquisition function to improve its exploration capabilities.

Though the method is not as mature as SMAC or HyperOpt, it also has been applied to

problems with more than 100 variables [4].

Benchmark problems

We present the four different benchmark problems that are used to compare the surrogate-

based algorithms. The purpose of the benchmarks is to compare the discrete surrogate-

based algorithms presented in the previous section and investigate which algorithms are

most suited for which type of problem.

The benchmarks have been selected to include binary, categorical and ordinal de-

cision variables but also different discrete structures such as sequential or graph-based

structures. Since we assume that the evaluation of the objective functions is expensive,

we perform the benchmark with a relatively strict budget of at most 500 evaluations. The

objective function is evaluated once per iteration in Algorithm 1. Furthermore, we are

testing on relatively large problem sizes, ranging from 44 up to 150 decision variables

with search spaces of around ∼ 1050 possibilities. This range is interesting considering

that Bayesian optimization using Gaussian processes is typically applied on problems

with less than 10 variables.

On top of that, it has been shown that a large dimensionality reduces the impor-

tance of choosing a complicated acquisition function [18], which helps us doing a fair

comparison between surrogates.

Moreover, we do an analysis of the performance of each algorithm where we limit

the allowed time budget instead of the number of evaluations and simulate different

evaluation times of the objective functions. The time budget includes both the total

time to evaluate the objective function and the computation time of the optimization

algorithm. Thus, it puts emphasis on the computation time of the algorithm in addition

to their respective sample efficiency.

We present the four benchmark problems in detail below. Note that we present these

problems in detail but that they are treated as black boxes by the optimization algo-

rithms.

The Discrete Rosenbrock problem is a d-dimensional, non-convex function, with

a curved valley that contains the global optimum defined by the following function:

f(x) =
d−1∑

i=1

[100(xi+1 − x
2
i
)2 + (1− xi)

2] (2)

7 https://bitbucket.org/lbliek2/idone
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where x ∈ Z
d. In the Rosenbrock problem, finding the valley is simple, but finding

the global optimum [1, 1, . . . , 1] is not. As we are exploring discrete optimization prob-

lems, we consider a discrete variant of the problem such that only integer solutions

are considered. We have d = 49 decision variables and each decision variable xi is

bounded by the range [−5, 10]. Thus, the problem’s search space is in the order of 1059

candidate solutions. Lastly, the additive noise ǫ is normally distributed according to

N(µ = 0, σ = 10−6).

The Weighted Max-Cut problem is an NP-hard graph cutting problem, defined as

follows: For an undirected weighted graph G = (V,E), a cut in G creates the subset

S ⊆ V and its complement S = V \S. Then E(S, S), is defined as the set of edges that

have one vertex in S and the other in S. The Max-Cut problem is to find the cut that

maximizes the weight of the edges in E(S, S). The problem is encoded with a binary

string x ∈ {0, 1}d where either xi = 0 or xi = 1 indicates if node i lies in S or S

respectively.

For the following experiments, the MaxCut problem instances are randomly gen-

erated as weighted graphs, with d nodes, edge probability p = 0.5 and a uniformly

distributed edge weight in the range [0, 10]. The graph generator is initialized with the

same random seed for every run, ensuring that all experiments of a given problem size

are performed on the same graph. On top of that, the additive noise ǫ added to each

evaluation is following a standard normal distribution N(µ = 0, σ = 1). Lastly, we are

using a graph with d = 150 nodes which means that the size of the problem’s search

space is 2150 ≈ 1057.

The Perturbed Traveling Salesman is a variant of the well-known sequential

graph problem where, given a number of cities and the distances between these cities,

a shortest path needs to be found that visits all cities and returns to the starting city.

We consider the asymmetric case with k cities where the distance between cities is not

the same in both directions. Moreover, noise ǫ ∼ U(0, 1) is added to each distance

during evaluation. While the perturbation can cause issues for problem-specific solvers,

it creates a good benchmark for black-box optimization algorithms. To ensure a robust

solution, each proposed route is also evaluated 100 times and the worst-case objec-

tive value is returned. Furthermore, we will consider problem instance ftv44. This is

an instance with 44 cities taken from TSPLIB [20], a library of problem instances for

the traveling salesman problem. An instance with 44 cities is chosen to closely match

the number of decision variables in the ESP problem which has a fixed number of 49

decision variables.

The problem is encoded as in [4]: after choosing a fixed origin city, there are d =
k − 2 ordered decision variables xi for i = 1, . . . , d such that x1 ∈ {1, 2, . . . , k − 1}
where each integer represents a city other than the origin city. Then, the next decision

variable x2 ∈ {1, ..., k − 2} selects between the cities that were not yet visited. This is

repeated until all cities have been chosen in some order. Since the last decision variable

xd ∈ {1, 2} selects between the two remaining cities, we can deduce afterward the

two remaining edges which closes the route since there is one last city to visit before

returning to the origin city. Thus, the total number of possible sequences is given by

(d− 1)! ≈ 6 · 1052 for this instance.
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The Electrostatic Precipitator problem is a real-world industrial optimization

problem first published by Rehbach et al. [19]. The Electrostatic Precipitator (ESP)

is a crucial component for gas cleaning systems. It is a large device that is used when

solid particles need to be filtered from exhaust gases, such as reducing pollution in fos-

sil fueled power plants. Before gas enters the ESP, it passes through a gas distribution

system that controls the gas flow into the ESP. The gas flow is guided by configurable

metal plates which blocks the airflow to a varying degree. The configuration of these

plates inside the gas distribution system is vital for the efficiency of the ESP. However,

it is non-trivial to configure this system optimally.

The objective function is computed with a computationally intensive fluid dynamics

simulation, taking about half a minute of computation time every time a configuration

is tested. There are 49 slots where different types of plates can be placed or be left

empty. In total, there are 8 different options available per slot. This is formalized such

that each integer-valued solution x is subject to the inequality constraint 0 ≤ xi ≤ 7
for i = 1, . . . , 49. This gives a large solution space in the order of 1044 possibilities.

Lastly, the problem has some ordinal structure where the decision variables decides

between sizes of holes which are covering the plates. However, as an indication of the

complex problem structure we have noted that changing any single variable does not

affect the objective function.

Experiments

The goal of this section is to show a benchmark comparison between discrete and

continuous surrogate-based algorithms on the discrete optimization problems of the

previous section. The compared algorithms are HyperOpt and SMAC as two popular

surrogate-based algorithms that make use of a discrete surrogate model if the search

space is discrete, and Bayesian optimization as a popular surrogate-based algorithm for

continuous problems. Though there exist several other algorithms that can deal with the

discrete setting, these three are often used in practice because they are well established,

can be used for a wide variety of problems, and have code available online. We also in-

clude IDONE in the comparisons as a surrogate-based algorithm that uses a continuous

surrogate model but is designed for discrete problems, and random search is included

as a baseline.

All experiments were run on the same Unix-based laptop with a Dual-Core Intel

Core i5 2.7 GHz CPU and 8 GB RAM. Each algorithm attempted to solve the bench-

marks 5 times. The allowed evaluation budget was 500 evaluations for all problems

except the ESP problem where 100 evaluations were allowed instead due to it being

more computationally expensive.

We are using the default hyperparameters for all algorithms, which are decided by

their respective code libraries, with two exceptions. We change the SMAC algorithm to

deterministic mode, since it otherwise evaluates the same point several times, which de-

teriorates its performance significantly. Besides that, the first five iterations of IDONE

are random evaluations, which is similar to what happens in the other algorithms. The

other algorithms start with their default number of random evaluations (which is 5 for

Bayesian optimization and 3 for SMAC and HyperOpt), however for a fair comparison
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we make sure that all of these initial random evaluations come from a uniform distribu-

tion over the search space. Unfortunately, more extensive hyperparameter tuning than

stated above is too time-consuming for expensive optimization problems such as ESP.

In the following section we present the results from the benchmark comparison of

the four surrogate-based optimization algorithms. The benchmark consists of the four

problems which have varying discrete structures.

Results

In this section we describe the main results from comparing the algorithms on the dis-

crete Rosenbrock, weighted Max-Cut, the travelling salesman and the ESP problems.

Figure 2 shows the best average objective value found until a given iteration on each

problem as well as their respective computation time. The computation time is the cu-

mulative time up until iteration i which is required to perform the steps on line 5 and

6 in Algorithm 1. Furthermore, we also investigate how the algorithms perform if we

introduce a time budget during optimization instead of constraining the number of eval-

uations.

Ordinal structures We start by comparing the results from the 49-dimensional discrete

Rosenbrock problem. In Figure 2a, we see that Bayesian optimization (BO) is the only

algorithm that comes close to the optimal objective value of zero. The other algorithms

are not performing as well, where HyperOpt (HO) gets the closest to BO. Given that the

problem is in fact a discrete version of an inherently continuous problem with ordinal

variables, this can be considered to be well suited for continuous model regression. On

the other hand, IDONE also uses a continuous surrogate, but it does not perform as well

as BO. A possible explanation is that IDONE is less flexible since it is a piece-wise

linear model.

To investigate the quality of the surrogates from both BO and IDONE, we visualize

their surfaces in Figure 1 for the 2-dimensional case of Rosenbrock. The Gaussian pro-

cess from BO (which uses a Matérn 5/2 kernel in this case) predicts a smoother surface

than IDONE which appears more rugged and uneven. Overall, BO looks more similar

to the objective ground truth. We can argue that this is why BO performs well while

IDONE does not. BO is likely suitable for the discrete Rosenbrock problem since the

problem has an underlying continuous structure with ordinal variables. Meanwhile, this

structure could be too complex for the piece-wise linear surrogate in IDONE.

However, we are interested in investigating problems which do not necessarily have

a clear continuous structure. Thus, we look at the ESP problem which also happens to

have some ordinal structure. The results from this problem are found in Figure 2c. It

shows a more even performance among the algorithms compared to the Rosenbrock

problem, although BO still returns the best objective on average. This is closely fol-

lowed by both SMAC and HO, while IDONE is doing worse than random search.

Based on the results from these two problems, it appears that BO works well on

ordinal structures. However, this does not seem to hold true for all continuous surrogates

considering the performance of IDONE. Still, the naive approach with BO outperforms

the other state-of-the-art discrete algorithms on the problems that we have discussed so
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Fig. 1: Visualization of continuous surrogates that approximate the two-dimensional

Rosenbrock, namely the linear combination of ReLUs from IDONE and Gaussian pro-

cesses from BO. These models were picked based on the best performance from 15

different runs with 50 evaluations each. HyperOpt and SMAC are not visualized since

this is not supported by their respective code libraries.

far. This is actually in line with experimental results from [8] on small problems (up

to 6 dimensions) with both discrete and continuous parameters, though it was not the

main conclusion of the authors. The difference with our work is that we consider purely

discrete problems of higher dimensions, from a real-life application, and we include

IDONE in the comparison.

Binary structures We will now consider a graph problem, that is the weighted Max-

Cut problem. From the results in Figure 2e, we notice that BO clearly outperforms all

other algorithms. Meanwhile, IDONE is the second best, followed by SMAC and then

HO which performs worse than random search. Compared to the other problems that

we have seen so far, a major difference is the binary decision variables in the Max-Cut

problem. We use this to frame our hypothesis, namely that the good performance of BO

on the Max-Cut problem is due to the binary structure of the problem.

To investigate this hypothesis, we perform an additional experiment by encoding the

49-dimensional, discrete Rosenbrock with binary variables and compare this with the

previous results from Figure 2a. The ordinary problem has 49 integer decision variables

which lie in the range [−5, 10], this is converted into a total of 196 binary decision vari-

ables for the binary-encoded version. Table 1 shows the performance of the algorithms

on the binary-encoded, discrete Rosenbrock. Although BO is performing worse on the

binarized Rosenbrock, it is still performing the best compared to the other algorithms,

even though both SMAC and IDONE perform better on the binarized problem. Thus,

we could argue that the binary representation of the Max-Cut problem can not explain
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(a) Best average objective value versus iteration

on the 49-dimensional discrete Rosenbrock.

(b) Average computation time versus iteration

on the 49-dimensional discrete Rosenbrock.

(c) Best average objective value versus iteration

on the ESP problem.

(d) Average computation time versus iteration

on the ESP problem.

(e) Best average objective value versus iteration

on the 150-dimensional weighted Max-Cut.
(f) Average computation time versus iteration

on the 150-dimensional weighted Max-Cut.

(g) Best average objective value versus iteration

on the TSP with 44 cities.

(h) Average computation time versus iteration

on the TSP with 44 cities.

Fig. 2: Comparison of objective value and computation time of Bayesian optimiza-

tion (BO), SMAC, IDONE, HyperOpt (HO) and random search (RS) on four different

benchmark problem. An average is computed from 5 runs and the standard deviation is

plotted as the error. The objective value has been negated for Max-Cut since the maxi-

mization problem has been turned into a minimization problem. The evaluation budget

was 500 evaluations for all problems except the ESP problem which was limited to 100

evaluations due to it being more computationally expensive.
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why BO performs well on this problem. There is a possible argument that the binary

variables might cause less rounding-off errors since the range of values is simply zero

to one with a threshold in the middle. However, a counter-argument is that such a large

number of decision variables is typically not well-suited for Gaussian processes regres-

sion. This is also indicated by the large computation time of BO on the Max-Cut, see

Figure 2f, compared to the other problems as well.

Sequential structures Even though TSP is a graph problem like the Max-Cut problem,

there is an important difference. TSP has a sequential structure since the decision vari-

ables select an ordering that directly affects the objective value. Moreover, the encoding

of the problem, as described in the “Benchmarks problems” section, causes strong in-

teractions between adjacent decision variables.

We continue by looking at the results from TSP in Figure 2g. BO is now outper-

formed by IDONE even though it still performs better than SMAC and HO on aver-

age, although BO has a large variance on this problem. We suspect that the sequential

structure is well-suited for IDONE, as it explicitly fits some of its basis functions with

adjacent variables in the input vector (x1, x2, . . . , xd) [4].

To investigate whether this is the case, we test what happens when the order of

the decision variables are re-shuffled in TSP such that the sequential structure is re-

moved. This is done by adding to the objective function a mapping that changes the

order of the variables in the input vector (x1, x2, . . . , xd) to a fixed arbitrarily chosen

order. From Table 2 we see that IDONE performs worse without the original sequential

structure. At the same time, the other algorithms show no large significant difference.

However, IDONE returns the best objective on average both with and without shuffling

the order of variables. The large variance on BO makes it more difficult to draw any

strong conclusions, but since IDONE also uses a continuous surrogate model, we can

still conclude that continuous surrogates perform better than the discrete counterparts

on this problem.

Algorithm Non-binary Binary

BO 0.067 (0.021) 0.37 (0.038)

SMAC 1.61 (0.18) 1.28 (0.29)

HyperOpt 0.91 (0.13) 0.94 (0.14)

IDONE 1.13 (0.20) 0.61 (0.038)

Table 1: Comparison of results on the

49-dimensional discrete Rosenbrock with

and without binary encoding of the deci-

sion variables. The final average objective

value from 5 runs is presented after 500

evaluations with the standard deviation in

parenthesis. The lowest objective value is

marked as bold in each column.

Algorithm Non-shuffled Shuffled

BO 4713.2 (789.2) 4898.0 (292.4)

SMAC 4841.8 (184.7) 4784.9 (302.7)

HyperOpt 4971.9 (256.5) 4871.8 (221.9)

IDONE 4122.8 (279.8) 4556.4 (175.7)

Table 2: Comparison of TSP with 44 cities

when the input has a sequential struc-

ture versus that decision variables’ posi-

tion have been shuffled. The final average

objective value from 5 runs is presented

after 500 evaluations with the standard de-

viation in parenthesis. The lowest objec-

tive value is marked as bold in each col-

umn.
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Taking computation time into consideration Although BO performs well on the

benchmark comparisons, we are noticing that it is more expensive with respect to com-

pute time compared to the other surrogate-based methods. Figures 2b, 2d, 2f and 2h

show the cumulative time on the problems.

In general, BO requires a vast amount of time compared to the other algorithms, es-

pecially on Max-Cut where the computations took one to two minutes per iteration. This

is not surprising considering that regression with Gaussian processes is computationally

intensive: its complexity grows as O(n3) where n are the number of observations [21].

This can be a big drawback if the evaluation time of the objective function is relatively

small.

Fig. 3: The best algorithm on average when given a time budget and a fixed evaluation

time of the objective function. The results are simulated by adding an artificial evalu-

ation time after running the experiments. For the ESP problem, the actual evaluation

time was about 3 · 101 seconds for each function evaluation. The time budget includes

both the evaluation time and the compute time of the algorithms.

Meanwhile, the other algorithms share similar computation times which are often

less than one second. The only exception is for IDONE which requires more computa-

tion time on TSP, see Figure 2h.

So far, we have only considered experiments that restrict the number of evaluations.

But in real-life applications, the computation time of an algorithm can be important to

take into consideration when limited with some given time budget as well. In particular,

the large computation time of BO motivates the question whether it would still perform

well under a constrained time budget instead. By keeping track of both the evaluation

times of the objective functions, as well as the computation time spent by the algorithms

at every iteration, we can investigate the performance of the algorithms in different

situations. We artificially adjust the evaluation time in the experiments from Figure 2

to simulate the cost of the objective function. The evaluation time ranges from 101 to

1.5 · 103 seconds. Similarly, the time budget varies between 102 and 104 seconds.
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Figure 3 displays which algorithm performs best on average for each problem, de-

pending on the evaluation time and time budget. Notice that the lower triangular shape

is caused by the fact that the time budget must be larger than the evaluation time. To

ensure a fair comparison, we only present the algorithm with the best final average

objective value if the maximum number of evaluations from the previous benchmark

experiments was not exceeded within the allocated time budget for all algorithms.

For the ESP problem, the results are mixed. It seems like the best algorithm varies

between BO, HO, SMAC and even random search, depending mostly on the ratio be-

tween the time budget and the evaluation time. For example, random search performs

best when the evaluation time is around the order of 101 smaller than the time bud-

get which gives relatively few evaluations. Meanwhile, BO performs best with a much

larger ratio. On the discrete Rosenbrock benchmark, BO is clearly the best in almost all

cases. The only exception is when the ratio between evaluation time and time budget is

very small, in which case IDONE performs better. For the weighted Max-Cut, on the

other hand, we notice the opposite of what we see with the Rosenbrock benchmark.

Thus, it seems like the growth in compute time of BO, see Figure 2f, sometimes out-

weighs its good performance which we noted earlier when only taking an evaluation

budget into consideration. Lastly, we see that IDONE and HyperOpt outperform other

algorithms on TSP when constrained by a time budget.

This experiment gives a better picture of the performance of each algorithm, espe-

cially if we may consider it to be more realistic by taking time constraints into consid-

eration. Thus, the experiment from Figure 3 is a good complement to our benchmark

comparison. In the following and last section, we summarize the conclusions that can

be drawn from all of the above experiments.

Conclusion and Future Work

Based on the results from the benchmark comparison, we can show that the use of con-

tinuous surrogate models is a valid approach for expensive, discrete black-box optimiza-

tion. Moreover, we give insight into what discrete problem structures are well-suited for

the different methods.

We have shown that Bayesian optimization (BO) performs better than discrete state-

of-the-art algorithms on the four tested, high-dimensional benchmarks problem with

either ordinal, sequential or binary structures. IDONE, another continuous surrogate-

based algorithm designed for discrete problems, outperforms BO on the benchmark

with a sequential structure, but not on the three other benchmarks.

In addition, we have investigated how the different algorithms deal with the different

problem structures. Firstly, ordinal structures appear suitable for BO, especially if the

objective function has an underlying continuous structure such as the discrete Rosen-

brock benchmark. For binary structures, we noticed that BO is negatively affected by

binary variables, while IDONE and SMAC benefited from this transformation. How-

ever, BO still returned the best solution on the binary Max-Cut problem, even though

a big drawback was its computation time. Lastly, we have seen that IDONE outper-

forms the other algorithms on a problem with sequential decision variables, even after

negatively affecting it by changing the ordering.
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We also investigated the different algorithms under different time constraints by

artificially changing the function evaluation times of the different benchmark problems.

For lower time budgets, BO is held back by its large compute time in some cases. Even

though BO is a time-intensive method, it mostly showed competitive performance when

the evaluation time was relatively low and the time budget high, except for the binary

Max-Cut problem. IDONE, HyperOpt, SMAC, and even random search all had specific

problems and time budgets where they outperformed other algorithms. Lastly, based on

our results, discrete surrogate-based methods could be more relevant in the setting with

a limited time budget, in contrast to only limiting the number of evaluations.

Finally, we state some open questions which remain to be answered about continu-

ous surrogates in the topic of expensive, discrete black-box optimization. Considering

that we looked at a naive approach of BO, it is still an open question how the more

advanced discrete BO variations would fare in the framework where time budgets and

function evaluations times are taken into account like in this paper. This same frame-

work would also lead to interesting comparisons between surrogate-based algorithms

and other black-box algorithms such as local search or evolutionary algorithms, which

are better suited for cheap function evaluations. It also remains unclear why BO per-

forms best on the binary Max-Cut benchmark even though it is negatively affected by

binary structures on the Rosenbrock function. Finally, it would be of great practical

value if one could decide on the best surrogate-based algorithm in advance, given the

time budget and evaluation time of a real-life optimization problem. This research is a

first step in that direction.
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Abstract. When applying supervised machine learning algorithms to
classification, the classical goal is to reconstruct the true labels as accu-
rately as possible. However, if the predictions of an accurate algorithm
are aggregated, for example by counting the predictions of a single class
label, the result is often still statistically biased. Implementing machine
learning algorithms in the context of official statistics is therefore im-
peded. The statistical bias that occurs when aggregating the predictions
of a machine learning algorithm is referred to as misclassification bias. In
this paper, we focus on reducing the misclassification bias of binary clas-
sification algorithms by employing five existing estimation techniques,
or estimators. As reducing bias might increase variance, the estimators
are evaluated by their mean squared error (MSE). For three of the es-
timators, we are the first to derive an expression for the MSE in finite
samples, complementing the existing asymptotic results in the literature.
The expressions are then used to compute decision boundaries numeri-
cally, indicating under which conditions each of the estimators is optimal,
i.e., has the lowest MSE. Our main conclusion is that the calibration es-
timator performs best in most applications. Moreover, the calibration
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Keywords: Bias Correction · Misclassification Bias · Supervised Ma-
chine Learning · Classification · Official Statistics

†Corresponding authors: k.kloos@cbs.nl, q.a.meertens@uva.nl
‡The views expressed in this paper are those of the authors and do not necessarily

reflect the policy of Statistics Netherlands. The authors would like to thank Arnout van
Delden and three anonymous referees for their useful comments on previous versions
of this paper.

BNAIC/BeneLearn 2020 103



2 K. Kloos et al.

1 Introduction

Currently, many researchers in the field of official statistics are examining the
potential of machine learning algorithms. A typical example is estimating the
proportion of houses in the Netherlands having solar panels, by employing a
machine learning algorithm trained to classify satellite images [3]. However, as
long as the algorithm’s predictions are not error-free, the estimate of the relative
occurrence of a class, also known as the base rate, can be biased [17,18]. This
fact is also intuitively clear: if the number of false positives does not equal the
number of false negatives, then the estimate of the base rate is biased, even if
the false positive rate and false negative rate are both small. The statistical bias
that occurs when aggregating the predictions of a machine learning algorithm is
referred to as misclassification bias [5].

Misclassification bias occurs in a broad range of applications, including official
statistics [13], land cover mapping [12], political science [9,21], and epidemiology
[8]. The objective in each of these applications is to minimize a loss function at
the level of aggregated predictions, in contrast to minimizing a loss function at
the level of individual predictions. Within the field of machine learning, learning
with that objective is referred to as quantification learning; see [6] for a recent
overview. In quantification learning, the idea is not to train a classifier at all,
but to directly estimate the base rate from the feature distribution. A drawback
of that approach is that relatively large training and test datasets are needed to
optimize hyperparameters and to obtain accurate estimates of the accuracy of
the prediction, respectively. In the applications referred to before, labelled data
are often expensive to obtain and therefore scarce. Hence, in this paper, we focus
on what is referred to as quantifiers based on corrected classifiers [6]. In short, it
entails that we first aggregate predictions of classification algorithms and then
correct the aggregates in order to reduce misclassification bias.

In the literature on measurement error, several methods have been proposed
to reduce misclassification bias when aggregating categorical data that is prone
to measurement error; see [11] for a technical discussion and [1] for a more
recent overview. Based on that literature, we propose a total of five estimators
for the base rate that can be derived from the confusion matrix of a classification
algorithm. As reducing bias might increase variance, the estimators are evaluated
by their mean squared error (MSE). To the best of our knowledge, for three of
the five estimators, only asymptotic expressions for the MSE are ever presented
in the literature. In this paper, we derive the expressions for the MSE for finite
datasets. As a first step, we restrict ourselves to binary classification problems.
Nonetheless, we believe that the same proof strategies may be used for multi-
class classification problems. The expressions for the MSE enable a theoretical
comparison of the five estimators for finite datasets. It allows us, for the first
time, to make solid recommendations on how to employ classification algorithms
in official statistics and other disciplines interested in aggregate statistics.

The remainder of the paper is organized as follows. First, in Section 2, the
five estimators are formally introduced and the mathematical expressions for
their MSEs are presented. The derivations are included in the appendix. Then, in

BNAIC/BeneLearn 2020 104



Comparing Correction Methods to Reduce Misclassification Bias 3

Section 3, the decision boundaries are numerically derived. We can indicate under
which condition, like the sensitivity and specificity of the learning algorithm and
the size of the test set, each of the estimators has the lowest MSE. Finally, in
Section 4, we draw our main conclusion and discuss directions for future research.

2 Methods

Consider a target population of N objects and assume that the objects can be
separated into two classes. One of the two classes is the class of interest. We
refer to the relative occurrence of the class of interest in the target population
as the base rate and we denote that parameter by α. In the example mentioned
in Section 1, the objects are houses in the Netherlands and the two classes are
whether or not the house has solar panels on the roof [3]. The class of interest
is having solar panels and hence α indicates the relative frequency of houses in
the country having solar panels.

We assume that the true classifications are only known for objects in a small
simple random sample of the target population. In the applications that we
consider, these classifications are obtained by manual inspection of the objects
in that sample. Objects that belong to the class of interest receive class label 1,
the other objects receive class label 0. Then, the sample is split randomly into a
training set and a test set. As usual, the training set is used for model selection
through cross-validation and is then used to train the selected model. We will
consider the result of that part of the process as given. The test set is used to
estimate the classification performance of the trained algorithm, which we will
discuss in more detail below. Finally, the classification algorithm is applied on
the entire target population (minus the small random sample, but we will neglect
that small difference) resulting in a predicted label for each object.

As we will encounter in Subsection 2.2, simply computing the relative occur-
rence of objects predicted to belong to the class of interest will result in a biased
estimate of α. That bias is referred to as misclassification bias [4]. In this section,
five estimators for the base rate parameter α are formally introduced, many of
which have been proposed decades ago; see [11] for an extensive discussion. We
summarize the formulas for bias and variance that can be found in the literature
and complement them with our own derivations.

In order to correct for misclassification bias, we need estimates of the al-
gorithm’s (mis)classification probabilities. Following [20], we assume that mis-
classifications are independent across objects and that the (mis)classification
probabilities are the same for each object, conditional on their true class label.
With this classification-error model in mind, we denote the probability that the
algorithm predicts an object of class 0 correctly by p00 and we define p11 anal-
ogously. Observe that p11 and p00 correspond to the algorithm’s sensitivity and
specificity, respectively. The confusion matrix P is then defined as follows:

P =

(
p00 1− p00

1− p11 p11

)
. (1)
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Table 1: Contingency tables for test set (left) and target population (right)
(a)

Estimated class
0 1 Tot

True class
0 n00 n01 n0+

1 n10 n11 n1+

Tot n+0 n+1 n

(b)

Estimated class
0 1 Tot

True class
0 N00 N01 N0+

1 N10 N11 N1+

Tot N+0 N+1 N

The classification probabilities p00 and p11 are not known, but will be esti-
mated using the test set. We write n for the size of the test set and introduce
the notation nij and Nij as depicted in Table 1. The classification probabilities
are then estimated without bias by p̂00 = n00/n0+ and p̂11 = n11/n1+. (Here,
the assumption is needed that the test set is a simple random sample from the
target population.) Furthermore, the base rate α for the target population is
defined formally as α = N1+/N .

Finally, we make the following technical assumptions. We assume that the
algorithm is not perfect in predicting either of the classes, but that it is bet-
ter than guessing for both of the classes, i.e., we assume that 0.5 < pii < 1.
Because the test set is a small (i.e., n ≪ N) simple random sample from the
population, n0+ may be assumed to follow a Bin(n, α)-distribution, since α is
considered fixed. Moreover, the classification-error model that we assume implies
that the elements in the rows in Table 1, conditional on the corresponding row
total, follow a binomial distribution as well, with the corresponding classification
probability as success probability. For example, to name just two out of the eight
entries, n00 | n0+ ∼ Bin(n0+, p00) and N10 | N1+ ∼ Bin(N1+, 1−p11). Last, the
assumption n≪ N justifies our ultimate technical assumption, which is that the
estimators for the entries in P based on the test set on the one hand and esti-
mators for α based only on the predicted class labels for the target population
on the other hand, are independent random variables.

2.1 Baseline estimator - random sample

The baseline estimator for α is the proportion of data points in the test dataset
for which the observed class label is equal to 1. The baseline estimator will be
denoted by α̂a. Under the assumptions discussed above, it is immediate that α̂a

is an unbiased estimator for α, i.e.:

B [α̂a] = 0. (2)

Since we have assumed that the size n of the test dataset is much smaller than
the size N of the population data, we may approximate the distribution of nα̂a

by a binomial distribution with success probability α. The variance, and hence
the MSE, of α̂a is then given by

MSE [α̂a] = V [α̂a] =
α(1− α)

n
. (3)
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This MSE will serve as the baseline value for the other estimators we discuss.

2.2 Classify and count

When applying a trained machine learning algorithm on new data, we may
simply count the number of data points for which the predicted class equals
1. The resulting estimator for α, which we will denote by α̂∗, is referred to
as the ‘classify-and-count’ estimator, see [6]. In general, the classify-and-count
estimator is (strongly) biased, and has almost zero variance. More specifically,

E [α̂∗] = αp11 + (1− α)(1− p00), (4)

and hence
B [α̂∗] = α(p11 − 1) + (1− α)(1− p00), (5)

which is zero only if the point (p00, p11) lies on the line through (1 − α, α) and
(1, 1) in R2, as shown in [17]. The variance of the classify-and-count estimator
is derived in [2] and equals

V [α̂∗] =
αp11(1− p11) + (1− α)p00(1− p00)

N
. (6)

If the population size N is large, the variance of α̂∗ is low. In some literature,
this low variance is misinterpreted as high accuracy, by claiming intuitively that
the large size of the dataset implies that the noise cancels out (cf. [16]). However,
the nonzero bias is neglected in such arguments. Therefore, we are interested in
the MSE because it considers both bias and variance. It equals

MSE [α̂∗] =
[
α(p11 − 1) + (1− α)(1− p00)

]2
+O

(
1

N

)
. (7)

Here and below, the notation O(1/x) indicates a remainder term that, for suffi-
ciently large values of x > 0, is always contained inside an interval (−C/x,C/x)
for some constant C > 0; see, e.g., [19, p. 147]. Observe how, in general, the
MSE does not converge to 0 as N tends to ∞.

2.3 Subtracting estimated bias

Knowing that the classify-and-count estimator α̂∗ is biased (see (5)), we may
attempt to estimate that bias and subtract it from α̂∗. As briefly mentioned in
[17], we may estimate that bias by the plug-in estimator, that is, we substitute
the unknown quantities in Equation (5) by their estimates. More precisely, the
bias is estimated as

B̂ [α̂∗] = α̂∗(p̂00 + p̂11 − 2) + (1− p̂00), (8)

in which the estimators p̂00 and p̂11 are based on the test dataset. The resulting
estimator α̂b for α equals

α̂b = α̂∗ − B̂ [α̂∗] = α̂∗(3− p̂00 − p̂11)− (1− p̂00). (9)
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To the best of our knowledge, the bias and variance of the estimator α̂b have
not been published in the scientific literature. Therefore, we have derived both,
up to terms of order 1/n2, yielding the following result.

Theorem 1. The bias of α̂b as estimator for α is given by

B [α̂b] = (1− p00)(2− p00 − p11)− α(p00 + p11 − 2)2. (10)

The variance of α̂b equals

V [α̂b] =
[α(p00 + p11 − 1)− p00]

2
p00(1− p00)

n(1− α)

(
1 +

α

n(1− α)

)

+
[α(p00 + p11 − 1) + (1− p00)]

2
p11(1− p11)

nα

(
1 +

1− α

nα

)

+O

(
max

[
1

n3
,
1

N

])
. (11)

Proof. See the Appendix.

In particular, Theorem 1 implies that B [α̂b] = (2 − p00 − p11)B [α̂∗], compare
Equations (10) and (5). Hence, |B [α̂b] | ≤ |B [α̂∗] |, because 1 < p00 + p11 < 2.

2.4 Misclassification probabilities

Let P be the row-normalized confusion matrix of the machine learning algorithm
that we have trained, as defined in (1). That is, entry pij is the probability that
the algorithm predicts class j for a data point that belongs to class i. The
probabilities pij are referred to as misclassification probabilities. In the binary
setting, we write α for the column vector (1− α, α)T (similarly for α̂∗). Under
the assumption that the probabilities pij are identical for each data point, we

obtain the expression E[α̂∗] = PT
α. If the true values of all entries pij of P

were known and if p00 + p11 6= 1, then α̂p = (PT )−1
α̂

∗ would be an unbiased

estimator for α. Using the plug-in estimator P̂ for P, estimated on the test set,
the following estimator for α is obtained:

α̂p =
α̂∗ + p̂00 − 1

p̂00 + p̂11 − 1
. (12)

It is known that the estimator α̂p is consistent (asymptotically unbiased) for
α, see [1]. In [7], the variance of this estimator is analysed for an arbitrary
number of classes. For the binary case, a simple analytic expression for the bias
and variance of α̂p for finite datasets has not been given, as far as we know.
Therefore, we have derived the bias and variance for finite datasets, yielding the
following result.
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Theorem 2. The bias of α̂p as estimator for α is given by

B [α̂p] =
p00 − p11

n(p00 + p11 − 1)
+O

(
1

n2

)
. (13)

The variance of α̂p is given by

V [α̂p] =
(1− α)p00(1− p00)

[
1 + α

n(1−α)

]
+ αp11(1− p11)

[
1 + 1−α

nα

]

n(p00 + p11 − 1)2

+O

(
max

[
1

n2
,
1

N

])
. (14)

Proof. See the Appendix.

2.5 Calibration probabilities

Let C be the column-normalized confusion matrix of the machine learning al-
gorithm that we have trained. That is, entry cij is the probability that the true
class of a data point is j given that the algorithm has predicted class i. The prob-
abilities cij are referred to as calibration probabilities [11]. The first element of
the vector Cα̂

∗ is an unbiased estimator for α, if C is known.
Using the plug-in estimator Ĉ for C, which is estimated on the test dataset

analogously to P̂, the following estimator α̂c for α is obtained:

α̂c = α̂∗ n11

n+1
+ (1− α̂∗)

n10

n+0
, (15)

in which each nij and n+j should be considered as random variables. It has been
shown that α̂c is a consistent estimator for α [1]. Under the assumptions we have
made in this paper, it can be shown that α̂c is in fact an unbiased estimator for
α. To the best of our knowledge, we are also the first to give an approximation
(up to terms of order 1/n2) of the variance of α̂c. Both results are summarized
in the following theorem.

Theorem 3. The calibration estimator α̂c is an unbiased estimator for α:

B [α̂c] = 0. (16)

The variance of α̂c is equal to the following expression:

V (α̂c) =

[
(1− α)(1− p00) + αp11

n
+

(1− α)p00 + α(1− p11)

n2

]

×

[
αp11

(1− α)(1− p00) + αp11

(
1−

αp11
(1− α)(1− p00) + αp11

)]

+

[
(1− α)p00 + α(1− p11)

n
+

(1− α)(1− p00) + αp11
n2

]

×

[
(1− α)p00

(1− α)p00 + α(1− p11)

(
1−

(1− α)p00
(1− α)p00 + α(1− p11)

)]

+O

(
max

[
1

n3
,

1

Nn

])
. (17)
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Proof. See the Appendix.

Hereby, the overview of the five estimators for α is complete. The expressions
that we have derived for the bias and variance of these five estimators will now
be used to compare the (root) mean squared error of the five estimators, both
theoretically as well as by means of simulation studies.

3 Results

The aim of this section is to derive empirically which of the five estimators of α
that we presented in Section 2 has the lowest MSE, and under which conditions.
For a given population size N , the MSE of each estimator depends on four
parameters (i.e, α, p00, p11, n), so visualizations would have to be 5-dimensional.
To reduce dimensions, we will first present a simulation study in which all four
parameters are fixed. For the fixed parameter setting, the sampling distributions
of the estimators are compared using boxplots. Second, we will fix several values
of α and n and use plots to compare the MSE of the estimators for varying p00
and p11. The latter analysis will already be sufficient in order to reach a final
conclusion on which estimator has the lowest MSE.‖

3.1 Sampling distributions of the estimators

Here, we present two simple simulation studies to gain some intuition for the
difference in the sampling distributions of the five estimators. In the first simu-
lation study, we consider a class-balanced dataset, that is, α = 0.5, with a small
test dataset of size n = 1000, a large population dataset N = 3 × 105 and a
rather poor classifier having classification probabilities p00 = 0.6 and p11 = 0.7.
We deliberately choose p00 6= p11, as otherwise the classify-and-count estimator
α̂∗ would be unbiased: (p00, p11) would be on the line between (1 − α, α) and
(1, 1), see also Equation (5).

Table 2 summarizes the bias, variance and root mean squared error (RMSE),
computed using the analytic approximations presented in Section 2. The classify-
and-count estimator is highly biased and therefore it has a high RMSE, despite
having the lowest variance of all estimators. The RMSE of the classify-and-count
estimator can indeed be improved by subtracting an estimate of the bias (α̂b).
The subtraction reduces the absolute bias and only slightly increases the vari-
ance. A further bias reduction is obtained by the misclassification estimator α̂p.
However, inverting the row-normalized confusion matrix P (that is, the misclas-
sification probabilities) for values of p00 and p11 close to p00+p11 = 1 significantly
increases the variance of the estimator, leading to the highest RMSE of all es-
timators considered. Finally, the calibration estimator α̂c is unbiased and has

‖The results in this section have been obtained using the statistical software R. All
visualizations have been implemented in a Shiny dashboard, which in addition includes
interactive 3D-plots of the RMSE surface for each of the estimators. The code can be
retrieved from https://github.com/kevinkloos/Misclassification-Bias.
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the lowest variance among the estimators that make use of the test dataset. In
particular, note that the variance is also lower than that of the baseline estima-
tor. In this example, the estimator based on the calibration probabilities has the
lowest RMSE, and it is the only estimator with a lower RMSE than the baseline
estimator α̂a.

Table 2: A comparison of the bias, variance and RMSE of each of the five esti-
mators for α, where α = 0.5, p00 = 0.6, p11 = 0.7, n = 1000 and N = 3× 105.

Bias Variance RMSE
Estimator Symbol ×10−2

×10−4
×10−2

Baseline α̂a 0.000 2.500 1.581

Classify-and-count α̂
∗ 5.000 0.000 5.000

Subtracted-bias α̂b -3.500 2.244 3.807

Misclassification α̂p -0.033 25.025 5.003
Calibration α̂c 0.000 2.275 1.508

To gain insight in the sampling distribution of the estimators, in addition
to the metrics presented in Table 2, we simulated a large number R = 10000 of
confusion matrices for datasets of size n = 1000 and N = 3×105. Each confusion
matrix was created as follows. First, take a random draw from a Bin(N,α)-
distribution, resulting in a number N1+. Then, take a random draw from a
Bin(N1+, p11)-distribution to obtain N11 and a random draw from a Bin(N −
N+1, p00)-distribution to obtain N00. This computes the theoretical confusion
matrix for the target population. Use this confusion matrix to draw a sample
from a multivariate hypergeometric distribution, with its parameters from the
drawn theoretical confusion matrix. These draws precisely give the number of
true and false positives and negatives needed to fill a confusion matrix. Each
confusion matrix can be used to compute the five estimators. Repeating this
procedure R = 10000 times gave rise to the sampling distributions of the five
estimators as presented in Figure 1. It nicely visualizes the bias and variance
of the five estimators, supporting the results in Table 2. In addition, it shows
that, due to the bias, the variances of the classify-and-count estimator α̂∗ and
the subtracted-bias estimator α̂b cannot be used to obtain reliable confidence
intervals for α.

In the second simulation study, we consider a highly imbalanced dataset,
namely α = 0.98. We again assume that the available test dataset has size
n = 1000, but we assume a classifier having classification probabilities p00 = 0.94
and p11 = 0.97. Table 3 summarizes the bias, variance and RMSE of each of the
estimators and Figure 2 shows the sampling distributions of each of the estima-
tors. It can be noticed that subtracted-bias estimator and the misclassification
estimator both have estimates of α that exceed 1. It is obvious that such values
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Fig. 1: The boxplots show the sampling distribution of the estimators for α,
where α = 0.5, p00 = 0.6, p11 = 0.7, n = 1000 and N = 3× 105. The true value
of α is highlighted by a vertical line.

cannot occur in the population. For the method with the misclassification prob-
abilities, this effect gets stronger when p00 + p11 gets closer to 1. Furthermore,
the baseline estimator performs well compared to the other estimators when the
dataset is highly imbalanced: its RMSE is slightly higher than the RMSE of the
method with calibration probabilities and much lower than the method with the
misclassification probabilities. Finally, it is shown that the classify-and-count
estimator is highly biased, even though p00 and p11 are both fairly close to 1.

Table 3: A comparison of the bias, variance and RMSE of each of the five esti-
mators for α, where α = 0.98, p00 = 0.94, p11 = 0.97, n = 1000 and N = 3×105.

Bias Variance RMSE
Method Symbol ×10−2

×10−5
×10−3

Baseline α̂a 0.000 1.960 4.427

Classify-and-count α̂
∗ -2.820 0.000 28.200

Subtracted-bias α̂b 0.254 3.377 6.342

Misclassification α̂p -0.003 3.587 5.989
Calibration α̂c 0.000 1.289 3.591
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Fig. 2: The boxplots show the sampling distribution of the estimators for α,
where α = 0.98, p00 = 0.94, p11 = 0.97, n = 1000 and N = 3 × 105. The true
value of α is highlighted by a vertical line.

3.2 Finding the optimal estimator

The aim of this subsection is to find the optimal estimator, i.e., the estimator
with the lowest RMSE, for every combination of values of the parameters α,
p00, p11 and n. First, suppose that (p00, p11) is close to the line in the plane
through the points (1 − α, α) and (1, 1). As noted before, it implies that the
classify-and-count estimator α̂∗ has low bias. Consequently, the subtracted-bias
estimator α̂b has low bias as well. Thus, these two estimators will have the lowest
RMSE in the described region, whose size decreases as n increases. Figure 3
visualizes the described region for α = 0.2 and two different values of n. We
remark that the biased estimators α̂∗ and α̂b perform worse (relative to the
other estimators) when the sample size n of the test dataset increases. The
biased methods, like Classify-and-count and Subtracted-bias, perform well when
the classification probabilities are high for the largest group.

As we have seen in both Table 2 and Table 3, the calibration estimator α̂c

competes with the baseline estimator in having the lowest RMSE. In general,
the calibration estimator will have lower RMSE if the classification probabilities
p00 and p11 are higher, while the baseline estimator does not depend on these
classification probabilities. In a neighbourhood of p00 = p11 = 0.5, the baseline
estimator will always have lower RMSE than the calibration estimator. However,
for every α and n, there must exist a curve in the (p00, p11)-plane beyond which
the calibration estimator will have lower RMSE than the baseline estimator. The
left-hand panels in Figure 4 show this curve for α = 0.2 and two different values
of n. For larger values of n, the curve where the calibration estimator performs
better than the baseline estimator gets closer to p00 = p11 = 0.5 and therefore
covers a larger area in the (p00, p11)-plane.
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Fig. 3: For each coordinate (p00, p11), the depicted color indicates which estimator
has the lowest RMSE, considering only the classify-and-count estimator (green),
the subtracted-bias estimator (orange) and the calibration estimator (purple). In
the left panel , we have set α = 0.2 and n = 300, whereas α = 0.2 and n = 3000
in the right panel. The red and green regions are smaller in the right panel, as
the variance of the calibration estimator is decreasing in n, while the bias of the
classify-and-count estimator and of the subtracted-bias estimator do not depend
on n.

Table 2 and Table 3 have shown that the misclassification estimator only
performs well if p00 and p11 are high, which is confirmed by the expression of the
bias and variance: both have a singularity at p00 + p11 = 1, see Equations (13)
and (14). The right-hand panels in Figure 4 show, for α = 0.2 and two different
values of n, the curve in the (p00, p11)-plane beyond which the misclassification
estimator has lower RMSE than the baseline estimator. Observe that an increase
in the size n of the test dataset does not have much impact on the position of
the curve. The reason is that the misclassification estimator has a singularity
at p00 = p11 = 0.5. The shape of the curve also depends on the value of α.
If α = 0.8 instead of 0.2, the curves are line-symmetric in the line p00 = p11.
The curve is also line symmetric in p00 = p11 for α = 0.5. The area where the
misclassification estimator performs better than the baseline estimator decreases
when α gets closer towards 0 or 1. The main reason why this happens is that
the variance of the baseline estimator decreases fast when α gets closer towards
0 or 1. Thus, the baseline estimator performs better than the misclassification
estimator either if the classifier performs badly in general or performs badly in
classifying the largest group.

The final analysis of this paper is to compare the calibration estimator and
the misclassification estimator for high values of p00 and p11. In Theorem 4 it is
proven that, for all possible combinations of α and sufficiently large n, the MSE
of the calibration estimator is consistently lower than that of the misclassification
estimator.
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Fig. 4: For each coordinate (p00, p11), the depicted color indicates which esti-
mate has the lowest RMSE, considering only the baseline estimator (green), the
calibration estimator (orange) and the misclassification estimator (purple). The
top-row panels consider α = 0.2 and n = 300, while the bottom-row panels
consider α = 0.2 and n = 3000.

Theorem 4. Let M̃SE[α̂p] and M̃SE[α̂c] denote the approximate mean squared
errors, up to terms of order 1/n, of the misclassification estimator and the cali-
bration estimator, respectively. It holds that:

M̃SE[α̂p]− M̃SE[α̂c] =

[
(1− α)p00(1− p00) + αp11(1− p11)

]2

(p00 + p11 − 1)2β(1− β)
, (18)

in which β := (1− α)(1− p00) + αp11.

Proof. See the Appendix.

Thus, neglecting terms of order 1/n2 and higher, the result implies that the
calibration estimator has a lower mean squared error than the misclassification
estimator, except that both are equal if and only if p00 = p11 = 1. (Note that
0 < β < 1.)

We do remark that the difference in MSE is large in particular for values of
p00 and p11 close to 1

2 . More specifically, it diverges when p00 + p11 → 1. It is
the result of the misclassification estimator having a singularity at p00+ p11 = 1
(see Equation (14)), while the variance of the calibration estimator is bounded.
An unpleasant consequence of the singularity at p00 + p11 = 1 is that, for fixed
n and α, the probability that α̂p takes values outside the interval [0, 1] increases
as p00 + p11 → 1; see [14] for a discussion and a possible solution.

4 Conclusion and Discussion

In this paper, we have studied the effect of classification errors on five estimators
of the base rate parameter α that are obtained from machine learning algorithms.

BNAIC/BeneLearn 2020 115



14 K. Kloos et al.

In general, a straightforward classify-and-count estimator will lead to biased
estimates and some form of bias correction should be considered. As reducing
bias might increase variance, we evaluated the (root) mean squared error (MSE)
of the five estimators, both theoretically as well as numerically.

From our results we may draw the following main (three-part) conclusion
regarding which estimator for α has lowest mean squared error. First, when
dealing with small test datasets and rather poor algorithms, that is p00 and p11
both close to 0.5, the baseline estimator α̂a has the lowest MSE. Second, when
dealing with algorithms for which the classification probabilities p00 and p11 are
in a small neighbourhood around the line (p11 − 1)α + (1 − p00)(1 − α) = 0
in the (p00, p11)-plane, the classify-and-count estimator and the subtracted-bias
estimator will have the lowest MSE. As the size of the test dataset increases,
the size of that neighbourhood decreases. Third, in any other situation, the
calibration estimator will have the lowest MSE. In practice, the test dataset will
have to be used to determine which of the three scenarios applies to the data
and the algorithm at hand. It is an additional estimation problem that we have
not discussed in this paper.

We would like to close the paper by pointing out three interesting directions
for future research. First, the results could be generalized to multi-class classifi-
cation problems. The theoretical derivations of the bias and variance are more
complicated and involve matrix-vector notation, but the proof strategy is simi-
lar. However, it is more challenging to compare the MSE of the five estimators
visually in the multi-class case.

Second, the assumptions that we have made could be relaxed. In particular,
a trained and implemented machine learning model is, in practice, often used
over a longer period of time. A shift in the base rate parameter α, also known as
prior probability shift [15], is then inevitable. Consequently, we may no longer
assume that the conditional distribution of the class label given the features in
the test dataset is similar to that in the population. It implies that the calibration
estimator is no longer unbiased, which might have a significant effect on our main
conclusion.

Third and finally, a combination of estimators might have a substantially
lower MSE than that of the individual estimators separately. Therefore, it might
be interesting to study different methods of model averaging applied to the prob-
lem of misclassification bias. It could be fruitful especially when the assumptions
that we have made are relaxed.
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Appendix

This appendix contains the proofs of the theorems presented in the paper entitled
“Comparing Correction Methods for Misclassification Bias”. Recall that we have
assumed a population of size N in which a fraction α := N1+/N belongs to the
class of interest, referred to as the class labelled as 1. We assume that a binary
classification algorithm has been trained that correctly classifies a data point
that belongs to class i ∈ {0, 1} with probability pii > 0.5, independently across
all data points. In addition, we assume that a test set of size n≪ N is available
and that it can be considered a simple random sample from the population.
The classification probabilities p00 and p11 are estimated on that test set as
described in Section 2. Finally, we assume that the classify-and-count estimator
α̂∗ is distributed independently of p̂00 and p̂11, which is reasonable (at least as
an approximation) when n≪ N .

It may be noted that the estimated probabilities p̂11 and p̂00 defined in Sec-
tion 2 cannot be computed if n1+ = 0 or n0+ = 0. Similarly, the calibration
probabilities c11 and c00 cannot be estimated if n+1 = 0 or n+0 = 0. We assume
here that these events occur with negligible probability. This will be true when
n is sufficiently large so that nα≫ 1 and n(1− α)≫ 1.

Preliminaries

Many of the proofs presented in this appendix rely on the following two math-
ematical results. First, we will use univariate and bivariate Taylor series to ap-
proximate the expectation of non-linear functions of random variables. That is,
to estimate E[f(X)] and E[g(X,Y )] for sufficiently differentiable functions f
and g, we will insert the Taylor series for f and g at x0 = E[X] and y0 = E[Y ]
up to terms of order 2 and utilize the linearity of the expectation. Second, we
will use the following conditional variance decomposition for the variance of a
random variable X:

V (X) = E[V (X | Y )] + V (E[X | Y ]). (19)

The conditional variance decomposition follows from the tower property of con-
ditional expectations [10]. Before we prove the theorems presented in the paper,
we begin by proving the following lemma.

Lemma 1. The variance of the estimator p̂11 for p11 estimated on the test set
is given by

V (p̂11) =
p11(1− p11)

nα

[
1 +

1− α

nα

]
+O

(
1

n3

)
. (20)

Similarly, the variance of p̂00 is given by

V (p̂00) =
p00(1− p00)

n(1− α)

[
1 +

α

n(1− α)

]
+O

(
1

n3

)
. (21)

Moreover, p̂11 and p̂00 are uncorrelated: C(p̂11, p̂00) = 0.
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Proof (of Lemma 1). We approximate the variance of p̂00 using the conditional
variance decomposition and a second-order Taylor series, as follows:

V (p̂00) = V

(
n00

n0+

)

= En0+

[
V

(
n00

n0+
| n0+

)]
+ Vn0+

[
E

(
n00

n0+
| n0+

)]

= En0+

[
1

n2
0+

V (n00 | n0+)

]
+ Vn0+

[
1

n0+
E(n00 | n0+)

]

= En0+

[
n0+p00(1− p00)

n2
0+

]
+ Vn0+

[
n0+p00
n0+

]

= En0+

[
1

n0+

]
p00(1− p00)

=

[
1

E[n0+]
+

1

2

2

E[n0+]3
× V [n0+]

]
p00(1− p00) +O

(
1

n3

)

=
p00(1− p00)

E[n0+]

[
1 +

V [n0+]

E[n0+]2

]
+O

(
1

n3

)

=
p00(1− p00)

n(1− α)

[
1 +

α

n(1− α)

]
+O

(
1

n3

)
.

The variance of p̂11 is approximated in the exact same way.
Finally, to evaluate C(p̂11, p̂00) we use the analogue of (19) for covariances:

C(p̂11, p̂00) = C

(
n11

n1+
,
n00

n0+

)

= En1+,n0+

[
C

(
n11

n1+
,
n00

n0+
| n1+, n0+

)]

+ Cn1+,n0+

[
E

(
n11

n1+
| n1+, n0+

)
, E

(
n00

n0+
| n1+, n0+

)]

= En1+,n0+

[
1

n1+n0+
C(n11, n00 | n1+, n0+)

]

+ Cn1+,n0+

[
1

n1+
E(n11 | n1+),

1

n0+
E(n00 | n0+)

]
.

The second term is zero as before. The first term also vanishes because, condi-
tional on the row totals n1+ and n0+, the counts n11 and n00 follow independent
binomial distributions, so C(n11, n00 | n1+, n0+) = 0.

Note: in the remainder of this appendix, we will not add explicit subscripts
to expectations and variances when their meaning is unambiguous.

Subtracted-bias estimator

We will now prove the bias and variance approximations for the subtracted-bias
estimator α̂b that was defined in Equation (9).
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Proof (of Theorem 1). The bias of α̂b is given by

B(α̂b) = E
[
α̂⋆ − B̂[α̂⋆]

]
− α

= E[α̂⋆ − α]− E
[
B̂[α̂⋆]

]

= B[α̂⋆]− E
[
B̂[α̂⋆]

]

= [α(p00 + p11 − 2) + (1− p00)]− E [α̂⋆(p̂00 + p̂11 − 2) + (1− p̂00)] .

Because α̂∗ and (p̂00 + p̂11 − 2) are assumed to be independent, the expectation
of their product equals the product of their expectations:

B(α̂b) = α(p00 + p11 − 2) + (1− p00)− E[α̂⋆](p00 + p11 − 2)− (1− p00)

= (α− E[α̂⋆])(p00 + p11 − 2)

= B[α̂⋆](2− p00 − p11)

= (1− p00)(2− p00 − p11)− α(p00 + p11 − 2)2.

This proves the formula for the bias of α̂b as estimator for α. To approximate
the variance of α̂b, we apply the conditional variance decomposition (19) condi-
tional on α̂∗ and look at the two resulting terms separately. First, consider the
expectation of the conditional variance:

E [V (α̂b | α̂
∗)] = E [V (α̂∗(3− p̂00 − p̂11)− (1− p̂00) | α̂

∗)]

= E
[
V (α̂∗(3− p̂00 − p̂11) | α̂

∗) + V (1− p̂00 | α̂
∗)

− 2C(α̂∗(3− p̂00 − p̂11), 1− p̂00 | α̂
∗)
]

= E
[
(α̂∗)2V (3− p̂00 − p̂11 | α̂

∗) + V (1− p̂00 | α̂
∗)

− 2α̂∗C(3− p̂00 − p̂11, 1− p̂00 | α̂
∗)
]

= E
[
(α̂∗)2 [V (p̂00) + V (p̂11)] + V (p̂00)− 2α̂∗V (p̂00)

]

= E
[
(α̂∗)2

]
[V (p̂00) + V (p̂11)] + V (p̂00)− 2E [α̂∗]V (p̂00).

In the penultimate line, we used that C(p̂11, p̂00) = 0. The second moment

E
[
(α̂∗)2

]
can be written as E [α̂∗]

2
+ V (α̂∗). Because V (α̂∗) is of order 1/N , it

can be neglected compared to E [α̂∗]
2
, which is of order 1. In particular, we find

that the expectation of the conditional variance equals:

E [V (α̂b | α̂
∗)] = E [(α̂∗)]

2
[V (p̂00) + V (p̂11)] + V (p̂00)− 2E [α̂∗]V (p̂00) +O

(
1

N

)

= V (p̂00) [E [α̂∗]− 1]
2
+ V (p̂11)E [α̂∗]

2
+O

(
1

N

)
.

Next, the variance of the conditional expectation can be seen to be equal the
following:

V [E(α̂b | α̂
∗)] = V [E(α̂∗(3− p̂00 − p̂11)− (1− p̂00) | α̂

∗)]

= V [α̂∗E(3− p̂00 − p̂11 | α̂
∗)− E(1− p̂00 | α̂

∗)]

= V (α̂∗)(3− p00 − p11)
2.
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Because V (α̂∗) is of order 1/N , it can be neglected in the final formula. Fur-
thermore, the variances of p̂00 and p̂11 can be written out using the result from
Lemma 1:

V (α̂b) =
[α(p00 + p11 − 1)− p00]

2
p00(1− p00)

n(1− α)

[
1 +

α

n(1− α)

]

+
[α(p00 + p11 − 1) + (1− p00)]

2
p11(1− p11)

nα

[
1 +

1− α

nα

]

+O

(
max

[
1

n3
,
1

N

])
.

This concludes the proof of Theorem 1.

Misclassification estimator

We will now prove the bias and variance approximations for the misclassification
estimator α̂p as defined in Equation (12).

Proof (of Theorem 2). Under the assumption that α̂∗ is distributed indepen-
dently of (p̂00, p̂11), it holds that

E(α̂p) = E

(
p̂00 − 1

p̂00 + p̂11 − 1

)
+ E

[
E

(
α̂∗

p̂00 + p̂11 − 1

∣∣∣∣ α̂
∗

)]

= E

(
p̂00 − 1

p̂00 + p̂11 − 1

)
+ E(α̂∗)E

(
1

p̂00 + p̂11 − 1

)
. (22)

E(α̂∗) is known from (4). To evaluate the other two expectations, we use a
second-order Taylor series approximation. The first- and second-order partial
derivatives of f(x, y) = 1/(x + y − 1) and g(x, y) = (x − 1)/(x + y − 1) =
1− [y/(x+ y − 1)] are given by:

∂f

∂x
=

∂f

∂y
=

−1

(x+ y − 1)2
, (23)

∂2f

∂x2
=

∂2f

∂y2
=

2

(x+ y − 1)3
,

∂g

∂x
=

y

(x+ y − 1)2
, (24)

∂g

∂y
=

−(x− 1)

(x+ y − 1)2
, (25)

∂2g

∂x2
=

−2y

(x+ y − 1)3
,

∂2g

∂y2
=

2(x− 1)

(x+ y − 1)3
.
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Now also using that C(p̂11, p̂00) = 0, we obtain for the first expectation:

E

(
1

p̂00 + p̂11 − 1

)
=

1

p00 + p11 − 1
+

V (p̂00) + V (p̂11)

(p00 + p11 − 1)3
+O(n−2)

=
1

p00 + p11 − 1


1 +

p00(1−p00)
n(1−α) + p11(1−p11)

nα

(p00 + p11 − 1)2


+O(n−2).

(26)

Here, we have included only the first term of the approximations to V (p̂00) and
V (p̂11) from Lemma 1, since this suffices to approximate the bias up to terms of
order O(1/n). Similarly, for the second expectation we obtain:

E

(
p̂00 − 1

p̂00 + p̂11 − 1

)
=

p00 − 1

p00 + p11 − 1
+

(p00 − 1)V (p̂11)− p11V (p̂00)

(p00 + p11 − 1)3
+O(n−2)

=
p00 − 1

p00 + p11 − 1

[
1 + p11

1−p11

nα
+ p00

n(1−α)

(p00 + p11 − 1)2

]
+O(n−2). (27)

Using (22), (4), (26), and (27), we conclude that:

E(α̂p) =
α(p00 + p11 − 1)− (p00 − 1)

p00 + p11 − 1


1 +

p00(1−p00)
n(1−α) + p11(1−p11)

nα

(p00 + p11 − 1)2




+
p00 − 1

p00 + p11 − 1

[
1 + p11

1−p11

nα
+ p00

n(1−α)

(p00 + p11 − 1)2

]
+O

(
1

n2

)
.

From this, it follows that an approximation to the bias of α̂p that is correct up
to terms of order O(1/n) is given by:

B(α̂p) =
α(p00 + p11 − 1)− (p00 − 1)

n(p00 + p11 − 1)3

[
p00(1− p00)

1− α
+

p11(1− p11)

α

]

+
(p00 − 1)p11

n(p00 + p11 − 1)3

[
1− p11

α
+

p00
1− α

]
+O

(
1

n2

)
.

By expanding the products in this expression and combining similar terms, the
expression can be simplified to:

B(α̂p) =
p11(1− p11)− p00(1− p00)

n(p00 + p11 − 1)2
+O

(
1

n2

)
.

Finally, using the identity p11(1−p11)−p00(1−p00) = (p00+p11−1)(p00−p11),
we obtain the required result for B(α̂p).

To approximate the variance of α̂p, we apply the conditional variance decom-
position conditional on α̂∗ and look at the two resulting terms separately. First,

BNAIC/BeneLearn 2020 122



Comparing Correction Methods to Reduce Misclassification Bias 21

consider the variance of the conditional expectation:

V [E(α̂p | α̂
∗)] = V

[
E

(
α̂∗ 1

p̂00 + p̂11 − 1
+

p̂00 − 1

p̂00 + p̂11 − 1
| α̂∗

)]

= V

[
α̂∗ 1

p00 + p11 − 1

]

=
1

(p00 + p11 − 1)2
V [α̂∗] = O

(
1

N

)
, (28)

where in the last line we used (6). Note: the factor 1/(p00+p11−1)2 can become
arbitrarily large in the limit p00 + p11 → 1. It will be seen below that this
same factor also occurs in the lower-order terms of V (α̂p); hence, the relative
contribution of (28) remains negligible even in the limit p00 + p11 → 1.

Next, we compute the expectation of the conditional variance.

E [V (α̂p | α̂
∗)] = E

[
V

(
α̂∗ 1

p̂00 + p̂11 − 1
+

p̂00 − 1

p̂00 + p̂11 − 1
| α̂⋆

)]

= E

[
V

(
α̂∗ 1

p̂00 + p̂11 − 1
| α⋆

)
+ V

(
p̂00 − 1

p̂00 + p̂11 − 1
| α̂⋆

)

+ 2C

(
α̂∗ 1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1
| α̂⋆

)]

= E
[
(α̂∗)2

]
V

[
1

p̂00 + p̂11 − 1

]
+ V

[
p̂00 − 1

p̂00 + p̂11 − 1

]

+ 2E [α̂⋆]C

[
1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1

]

= E [α̂⋆]
2

[
1 +O

(
1

N

)]
V

[
1

p̂00 + p̂11 − 1

]
+ V

[
p̂00 − 1

p̂00 + p̂11 − 1

]

+ 2E [α̂⋆]C

[
1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1

]
. (29)

To approximate the variance and covariance terms, we use a first-order Taylor
series. Using the partial derivatives in (23), (24) and (25), we obtain:

V

[
1

p̂00 + p̂11 − 1

]
=

V (p̂00) + V (p̂11)

(p00 + p11 − 1)4
+O(n−2)

V

[
p̂00 − 1

p̂00 + p̂11 − 1

]
=

V (p̂00)(p11)
2

(p00 + p11 − 1)4
+

V (p̂11)(1− p00)
2

(p00 + p11 − 1)4
+O(n−2)

C

[
1

p̂00 + p̂11 − 1
,

p̂00 − 1

p̂00 + p̂11 − 1

]
=

V (p̂00)(−p11)

(p00 + p11 − 1)4
+

V (p̂11)(p00 − 1)

(p00 + p11 − 1)4
+O(n−2).
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Substituting these terms into Formula (29) and accounting for Formula (28)
yields:

V (α̂p) =
V (p̂00)

[
E [α̂⋆]

2
− 2p11E [α̂⋆] + p211

]

(p00 + p11 − 1)4

+
V (p̂11)

[
E [α̂⋆]

2
− 2(1− p00)E [α̂⋆] + (1− p00)

2
]

(p00 + p11 − 1)4
+O

(
max

[
1

n2
,
1

N

])

=
V (p̂00) [E [α̂⋆]− p11]

2

(p00 + p11 − 1)4
+

V (p̂11) [E [α̂⋆]− (1− p00)]
2

(p00 + p11 − 1)4
+O

(
max

[
1

n2
,
1

N

])

=
V (p̂00)(1− α)2

(p00 + p11 − 1)2
+

V (p̂11)α
2

(p00 + p11 − 1)2
+O

(
max

[
1

n2
,
1

N

])
.

Finally, inserting the expressions for V (p̂00) and V (p̂11) from Lemma 1 yields:

V (α̂p) =

p00(1−p00)
n(1−α)

[
1 + α

n(1−α)

]
(1− α)2

(p00 + p11 − 1)2
+

p11(1−p11)
nα

[
1 + 1−α

nα

]
α2

(p00 + p11 − 1)2

+O

(
max

[
1

n2
,
1

N

])
,

from which expression (14) follows. This concludes the proof of Theorem 2.

Calibration estimator

We will now prove the bias and variance approximations for the calibration
estimator α̂c that was defined in Equation (15).

Proof (of Theorem 3). To compute the expected value of α̂c, we first compute
its expectation conditional on the 4-vector N = (N00, N01, N10, N11):

E(α̂c |N) = E

[
α̂∗ n11

n+1
+ (1− α̂∗)

n10

n+0
|N

]

= α̂∗E

[
n11

n+1
|N

]
+ (1− α̂∗)E

[
n10

n+0
|N

]

= α̂∗E

[
E

(
n11

n+1
|N , n+1

)
|N

]

+ (1− α̂∗)E

[
E

(
n10

n+0
|N , n+0

)
|N

]

=
N+1

N
E

[
1

n+1
n+1

N11

N+1
|N

]
+

N+0

N
E

[
1

n+0
n+0

N10

N+0
|N

]

=
N11

N
+

N10

N

=
N1+

N
= α. (30)
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By the tower property of conditional expectations, it follows that E[α̂c] =
E [E(α̂c |N)] = α. This proves that α̂c is an unbiased estimator for α.

To compute the variance of α̂c, we use the conditional variance decomposi-
tion, again conditioning on the 4-vector N . We remark that N0+ and N1+ are
deterministic values, but that N+0 and N+1 are random variables. As shown
above in Equation (30), the conditional expectation is deterministic, hence it
has no variance: V (E[α̂c | N ]) = 0. The conditional variance decomposition
then simplifies to the following:

V (α̂c) = E [V (α̂c |N)] . (31)

The conditional variance V (α̂c |N) can be written as follows:

V [α̂c |N ] = V

[
α̂∗ n11

n+1
+ (1− α̂∗)

n10

n+0
|N

]

= (α̂∗)2V

[
n11

n+1
|N

]
+ (1− α̂∗)2V

[
n10

n+0
|N

]

+ 2α̂∗(1− α̂∗)C

[
n11

n+1
,
n10

n+0
|N

]
. (32)

We will consider these terms separately. First, the variance of n11/n+1 can be
computed by applying an additional conditional variance decomposition:

V

[
n11

n+1
|N

]
= V

[
E

(
n11

n+1
|N , n+1

)
|N

]
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)
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]
.

The first term is zero, which can be shown as follows:
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]
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[
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N+1
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]
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For the second term, we find under the assumption that n≪ N :
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V

(
n11
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]
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.
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The expectation of 1
n+1

can be approximated with a second-order Taylor series:

V

[
n11

n+1
|N

]
=

[
1

E[n+1 |N ]
+

1

2

2

E[n+1 |N ]3
V [n+1 |N ]

]
N11N01

N2
+1

+O(n−3)

=
1

E[n+1 |N ]

[
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V [n+1 |N ]
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]
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=
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[
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]
N11N01
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+O(n−3). (33)

The variance of n10/n+0 can be approximated in the same way, which yields the
following expression:
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Finally, it can be shown that the covariance in the final term is equal to zero:

C

[
n11

n+1
,
n10

n+0
|N

]
= E

[
C

(
n11

n+1
,
n10

n+0
|N , n+0, n+1

)
|N

]

+ C

[
E

(
n11

n+1
|N , n+0, n+1

)
, E

(
n10

n+0
|N , n+0, n+1

)
|N

]

= E

[
1

n+0n+1
C (n11, n10 |N , n+0, n+1) |N

]

+ C

[
1

n+1
E (n11 |N , n+0, n+1) ,

1

n+0
E (n10 |N , n+0, n+1) |N

]

= 0 + C

[
1

n+1
n+1

N11

N+1
,

1

n+0
n+0

N10

N+0
|N

]
= 0. (35)

Combining Formulas (33), (34) and (35) with (32) gives:
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Recall from Formula (31) that V [α̂c] = E [V [α̂c |N ]] = E [E [V [α̂c |N ] | N+1]].
Hence,

V [α̂c] = E
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To evaluate the expectations in this expression, we observe that, conditional
on the column total N+1, N11 is distributed as Bin(N+1, c11), where c11 is a
calibration probability as defined in Section 2.5. Hence,

E [N11 | N+1] = N+1c11 =
N+1αp11

(1− α)(1− p00) + αp11
(37)

V [N11 | N+1] = N+1c11(1− c11).

Similarly, since N = N+1 +N+0 is fixed,

E [N00 | N+1] = N+0c00 =
N+0(1− α)p00

(1− α)p00 + α(1− p11)
(38)

V [N00 | N+1] = N+0c00(1− c00).

Using these results, we obtain:
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and similarly

E
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(
1

N

)
. (40)

Substituting expressions (39) and (40) into (36) and noting thatN2
+1/N

2 = (α̂∗)2

and N2
+0/N

2 = (1− α̂∗)2, we obtain:
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Finally, substituting the expressions for E(α̂∗) from (4) and the expressions for
c11 and c00 from (37) and (38), the desired expression (17) is obtained. This
concludes the proof of Theorem 3.
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Comparing mean squared errors

To conclude, we present the proof of Theorem 4, which essentially shows that the
mean squared error (up to and including terms of order 1/n) of the calibration
estimator is lower than that of the misclassification estimator.

Proof (of Theorem 4). Recall that the bias of α̂p as an estimator for α is given
by

B [α̂p] =
p00 − p11

n(p00 + p11 − 1)
+O

(
1

n2

)
.

Hence, (B [α̂p])
2 = O(1/n2) is not relevant for M̃SE[α̂p]. It follows that M̃SE[α̂p]

is equal to the variance of α̂p up to order 1/n. From (14) we obtain:

M̃SE[α̂p] =
1

n

[
(1− α)p00(1− p00) + αp11(1− p11)

(p00 + p11 − 1)2

]
. (41)

Recall that α̂c is an unbiased estimator for α, i.e., B[α̂c] = 0. Also recall the
notation β = (1−α)(1− p00)+αp11. It follows from (17) that the variance, and
hence the MSE, of α̂c up to terms of order 1/n can be written as:

M̃SE[α̂c] =
1

n

[
β
αp11
β

(
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αp11
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)
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n

[
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β
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1− β

]
. (42)

To prove Expression (18), first note that

(1− p00)p11
β

+
p00(1− p11)

1− β
=

(1− p00)p11 + β(p00 − p11)

β(1− β)
. (43)

The numerator of this equation can be rewritten as follows:

(1− p00)p11 + β(p00 − p11)

= (1− p00)p11 + (1− α)p00(1− p00) + αp00p11 − (1− α)(1− p00)p11 − αp211

= (1− α)p00(1− p00) + αp00p11 + α(1− p00)p11 − αp211

= (1− α)p00(1− p00) + αp11(1− p11).

Note that the obtained expression is equal to the numerator of Expression (41).
Write T = (1−α)p00(1−p00)+αp11(1−p11) for that expression. It follows that

M̃SE[α̂p]− M̃SE[α̂c]

=
T
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−

Tα(1− α)
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[
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.
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Writing out the second factor in the last expression gives the following:

β(1− β)− α(1− α)(p00 + p11 − 1)2

= (1− α)2p00(1− p00) + α(1− α)
(
(1− p00)(1− p11) + p00p11

)
+ α2p11(1− p11)

− α(1− α)(p00 + p11 − 1)2

= (1− α)2p00(1− p00) + α(1− α)
(
p00(1− p00) + p11(1− p11)

)
+ α2p11(1− p11)

= (1− α)p00(1− p00) + αp11(1− p11)

= T.

This concludes the proof of Theorem 4.
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Abstract. Emotion recognition is an increasingly important sub-field in
artificial intelligence (AI). Advances in this field could drastically change
the way people interact with computers and allow for automation of
tasks that currently require a lot of manual work. For example, regis-
tering the emotion a subject expresses for a potential advert. Previous
work has shown that using multiple modalities, although challenging,
is very beneficial. Affective cues in audio and video may not occur si-
multaneously, and the modalities do not always contribute equally to
emotion. This work seeks to apply attention mechanisms to aid in the
fusion of audio and video, for the purpose of emotion recognition using
state-of-the-art techniques from artificial intelligence and, more specifi-
cally, deep neural networks. To achieve this, two forms of attention are
used. Embedding attention applies attention on the input of a modality-
specific model, allowing recurrent networks to consider multiple input
time steps. Bimodal attention fusion applies attention to fuse the output
of modality-specific networks. Combining both these attention mecha-
nisms yielded CCCs of 0.62 and 0.72 for arousal and valence respectively
on the RECOLA dataset used in AVEC 2016. These results are com-
petitive with the state-of-the-art, underlying the potential of attention
mechanisms in multimodal fusion for behavioral signals.

Keywords: Emotion Recognition · Multimodal · Neural Networks · At-
tention Mechanisms

1 Introduction

Emotion recognition as a field in machine learning tries to automate the identi-
fication of emotion in a human subject through various means, including com-
puter vision, signal processing and deep learning. This problem is non-trivial
as emotion in itself is an abstract concept that is hard to interpret, and thus
many different models have been proposed to describe it [9]. Interpretation of
emotional expressivity is hindered by the differences in expression between cul-
tures and even persons. Emotion recognition related experiments and data, often
come in the form of two types: acted and spontaneous. In the former category,
emotions are many times expressed by an actor, while the spontaneous category
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mostly involves video clips of spontaneously expressed emotions. Spontaneous
emotion recognition is deemed to be harder since it deals with more genuine
expression of emotion, which tends to be more subtle than in the acted case.

The state-of-the-art approaches for emotion recognition make use of multiple
modalities. This entails that emotion will be predicted by looking at multiple
sources. Emotion can be expressed by, for example, both facial and vocal ex-
pression, and taking both of these sources into account leads to better perform-
ing models [7, 11, 4]. However, using multiple modalities is challenging. These
modalities usually differ in multiple aspects, such as their inherent distributions,
synchronization, sampling rate, dimensionality, etc.

This work aims to make use of the effectiveness of transfer learning by utiliz-
ing pre-trained networks on multiple modalities and fusing these using attention
mechanisms. For this purpose, a new method is proposed, that combines previ-
ous work in emotion recognition and neural attention to predict emotions in the
valence-arousal emotion spectrum.

1.1 Related Work

Work by Ghaleb et al. [4] proposed a framework, which uses metric learning and
combines multiple input modalities that showed an increase in performance for
discrete emotion recognition in an acted setting [4]. This work relies on some
of the preprocessing techniques developed and tested by Ghaleb et al., since it
is expected that they will also be beneficial for continuous emotion recognition.
Research in the field of emotion recognition is encouraged by the Audio Visual
Emotion Challenge (AVEC), which is a competition that is held yearly as part of
the ACM Multimedia conference. The competition features a continuous affect
recognition sub-part that sets a benchmark for work in the emotion recognition
field. The accompanying baseline uses support vector machines (SVM) for each
of the eight used modalities, with modality specific feature extraction and pro-
cessing. SVMs are subsequently fused with a linear regression model [10]. This
work will focus on solving the problem presented in this sub-part using feature
embeddings and deep neural networks, which have been shown to be effective
in similar works [10, 12, 3, 6]. Furthermore, Wu et al. showed that using only
feed-forward networks and attention can achieve results that are comparable to
recurrent approaches [11]. The method proposed in this work relies on the archi-
tectures used by Zhao et al.[12] and Haifeng et al.[3], in which they show that
using stacked LSTMs followed by a dense linear layer per modality provides good
results. Brady et al. showed state-of-the-art results on the RECOLA dataset for
AVEC 2016 using a Kalman Filter approach to fuse models trained for specific
modalities [2].

2 Methods

2.1 Attention

Attention mechanisms consitute a family of techniques that can be applied to
selectively focus on parts of a sequence. It was initially proposed by Luong et
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al. [8] for the purpose of machine translation using an encoder-decoder network.
Here the encoder network encodes the sentence in the source language and the
decoder uses this encoding to reproduce the sentence in the target language. The
order of the words in the source and target languages are often not aligned, and
thus the decoder needs to be able to process the encoding out of order. Atten-
tion mechanisms allow this network to selectively focus on relevant parts of the
encoding to produce a part of the target sequence. The attention mechanism,
specifically the general-dot-product (GDP) variant, calculates an attention vec-
tor at over each encoder hidden state hs, which determines how important each
part of the input is. This mechanism is formulated as follows:

at(s) =
exp(score(ht, hs)∑
s′ exp(score(ht, hs′)

(1)

score(ht, hs) = h⊤

t Wahs (2)

Here h⊤
t is the current state of the decoder and matrix Wa is a parameter that is

to be learned. The attention vector at can then be used to compute a weighted
average of the source hidden states [8]. Similar to translation, emotions and their
corresponding cues in the data may not be aligned. Thus the use of attention
mechanisms could improve the performance of models for emotion recognition
by allowing them to focus on the information that is relevant for recognizing
emotion.

2.2 Proposed approach

The proposed model follows the works of Zhao et al. and Haifeng et al. [12, 3].
These works successfully use LSTMs for multi-modal affect recognition using
features that are similar to the ones used in this work. The model used here is
a stacked LSTM with dropout between the layers combined with a dense linear
layer, where each model outputs both valence and arousal for each time step.
This architecture is called the deep long short-term memory network (DLSTM).
In total, the network consists of two LSTM layers followed by a dense linear
layer. The first LSTM layer iterates over the input sequence and produces a
hidden state for each time step in the input. These hidden states are the input
for the second LSTM layer, which in turn produces a new sequence of hidden
states. These final hidden states are the input to the linear layer that maps them
into the two emotion dimensions. This architecture is expanded with attention-
based layers on the embedding level (over time) and the fusion level (over the
DLSTM networks). Figure 1 shows the overall network structure.

Embedding attention Attention over the embeddings closely follows the gen-
eral dot-product (GDP) approach described by Luong et al. for language trans-
lation using encoder-decoder architectures [8]. The GDP attention mechanism
computes scores for each source hidden state hs in a sequence. A softmax func-
tion is applied to these to obtain a distribution which is subsequently used to
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construct a weighted combination of the sequence. GPD attention computes the
score in the following way: h⊤

t Wahs. Where ht is the current state of the de-
coder and hs is a hidden state of the encoder. Wa is a weight matrix that maps
the encoder hidden state and the target hidden state to a score and has to be
optimized. To adapt this method for affect recognition, the target hidden state
ht is the hidden state of the DLSTM, Cv in figure 1, and the source states are
replaced with the embedding vectors in a certain window of size n, represented
by Vt−n

2
· · ·Vt+n

2
in figure 1. The attention mechanism thus computes the score

of an embedding vector depending on the current state of the DLSTM and the
contents of the embeddings.

This attention mechanism is applied only to the video modality. As will be
explained in section 3, the extracted audio features already contain temporal
information and should therefore benefit less from attention.

Fig. 1. Overview of the proposed model. at and vt respectively, are the audio and video
embeddings at time t. The variables ym and cm are the output and hidden state of the
DLSTM responsible for modality m, and z represents the fused output.

Bimodal attention fusion The attention concept is also applied to decision
fusion. The information that the DLSTMs receive may not allow for a very good
prediction of emotion at every time step. For example, at some time t, audio
may be more appropriate for emotion recognition, whereas the visual signal may
not be carrying significant information. In that case, the output of the audio
LSTM should have a higher weight in decision making. GDP attention mecha-
nism outputs a linear combination of the inputs, resulting in equal weight being
given to the valence and arousal output of a DLSTM. This is not necessarily the
best solution, as at some time step t the audio DLSTM might be very ”confi-
dent” about its output for arousal and unsure for valence, but the video DLSTM
may be confident about valence. The GDP attention mechanism cannot assign
different weights for each output dimension separately.
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We experimented with an attention approach to decision fusion: Bimodal At-
tention Fusion. This method uses attention to combine the outputs of modality-
specific DLSTM networks. Attention scores are computed by considering all DL-
STM hidden states at once. Here C ∈ R

cn, with c being the size of the hidden
states and n the number of DLSTMs, is a vector containing the concatenation of
the hidden states of all the underlying DLSTMs at time t. Ym ∈ R

n is a vector
containing the outputs of the DLSTMs for output modality m. This vector con-
tains either valence or arousal outputs of all the DLSTM networks. The scores
and outputs are computed separately for both arousal and valence, because dif-
ferent output dimensions may require different distribution of attention. The
calculation of the scores can be reformulated as follows:

Sm = C⊤Wm (3)

ami
=

exp(si)∑n

j=1 exp(sj)
(4)

Z = {z1, · · · , zo},where zm =

n∑

i=1

ami
ymi

(5)

The attention vector A, whose elements are described in equation 4, is the matrix
product of the DLSTM hidden states in C and the learned weights in Wm

followed by an application of the softmax function. The weights Wm ∈ R
cn×n

map the hidden states to scores per DLSTM and are optimized separately per
output modality m. This allows for different mappings from hidden states to
scores for both valence and arousal. The attention weights in Am are used to
take a weighted combination of the DLSTM outputs.

Baseline fusion methods The effectiveness of the attention mechanism is as-
sessed by comparing it to networks that fuse without attention. The first network
realizes fusion as a static combination of the network outputs by a dense linear
layer and is named output linear baseline (OLB). When Y ∈ R

o×n is a matrix
containing the LSTM outputs, with o being the number of output dimensions,
and W ∈ R

n×1 is a weight matrix, the fused output can be formulated as follows:

Z = YW (6)

Matrix W is optimized during training and linearly fuses the outputs of the
DLSTMs. The second network fuses by using the concatenation of the hidden
states of the DLSTMs. This method, named hidden linear baseline (HLB), can
be formulated as:

Z = C⊤W (7)

Just as in equation 3, C ∈ R
cn is a matrix containing the concatenation of the

hidden states of the DLSTMs, but here Wm ∈ R
cn×o is a parameter that maps

the hidden states directly to the output emotions.
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Fig. 2. Example frames from the RECOLA dataset

3 Results and discussion

This section details the experiments performed to determine the performance of
the architecture described in section 2.2. A subset of the RECOLA dataset from
the University of Fribourg was used in the 2015 and 2016 Audio/Visual Emotion
Challenge (AVEC), and is used in this work to train the proposed architecture.
The dataset consists of 18 five minute clips in predetermined train and validation
partitions [10]. Examples of frames from this dataset are shown in figure 2. This
subset of RECOLA contains several feature types, but only the raw video and
audio data is used. Emotion is annotated continuously in the valence-arousal
space for each video frame. Face extraction is performed on each frame of video
and the raw data is transformed using embedding networks. Activations from
the last convolutional layer of the VGGFace network is used to extract frame-
level video features and VGGish is used to extract audio features from a 960ms
window [1, 5].

The models mentioned below are trained by optimizing the mean squared
error using the Adam optimizer with a learning rate of 0.01. The DLSTM archi-
tecture, described in section 2.2, is optimized using truncated backpropagation
through time, following Zhao et al. and Haifeng et al. [12, 3]. The training and
test partitions provided with the RECOLA data were used in order to make a
fair comparison with the results from the state of the art from AVEC. Model
performance is assessed with the Concordance Correlation Coefficient (CCC)
measure, which is a common measure of performance in emotion recognition.
The CCC is computed for each sequence in test partition of the dataset and
averaged over the sequences to show the performance.

3.1 Attention

As explained in section 2.2, attention mechanisms are applied on two points
in the proposed model. Embedding attention, which applies attention to the
embeddings used as input to the video DLSTM, and fusion attention, which uses
attention to fuse the outputs of the DLSTMs. These two methods are evaluated
separately in the following experiments.

Embedding attention To assess the effectiveness of applying attention to
the video embeddings, the performance of the DLSTM is compared with and
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without attention. For embedding attention, a window size of 13 frames is used,
allowing the mechanism to consider a segment of half a second. The baseline
in this comparison is a DLSTM without any attention, and thus processes the
embeddings sequentially, instead of being able to focus on a window.

Initial performance of the model with embedding attention was very poor
and stagnated directly after start of training. This was in contrast with the be-
havior of the model without embedding attention and suggested that training
was hindered by the addition of the attention mechanism. To counteract this,
the embedding attention layer is bypassed for the first five training epochs. After
this startup period, the embedding layer is included again, which significantly
improved performance. A possible explanation for this phenomenon is the cyclic
dependency between the embedding attention and the hidden layer of the DL-
STM. The embedding attention layer uses the hidden state to compute the input
to the DLSTM, which in turn affects the hidden state. A meaningless hidden
layer could result in poorly attended input, which then maintains the form of
the hidden state. To account for random initialization, training and testing is
repeated 10 times. For arousal, this resulted in very similar results regardless of
the use of attention, with CCCs of 0.15 (±0.05) and 0.14 (±0.05) for no atten-
tion and embedding attention respectively. A slight improvement was observed
for valence with CCC results of 0.36 (±0.07) without attention and 0.39 (±0.06)
with embedding attention. Even though promising, this difference is not statis-
tically significant, with p > 0.05. A bidirectional variant of the DLSTM without
attention, since the embedding attention allows the network to use frames ahead
of the current time step, and a bigger attention window were evaluated, but these
resulted in similar CCC scores.

Table 1. CCC results for the pre-trained uni-modal DLSTMs (left) and their fusion us-
ing bimodal attention fusion and baselines (right). Both Bimodal attention and Hidden
linear baseline (HLB) successfully fuse the unimodal networks for valence prediction.

Uni-modal Valence Arousal Fusion Valence Arousal
audio 0.42 0.60 Bimodal attention 0.48 (±0.04) 0.60 (±0.1)
video 0.24 0.10 OLB 0.32 (±0.03) 0.40 (±0.08)

HLB 0.48 (±0.01) 0.64 (±0.02)

Fusion attention Section 2.2 describes the attention mechanism that can be
used to combine the outputs of the uni-modal DLSTM networks. To make a fair
comparison with the detailed baselines, two DLSTM networks are pre-trained
separately on audio and video, and subsequently frozen before training the fusion
mechanisms. This procedure restricts the performance of the model as a whole,
but allows for a clear comparison of the fusion methods. The training of the fusion
mechanisms is repeated 10 times while using the same pre-trained DLSTMs, to
account for random initialization.
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The results can be seen in figure 3 and table 1. The CCC values for the pre-
trained network are also detailed in table 1. Comparing the methods shows that
the proposed attention fusion mechanism significantly improves performance
when compared to fusion by linearly combining the DLSTM outputs (OLB).
However, its performance is matched by the baseline method that regresses the
hidden states of the DLSTMs directly (HLB). For valence, the HLB baseline
and bimodal attention mechanism both showed better performance than the
unimodal networks they fused. This suggests that the performance of the audio
network is slightly increased by fusion with the video modality, but the difference
is not large enough for any concrete conclusions. In short, the proposed method
seems fuse the uni-modal networks successfully, however its performance does
not improve beyond the HLB baseline, which does not use attention.
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Fig. 3. CCC results for fusion of pre-trained uni-modal DLSTM models using bimodal
attention fusion and baseline methods.

3.2 Comparison with the state of the art

The previous sections have each evaluated parts of the proposed architecture. In
this section, a comparison with recent works from the literature is performed. For
this, the network is trained in an end-to-end fashion using the bimodal attention
fusion method and embedding attention on the video modalty. Hyperparameters
are optimized empirically, resulting in hidden sizes of 32 and 128 for the audio
and video DLSTMs respectively. Work by Haifeng et al. [3] shows that early fu-
sion of features combined with decision level fusion provides improved results for
emotion recognition. For this purpose, audio and video features are concatenated
per time step to form an early fusion modality. The model described in section
2.2 is extended with a third DLSTM, with a hidden size of 128, that is used on
this new modality. The outputs of this DLSTM are fused with the outputs from
the audio and video DLSTMs to produce the final model output. The results
are compared with a baseline provided by AVEC [10] and the best results on
this dataset, achieved by Brady et al. [2]. This comparison is displayed in ta-
ble 2. The CCC scores obtained by the proposed model for arousal are higher
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than the baseline, but are below the ones by Brady et al. However, it should
be highlighted here that these two works make use of a wider set of modalities
(such as electrodiograms and electrodermal activity, beyond just video and au-
dio), whereas, in the proposed method, only audio and video are considered. For
valence, the performance is just below the baseline. The results obtained with
the proposed model are comparable to the results of these methods, even though
fewer modalities were used and embedding techniques from other domains were
reused.

Table 2. Performance of the model proposed in section 2.2 compared to the AVEC
baseline and state of the art for this dataset.

Valence Arousal

Baseline 0.683 0.639
State of the art
(Brady et al.)

0.702 0.82

Proposed 0.62 0.72

4 Conclusions and future work

This work explored combining the information in audio and video data by using
attention to fuse the output of networks that were trained on only one modality
each. Furthermore, attention was used to spot important video embeddings in
temporal windows using the hidden state of an LSTM network.

Fusion of the output modalities using attention shows a significant improve-
ment when compared to a model that does not take the states of the input
networks into account. However, it shows similar performance to the baseline
that directly regresses the hidden states, suggesting that more improvements
should be possible. Usage of embedding attention showed promising results, but
this difference is not significant, with a p-value greater than 0.05. Applying at-
tention on the embedding level produced new challenges, that were overcome by
using a special training procedure. Future work could investigate the causes for
this and explore other, more flexible, variants of this mechanism.

Combining embedding attention and fusion attention yields a model that
shows promising performance. Results exhibited improved performance com-
pared to the AVEC baseline for arousal and close performance for valence. The
proximity to the baseline and state-of-the art results shows the potential of
the proposed method, since the baseline and state-of-the-art methods use more
modalities and fine-tuned pre-processing methods. This is in contrast to the pro-
posed method, which uses fewer modalities and reuses feature embeddings from
other domains. Other modalities can be easily included in the proposed method
and it is expected that this will improve results.

In conclusion, the use of attention mechanisms for emotion recognition shows
promising results and can successfully combine information from multiple modal-
ities. Future research could expand on this architecture by experimenting with
different forms of attention, extra modalities and different feature embeddings.
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Abstract. We designed freely scalable ensembles of spiking neurons to
carry out the operations required to run a genetic algorithm, thereby
opening up possibilities for making use of efficient neuromorphic hard-
ware. Two types of implementation are explored that offer a complexity
trade-off between computational space and time, with both designs hav-
ing linear energy complexity. The designs were implemented in a sim-
ulator to successfully solve the one-max optimization problem, serving
as a proof of concept for running genetic algorithms as spiking neural
networks.

Keywords: neuromorphic computing · genetic algorithm · spiking neu-
ral networks

1 Introduction

Neuromorphic computing ranges back to the term being coined in 1990 [1], in
which the first implementation consisted of very large scale integration (VLSI)
with analog components mimicking the biological neural systems. Much research
has been done since this time, and in the last few years the energy efficiency of
such architectures have become an increasingly dominant research subject. Spik-
ing neural networks (SNN) are known as a type of neuromorphic implementation
which have exceptional energy saving properties, compared to other systems [2].
SNNs augment artificial neural networks with the spiking dynamics found in
biological neurons [3]. Based on leaky integrate-and-fire (LIF) neurons [4], SNNs
transmit information by means of timing and energy spikes, released when the
potential difference inside a neuron reaches a certain threshold. This is because
such hardware is modeled after the brain in that its activation is event-driven
and asynchronous. On top of that, SNN’s property of local information storage
effectively avoids the von Neumann bottleneck arising from an idling processor
while retrieving data from memory [5]. Researching the possibility of implement-
ing various existing algorithms in such SNNs leads the way to a future in which
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real life applications of such algorithms currently implemented on von Neumann
architectures could be replaced.

Implementing algorithms as SNNs to run them on neuromorphic hardware
has been done for sorting [6], constraint satisfaction [7], shortest path and neigh-
borhood subgraph extraction problems [8]. The striking similarity between a ge-
netic sequence and a neural spike train inspires the implementation of a genetic
algorithm (GA) as a SNN, which could make use of recent hardware develop-
ments in neuromorphic computing.

The use of evolution-inspired algorithms has been proven a viable solution
for tackling problems of optimization, bringing in advantages for optimisation
over traditional methods. For instance, GA systems [9, 10] may provide the
opportunity for difficult problem solving such as multi-objective optimisation [11]
and have found applications in various practical settings (see [12] for a review).
As in natural evolution, GAs work by modifying the characteristics of individuals
in a population across several iterations. This is done by means of reproduction
(crossover) and random gene mutation. With each run, individuals with an
arrangement of genes with a higher fitness value are allowed to preferentially
reproduce and carry over their genetic information into the next generation. In
this study, each individual solution (chromosome) is represented as a binary bit
sequence, in which each bit represents the value of a gene.

Our main aim was to investigate the feasibility of implementing a GA using
spiking neurons with the potential for future implementation on neuromorphic
hardware, such as Intel’s Loihi [13] or IBM’s TrueNorth [14]. Our design con-
sists of binary genetic sequences, which are represented as neuronal spikes and
are processed by LIF neurons with context-dependent parameters. The chosen
optimization problem is the one-max problem due to its simplicity and wide use
in the literature on genetic algorithms; the objective of which is to produce a
fully active genetic sequence, in this case a fully active spike train. The neural
network was implemented and tested using a spiking neuron simulator3.

We considered two candidate possibilities for encoding the binary genetic
sequence in neural ensembles. Firstly, the genetic sequence can be represented
sequentially as a spike train, with a spike indicating a 1 and no spike indicating
a 0. An ensemble in this design processes one bit at a time. The second way of
representing a binary genetic sequence is parallel, using a separate neuron for
each position of the genetic sequence. These two encodings are expected to offer
a complexity trade-off between computational space and time.

In the following, the high-level architecture of the SNN is presented, followed
by details on the sequential and parallel implementations. We then conduct a
complexity analysis of both implementations with regard to space, time and
energy, in order to assess the tractability of our design.

3 https://gitlab.socsci.ru.nl/j.kwisthout/neuromorphic-genetic-algorithm
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2 High-Level Architecture

The genetic algorithm consists of initializing and evaluating a starting population
and then repeatedly performing selection, crossover, mutation, and evaluation on
the population until termination. It is implemented as a single recurrent SNN,
consisting of specialized neural ensembles for each operation (Figure 1). The
topology of the network gives a fitness hierarchy, with the fittest chromosomes
being at the top and conversely the least fit chromosomes being at the bottom.
The network architecture is static during run-time and no learning of the weights
is required.

Fig. 1: High-level architecture of the genetic algorithm network, depicted with 8
chromosome lanes as solid arrows (each arrow can represent multiple neural con-
nections in the parallel design). After mutation, all chromosomes are connected
back to evaluation to close the generation loop, resulting in a single large neural
network. The dashed arrows from evaluation to sort represent the evaluation
result. To increase the number of chromosomes, the pattern of the second pair
of the four lane pairs is repeated.

After initialization, the chromosomes enter the evaluation ensembles in pairs,
where they are evaluated against each other and then potentially swapped to
bring the chromosome with higher fitness to the top. This setup corresponds to
a single pairwise bubble sort step and over time ranks chromosomes by their
fitness, which is necessary for selection. The use of only a limited number of
bubble sort steps in each generation will lead to incomplete sorting, but is more
efficient and leads to some variety in the ranking of the chromosomes while still
avoiding the removal of very promising individuals from the bottom. This design
is related to the ranking selection mechanism [15].

Selection is implemented in the connections from the sorting ensembles to
the crossover ensembles, by eliminating the bottom chromosome and connecting
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the top chromosome twice. This results in better solutions propagating more
successfully over time. In addition to potentially moving up one lane in the sort-
ing ensemble itself, the winner of the pairwise evaluations moves up by another
lane after sorting to ensure upwards mobility, as otherwise the same pairs would
be compared each iteration. Conversely, the inferior chromosome moves down
by a number of lanes after sorting.

Crossover is then performed on each pair of chromosomes. This reproduction
is implemented with a stochastic crossover method, which splits two sequences
at a random point and swaps all subsequent genes between the individuals.

After crossover, each chromosome is processed individually in a mutation
ensemble. Mutation is carried out by assigning a probability for flipping the
activity of each bit in a given sequence. In our designs, we use a probability
of p = 1

n
, where n is the length of the chromosome, but other mutation rates

are possible. We do not apply mutation on the top two chromosomes of each
generation in order to allow for stable one-max solutions. Again, this choice is
more up to the design of the genetic algorithm than the implementation as a
spiking neural network.

To close the generation loop, the outputs of the mutation ensembles connect
back into the evaluation ensembles, forming a recurrent neural network.

Scaling the network up for a larger population size or longer chromosomes
is straight-forward beyond a small minimum size, by repeating whole ensembles
and repeated elements within certain ensembles.

3 Neural Ensembles for Genetic Algorithms

3.1 Sequential Design

In our sequential design of the GA, the chromosome is processed one bit at a time,
which more closely resembles genetic processing in nature. Sequential processing
allows a small neural ensemble to process arbitrary lengths of chromosomes
over time without itself growing in size. The implementation relies on a lead bit,
which precedes every chromosome and is always active. This allows the signaling
of the arrival of a new chromosome, ensuring correct processing. In the following,
neurons will be ascribed different types based on their function in the ensemble.
However, they are all based on the LIF neuron model.

Evaluation Ensemble The sequential one-max evaluation ensemble (Figure
2) makes use of 8 neurons and 11 internal connections. It takes as input two
chromosomes and gives as output two chromosomes as well as a spike on a sepa-
rate neuron serving as an indicator in case the bottom chromosome has a higher
fitness than the top chromosome. The membrane potential of the accumulator
neuron (ACC) is increased with each active bit in the bottom chromosome, and
decreased with each active bit in the top chromosome. Note that the ACC neuron
is like all other neuron types used here just a LIF neuron with specific parame-
ters. The activation neuron (A), activated by the lead bit, then makes the ACC
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neuron fire or not based on the final membrane potential of the ACC neuron.
Only in the case of a membrane potential higher than zero will the indicator
neuron fire, and will the chromosomes’ ranking switch. A reset neuron (R) is
responsible for spiking but suppressing the ACC as to prevent interference of
previous chromosome comparisons with current iterations. Clearing the poten-
tial of the ACC neuron could alternatively be done using membrane leakage over
time, but that would result in a less predictable design.

Fig. 2: Sequential one-max evaluation ensemble. (I) Input, (acc) Accumulator
neuron, (a) Activation neuron, (r) Reset neuron, (o) Output.

Bubble Sort Ensemble The bubble sort ensemble (Figure 3) consists of 10
neurons and 15 internal connections. It takes two chromosomes plus a fitness in-
dication as input and gives two chromosomes as output. It uses gate (G) neurons
to open or close the identity and swap lanes connecting input and output and
thereby controlling whether the incoming chromosomes are swapped or propa-
gated as identity. This is achieved by giving the swap gate neurons a threshold
of two, which means they can only fire if an input comes from the gate control
(GC) neuron. The GC neuron is activated by the gate control activation (GCA)
neuron, which takes the fitness indicator input coming from the evaluation en-
semble. The GC neuron uses a recurrent connection to keep the swap gates open
and the identity gates closed until the chromosomes passed through entirely, at
which point it is deactivated by a delayed spike coming from the GCA neuron.

Crossover Ensemble The crossover ensemble (Figure 4) works similarly to
the bubble sort ensemble, except that identity and swap gates are not open or
closed for the whole chromosome, but switch activation at a random point. It
uses 13 neurons and 27 internal connections. The ensemble could be simplified
to only use one gate control (GC) neuron as in the bubble sort ensemble, but
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Fig. 3: Bubble sort ensemble in the sequential design. (I) input, (Gi) identity
gate, (Gs) swap gate, (GC) gate control, (GCA) gate control activation, (O)
output.

has been implemented with two in this project. The random crossover point is
implemented via a stochastic (S) neuron and a stochasticity control (SC) neuron.
The S neuron gets constant input from the SC neuron, while also generating a
random membrane potential each time step. If this combined potential crosses
the S neuron’s threshold the identity GC neuron is deactivated and the swap GC
neuron is activated. If S spikes, The S neuron also deactivates the SC neuron,
since only one crossover point is desired.

Mutation Ensemble Finally, the mutation ensemble (Figure 5) stochastically
turns a 0 into a 1 and conversely a 1 into a 0, independently for each bit excluding
the lead bit. It uses 6 neurons and 12 internal connections. The first stochastic
neuron (S1) gets a positive input from each spike in the input and adds a random
membrane potential, which can cross the threshold and lead to a spike. A spike
from S1 suppresses the ensemble output, thereby turning a 1 into a 0. The other
stochastic neuron (S2) always gets input from the control (C) neuron and adds a
random membrane potential, but it is suppressed by every spike in the input. If
no spike comes from the input, it has a chance of firing and turning the ensemble
output from a 0 to a 1. The control neuron is activated and finally deactivated
by the control activation (CA) neuron.

Full Network Behavior Each chromosome is passed through the ensembles
in its lane, as described in the high-level architecture (see Figure 1). In the
sequential design, a chromosome can still be processed in one ensemble while
already entering into the next (e.g. crossover to mutation), since here each bit can
be handled independently. An exception to this is the evaluation ensemble, which
needs to accumulate the full chromosome to make an evaluation. It therefore
breaks the time-constant flow through the other ensembles and leads to a time
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Fig. 4: Crossover ensemble in the sequential design. (I) input, (Gi) identity gate,
(Gs) swap gate, (GCi) identity gate control, (GCs) swap gate control, (GCA)
gate control activation, (S) stochastic, (SC) stochasticity control, (O) output.

Fig. 5: Mutation ensemble in the sequential design. (I) input, (S1) stochastically
flips 1 to 0, (S2) stochastically flips 0 to 1, (C) constant, (GCA) gate control
activation, (O) output.
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dependency on the chromosome length. On the upside this prevents chromosomes
from being longer than the execution cycle, which could otherwise lead to the
beginning of the next generation interfering with the end of the last for long
chromosomes.

3.2 Parallel Design

In the parallel implementation, every gene of the chromosome gets processed at
the same time. Instead of using a single spike train to represent the chromosome,
multiple neurons are used that each represent one gene of the chromosome. A
set of neurons can then represent the binary code of the chromosome by either
spiking or not. Its advantage is that the entire binary code of the chromosomes
can be conveyed in a single time step, but requires more neurons as chromo-
somes get longer. A generation of the entire algorithm in parallel design takes
exactly eleven simulation time steps. Again, all neuron types presented here are
simple LIF neurons with specific parameters. The different ensembles used in
the algorithm will be explained below.

Evaluation & Bubble Sort Ensemble In the parallel design the evaluation
step is combined with the bubble sort step. The goal of the evaluation is to have
the chromosome with the highest fitness be transferred to the first n output
neurons where n is the length of the chromosome. One lead bit is present for
each chromosome pair which enables functionality in the other ensembles of the
GA, however for this segment it is of no use and therefore linked directly to
its corresponding output neuron. Also for this reason the decision was made to
omit the lead bit altogether in Figure 6. By taking advantage of all information
contained in the chromosome being available at once, the evaluation and sorting
ensembles could be combined. This enables the comparison of the fitness through
the use of one Accumulator neuron (ACC) to which all input genes are connected
(excluding the lead bit). The sign of the connection weights leading to the ACC
results in it becoming active only if the lower chromosome has a greater fitness
than the top chromosome by at least one gene. Subsequently, the activation of
the ACC will determine whether either the identity gates or the swap gates are
activated. These are responsible for transferring the activity from the input to
the output neuron of the same, or the ’adversarial chromosome’, respectively.

Each of the input neurons are connected to both a dedicated identity gate and
a dedicated swap gate, with these being connected to the identity neuron or the
neuron on the other chromosome in the same position. The connection from the
input to the gates is delayed by one time step, however, to allow for synchronous
arrival of the spike and the spike coming from the ACC. The connections between
the ACC and the gates are weighted such that by default the identity gates have
a threshold low enough that a spike from the input neurons will be enough to
spike the gate as well while the threshold of the swap gates is too high. As soon
as the ACC is activated however this spike is no longer enough for the identity
gates, while the extra activation coming from the ACC to the swap gates lowers
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their threshold enough to let the spike pass from the input neuron to the correct
output neuron on the side of the ’adversarial chromosome’.

Fig. 6: Ensemble responsible for the evaluation and sorting in the parallel de-
sign, applied to a pair of chromosomes consisting of three genes each. Using an
accumulator neuron (ACC), the ensemble determines which of the chromosomes
has higher fitness and places the winner in the top lanes.

Crossover Ensemble The parallel crossover ensemble can be seen in Fig-
ure 7. The first gene of every chromosome always ends up in the same output
chromosome. The last gene is always crossed over and ends up in the opposite
chromosome. To decide where the genes in between go, a ’random point maker’
has been designed (see Figure 8), which is activated by the lead bit. The input to
the second layer of the random point maker spikes with a probability of p = 1

n−2 ,
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where n is the chromosome length. If activated, the node in this second layer
transfers this spike to all nodes in the third layer on the same level or below,
ensuring that once a gate opens the gates below also open.

Fig. 7: The parallel crossover ensemble. The first gene of a chromosome is always
sent to the same position and the last gene is always crossed over. For the genes
in the middle, the random point maker determines whether they are crossed over
or not.

The third layer of the random point maker (the gates) connect to the identity
and crossover nodes in the crossover ensemble. When a gate neuron of the ran-
dom point maker gets a spike, it closes the identity gate and opens the crossover
gate of both chromosomes at that level. This way, initially the crossover ensem-
ble will transfer genes to the same output chromosome, but at a random point
will switch to crossing genes over to the other output chromosome. The crossover
ensemble, together with the random point maker, takes five time steps to run for
any chromosome length n. The number of neurons in the ensemble is 10n− 11,
meaning linear growth. The number of connections does not show linear growth,
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because the connections between the second and third layer of the random point

maker grow with n
2+n

2 , which is quadratic growth. Because of this, the number
of connections in the whole ensemble grows quadratically.

Fig. 8: The random point maker that connects to the gates of the crossover
ensemble. This ensemble determines the point of the chromosomes where the
identity ends and the swapping of genes with each other starts. It makes sure
that there is an equal probability for every point in the chromosome to be the
start of crossing over the remaining genes.

Mutation Ensemble The final ensemble in the parallel design is responsible
for the stochastic mutation of the genes in the chromosomes, meaning turning a
1 into a 0 or vice versa (Figure 9). The way it is implemented is through assigning
a probability P to each of the genes, and therefore neurons, to switch their activ-
ity. Except for the lead bit (Ia), every input-neuron (Ib, Ic) is connected to two
neurons, and both of their thresholds are influenced by the switching-probability
through T = 2 − P . A noise factor is present in both intermediate neurons, its
function being to add randomness as to whether a neuron will mutate or not.
In the diagram the first of the two intermediate neurons is responsible for po-
tentially turning off the activation in case that the input neuron has spiked, and
the other is responsible for the opposite. Each of the input neurons is connected
directly to its corresponding output neuron, however this connection is delayed
such that its spike is delivered synchronously to the potential spike of one of
the two intermediate neurons. The role of the lead bit is essential to the mu-
tation ensemble, as its guaranteed activity allows for the potential activation
of the two intermediate neurons, which otherwise have no chance of reaching
their threshold. Combining the stochastic nature of the intermediate neurons,
together with the configuration of the intermediate neurons then has the desired
effect of a random mutation of the gene together with the appropriate switching
of its value.
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Fig. 9: The parallel mutation ensemble. This ensemble makes sure that every
gene’s bit has a chance to be swapped.

4 Analysis

A raster plot of the output neurons of the sequential bubble sort ensemble is
given in Figure 10. It shows the improving solution quality over time, with
the top chromosome reaching one-max, and also shows some resemblance of
the fitness hierarchy, with better solutions being closer to the top (subject to
imperfect sorting). Figure 11 confirms that the top chromosome in the hierarchy
has a higher than average fitness, which specifically shows that even the single
pairwise bubble sort step at each generation is enough to at least approximate
a fitness ranking.

To assess the tractability of our two designs, a complexity analysis is per-
formed. Computational complexity for neuromorphic computing is considered
in terms of space, time, and energy, measured as the number of spikes. For this
analysis, all three complexities have been considered with regard to the num-
ber of chromosomes and the chromosome length. Comparing the complexity of
the sequential and parallel design shows a space-time trade-off between the two
(Table 1), with the sequential design requiring less space but more time. Both
designs have linear space complexity in the number of chromosomes, both in
terms of the number of neurons and the number of connections. The sequential
design has much lower space requirements however.

Regarding the chromosome length, the sequential design has constant space
complexity, while the parallel design is linear in the number of neurons and
quadratic in the number of connections. This is the least favorable of all measured
behaviors. It is specifically caused by the current implementation of randomly
determining a crossover point. Both designs have constant time complexity in the
number of chromosomes, with time measured in simulation steps per generation.

While the parallel design also has constant time complexity in the chromo-
some length, the sequential design has linear time complexity. The sequential
design inherently needs to have at least linear time complexity in the chromo-
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Fig. 10: Raster plot of bubble sort output neurons over time in the sequential
design (8 chromosomes of length 8, for 500 steps). Each row of pixels depicts a
neural spike train over 500 simulation steps. The solution quality is improving
over time, with the top chromosome reaching one-max.

Fig. 11: Average and best solution quality over generations (8 chromosomes of
length 8, for 500 steps). The fitness hierarchy results in the top chromosome
having better fitness than the average. While this plot comes from the sequential
design, the parallel design behaves similarly.
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Table 1: Complexity analysis of space, time, and energy (number of spikes) for
both the sequential and the parallel design. There is a trade-off between space
and time comparing the two designs, with the sequential design requiring less
space but more time.

n chromosomes len chromosomes

sequential parallel sequential parallel

space
neurons O(n) O(n) O(1) O(n)
connections O(n) O(n) O(1) O(n2)

time O(1) O(1) O(n) O(1)
energy O(n) O(n) O(n) O(n)

some length, as the full chromosome needs to be accessed before an evaluation
can be made. This is an advantage for the parallel design, as the full chromosome
is available at once. Both designs have linear energy complexity in the number
of chromosomes and in the chromosome length, when measuring energy as the
average number of spikes required to process one generation.

5 Discussion

A fully functioning genetic algorithm has been successfully implemented as a
spiking neural network with two different designs, representing chromosomes
sequentially as a spike train over time or as parallel spikes at a single time step.
Both implementations are freely scalable beyond a small minimum number of
chromosomes, with arbitrary chromosome lengths. The complexity analysis of
space, time and energy shows the tractability of this approach with the exception
of the quadratically growing number of connections required for the parallel
design when increasing chromosome length. The sequential design is at most
linear in any of the analyzed complexities.

The design has not yet been implemented on neuromorphic hardware. Since
fairly standard leaky integrate-and-fire neurons were used, however, and no learn-
ing is required, translating the design to an implementation in neuromorphic
hardware should be relatively straight-forward.

For future work, the design of the crossover ensembles could be adapted to
support gene lengths of more than one bit (a chromosome consists of a number
of genes, which itself could consist of a number of bases/bits). Practically this
just means that the random crossover point should only be allowed at transition
points between genes, so at fixed intervals. This would allow for more complex
behavior of the genetic algorithm.

More work needs to be done on the evaluation strategy, which under the cur-
rent design requires a unique neural ensemble purpose-built for the optimization
task at hand and thereby presents a hurdle for practical application. One possi-
bility for a more general approach would be to train a spiking neural network to
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perform approximate evaluations for the given task, instead of hand-engineering
the neural ensemble for exact solutions as is performed in this paper.
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Abstract. This paper studies multi-agent systems that involve networks
of self-interested agents. We propose a Markov Decision Process-derived
framework, called RepNet-MDP, tailored to domains in which agent rep-
utation is a key driver of the interactions between agents. The funda-
mentals are based on the principles of RepNet-POMDP, a framework
developed by Rens et al. [11] in 2018, but addresses its mathematical
inconsistencies and alleviates its intractability by only considering fully
observable environments. We furthermore use an online learning algo-
rithm for finding approximate solutions to RepNet-MDPs. In a series of
experiments, RepNet agents are shown to be able to adapt their own
behavior to the past behavior and reliability of the remaining agents of
the network. Finally, our work identifies a limitation of the framework
in its current formulation that prevents its agents from learning in cir-
cumstances in which they are not a primary actor.

Keywords: Uncertainty · Planning · Reputation · MDP · POMDP.

1 Introduction

Decision-making and learning in multi-agent settings is a multi-faceted area of
research [4, 2, 3, 14, 7, 6, 1]. Frameworks used for fully cooperative networks of
agents differ vastly from those used for networks of self-interested agents. A
primary concern when dealing with self-centered agents is that it makes multi-
agent learning inherently more complex than single-agent learning [6, 1]. In fact,
each agent needs to take into account the behavior of the entire network of
agents when learning its own behavior. Additionally, agent behavior tends to be
ever-changing. This non-stationarity of agent behavior leads to the loss of policy
convergence properties that can often be found in single-agent formalisms [1].

In 2018, Rens et al. [11] proposed a mathematical framework, called RepNet-

POMDP, designed to handle partially observable environments in which an
agent’s reputation among other agents dictates its behavior. The framework was
subject to several mathematical inconsistencies, had no working implementation,
and had a highly intractable planning algorithm.

BNAIC/BeneLearn 2020 155



2 D. Maoujoud and G. Rens

Nonetheless, the framework does present some ideas we believe are worth
pursuing. Hence, in this paper, we provide an updated version of the frame-
work, called RepNet-MDP. We address the mathematical inconsistencies of the
original framework and alleviate its intractability by only considering fully ob-
servable environments. We furthermore make use of an online learning algorithm
for finding approximate solutions to RepNet-MDPs. The viability of the frame-
work is tested in a series of experiments designed to highlight its strengths and
shortcomings.

Section 2 summarizes the relevant background required. Section 3 gives an
overview of the work related to our framework. Section 4 provides an intuitive
introduction to RepNet-MDPs. Section 5 covers the formal definition of the
framework. Section 6 covers planning for RepNet-MDPs. The experimental setup
and results are given in Section 7.

2 Background - Markov Decision Processes

A Markov Decision Process (MDP) describes a process for modeling decision-
making in stochastic environments [13]. An agent is assumed to move about
in an environment, described by a set of states S, by applying actions in A
to the environment. The transition rules of the environment are dictated by the
transition model T : S×A×S → [0, 1], that is, T (s, a, s′) returns the probability
of the agent transitioning to state s′ upon performing action a in state s. Each
action applied to the environment results in a reward for the agent, dictated by
the reward function R : S ×A → R, that is, R(s, a) returns the reward received
by the agent when performing action a in state s.

The objective of an MDP agent is to maximize its long-term cumulative
reward, called utility. The utility U of a finite state-action sequence, sometimes
called episode, E =

〈

s0, a0, s1, a1, ..., sT , aT
〉

is defined as [10]:

U(E) =
T
∑

t=0

γtR(st, at),

where γ ∈ [0, 1] is called the discount factor. An agent advances in the environ-
ment by following a policy π : S × N → A that maps each environment state
and remaining time-steps to the action the agent should take.

The expected utility, or value, of being in any state st at time-step t, while
following policy π, with d time-steps remaining, is defined as:

V π(st, d) = E[U(Et) | st, π] = E
[

t+d
∑

k=t

γk−tR(sk, ak)
∣

∣ st, π
]

,

where Et is the sub-sequence of E starting at time-step t. An optimal policy π⋆

is a policy such that

∀s ∈ S, ∀d ∈ N, ∀π : V ⋆(s, d) ≥ V π(s, d),
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where V ⋆ : S × N → R is the value function associated with optimal policy
π⋆. This policy satisfies the optimality equations, also known as the Bellman

equations (∀s ∈ S):















V ⋆(s, d) := max
a∈A

{

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ⋆(s′, d− 1)
}

d > 1

V ⋆(s, 1) := max
a∈A

{

R(s, a)
}

Partially Observable Markov Decision Processes are a common extension of
classic MDPs that deal with the problem of partial observability of the envi-
ronment [13]. To address the agent’s inability to observe the exact state of the
environment, the observation function O : A × S × Ω → [0, 1], where Ω is the
set of observations, is introduced. O(a, s′, o) returns the probability of the agent
making observation o after performing action a and the environment transition-
ing to state s′.

Instead of working with the actual states of the environment, the POMDP
agents make use of the notion of belief state b ∈ ∆(S) 3, which is a probability
distribution over the possible states of the environment. Belief states are updated
using the state estimation function SE defined as follows:

b′ := SE(b, a, o) :=
{

(s′, p)
∣

∣

∣
s′ ∈ S ∧ p =

O(a, s′, o)
∑

s T (s, a, s
′)b(s)

P (o|b, a)

}

,

where P (o|b, a) =
∑

s′∈S O(a, s′, o)
∑

s∈S T (s, a, s
′)b(s) is a normalizing con-

stant. We refer to [13] for an extensive overview of POMDPs.

3 Related MDP-based frameworks

Early multi-agent frameworks, such as Multi-agent Markov Decision Processes
(MMDPs) [4] and Decentralized Partially Observable MDPs (Dec-POMDPs) [2,
3], operate under the assumption that the agents are selfless and have a common
goal. Consequently, planning can be centralized, that is, each agent’s policy
can be computed by central unit, before being distributed amid the agents for
execution [14]. Dec-POMDPs furthermore differ from MMDPs in that states are
no longer fully observable, meaning that each agent is in possession of its own
set of local observations.

In 2005, Gmytrasiewicz et al. formalized an extension of POMDPs to multi-
agent settings, called Interactive-POMDP (I-POMDP) [7]. I-POMDPs are de-
signed for reasoning in networks of selfish agents. I-POMDP agents update their
beliefs not only over physical states of the environment but also over models of
the other agents in the network. The difficulty of solving I-POMDPs lies in the
recursive nature of the models. Consider agent g’s belief update in a network
inhabited by another agent, say h. A model of agent h may consist of the be-
lief function of said agent h over physical states and models of all other agents.

3 ∆(E) is the set of probability distributions over the elements of set E .
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These models may, in turn, consist of belief functions of their own. This nesting
of beliefs could theoretically be infinite, but is overcome by bounding the nesting
depth by a finite number n, and solving the problem as a set of POMDPs.

The RepNet-MDP framework [11] simplifies the notion of model by focusing
in on key concepts such as behavioral habits and reputation of other agents.
While this reduces the insights RepNet agents can have into other agents’ be-
havior, it makes the framework arguably more intuitive. The key, novel notion in
the RepNet framework is that of subjective transitions, which have a dependence
on the reputation of the agent performing the action.

4 Developing an intuition for RepNet-MDPs

To develop an intuition for the RepNet-MDP framework, parallels between the
concepts found in classic POMDPs and RepNet-MDPs can be drawn. In a
POMDP, a single agent, placed in a partially observable environment, applies
an action a⋆ it deems optimal as per its current policy π⋆, and is sent back an
observation o. The state estimation function SE can be thought of as a way of
extracting information from said observation o, and storing it in a belief state
b′. More specifically, o contains information about the actual state of the envi-
ronment. The POMDP loop is depicted in Fig. 1a.

Environment

SE π⋆
b′ a⋆

o

(a) The POMDP loop

Environment

ADE π⋆
AD′ a⋆

s′

IE
Img′

(b) The RepNet-MDP loop

Fig. 1: POMDP and RepNet-MDP loops.

Let us now consider a fully observable environment made up of 3 selfish
agents, of which the behavior of the first is dictated by the RepNet-MDP frame-
work. The willingness of the RepNet agent to engage with agents 2 or 3 is to
be conditioned by their reputation and behavioral habits. The first agent once
again applies action a⋆, as per its policy π⋆. The environment returns its new
state s′. In an effort to make well-informed decisions, the RepNet agent should
extract the other agents’ behavior from s′.

Two functions, analogous to the state estimation function SE in POMDPs,
are used to this end: The action distribution estimation function ADE extracts
information regarding other agents’ behavioral habits. The image estimation
function IE informs the RepNet agent on the image all the agents have of each
other. The RepNet-MDP loop is shown in Fig. 1b.

Closely tied to the concept of image is the notion of reputation. Specifically,
the reputation of any agent in the framework can be seen as a summary of the
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information encapsulated by the image. Unlike POMDPs, RepNet-MDPs feature
two types of actions, and by extention two types of transition models:

– Objective actions, which, when performed, have a real effect on the envi-
ronment. These actions can be seen as equivalent to actions as they exist
in MDPs. The associated transition model is called the objective transition
model OT and describes the rules of the environment as they apply to the
RepNet agent.

– Subjective actions, which, unlike objective actions, are never actually ap-
plied to the environment. Instead, they are associated with another transi-
tion model called the subjective transition model ST : This transition model
describes a RepNet agent’s subjective perception of the rules of the environ-
ment. This perception is a function of said agent’s reputation, and can be
used by the agent to aid in its decision-making.

5 Formal definition of RepNet-MDPs

In this section, we will formalize the RepNet-MDP framework4 introduced in
Section 4. A RepNet-MDP M is defined as a pair of tuples M :=

〈

Σ,Γ
〉

,

where Σ is called the System tuple and incorporates aspects of the network that
apply to all agents, and Γ is called the Agents tuple and contains each agent’s
subjective understanding of the environment it operates in.

Specifically, a System in a RepNet-MDP Σ is formally defined as a tuple

Σ :=
〈

G,S,A, I,U , OT
〉

,

where:

– G is the set of agents that can interact with the environment.
– S is the set of possible states of the environment.
– A is the set of possible actions, both objective and subjective. Formally,
A := Ao ∪ As, Ao ∩ As := ∅. The concept of subjective actions will be
discussed in Section 5.2.

– I : G×G×S×A → [−1, 1] is called the impact function. I(g, h, s, a) returns
the impact on agent g that is due to agent h performing action a in state s.
This function can be thought of as analogous to a Markov Decision Process’s
immediate reward function R.

– U : [−1, 1] × [−1, 1] → [−1, 1] is called the image update function. Given a
current value v, of the image an agent has of another agent, to be updated,
and a new expected total impact i, of which the definition will be given
shortly, U(v, i) returns an updated value of the image v′. Many instantiations
of this function are possible, two of which are presented in [11]. We will use
the following instantiation:

U(v, i) :=

{

v + (1− v)i if i ≥ 0

v + (1 + v)i if i < 0
4 The implementation of the RepNet-MDP framework can be found at
https://github.com/davidmaoujoud/RepNet-MDP
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– OT : G × S × Ao × S → [0, 1] is called the objective transition model.
OT (h, s, a, s′) returns the probability of the environment transitioning from
state s to state s′ when objective action a is taken by agent h.

In addition to the global information stored in Σ, each RepNet agent’s sub-
jective knowledge is stored in the Agents tuple Γ , formally defined as 5

Γ :=
〈

{STg}, {ADg}, {Imgg}
〉

,

where:

– STg : G × S × As × S × [−1, 1] → [0, 1] is called the subjective transition

model of agent g. STg(h, s, a, rh, s
′) returns the probability, as perceived by

agent g, of the environment transitioning from state s to state s′ if agent h
were to perform subjective action a, and has a reputation rh according to
agent g.

– ADg : G × S → ∆(A) is called the action distribution according to agent g.
ADg(h, s) returns a probability distribution over actions in A for agent h in
state s, according to agent g.

– Imgg : G × G → [−1, 1] is called the image function according to agent g.
Imgg(h, i) returns the image agent i has of agent h according to agent g.
Said differently, it returns what g thinks i thinks of h.

As introduced in Section 4, every agent bases its decision-making on the im-
age it believes all agents to have of each other, as well as each agent’s behavioral
habits. Let g be an agent, whose image at time t is Imgg, and action distribution
is ADg. At time t + 1, these constructs are updated via the image estimation
function IE and action distribution estimation function ADE respectively, to
produce Img′g and AD′

g.

5.1 Image and Reputation

This subsection builds towards the formal definition of the image estimation
function IE. To this end, we introduce the notion of expected total impact. Con-
sider two agents h and i. In any given state, agent h can perform one of several
actions which may or may not have an impact on agent i. Likewise, agent i can be
expected to have an impact on agent h when performing an action. The expected
total impact should be thought of as a way of assigning a numerical value to the
bidirectional impact these two agents can be expected to have on each other.
Additionally, one direction of the impact may be perceived as more important
than the other and thus be weighed differently. According to an observing agent,
say g, the total impact h is expected to have on, as well as perceive from, i when
the environment is in state s, is defined as

ETIg(h, i, s, ADg) :=
∑

a∈A

[

δADg(i, s)(a)I(h, i, s, a)

+(1− δ)ADg(h, s)(a)I(i, h, s, a)
]

,

5 {Xg} is used as the shorthand notation for {Xg | g ∈ G}
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where δ ∈ [0, 1] weighs the importance of impact due to agent h and impact
perceived by h.

Agent g’s image of other agents, as well as the image it believes all agents
to have of each other changes as it observes the agents’ behavior. Let Imgg
be the current image function of agent g. Concretely, we wish to update the
image any agent i has of any other agent h, according to the observing agent
g (= Imgg(h, i)) on the basis of the impact h is expected to have on i (=
ETIg(h, i, s, ADg)). The updated image function Img′g is computed as follows:

Img′g := IE(g, Imgg, α, s, ADg)

:=
{

(h, i, t)
∣

∣

∣
h, i ∈ G ∧ t = U(Imgg(h, i), ETIg(h, i, s, ADg))

}

,

where s is the current state of the environment, IE is called the image estimation

function, and U is the image update function.
Finally, the notion of reputation as it is understood in this framework can be

thought of as a way of summarizing the information encapsulated by the image.
Say agent g wishes to estimate the reputation of agent h in a network made

up of several other agents. It can, to this end, use the image each agent i has of
agent h (= Imgg(h, i)) as a guiding principle. A first idea might be to take agent
h’s reputation to be equal to its average image in the network. If, however, some
agent i has a poor image of agent h (Imgg(h, i) < 0), but agent g has a poor
image of agent i (Imgg(i, g) < 0), it may be unreasonable for agent g to assume
that agent i’s opinion of agent h is indicative of agent h’s reputation being poor.
These concerns are addressed by weighing the image each agent i has of h by the
image g has of i. As such, if both images are negative, the resulting reputation
of h will not be affected negatively (Imgg(h, i)× Imgg(i, g) > 0). Formally, the
reputation of an agent h, according to agent g, is defined as

REPg(h, Imgg) :=
1

|G′|

∑

i∈G′

Imgg(h, i)× Imgg(i, g),

where Imgg(i, i) = 1 ∀i ∈ G, and G′ = G if h 6= g and G′ = G \ {g} if h = g.
Recall that in the RepNet framework, reputation influences subjective transition
probabilities, which, in turn, influence a RepNet agent’s planning.

5.2 Subjective actions and the subjective transition model

In this section, we describe the use of subjective actions and subjective tran-
sition models in the RepNet framework. As introduced in Section 4, we make
a distinction between the purpose of an objective transition model, which de-
scribes the actual rules of the environment as they apply to the RepNet agent,
and that of a subjective transition model, which describes that agent’s subjective
perception of the rules of the environment, this perception being influenced by
the reputation of the RepNet agent. To illustrate this further, we will make use
of a simple trading example between two agents A and B. Agent A wishes to
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trade with agent B, who can either accept or refuse the trade offer. The envi-
ronment is made up of the set of states S = {s0, s1, sa, sr}. s0 is the initial state,
prior to any trade, s1 is the state in which agent B is made aware of agent A’s
trade offer, sa is the accept state, and sr is the refuse state. The set of objective
actions at the disposal of both agents is given by

Ao = {trade with A, trade with B, accept, refuse, wait}.

The transition model of the environment assumed to be deterministic, is given in
Fig. 2. In the eyes of agent A, agent B’s response to a trade offer, characterized

s0 s1

sa

sr

trade with B, wait

wait, accept

wait, refuse

1

1

1

Fig. 2: Transition model of the environment (trading example). Each transition has
two objective actions, the first action represents agent A’s objective action, the second
action represents agent B’s objective action.

by transitions s1 → sa and s1 → sr, depends on A’s reputation. The action
taken by agent A during these transitions is wait. To make use of the notion of
subjective actions, the set of subjective actions As will contain the counterpart6

of wait in its subjective form, that is, As = {wait s}.
The way agent A makes use of actions in Ao and As can now be detailed.

When planning to maximize its expected impact, agent A will make use of the
objective transition model whenever the action currently investigated has no
subjective counterpart in As. For instance, the transition probability when in-
vestigating action trade with B is given by OT (A, s0, trade with B, s1). When
an action in Ao has a counterpart in As, agent A will make use of the subjective
transition model. For instance, the transition probability when investigating ac-
tion wait/wait s is given by STA(A, s1, wait s, sa, rA). As such, the reputation
of agent A is accounted for when agent A plans to maximize its expected impact.

5.3 Action distribution

The next step in the formalization of RepNet-MDPs consists in redefining the
updating scheme of the action distribution ADg of each agent g. Say an environ-
ment hosting two agents g and h is currently in state s. Agent g has an a priori

notion of the probability of agent h picking an action a in state s, Pg(a|h, s, rh).
Following agent h performing action a in this state, the environment transitions

6 We define counterpart as a partial mapping C : Ao → As. If C(a) is not defined, then
a has no counterpart in As.
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from state s to state s′. The a posteriori probability of agent h performing that
same action a in state s in the future is now computed using Bayes’ rule:

Pg(a|h, s, rh, s
′) =

Pg(s
′|h, s, rh, a)Pg(a|h, s)

∑

a′ Pg(s′|h, s, rh, a′)Pg(a′|h, s)
.

One can add a smoothing technique called Laplace smoothing to the present
result in an effort to avoid undesirable side effects related to the use of deter-
ministic transition models. The definition for the action distribution estimation,
obtained after replacing the probabilities by the terms defined previously and
applying the smoothing technique, is then given by:

AD′
g := ADE(g, s′, ADg, Imgg)

:=

{

(h, s, a, p)

∣

∣

∣

∣

∣

h ∈ G ∧ s ∈ S ∧ a ∈ A ∧ rh = REPg(h, Imgg)

∧ p =
Tg(h, s, a, s

′, rh)ADg(h, s)(a) + η
∑

a′(Tg(h, s, a′, s′, rh)ADg(h, s)(a′) + η)

}

,

where ADE is called the action distribution estimation function, s′ is the state
the environment transitions to, and η is the Laplace smoothing parameter. We
refer to the accompanying extensive version of this paper [9] for more details.

Note that to simplify the notation, we combined the objective and subjective

transition models into a single model Tg, called the global transition model and
formally defined as

Tg(h, s, ah, s
′, rh) :=

{

STg(h, s, ah, s
′, rh) if ah ∈ A

s

OT (h, s, ah, s
′) if ah ∈ A

o
(1)

6 Planning in the RepNet framework

We now describe optimal behavior in the context of RepNet-MDPs, for finite
horizon look-ahead. To simplify the notation, we can define a construct called
epistemic state. The epistemic state θg of agent g is formally defined as a tuple
θg :=

〈

s,ADg, Imgg
〉

, where s is the current state of the environment, ADg

is the current action distribution of agent g, and Imgg is the current image
function of agent g. θg ∈ Θg, and Θg is called the epistemic state space. This
set contains every possible combination of physical states of the environment,
action distributions, and image functions of agent g.

An agent should perform actions according to the perceived immediate im-

pact they have on the agent itself. The perceived immediate impact on agent g
resulting from performing action a in state s is defined as

PIg(s,ADg, a) :=
1

|G|

[

I(g, g, s, a) +
∑

h∈G\{g}

∑

a′∈A

I(g, h, s, a′)ADg(h, s)(a
′)
]

,
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where ADg is the current action distribution of agent g. The first term describes
the immediate self-impact as a consequence of agent g performing action a, while
the second term describes the expected immediate impact that the network (i.e.,
the remaining agents) has on agent g.

Analogously to regular MDPs, a RepNet-MDP agent g strives to maximize its
expected discounted perceived impact E

[
∑k

t=0 γ
tPIg,t

]

, where γ is the discount
factor and PIg,t is agent g’s perceived immediate impact at time-step t. This is
accomplished by computing the optimal value function Vg : Θg × N → R (in a
finite-horizon setting). It satisfies the optimality equations, which are defined as
(∀θg ∈ Θg)















Vg(θg, k) := max
a∈A

{

PIg(s,ADg, a) + γ
∑

s′∈S

Tg(g, s, a, s
′, rg)Vg(θ

′
g, k − 1)

}

Vg(θg, 1) := max
a∈A

{

PIg(s,ADg, a)
}

(2)

where rg = REPg(g, Imgg), θg =
〈

s,ADg, Imgg
〉

, and

θ′g =
〈

s′, ADE(g, s′, ADg, Imgg), IE(g, Imgg, α, s, ADg)
〉

.
In this work, we implement (approximate) online planning [12] instead of

exact planning. The general principle of model-based online planning can be
described as the interleaving of two phases, the planning phase, in which the
(PO)MDP performs a look-ahead search of a given depth D, starting at the cur-
rent environment state, the goal being to determine the most suitable action, and
the execution phase, in which this action is applied to the environment [12]. In
this paper, we make use of an implementation of this approximate technique for
the RepNet-MDP framework. We refer to [9] for details on the implementation.

7 Experiments

The goal of the experiments is to showcase the strengths and shortcomings of the
framework. To this end, the experimental setup consists of 2 trading scenarios,
for which several experiments are conducted. All experiments were conducted
with look-ahead depth D = 3, Laplace smoothing parameter η = 0.1, and discount

factor γ = 0.7. Note that these experiments serve as a proof of concept for the
RepNet framework and, as such, are not designed to reflect the framework’s
applicability to problems of realistic scale.

7.1 Experiment 1: Trading between two agents

Let A and B be two agents. Agent A plays the role of the buyer, agent B the role
of the seller. Agent A can engage in a trade with agent B, and B can accept or
refuse the trade offer. Furthermore, agent A can, prior to making a trade offer,
do a good deed in an effort to improve its image in the eyes of agent B.

In this series of experiments, Agent A is managed by the RepNet algorithm.
Agent B is run by a simple algorithm that accepts or rejects trade offers made by
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agent A according to a set schedule. In particular, agent B is asked to reject trade
offers for the 20 first time-steps, accept them for the 60 subsequent time-steps,
and finally reject them for the last 20 time-steps.

Two series of experiments are conducted, the first one without making use
of subjective actions, the second one by modeling the action of agent A awaiting
agent B’s response to a trade offer as a subjective action, meaning the outcome
of agent A’s planning will be influenced by its reputation. A well-designed sub-
jective transition model, schematized in Fig. 3, that realistically reflects how the
reputation of agent A may influence the willingness of agent B to accept A’s
trade offers is put to the test. The variables tracked are the action distribution,
image, and by extension the reputation of both agents in the eyes of agent A,
and frequency at which agent A makes trade offers.

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

Reputation of agent A

P
ro
b
a
b
il
it
y

Perceived probability of B accepting

Perceived probability of B refusing

Objective probability of B accepting
and refusing

Fig. 3: Perceived probability of agent B accepting and refusing the trade offers, as a
function of the self-reputation of agent A.

Fig. 4 shows the evolution of agent A’s action distribution for target agent
B. Fig. 5 shows the evolution of agent A’s self-reputation during the experiment
involving the subjective transition model. Note that A’s self-reputation, and
more generally A’s image function, have no bearing on its decision-making if no
subjective actions are used (see Equations 1 and 2, Tg makes use of the notion
of reputation only for subjective actions). Finally, Fig. 6 shows the evolution of
the frequency at which A makes trade offers.

In the first 20 time-steps, B refuses each trade offer. Regardless of the series
of experiments, agent A is able to pick up on this via the action distribution. As
a consequence, it quickly reduces the frequency at which it attempts to trade
with B. In the 60 following time-steps, B is asked to change its behavior and
accept each trade offer. Hesitant at first, A gradually increases the frequency at
which it attempts to trade with B. Agent A is able to pick up on B reverting
back to its old behavior during the final 20 steps.

Additionally making use of a well-designed subjective transition model no-
ticeably improves the RepNet agent’s performance. While the trajectories show-
case the same key elements, the pace at which agent A is able to adapt improves
greatly. The subjective transition model was designed such that agent A be-
lieves that its reputation must be good for B to be willing to trade with A (Fig.
3). As such, during the first 20 time-steps, A’s relatively poor-in-comparison
self-reputation has an immediate negative effect on the value it associates with
the trade with B action during the look-ahead search. It quickly becomes more
valuable to stop trading with B. Similarly, A’s reputation needs to be high for
it to start trading with B again, explaining the slow increase of the frequency of
trade offers at the start of the second phase.
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Fig. 4: Probability of B accepting A’s trade offers, according to A
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Fig. 5: Reputation of agent A, according to itself.

7.2 Experiment 2: Trading between three agents

Let A, B, and C be three agents. Each agent simultaneously plays the role of
buyer and seller, and can thus engage in a trade with any other agent. Each
agent can accept or refuse any trade offer made by any remaining agent.

The present scenario is used to verify the ability of a RepNet agent, say agent
A, to manage its trades with the two remaining agents B and C, based not only
on their behavior towards the agent of interest but also their behavior with each
other.

In the first part, agent B is asked to refuse each trade offer made by agent
A, while agent C is expected to accept each trade offer coming from A. This
portion of the experiments assesses the ability of the RepNet agent (agent A) to
accurately determine which agent it is more likely to successfully engage in trades
with. In the second part, the roles are switched, and agent B accepts the trade
offers, while agent C refuses them. This portion assesses the ability of the agent
of interest to unlearn what it has learned and adapt its behavior accordingly. In
the third and final part, the RepNet agent is asked to not trade with either B
or C, that is, to only make use of the wait action. Said differently, the optimal
action according to its planning, while tracked throughout the experiment, is
not performed on the environment. All the while, agents B and C are asked to
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Fig. 6: Frequency of the trade offers made by A, measured in 5 time-step intervals
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engage in trades with each other. Agent B is asked to reject all trade offers,
while agent C is asked to accept all trade offers. The variables tracked are the
action distribution and reputation of B and C in the eyes of agent A, as well
as the evolution of whom agent A would rather trade with. This portion of the
experiment aims at testing the ability of the RepNet agent to draw conclusions
on how it should act based on interactions it is not directly affected by.

Fig. 7 shows the evolution of the reputations of agents B and C. Fig. 8
displays the evolution of the probabilities of agents B and C accepting trade
offers from agent A. Finally, Fig. 9 shows the evolution of whom agent A would
rather trade with.

Agent B is told to refuse, and agent C to accept, each trade offer during
the first 33 time-steps. In accordance with the results obtained in Section 7.1,
agent A is able to pick up on the other agents’ behavioral habits it is affected
by. As a result, the reputation of B and its probability of accepting trade offers
decrease. Similarly, the reputation of C and its probability of accepting trade
offers increase. All the while, agent A chooses to conduct the majority of its
trades with C. The following 33 time-steps reverse B’s and C’s roles. Similarly,
agent A is able to adapt its behavior accordingly and ends up trading mostly with
B. The reputation of B has increased, while the reputation of C has decreased.

During the last 33 time-steps, agents B and C are tasked with trading with
one another while A plays the role of observer, that is, only makes use of the
wait action. B is asked to refuse all trade offers, while C is asked to accept
all trade offers. Interestingly, Fig. 9 shows that, based on its planning, agent A
would prefer to keep trading with B, even though the reputation of B decreases
and the reputation of C increases in the eyes of A. Said differently, as long as B
does not refuse A’s offers directly, agent A will prefer to trade with B over C.

The explanation for this is twofold. Firstly, the subjective transition proba-
bility of a trade A might want to do with B is, in the eyes of A, conditioned only
by A’s own reputation. As such, B’s falling or rising reputation has no bearing
on A’s decision-making. Secondly, the probability of B accepting (or refusing)
A’s trade offer, according to A, can only be updated through the direct expe-
rience it has with B. As such, the action distribution does not change and can
thus not influence A decision-making either.

The simplest way of alleviating this shortcoming is to extend the subjective
transition model. Adding the reputation of the agent at the receiving end of
the trade offer (e.g., agent B) as a parameter to the subjective transition model
would allow agent A to incorporate other agents’ reputation in its decision-
making process. As such, if the subjective transition probability of B accepting
A’s trade offer were given by STA(A, offer state, wait s, accept state, rA, rB),
where the newly introduced parameter rB is B’s reputation, agent A could make
use of rB to assist with its decision-making. This comes with the drawback of
increasing the complexity of designing the subjective transition model.
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Fig. 7: Reputation of agents B and C, according to A
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Fig. 8: Probability of agents B and C accepting trade offers from agent A, according
to A

8 Summary and future work

In this paper, we revised the multi-agent framework called RepNet introduced
by Rens et al. [11], addressed its mathematical inconsistencies and proposed a
online learning algorithm for finding approximate solutions. The viability of the
framework was then tested in a series of experiments.

The current definition of objective transitions could be extended to incorpo-
rate the reputation of agents other than the RepNet agent. The experimental
results showed that the RepNet agent is incapable of adapting its behavior to
situations that do not directly affect it. Including the reputation of the agent at
the receiving end of a directed action in the directed transition model is likely
to lead to better-informed decision-making.

We did not address partially observable environments. Many real-world prob-
lems do not benefit from full observability, bringing the updated RepNet frame-
work back to a partially observable setting should be considered for future work.

The small-scale experiments conducted in Section 7 served as a proof of
concept for the RepNet framework. While applying the framework to problems
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Fig. 9: Average action taken by agent A. Action a = 0 corresponds to trading with
agent B, action a = 1 corresponds to trading with agent C.
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of realistic size was beyond the scope of this paper, the absence of large-scale tests
does raise questions as to the scalability of this approach. Real-world problems
can easily become too complex for transition models to be designed by any
one person without leveraging common state features [5]. A compact way to
represent real-world state spaces can be achieved by introducing elements of
relational logic [5]. From a logic programming point of view, a state space is
hereby defined by a collection of relations, while a state is an interpretation of
this collection [8]. Transition models and reward schemes are then represented
by probabilistic rules [10].
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Abstract. The Buyer Modalities framework divides buyers into 4 pro-
files, where each profile has its own specifics as to how it makes its pur-
chasing decisions. We built an online prediction system that categorizes
website visitors based on this framework. According to this categoriza-
tion, a specific banner ad variant tailored to that profile was shown to
the visitor, rather than a default “neutral” variant, resulting in a signif-
icantly improved CTR.

Keywords: Data mining · Predictive modeling · Ensemble methods ·

Online advertising.

1 Introduction

The Buyer Modalities framework [3] is a model that defines four distinct psy-
chological profiles of consumers according to how they make their purchasing
decisions. These four types – competitive, spontaneous, methodical and human-
istic – are illustrated in Fig. 1, and are based on two main axes: decision speed
(impulsive vs. deliberate) and rationale (emotional vs logical). It states that each
profile reacts to different types of information. If we consider, e.g., the purchase
of a new car, people with a methodical profile will be more interested in a detailed
list of features of the car as can be found in the brochure, whilst the humanistic
profile will be more served with testimonials from people who already own the
car.

The implication of this model for advertising is that in order to have an
effective campaign, ideally each profile is targeted with an ad tailored toward
its information needs. The issue with this of course is that one needs to know
the profile of the user, which one typically does not. In order to remedy this
issue, we propose a framework that uses historical user-website interaction data

⋆ Supported by the Flanders Innovation & Entrepreneurship TETRA project “Start
To Deep Learn”.
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Fig. 1. A schematic overview of the four psychological profiles described by the Buyer
Modality framework.

to predict the user profile when needed, and hence allows the ad server to display
the appropriate variant for this particular user in a dynamic way. We show that
this approach results in a significant increase in the click-through rate (CTR),
i.e., the percentage of users viewing a web page who click on an ad displayed on
that page.

Ads come in many forms, e.g., pop-ups or “sponsored content”, each with its
own specifics. Our work involves so-called “banner ads”, banner-like graphical
ads often displayed at the top or in the margins of a page. Ever since the advent
of online advertising, the CTR has served as a key measure for the succes of
an ad campaign. Given the multi-billion industry that is online advertising, the
question of what makes an ad effective has been given quite some attention.

Specifically for banner ads, [8] look at the effect of the banner ad size, style
and orientation on its success. In [1], the authors attempt to predict the CTR,
rank according to CTR and categorize into “high” and “low” CTR a set of
±10K banners by using a custom defined set of 43 different visual features. In
all three tasks, they manage to consistently outperform the baseline. In contrast,
[7] performed two eye tracking studies to investigate the relation between visual
design and relatedness to the page content, and visual attention devoted to the
ad. In a first study, they show a professionally designed graphical ad to one group
of participants and a text-only banner (with the same text as the graphical ad)
to another. Besides this, half of the ads (graphical and text-only combined) were
related content-wise to the page, whilst the other half were not. They found
that none of these parameters had a statistically significant effect on the dwell
time. This prompted a second study, in which they showed that dwell time does
increase significantly if an ad is relevant to a user’s intent or task, rather than to
a page’s content. Somewhat closer ideologically to our work is [4], who studied
the effect of demographically targeting banner ads on users’ visual attention
and brand evaluation. This kind of targeting focuses on demographic properties
of the users such as gender, age and location, and follows the assumption that
“similar people act in a similar way”. Hence, by tailoring ads to these properties,
it should be possible to increase user attention. They found that targeting ads
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this way does indeed increase users’ visual attention, but not necessarily their
brand evaluation.

2 Conceptual setup

In this section we will first provide a conceptual description of our work, followed
by a detailed description of the concrete implementation for our use case in the
following section.

Conceptually, our setup is the following. Given a particular website that
displays ads, we track certain user-website interaction data and use this historical
data to extract features to be fed to a predictive model. Ideally, an expert should
identify salient elements to be tracked, e.g., specific hyperlinks or other so-called
Calls to Action (CTA), that are likely to appeal more to one profile rather than
the others.

We distinguish two phases. During a first phase data is being collected to be
used to train a predictive model. During this phase, different variations of the
same ad targeted to each profile will be displayed at random. This means that a
single user can get served different variants of the same ad. When a user clicks
on one of the variants, we assign the associated profile to the user to obtain the
training targets.

During the second phase, we continue to collect user-website interaction data,
and use this data to query the predictive model we obtained in phase one in real
time to obtain a user profile. This prediction then determines which ad variant
will be shown to this user.

3 Case specifics

Our experiment was performed in collaboration with a commercial partner,
Produpress [6], a company that owns amongst others a number of automotive
magazines and corresponding websites. We worked with two websites, www.
autogids.be (Autogids) and www.moniteurautomobile.be (Moniteur), which are
essentially the Dutch and French language versions of the same content. Both
sites target a Belgian audience. A large part of the content are extensive car
reviews. There were some differences in data collection during training and de-
ployment phases, which we will discuss in the following sections. These differ-
ences are due in large part to the fact that data collection was performed by
a third party for the first phase, whilst being performed by ourselves for the
second phase.

3.1 First phase

In this phase, four different variations of an ad banner for a specific car ad where
designed, one for each buyer modality, which were shown on a random basis. The
main difference between the variants was the CTA used (i.e., text), rather than
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the graphics. If a user clicked on a banner, the profile targeted by the variant
becomes the profile of the user. E.g., if a user clicked on the “competitive”
variant, when training the model later on we take this user as being a target for
the “competitive” profile.

The number of positive samples we collected per profile can be seen in Table 1.
Note that some users clicked on more than one ad variant; there were 353 unique
users who clicked on a variant for a total of 370 clicks. These users where treated
as targets for all the variants they clicked on. The numbers used in this and
following tables correspond to the different types as follows: 1 = competitive,
2 = spontaneous, 3 = methodical and 4 = humanistic.

Table 1. Number of collected positive samples per profile

Autogids Moniteur All

1 89 79 168
2 46 30 76
3 38 26 64
4 34 28 62

Total 207 163 370

Besides target labels, also aggregated and custom features for each distinct
user were collected. The 7 custom features basically correspond to (the URLs
leading to) the main sections of the car reviews, here translated from Dutch:
“Read our test report”, “View the gallery”, “Robotportrait and conclusion”,
“Tested version”, “Users reviews”, “Compare this car” and “Find a dealer”.
With these, the set of features for this specific experiment consists of, per user
and over the data collection period (abbreviations correspond to Fig. 2):

– The number of pageviews. (PgV.)
– The average time spent per pageview. (AtP.)
– The number of sessions. (#Ses.)
– The average time spent per session. (ASD.)
– Per custom feature: the number of sessions the user saw this particular con-

tent type, i.e., clicked on the corresponding URL. (CT1–CT7)
– Per ad variant: the number of sessions the user was shown this particular ad

variant. (AV1–AV4)

Note that at this stage, we did not have any other information besides these
aggregated features. This means that we were unable to determine when exactly
a user clicked on an ad, which in turn means that all aggregates were determined
by also taking into account data from after when a user clicked an ad. Ideally,
these statistics would have only been determined by using data prior to a click.
Fig. 2 shows the average feature values between clicking and non-clicking users
for each ad variant separately. This graph clearly illustrates that indeed there
appears to be a behavioral difference between both groups of users, as indicated

BNAIC/BeneLearn 2020 173



Title Suppressed Due to Excessive Length 5

by the fact that for “click” samples the average values are consistently higher
than for “no click” samples.

To further analyze the data, we first checked whether or not we could dis-
tinguish between “click” and “no click” samples in general, regardless of profile
type. For the remainder, all models were trained using Python’s Scikit-learn
package [5]. Table 2 contains the average accuracy over 200 Random Forest clas-
sifiers, each consisting of 200 trees with max depth = 3. For each iteration, a
random selection of negative samples was chosen to complement the positive
ones, and 20% of the data was held out as test data. As the data shows, perfor-
mance is far better than random, although also far from perfect, with Autogids
and Moniteur performing very similarly, suggesting that it is indeed possible to
predict what users are more inclined to click on an ad, regardless of profile type.

Table 2. Click vs. No Click classification performance over all ads by means of a
Random Forest classifier. Average performance over 200 forests of depth 3.

Dataset Train Test

Autogids 0.743 ± 0.017 0.679 ± 0.054
Moniteur 0.738 ± 0.018 0.655 ± 0.062

In a next step, we checked to what extend it was possible to distinguish
between each pair of profiles. The assumption is that if there is no correlation
between user profiles and ad variants, users will randomly click an ad variant
and hence it will not be possible to discriminate between ad pairs. To test this
hypothesis, we again looked at the average accuracy over 200 Random Forest
classifiers with 200 trees each and max depth = 3, with an 80/20 train/test
data split. The results are shown in Table 3, and except for the last pair (3 vs
4) show performance that is in line with the “click” vs “no click” scenario. This
indicates that it is possible, up to a point, to discriminate users based on the
ad variant they clicked. In other words: different people do have a different ad
variant preference.

Table 3. Full dataset: Random Forest accuracy per ad pair.

Ad Pair Train Test

1 vs 2 0.767 0.650
1 vs 3 0.836 0.689
1 vs 4 0.852 0.685
2 vs 3 0.854 0.576
2 vs 4 0.857 0.612
3 vs 4 0.806 0.501
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Since our assumption is that each user, regardless of whether they click an ad
or not, can be described by one of the four buyer modalities, we wish to train a
model that always predicts one of these profiles, and does not make a “neutral”
prediction. As training data we used all positive samples of all four variants
combined (i.e., no negatives), and again opted for a Random Forest model with
200 trees, albeit multiclass this time, to predict one of the four profiles for each
user. Train and test sets were stratified so as to have equal ratios of samples per
class. Table 4 shows results with max depth = 3 and max depth = 10 settings
by again taking the average over 200 iterations, with an 80/20 data split at each
iteration.

Table 4. Full dataset: multiclass Random Forest accuracy

max depth Train Test

3 0.515 ± 0.013 0.470 ± 0.022
10 0.946 ± 0.011 0.405 ± 0.043

Performance is considerably lower than with previous experiments, even tak-
ing into account the fact that the baseline is 0.25 this time. As can be expected,
the experiment with max depth = 10 results in overfitting, as apparent by the
large discrepancy between train and test accuracies. Nevertheless, we chose to go
with this model for phase 2, as our philosophy was that given the low number of
samples at our disposal, we preferred the model to overfit on these so that they
can serve as stringent prototypes, rather than making a more “diffuse” model.

3.2 Second phase

The second phase was ran in light of a specific advertisement campaign for
a new car. The compaign ran for four weeks total; two on Autogids and two
on Moniteur. Similar to phase one, five variants of the ad banner were made:
one for each profile, plus a “neutral” variant in case the profile of the user
could not adequately be predicted. A major difference with the first phase is
that we collected the user-website interaction data ourselves. This allowed us to
compute the features in an online way. Data was collected by means of a custom
JavaScript script, that would send the data to a PHP service to be stored in
a MySQL database. Information stored included, a.o., a unique user ID, page
visits and clicks.

To allow the website to request a profile for a visiting user, we developed a
Python API using CherryPy [2]. Whenever a profile was requested, the known
data for this user would be retrieved from the SQL database, and the same
features as used during phase one computed on the fly. A prediction was only
made if the user had visited the site during at least 3 sessions (including the one
at prediction time). If this was the case, we would then verify that the highest
profile score returned by the model > 0.35. If so, the corresponding profile would
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be returned. In all other cases (also if the user ID was unknown), a default
“neutral” profile would be returned. Recall that we used the max depth = 10

model described at the end of §3.1, whose performance is shown in Table 4.
We are not allowed to report specific CTR numbers because of contractual

obligations to our commercial partners. Hence, we can only report changes w.r.t.
the baseline. For both Autogids and Moniteur, a baseline CTR was determined
over 14909 and 12502 impressions of the “neutral” banner respectively. This
means that the users that belonged to this control group did net get to see a
banner based on our predictive system. The CTR for our system was determined
over 63284 and 56751 impressions respectively. This does not mean that all users
belonging to the test group saw a customized banner, simply that for these
users, we attempted to make a prediction. The CTR on banners displayed using
our system were 31% and 35% higher than the baseline CTR for Autogids and
Moniteur respectively, for an average increase of 33%.

Given this result, it was decided to run a second campaign, for a different
car by the same brand as the first campaign, using our system over a period of
four weeks, but without further involvement from our part. CTR for this cam-
paign were 129% and 94% higher that the baseline determined in the previous
campaign. Unfortunately, a new baseline was not determined and hence these
numbers are only reported by way of indication.

4 Conclusion

In this work, we described how the Buyer Modalities framework can be used
to improve the CTR on online ads. We built a Random Forest model based
on features extracted from aggregated web analytics, and used this model in a
system that allows to predict the Buyer Modality profile of a website visitor.
Using this predicted profile to dynamically adapt the ads shown to the user
resulted in a 33% improvement in CTR compared to the reference user group.

We would like to point out that our method theoretically does not require
a new training phase for each new ad, since although the ads change, the user
modality profiles do not. This implies that, given careful design of the ad variants,
once a model has been trained it should be applicable to any ad campaign.
Consequently, by collecting data over several campaigns, the model can also
continually be further improved by incrementally retraining the model.

Moreover, for this particular experiment the raw data consisted of aggre-
gated features. We expect that having data available at a more granular level,
as collected by ourselves in phase 2, should allow the development of more and
better features to further improve the accuracy of the predictive model.

References

1. Azimi, J., Zhang, R., Zhou, Y., Navalpakkam, V., Mao, J., Fern, X.: Visual ap-
pearance of display ads and its effect on click through rate. In: Proceedings of

BNAIC/BeneLearn 2020 177



Title Suppressed Due to Excessive Length 9

the 21st ACM International Conference on Information and Knowledge Manage-
ment. p. 495504. CIKM ’12, Association for Computing Machinery, New York, NY,
USA (2012). https://doi.org/10.1145/2396761.2396826, https://doi.org/10.1145/
2396761.2396826

2. CherryPy: https://cherrypy.org/
3. Eisenberg, B., Eisenberg, J.: Waiting for Your Cat to Bark. Thomas Nelson (2006)
4. Kaspar, K., Weber, S.L., Wilbers, A.K.: Personally relevant online advertisements:

Effects of demographic targeting on visual attention and brand evaluation. PloS one
14(2), e0212419–e0212419 (2019)

5. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

6. Produpress: https://www.produpress.be/
7. Resnick, M.L., Albert, W.: The influences of design esthetic, site relevancy and task

relevancy on attention to banner advertising. Interacting with Computers 28(5),
680–694 (2016)

8. Sigel, A., Braun, G., Sena, M.: The impact of banner ad styles on interaction and
click-through rates. Issues in information systems 9(2), 337–342 (2008)

BNAIC/BeneLearn 2020 178



Comparing Exploration Approaches in Deep

Reinforcement Learning for Traffic Light Control

Yaniv Oren1, Rolf A. N. Starre1, and Frans A. Oliehoek1

Technical University Delft, Mekelweg 5 Delft, the Netherlands {y.oren@student.,

r.a.n.starre@, f.a.oliehoek@}tudelft.nl

Abstract. Identifying the most efficient exploration approach for deep reinforcement
learning in traffic light control is not a trivial task, and can be a critical step in
the development of reinforcement learning solutions that can effectively reduce traffic
congestion. It is common to use baseline dithering methods such as ǫ-greedy. However,
the value of more evolved exploration approaches in this setting has not yet been
determined. This paper addresses this concern by comparing the performance of
the popular deep Q-learning algorithm using one baseline and two state of the art
exploration approaches, and their combination. Specifically, ǫ-greedy is used as a
baseline, and compared to the exploration approaches Bootstrapped DQN, randomized
prior functions, and their combination. This is done in three different traffic scenarios,
capturing different traffic profiles. The results obtained suggest that the higher the
complexity of the traffic scenario, and the larger the size of the observation space
of the agent, the larger the gain from efficient exploration. This is illustrated by the
improved performance observed in the agents using efficient exploration and enjoying
a larger observation space in the complex traffic scenarios.

Keywords: Reinforcement learning · Traffic optimization · Exploration.

1 Introduction

Traffic congestion is a global predicament. For instance, in the EU alone its cost is estimated
to be 1% of the EU’s GDP [15]. One approach for reducing this cost is optimization of traffic
flows by improving traffic light control policies. To find such policies, reinforcement learning
(RL) has a strong appeal as a paradigm that is able to find high performance solutions to
sophisticated problems. Research has been done into the application of RL to the problem of
traffic light control optimization in the past [1],[4],[13],[14],[18], often specifically concerning
application of deep RL algorithms [4], [13], [18].

A fundamental principle of RL is exploration, and the balance between exploration and
exploitation. Namely, how much does the agent explore its environment, versus how much
it opts for actions that it expects to return the most cumulative reward. Many different
exploration approaches exist for reinforcement learning [3], [6], [10]–[12]. These approaches
often perform differently in different settings, in addition to having different computational
costs [11], [12]. It has been shown that for some RL settings, simple exploration approaches
such as ǫ-greedy are insufficient for RL to be able to perform well, or at all [11],[12], which can
be caused by the reward function used and the complexity of the specific problem tackled.
This illustrates the importance of identifying effective exploration techniques for specific RL
settings. To the best of our knowledge, there has not been an attempt to investigate the
importance of efficient exploration in deep RL in the setting of traffic light control.
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This paper investigates a comparison between different exploration approaches in deep
RL for traffic light control. This, to facilitate better deep RL by identifying the value of
evolved exploration approaches in this setting, such as higher sample efficiency, or higher
final policy score. For that purpose, this paper compares the performance of the popular
deep Q-learning algorithm (DQN) [10] using one baseline and two state of the art exploration
approaches, and their combination. Specifically, ǫ-greedy is used as a baseline, and compared
to the exploration approaches Bootstrapped DQN, randomized prior functions, and their
combination. This is done in three different traffic scenarios, ranging from simplified to
simulating real traffic, in order to investigate the effect of exploration in different traffic
profiles.

This paper first introduces a theoretical background for deep RL and exploration. Second,
a description of the exploration techniques compared, along with the modeling of traffic light
control as an RL problem, are given. This is then followed by an explanation of the research
methodology and the experimental setup, leading to a presentation of the results obtained
and their analysis. Last, ethical and epistemic concerns are considered, implications of the
work are discussed and conclusions are drawn.

Altogether, the results obtained suggest a link between the complexity of the traffic
scenario, the amount of information accessible to the agent, and the gain from efficient
exploration. This is illustrated by the improved performance observed in the agents using
efficient exploration and enjoying a large observation space, in the complex traffic scenarios.

2 Background

This section introduces background information relevant to the work presented in this
paper. First, an overview of reinforcement learning (RL), is given, laying the basis for an
introduction to deep RL and a description of the deep Q-learning (DQN) algorithm [10]
that follows. Last, the principle of exploration is explained, followed by an overview of
dithering [12], deep and directed exploration.

2.1 Reinforcement learning

In RL, an agent operates in an environment. The environment provides information regarding
the state the agent is in and what actions it can execute. The environment is usually
described in the form of a Markov decision process (MDP), a stochastic control process
often used to model decision making in partially stochastic domains. A Markov decision
process is represented as a four-tuple, M = (S,A, P,R), where S represents the state space,
A the action space, P the transition function and R the reward function.

The agent interacts with the environment by observing a state st ∈ S, executing an action
at ∈ A, and receiving a reward rt ∈ R for the action executed. The agent is attempting to
learn a policy π, such that the expected reward over time is maximised.

In the Q-learning algorithm [17], the value of state-action pairs is estimated by the agent,
using iterative Bellman updates: Qt+1(st, at) = Qt(st, at)+α[yt−Qt(st, at)], where α is the
learning rate, and the target yt = rt+γmaxa Qt(st+1, a). st+1 denotes the new state arrived
at after choosing action at in state st, a any action available at state st+1, and 0 ≤ γ ≤ 1,
is a discount factor. In many scenarios however, the state-action pair space is too large
for the computation or memorisation of each value Q(s, a) to be tractable. To avoid this
problem, function estimators such as neural networks can be used to estimate the Q value.
This gives rise to the use of neural networks in reinforcement learning, and specifically the
deep Q-Learning (or deep Q-networks) algorithm, commonly referred to as DQN [7], [10].
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2.2 Deep reinforcement learning with DQN

The DQN algorithm uses deep neural networks to estimate a mapping from states to Q-
values [10]. Instead of saving or computing each Q(s, a) value separately, the algorithm
learns a parameterized value function Q(s, a; θt). As a result, rather than learning the Q-
values directly, the algorithm learns the parameter set θ of the Q-function. The previous
Q-learning update then becomes:

θt+1 = θt + α(yt −Q(st, at; θt))∇θtQ(st, at; θt)

Here, yt = rt+1 + γmaxa Qt(st+1, a; θt). To prevent instabilities, the DQN algorithm uses
an additional network, termed the target network, θ− [10]. The target network is the same
as the regular, or online, network. However, it only updates every certain τ time-steps, by
copying the parameters θ of the online network. This target network is used by the DQN
algorithm in the target term, which becomes instead: yt = rt+1 + γmaxa Qt(st+1, a; θ

−

t ).
Double DQN [16] is a commonly used modification suggested to the original DQN

algorithm, which aims to reduce overoptimism caused by estimation errors, which DQN
is prone to. This is done by decoupling the selection of an action from its evaluation [16]. In
vanilla DQN, in the term yt = rt+1+γmaxa Qt(st+1, a; θ

−

t ), the agent uses the same network
θ− for both selecting and evaluating an action. The double-DQN algorithm proposes using
the online network θ to choose the action, and the target network θ− to evaluate the choice.
The target term yt used in the double DQN update then becomes:

yt = rt+1 + γQt(st+1, argmax
a

Qt(st+1, a; θt); θ
−

t )

2.3 Exploration in reinforcement and deep reinforcement learning

In order to find an optimal policy through experience alone, which is the general premise
of RL, the agent must encounter the rewards that are part of an optimal policy at least
once. This leads directly to a necessity to explore the environment - if the agent does not
explore, how will it encounter valuable rewards that do not lie over its existing policy’s
path? However, the agent is also expected to efficiently converge into an optimal policy,
and not only explore its environment. This leads to one of the fundamental principles of
RL - exploration vs exploitation. Different approaches have been developed - ranging from
dithering, random action choosing exploration [10], to more evolved notions such as deep
and directed exploration [11], [12], and others. These approaches each attempt to achieve
efficient exploration through different means - from simplicity of computation to effective
analysis of the agent’s knowledge and uncertainty.

Dithering exploration The common baseline exploration strategy used in DQN is a
dithering exploration method, or ǫ-greedy. In ǫ-greedy, the agent takes a random action
(i.e., explores) with probability ǫ, and with probability 1− ǫ the agent takes the best action
according to its current Q value estimation. ǫ-greedy achieves state of the art performance
against many popular benchmarks [12], [16]. However, as discussed in [12], in environments
where rewards are scarce and distanced in the state-action space, and their values have
a large spread, the dithering exploration of ǫ-greedy can take an exponentially long time
to arrive at high-valued rewards. This raises the necessity for a more advanced type of
exploration, that can be directed over over multiple time steps. These concepts have been
coined ’directed exploration’ and ’deep exploration’ [12].
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Deep & directed exploration Directed exploration attempts to improve the efficiency
of the agent’s exploration by directing it. For example, to previously unexplored or under-
explored areas of the state-action space. To achieve a measure of directed exploration, an
uncertainty measure can be used - the more uncertain the agent is about the value of some
state or action, the more it can prioritize exploration. For directed exploration to be effective,
it often doesn’t suffice for it to be directed over one, or small number of time steps [12], but
must be directed over multiple time steps. The term ’deep exploration’ is used to describe
such an exploration approach, that is directed over multiple time steps [12].

3 Exploration In Deep Reinforcement Learning for Traffic Light

Control

This section will first motivate the choice to evaluate exploration techniques that focus on
deep and directed exploration. Following that, the agent used in the experiments is outlined,
and the exploration approaches it implements are described. Last, the modelling of traffic
light control as an RL problem used in this paper is presented.

3.1 Motivation

This paper opts to specifically identify the value of exploration approaches that focus on
achieving deep exploration, in the setting of traffic light control. These approaches have
been chosen not only for being state of the art in this field, but also for their potential
in this setting. In heavy traffic scenarios, suboptimal actions may carry a long term effect.
They may immediately cause congestion, and once there, it may be difficult to return to less
congested states [13]. Deep exploration may be able to improve the agent’s ability to escape
such scenarios, by directing its exploration along a specific path. While this path will not
necessarily pay in the short run, it may allow the agent to recover from congestion in the
longer run. Additionally, the ability of the agent to more efficiently explore areas of the state
action space that lie beyond areas plagued by negative rewards, as a result of employing deep
exploration, may allow the agent to learn optimal policies that will otherwise be unlikely for
a dithering agent to ever achieve.

3.2 The agent

The agent used in the experiments presented in this paper is a DQN agent, using the double-
DQN [16] modification. The agent implements the following exploration mechanisms: ǫ-
greedy, Bootstrapped DQN (BDQN) [12] and randomized prior functions [11]. The implementation
used in this paper, based on [8] and modified for the setting of traffic light control, allows the
agent to use any combination of the three different mechanisms listed above. ǫ-greedy has
been described in section 2.3, and has been chosen as it is the common baseline exploration
used in DQN [10], [16]. BDQN and randomized prior functions have been chosen as state of
the art exploration approaches that aim to achieve efficient deep exploration, and in addition,
for their ability to elegantly combine for even better exploration. BDQN and randomized
prior functions are described below.
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Bootstrapped DQN BDQN has been developed in an attempt to achieve a measure
of deep exploration, discussed in section 2.3. In order to achieve deep exploration, BDQN
approximates a distribution over Q-values, using a bootstrap. Bootstrapping is a technique
used to approximate a population distribution from a sample distribution, using random
sampling with replacement [5].

The bootstrap can be implemented efficiently using a shared neural network with several
heads. The shared network’s role is to learn a feature representation, while each head is
providing an independent Q-values estimation. A visualization can be found in figure 1. In
learning, the algorithm randomly samples an estimator (a ’head’) out of the bootstrap, and
follows the policy which is optimal for that estimator for some number of steps greedily or ǫ-
greedily. In the experiments done in this paper ǫ-greedy is used. The resulting experiences are
gathered in a buffer, and are available for all estimators to learn from, under some probability
that decides which experiences will be available to which estimator. Each estimator is trained
against its own target network / target network head.

In evaluation, an ensemble voting policy is used to evaluate which action has been chosen
by most heads. If there is no majority vote, an arbitrary choice is made between the actions
chosen by the most heads. The action is then chosen and executed.

Fig. 1: The BDQN architecture proposed in [12].

BDQN attempts to achieve a measure of deep exploration by following the policy of one
of the estimators for some number of steps. For this to be effective, the agent must guarantee
that in areas of uncertainty (under-explored areas of the state action space), the different
estimators will have different estimations. However, in BDQN this uncertainty, or variety in
the Q-value estimations, is only based on the observed data [11]. This can be problematic,
because in environments where rewards are very scarce, the agent may learn to believe that
there is no reward, and lose all uncertainty, rather than direct its exploration to remote,
unexplored areas of the state action space in the hope that they may contain rewards. Such
’prior’ drive for exploration, that is independent from the data, is proposed in [11] in the
form of randomized prior functions.

Randomized prior functions While usable with a regular DQN agent, the randomized
prior functions algorithm is designed to be combined with the BDQN model. To achieve
independent uncertainty, the randomized prior functions model consists of one additional
neural network for each Q-value estimator, or one shared neural network with one head for
each estimator. This additional network or head p is combined with the original estimator
f to form the final output Q, through a scaling factor β: Q = f + βp [11]. Q is then
used in the learning process to minimize the training loss. This results in uncertainty that
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is independent from the data: the Q value estimation always includes a neural network
initialized with random parameters. No matter the uniformity of experiences the agent
encounters (for example, only similar, negative rewards), it will still consider some additional
prior ’assumption’, in the form of the prior function, in regard to previously un-encountered
states. As a result, each estimator will always approximate the Q value of as yet un-
encountered states differently. This allows the agent to better direct its exploration, by
guaranteeing diversity between the estimations of the different bootstrap heads for previously
un-encountered states.

3.3 The model

The modeling of the traffic light control problem as an RL problem used in this paper is
follows work done in [13]. The problem is modelled as an MDP M = (S,A, P,R), where S is
the state space, A is the action space, P the transition function and R the reward function.
The open source traffic simulator SUMO [9] is used to generate the environment.

State space, action space & transition function The state provided to the agent is
represented as a set of stacked frames of size x ∈ Z

+. Each frame is a matrix containing
current locations of vehicles in the agent’s observation space, and the current traffic light
configuration. The observation space of the agent is a square centered at the intersection
controlled. Each location of a vehicle is marked with a 1, and empty locations with a 0. The
traffic lights configuration is presented in the matrix as numbers between 0 and 1 chosen
arbitrarily. Stacking several frames allows the agent to extrapolate vehicle speed from the
state representation. x = 4 was used in the experiments, to achieve a balance between too
much information (complicating the learning process), and too little information (hindering
the capacity of the agent to learn effective policies).

The actions available to the agent at each time step are one of two traffic light configurations,
representing which lanes receive a green light. The transition function is defined by SUMO.

Reward function The reward function used is a modified version of the reward function
developed in [13]. At each time-step t, the agent receives a reward rt, computed by iterating
over all vehicles currently in the agent’s observation space, and summing different penalties:

rt = −1.5c− 0.2

N∑

i=1

ei − 0.3

N∑

i=1

di − 0.3

N∑

i=1

wi

This, where i represents the vehicle index. c is a penalty for switching the light configuration,
to prevent flickering. ei is a penalty for sharp decelerations, to penalize emergency stops. di
is a penalty for the ’delay’ of a vehicle, defined as 1− vehicle speed

allowed speed
. Finally, wi is a waiting

penalty, defined as 0.5 for the first step of a car standing still, and 1 for any consecutive
step.

The modification included removal of a term that punishes teleportation of vehicles
(used in SUMO to mark traffic collisions) due to implementation challenges. Additionally,
the coefficient of the term c was increased from 0.1 to 1.5, after observation that otherwise
the penalty for light switching is barely noticeable with almost any number of cars.
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4 Experimental Setup

This section first describes and motivates the methodology used to evaluate the exploration
approaches in the setting of traffic light control. This is followed by a description of the three
traffic scenarios used to evaluate the exploration approaches.

4.1 Comparison of different exploration methods

To evaluate the impact of exploration in the setting of traffic light control, this paper
compares the performance of agents using ǫ-greedy, BDQN [12], randomized prior functions
[11] and a combination of the above for exploration, in three different scenarios. The performance
is evaluated and averaged over multiple repetitions.

The compared agents As all three exploration approaches investigated are designed to
be combined, the performance of the following six agents is compared: a regular DQN agent
ad regular DQN agent with a randomized prior function, both employing ǫ-greedy; Two
BDQN agents with increasing bootstrap size: 4 & 10 bootstrap samples (or neural network
’heads’); Last, two similar BDQN agents, combining randomized prior functions in their
bootstrap mechanism. The number of bootstrap samples has been chosen based on a relation
between computational complexity (the larger the bootstrap, the larger the complexity), and
gain from the bootstrap (the larger the bootstrap, the better the average performance). As
shown empirically in [12], the relative gain from sizes larger than 10 becomes insignificant
very quickly. The experimentation with different combinations of those techniques allows to
evaluate, in essence, even more exploration techniques, and is the reason it is done in this
paper.

The parameters of the agents investigated are not tuned for the specific setting of traffic
light control. For the purpose of full reproducibility, a full list of the experiment parameters
and agents’ hyper-parameters used is available with the code base used in the experiments.

The evaluation The evaluation is done as follows: an experiment is done, for each agent
in each scenario and each intersection considered. Each experiment consists of N learning
episodes. Every evaluation_frequency learning episodes, an evaluation phase is ran. In
order to reduce sensitivity to stochastic noise from the random nature of the traffic used in
the experiments, in the evaluation phase the agent’s policy is evaluated over number_evaluations

evaluation episodes, with ǫ = 0. The average episodic reward is then used for evaluation. The
exact parameters evaluation_frequency, number_evaluations used in each experiment are
detailed in section 5. To further reduce the impact of stochasticity, the entire experiment is
repeated X times for each agent and the results averaged. Finally, the performances of the
different agents are plotted against each other, in the form of their averaged evaluations’
rewards. The results are presented in section 5.

The different parameters mentioned above were chosen in the following way: N was
chosen from experimentation, as the range within which the agents’ learning starts to
plateau, in order to present the differences between the evaluations of the agents’ in the
clearest way. The evaluation_frequency used for each experiment set is chosen to achieve
balance between the number of episodes each experiment is ran for, and the number of total
evaluation episodes in the experiment. The number_evaluations parameter has been chosen
as a balance between the total number of evaluation phases and the total number of episodes
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in each experiment. The larger the number of learning episodes, and lower the evaluation
frequency, the larger the number_evaluations parameter. To balance computational costs
and time constraints with reliability of results, each experiment was chosen to be averaged
over X = 25 repetitions.

For the purpose of full reproducibility, all random generators used are fully seeded, and
the seeds logged. Each experiment is initiated with a different random seed, to guarantee
random initialization of the agents’ neural networks’ weights. The environment’s traffic
generator however is seeded with the same set of seeds for all experiments. This is done
to guarantee that while all agents experimented with are different, they are tested against
the same traffic simulations.

4.2 The traffic scenarios

The impact of the exploration approaches investigated in this paper is evaluated using the
traffic simulator SUMO [9], in three different traffic scenarios. In the first scenario, one set
of experiments is done. In the second and third scenarios, two separate experiment sets are
done, evaluating the agent against traffic of slower and faster average speed.

Scenario 1: The grid The first scenario is a basic grid-like road network, with one
intersection in the center, and four roads going one in each direction from the intersection:
north, east, south and west. A visualization of the grid scenario is presented in figure 2 a.
The first scenario is meant to capture a simple, independent intersection profile, that does
not consider or experience the behavior of other neighboring intersections. The traffic in this
scenario is generated randomly, based on a set number of vehicles over a set spawning time.

Scenario 2: Simulation of real traffic in Manhattan, New York The second scenario,
visualized in figure 2 b, is based on a section of the road map of Manhattan, New York, and
is a more complex network containing several interconnected intersections. The specific road
map used in our experiments is a 700 m2 section centered around the corner of Waring and
Woodhull Avenues. The map has been imported using SUMO’s web-wizard. This scenario
means to evaluate the effect of efficient exploration in a more complex traffic profile, where
the agent may observe and consider the behavior of neighboring intersections. Manhattan
enjoys a grid road-map design, that for the purpose of this work serves as both realistic and
practical to use.

The red squares marked in figure 2 point to the two intersections given to the agent to
control, as two separate experiments sets in this scenario. These intersections were chosen
due to their encapsulation of different traffic profiles. The top intersection, Waring-Woodhull,
presents a gentler form of traffic with significantly lower vehicle speed average. The bottom
intersection, Eastchester-Waring, experiences much higher average vehicle speed, and more
strongly resembles a central road. The throughput of both intersections is rather similar,
with a slightly heavier load going through Eastchester-Waring. In every experiment, all
intersections in the network except the one controlled by the agent are controlled by SUMO.
To generate traffic for the Manhattan scenario, a random routes generator is used, based on
real population distributions in the area, for the time of day 08:30 AM to 09:00 AM. The
traffic data is imported using SUMO’s web-wizard as well.

BNAIC/BeneLearn 2020 186



Exploration in Deep Reinforcement Learning for Traffic Control 9

Scenario 3: Simulation of custom traffic in Manhattan, New York A third scenario
is introduced in order to evaluate exploration under heavier traffic settings. This scenario
uses the same map, and experiments with the same intersections illustrated in figure 2 b.
However, in this scenario a random traffic generator is used for traffic generation, in order to
introduce much heavier traffic loads than the ones generated to simulate real traffic. Again,
two different sets of experiments are done in this scenario, one on each of the two marked
intersections in figure 2 b. The difference of the traffic profiles between the two intersections
is similar to the one in the second scenario: the top intersection enjoys slower average speed,
and the bottom faster.

(a) The basic grid map. (b) The Manhattan
map. The top red box
marks the intersection
Waring-Woodhull,
and the bottom
the intersection
Eastchester-Waring.

Fig. 2: The road maps used in the traffic scenarios.

Observation space specification An important difference between the scenarios is the
observation space provided to the agent in each one. The observation space provided in the
experiments done with the grid scenario and the Eastchester-Waring intersection in either
scenario, was 50m2. This is done because in all three a larger observation space would be
outside the bounds of the environment. Due to the structure of the scenario, it was possible
to provide the agent with a larger observation space in the experiments done with the
Waring-Woodhull intersection in either scenario. An observation space of 84m2 was chosen,
to balance complexity (the larger the observation, the more complex the learning) with
observation distance. This is done to allow the agent access to more information, which (1)
contains the adjacent intersections, enabling the agent to take their behavior into account,
and (2) providing the agent with the ability to react to incoming traffic earlier, as a result
of the larger observation space.

5 Results

This section presents and analyzes the results obtained in the experiments described in
section 4, divided between the different scenarios investigated and intersections controlled.
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For each set of experiments, the results presented are the episodic rewards attained in
the evaluations, as described in section 4.1. This is presented alongside a plot of the 95%
confidence interval of the mean, computed using the standard error of the mean (SEM) [2] of
the different experiments for two sample agents. These agents are chosen independently for
each experiment: the one that performed, on average, the best, and the one that performed
the worst. This is done to illustrate how significant are the differences observed between
the evaluations of the different agents in each experiment. Only two agents are presented
in order to reduce clatter in the plot. A simple moving average (SMA) of window size 5 is
applied to the data presented in order to smoothen the stochastic effect, to facilitate visual
analysis of the results.

5.1 Scenario 1: The grid

The results of evaluating the performance of six different agents against the grid scenario
can be found in figure 3. The agents’ policies are evaluated every five learning episodes, and
averaged over three evaluation episodes. Additionally, the 95% confidence intervals of the
means of the two sample agents are presented.

Fig. 3: Evaluating the agents against the grid scenario. The left figure presents the evaluations.
The number describes the size of the bootstrap sample (number of heads), and the p whether a
randomized prior has been incorporated. The right figure presents the same for two chosen agents,
including the 95% confidence interval of the mean.

Figure 3 illustrates that while all agents learn, the agents that appear to have the sharpest
learning rates are the regular DQN with and without prior function applied. However, as
can be seen in the right plot in figure 3, there is some overlap in the confidence intervals of
their means.

5.2 Scenario 2: Simulation of real traffic in Manhattan, New York

The results of evaluating the agents against the Manhattan scenario simulating real traffic
can be found below, separately for each set of experiments, controlling each of the two
intersections marked in figure 2 b. The agents’ policies are evaluated every training episode,
over two evaluation episodes, and averaged.

Traffic of low average speed Figure 4 presents the results of experimenting control of
the intersection Waring-Woodhull, the top of the two intersections in figure 2 b, capturing
a traffic profile of slower average speed.
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As observable, the difference between the evaluation scores in relation to the confidence
interval of the means, is mostly negligible, with the exception that the regular DQN achieves
inferior scores prior to episode 20. However, these scores are still well within the confidence
interval of the means of the other agent’s, and thus cannot be considered significant. This
behavior is attributed to the simplicity of the traffic profile, in relation to the amount
of information accessible to the agent in this scenario. As mentioned in section 4.2, the
observation space of the agents in this experiment is 84m2. While the scenario can be
viewed as complex (several interconnected intersections, whose behaviors directly influence
each other’s traffic), which can translate to the learning process being more difficulty, the
volume of the traffic, including the average speed, is rather low, and thus the policy required
is not complex.

Fig. 4: Evaluating the different agents against the Waring-Woodhull intersection, simulating real
traffic. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.

Traffic of high average speed Figure 5 presents the results of experiments done controlling
the second intersection, Eastchester-Waring. Eastchester-Waring enjoys both traffic of higher
average speed, as well as higher traffic loads. No significant difference in the performance
of the different agents is observed. This is further illustrated with the confidence interval of
the means presented in figure 5 and their overlap.

Fig. 5: Evaluating the different agents against the Eastchester-Waring intersection, simulating real
traffic. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.
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5.3 Scenario 3: Simulation of custom traffic in Manhattan, New York

The results of evaluating the agents against the Manhattan scenario simulating random,
heavy traffic can be found below. The agents’ policies are evaluated every second training
episodes, and averaged over two evaluation episodes.

Traffic of low average speed The results for the intersection Waring Woodhull are
presented in figure 6. While the differences in the learning between most of the different
agents appears negligible, all of them appear to outperform the regular DQN agent. However,
as illustrated by the right plot in figure 6, the confidence intervals still have some overlap.

Fig. 6: Evaluating the different agents against the Waring-Woodhull intersection in the custom
scenario. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.

Traffic of high average speed The results of experimenting control over the intersection
Eastchester Waring are presented in figure 7. No significant difference is observed between
the evaluations of the different agents. This is illustrated strongly by the confidence intervals,
and their overlap, presented in the right plot in figure 7.

Fig. 7: Evaluating the different agents against the Eastchester-Waring intersection in the custom
scenario. The left figure presents the evaluation of the different agents. The number describes the
size of the bootstrap sample (number of heads), and the p whether a randomized prior has been
incorporated. The right figure presents the same results for a sample of the agents, including the
95% confidence interval of the mean.
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5.4 Analysis

Many different factors can influence the results obtained by the different agents, ranging from
the reward function, the size of the observation space and its resolution, the state abstraction,
the complexity of the traffic scenario and sheer stochasticity. The type and complexity of
the traffic scenario, along with the observation space, are the main parameters that will be
considered in this analysis.

Here, the complexity of the scenario, while not defined exactly, considers the volume
and variety in the traffic and the number of surrounding interconnected intersections. In
particular, the "grid" scenario can be viewed as having lower complexity, as it has a medium
traffic volume, of low speeds and no neighbouring intersections. In the experiments done
in the scenario simulating real traffic, both intersections could be viewed as having higher
complexity: "Waring Woodhull", which is surrounded by a number of neighbouring intersections,
with lower traffic volume and a slower speed; and Eastchester-Waring, which is surrounded
by a similar number of neighbouring intersections, with somewhat higher traffic volume
with significantly higher average speed. Last, the scenario simulating custom traffic could be
viewed as having higher complexity as well, as it has similar parameters to the simulation
of real traffic, with the exception of significantly increased traffic loads. In addition, it is
worth mentioning that in the experiments done with the Waring Woodhull intersection the
observation space was larger than in any of the other experiments, as specified in section
4.2.

It appears that when the complexity of the traffic is low along with a smaller observation
space (the grid scenario), the simpler agents converge much faster, and more stably, to a
highly evaluated policy. However, when the agent is given sufficient information of sufficient
complexity (the Waring Woodhull intersection in both scenarios), deep exploration approaches
are able to outperform the ǫ-greedy approach, by achieving faster learning. This may imply
that advanced exploration approaches may play a significantly more critical role in much
more sophisticated scenarios, such as an intersection balancing many lanes, experiencing
many different traffic profiles, and provided a large observation space. The differences observed
were generally small and within a 95% confidence interval of the means however, and as such,
the strength of this implication is limited.

We note, though, that for the Eastchester-Waring intersection no improvements due to
more sophisticated exploration were observed, even though the traffic patterns are more
complex here than in the simple grid. The reason for this could be that as a result of the
faster traffic and the smaller observation space, along with sufficient complexity in the road
map and variety in the loads and directions of the traffic, the different costs and gains from
the different exploration approaches balanced out.

6 Discussion

The results obtained suggest a link between the complexity of the scenario, the information
accessible to the agent and the gain from deep exploration, as discussed in section 5.4.
However, the advanced exploration approaches investigated are expected to have significant
gain especially when utilized in environments with scarcity of significant positive rewards,
and abundance of smaller negative rewards [11], [12]. As a consequence, the reward function
used can almost directly dictate the gain from different exploration strategies. The reward
function used was not designed for any specific exploration approach. It is therefore plausible
that under a tailored reward function the gain from deep exploration would have been much
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higher. This can be especially relevant in the case of reward functions that are known for
promoting good policies, while hindering learning.

7 Conclusions and Future Work

This paper investigated the value of deep exploration in the setting of traffic light control, by
comparing agents using different exploration approaches in three different traffic scenarios
of rising complexity. Specifically, the state of the art approaches Bootstrapped DQN [12]
and randomized prior functions [11] were compared to a baseline ǫ-greedy approach. This,
to facilitate better deep RL in traffic light control, by identifying the value of evolved
exploration approaches in this setting, such as higher sample efficiency or higher final policy
score.

The results presented in this paper suggest a link between the complexity of the traffic
scenario, the size of the observation space of the agent, and the gain from efficient exploration,
achieved with Bootstrapped DQN and randomized prior functions, under a specific parameters
configuration. Specifically, the more complex the scenario and the larger the observation
space, the more significant the gain observed from efficient exploration.

The results presented leave the following open questions, however. What is the exact
relation between the gain from efficient exploration and the complexity of the scenario?
How sensitive is this relation to specific parameter configurations, and specifically under
parameters optimized for the specific setting? Does this conclusion apply for other exploration
approaches? These questions are left for future work.
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