
 
 

Delft University of Technology

Unraveling the myth of closure corrections
Sharpening the definition of opening and closure stresses with an energy approach
van Kuijk, Jesse J.A.; Alderliesten, René C.; Benedictus, Rinze

DOI
10.1016/j.ijfatigue.2020.106016
Publication date
2021
Document Version
Final published version
Published in
International Journal of Fatigue

Citation (APA)
van Kuijk, J. J. A., Alderliesten, R. C., & Benedictus, R. (2021). Unraveling the myth of closure corrections:
Sharpening the definition of opening and closure stresses with an energy approach. International Journal of
Fatigue, 143, Article 106016. https://doi.org/10.1016/j.ijfatigue.2020.106016

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ijfatigue.2020.106016
https://doi.org/10.1016/j.ijfatigue.2020.106016


International Journal of Fatigue 143 (2021) 106016

Available online 7 November 2020
0142-1123/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Unraveling the myth of closure corrections: Sharpening the definition of 
opening and closure stresses with an energy approach 

Jesse J.A. van Kuijk *, René C. Alderliesten, Rinze Benedictus 
Structural Integrity & Composites, Faculty of Aerospace Engineering, TU Delft, Kluyverweg 1, 2629 HS, Delft, the Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

The substantiation of fatigue crack closure corrections is disputed, based on the closure stress definition. The 
ΔKeff equation lacks a physical explanation. An inconsistency is observed between the opening stress Sopphen as 
used by this equation and the physical opening stress Sopphys . This Sopphys is related to Sopphen through an energy 
equivalent area approach. Furthermore, an elastic spring model is used as a physical approach to crack closure 
effects. An FEA approach generates Sopphys values, which are reworked into Sopphen . This physical model agrees well 
with existing closure corrections, and is able to provide a physical explanation for their necessity.   

1. Introduction 

Fatigue crack growth in metals can be described using linear elastic 
fracture mechanics (LEFM). One of the key concepts of LEFM is the 
range of stress intensity factors ΔK indicating the severity of the stress 
distribution around the crack tip, as function of the applied far field 
stress range ΔS and half crack length a. 

In 1961 Paris et al. [1] observed that the crack growth rate da/dN is a 
function of both ΔK and the stress ratio R. The R dependency can be 
accounted for by replacing ΔS with an effective stress range ΔSeff = Smax 

- Sop, which results in the effective stress intensity factor: 

ΔKeff = ΔSeffβ
̅̅̅̅̅
πa

√
(1) 

The stress level Sop is considered the stress level corresponding to the 
first moment in the loading cycle where the crack tip is fully opened. The 
existence of such a stress value is widely reported, among others in Refs. 
[3–9]. 

The use of the effective stress range results in crack growth curves 
collapsing onto each other. Elber [10] was one of the first to relate this 
reduced stress range to the observed phenomenon of crack closure. The 
current state of the art models [11–13] use the stress intensity factor 
ΔKeff as similitude parameter, because different fatigue cases can then 
be compared using the unique relationship between ΔKeff and da/dN, 
independent of R. The similitude parameter ΔKeff is often linked to the 
crack growth rate using a power law, such as the Paris equation, 
Ref. [14], which is a purely empirical correlation, for which the physical 

explanation is unknown, Ref. [2]. 

da
dN

= CΔKm
eff (2) 

In Ref. [10] it is reported that during the loading phase of a fatigue 
cycle an initial nonlinear relationship is observed between the crack 
opening displacement and the applied stress. This initial nonlinearity is 
ascribed to crack closure effects, imposed by plasticity. During unload
ing the plastically deformed area around the crack tip can close before 
Smin is reached, and similarly during loading the crack tip starts to open 
at a stress level above Smin. This crack tip plasticity plays an important 
role in crack closure, yet it does not correspond well with the LEFM 
theory on which the ΔKeff parameter is based. A main LEFM assumption 
is that plasticity is concentrated in an infinitesimally small area at the 
crack tip. The plasticity related contradiction between LEFM and the 
ΔKeff parameter therefore suggests that ΔKeff and related closure cor
rections are not complete. Moreover, ΔKeff is often assumed to be the 
driving force for crack growth, while this statement has little physical 
basis: it is not a force, but it rather is a representation of stress effects at 
the crack tip. 

There is no reason why the ΔK approach using ΔS would give a 
correct result, as the method is not physically correct. The improved 
approach of ΔKeff using ΔSeff with Sop still suffers from the same over
sight, it tries to correct a method that was not physically correct to begin 
with. In this paper a discrepancy in opening stress values and closure 
corrections is explained, and a physical method is presented to trans
form true opening stresses to Sop values used in the ΔKeff closure 
correction approach. As a first step, the incompleteness of closure 
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corrections based on this ΔKeff approach are further elaborated on 
below. 

Eq. (1) is a function of Sop to account for closure effects. Closure 
corrections such as Elber [10], Schijve [15], De Koning [16], and 
Newman [17], describe closure effects using the nondimensional 
parameter Sop/Smax. The latter three predict crack closure for all stress 
ratios R, even though there is a range of R values where the crack tip 
never closes during the full load cycle, as suggested by Refs. [18–21]. 
Three other closure corrections, Refs. [22–24] report similar closure 
behavior but for steel instead of aluminum, suggesting that the existence 
of non-closure near R = 1 is not material dependent. Furthermore, all 
seven mentioned closure corrections start to differ significantly for 
negative R values, showing that there is no true consensus on the crack 
closure behavior at compressive Smin. 

Environmental effects on crack surface roughness are not a signifi
cant cause of the spread in closure corrections, as shown by Refs. 
[26–28,8] for different metals and different environments. 

A large literature base, Refs. [29–37], suggests that known closure 
corrections are not sufficient to collapse da/dN versus ΔK curves for 
various R onto a single da/dN versus ΔKeff curve. Refs. [30,38] discuss a 
theoretical model to account for asperity effects behind the crack tip, 
showing that closure is only significant when the crack is fully closed, 
and that the measured asperity effects are small. Vasudevan et al. [30] 
note that despite several decades of literature, there seems to be no 
accurate method of observing crack closure. 

According to Refs. [39,17] Sop/Smax varies with ΔKmax/Ko, and 
Ref. [40] observed the same with a strip-yield model. This suggests Sop/

Smax = f(R,Smax,Syield), implying that, according to Refs. [10,15–17], all 
crack closure corrections as f(R, Smax) cannot accurately or uniquely 
describe closure for every R and metal (or isotropic material), and that 
Syield or σ0 needs to be taken into account. 

If Sop/Smax = f(R, Smax, Syield), it appears logical that there is also a 
finite width effect. The finite width raises the net-section stress in the 
crack plane, increasing the stress around the crack tip even more as the 
crack grows. Therefore it could be that Sop/Smax = f(R,Smax,Syield,a/W). 

The incompleteness of common closure corrections to describe 
closure for all R and for different materials raises a question about the 
definition of opening stress Sop in the ΔKeff equation: is it actually Sop? 
This line of thought is further developed below. 

In this paper a distinction is made between the phenomenologically 
observed stress Sopphen , assumed to be the opening stress mentioned in 
literature and used in crack closure corrections through Eq. (1), and the 
true physical opening stress Sopphys . The choice of the opening stress value 
Sopphen in the ΔS stress range is addressed, and is linked to the true 
opening stress Sopphys using a theoretical model based on multiple linear 
elastic springs. A FEA simulation is used to generate realistic Sopphys 

values, and together with an energy based model the corresponding 
Sopphen for the ΔS range is obtained. The resulting Sopphys derived closure 
correction resembles existing closure corrections, but is based on a 
physics approach. It is shown that this new crack closure correction is a 
function of R,Smax,Syield, and a/W. 

2. How experiments support closure corrections 

The crack closure corrections, proposed in [10,15–17] are of similar 
trend but of increasing complexity: see Table 1 and Fig. 1. All these 
corrections are indirectly related to measurements: either indirect 
phenomenological observations of the crack (tip) opening displacement 
(COD), or by scaling da/dN data (Paris crack growth curves) over ΔKeff 

for various R values. 
The De Koning [16] and Newman [17] equations need 

Nomenclature 

αDK De Koning closure correction parameter [–] 
αN Newman closure correction correction factor [–] 
β finite width correction factor [–] 
γ Correia et al. material parameter [–] 
μ mean of data set [–] 
σ standard deviation of data set [–] 
σ0 (Newman closure correction) flow stress: 

(
σy + σuts

)/
2 [–] 

σuts ultimate tensile strength [MPa] 
σy yield strength [MPa] 
εmax maximum strain [–] 
εmin minimum stress [–] 
εop opening stress [–] 
ΔK similitude parameter [MPa m0.5] 
ΔKeff similitude parameter [MPa m0.5] 
ΔKmax SIF (mode I) at Smax [MPa m0.5] 
ΔKo SIF (mode I) at crack tip [MPa m0.5] 
ΔS stress range: Smax − Smin [MPa] 
ΔSeff effective stress range: Smax − Sop [MPa] 
ΔU change in energy (during loading) [J] 
ΔUcomp change in compressive energy (during loading) [J] 
ΔUinf change in energy (during loading), infinite plate [J] 
ΔKth,0 Correia et al. crack propagation threshold at R = 0 [MPa 

m0.5] 
ΔUtens change in tensile energy (during loading) [J] 
a crack length [mm] 
da/dN crack growth rate [mm/cycle] 
t time [s] 
An constants for Newman closure correction [–] 

C constant in the Paris equation (not dimensionless) [MPa− m 

m1− m/2] 
CA constant amplitude [–] 
COD crack tip opening displacement [mm] 
CV coefficient of variation: σ/μ [–] 
E stiffness [GPa] 
EΔ linear elastic stiffness, difference [GPa] 
E0 linear elastic stiffness, crack closed [GPa] 
E1 linear elastic stiffness, crack open [GPa] 
GLARE GLAss REinforced aluminum [–] 
KI stress intensity factor, mode I [MPa m0.5] 
KL Correia et al. limiting Kmax [MPa m0.5] 
Kmax similitude parameter, maximum [MPa m0.5] 
K0 similitude parameter at yield or flow stress [MPa m0.5] 
LEFM linear elastic fracture mechanics [–] 
m exponent in the Paris equation [–] 
N number of cycles [–] 
R stress ratio: Smin/Smax [–] 
Scl closure stress [MPa] 
Smax maximum stress [MPa] 
Smean mean stress: (Smax + Smin)/2[MPa] 
Smin minimum stress [MPa] 
Sop opening stress [MPa] 
Sopphys true opening stress [MPa] 
Sopphen opening stress used in ΔKeff equation [MPa] 
Syield yield stress [MPa] 
U energy [J] 
USIF effective stress intensity factor ratio [–] 
VA variable amplitude [–] 
W specimen width [m]  
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nondimensional fitting parameters, to incorporate plane strain or plane 
stress conditions, or to include a dependency on the flow stress σ0. And 
all these closure corrections are based on curve fitting of a limited 
amount of measurements. This has several implications for the accuracy 
of the corrections, relating to applicable R range, measurement tech
niques, and curve fitting. 

The measurements on which closure corrections are based are 
inevitably made over a limited R range. The corrections are then easily 
extrapolated beyond their original R range, a danger that Schijve [15] 
warns of. Elber’s Eq. (1) is a clear example, since the original R range is 
known. Extrapolating this equation for negative R ratios gives 

unrealistic results, and it is generally assumed that it holds correct only 
for R⩾ − 0.1. 

The empirical nature and subsequent curve fitting practice of some 
closure corrections is illustrated by Overbeeke et al. [24]: a disconti
nuity is present at R = − 0.5 while there is no physical reason for such a 
discontinuity to exist. 

Furthermore, measuring Sop is not straightforward since no mea
surement device can measure directly at the crack tip. For example, 
Elber [10] placed a clip gauge system 2 mm behind the crack tip. Such 
strain gauge measurements or COD measurements give an indication of 

Table 1 
Several well-known closure corrections are reproduced here, with their respective R validity range and material type.  

Author Equation Validity range Material Reference 

Elber Sop

Smax

⃒
⃒
⃒
⃒
Elber

= 0.5 + 0.1R + 0.4R2  − 0.1 < R < 0.7  Al 2024-T3 [10] 

Schijve Sop

Smax

⃒
⃒
⃒
⃒
Schijve

= 0.45 + 0.22R + 0.21R2 + 0.12R3  − 1.0 < R < 1.0  Al 2024-T3 [15] 

De Koning Sop

Smax

⃒
⃒
⃒
⃒
De Koning

= 0.45 + (0.1 + αDK)R + (0.45 − 2αDK)R2 + αDKR3  − 1 < R < 1  Al 7075-T6 [16] 

Newman Sop

Smax

⃒
⃒
⃒
⃒
Newman

= A0 + A1R + A2R2 + A3R3  R⩾1  Unspecified [17]  

A0 =
(
0.825 − 0.34αN + 0.05α2

N
)
[cos(πSmax/(2σ0) ) ]

1/αN      

A1 = (0.415 − 0.071αN)Smax/σ0      

A2 = 1 − A0 − A1 − A3      

A3 = 2A0 + A1 − 1      
Sop

Smax

⃒
⃒
⃒
⃒
Newman

= A0 + A1R  
− 1 < R < 0   [17]  

A0 =
(
0.825 − 0.34αN + 0.05α2

N
)
[cos(πSmax/(2σ0) ) ]

1/αN      

A1 = (0.415 − 0.071αN)Smax/σ0     

Iwasaki Sop

Smax

⃒
⃒
⃒
⃒
Iwasaki

= 1 + 0.316R3 + 0.259R2 + 0.137R − 0.712  
− 1.0 < R⩽0.4  S355 [22]  

R 0.4 < R < 1.0    
Kurihara et al. Sop

Smax

⃒
⃒
⃒
⃒
Kurihara et al.

=
1

2R − 3  
− 1.0 < R⩽0.5  S355 [23]  

R 0.5 < R < 1.0    
Overbeeke et al. Sop

Smax

⃒
⃒
⃒
⃒
Overbeeke et al.

= 1 −
(

0.707(1 − R)0.19
) − 1.0 < R⩽0.5  S460 [24]  

1 −
(

0.716(1 − R)0.31
)

− 0.5 < R⩽0.38     

R 0.38 < R < 1.0    
Correia et al. Sop

Smax

⃒
⃒
⃒
⃒
Correia et al.

= 1 −

(

1 −
ΔKth,0

Kmax

)

(1 − R)γ
(an R based correction factor is needed)

Kmax⩽KL  P355NL1 [25]  

R Kmax⩾KL     

Fig. 1. Closure corrections from literature. Curves with ‘o’ relate to aluminum, 
curves with ‘+’ relate to steel, and other curves relate to metals in general. Note 
the limited Elber validity range, and the empirical fitting parameters on some 
corrections. 

Fig. 2. Two schematic crack tip cases. (a) Text book crack tip. (b) A protrusion 
from an earlier (over) load is still closed, preventing crack tip opening and crack 
development. COD can incorrectly suggest crack opening here. 
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crack opening, but do not distinguish which part of the crack has 
opened. Fig. 2 explains this schematically, where a COD measurement 
indicates an open crack, while the protrusion from an earlier (over) load 
prevents the crack tip from opening at this particular load. The 
measured Sop is therefore not necessarily the physical opening. Duan 
et al., Ref. [41], propose a crack opening ratio parameter with an 
elaborate experimental setup to assess fatigue crack closure. Notwith
standing the validity of the method, it remains an indirect, phenome
nologically derived measurement of crack opening or closure. 

The closure corrections shown in Table 1 do not provide scatter 
bands or error bars on the original measurements. One possible reason is 
the indirect construction of Sop/Smax values: these values can be con
structed from da/dN versus ΔKeff crack growth curves by having them 
coincide through introducing a shift in ΔKeff . This shift indicates the 
ΔSeff needed and hence defines the opening stress Sop, or more precise: 
Sopphen . 

To give a demonstration of this ambiguity; Schijve [4] used the same 
data, Ref. [5], as De Koning [16], yet arrived at a slightly different crack 
closure correction. Using the same data set while arriving at two 
different equations suggests that there is no consensus on the method 
how to extract the curve from the data. For this particular data set 
Schijve gives values of the coefficient of variation CV. The ΔKeff shift as 
described above is used to generate Sop/Smax values for six different R 
values − 1⩽R⩽0.54, which result in CV values ranging from 4.5% to 
8.6%. When data point R = − 1 is omitted, the CV range improves to
wards 4.2% to 6.5%. This illustrates the significant differences at low R 
values of closure corrections, as shown in Fig. 1. The associated curve 
fittings are thereby affected too. These variations are partially due to 
measurement scatter, but are also partially caused by the inadequacy of 
the closure correction to match the observed ΔKeff shift. 

The issues mentioned above affect closure correction measurements, 
relating to ΔSeff . ΔKeff , using ΔSeff , is an improvement over ΔK. This 
improvement is not complete either, as the overall validity of the ΔKeff 

equation is questioned in literature. Kujawski [42] observes that ΔK 
tends to under-predict and ΔKeff tends to over-predict crack closure ef
fects. Scaling parameters need to be applied to both ΔK and ΔKeff to 
match observations more closely. Castro et al. [43] mention experi
mental results which cannot be fully explained by using either ΔK or 
ΔKeff as similitude parameter. Furthermore, while the incompleteness to 
describe crack closure of ΔK is noticed, it is not explained why ΔKeff is 
incomplete too. 

The closure correction measurement issues presented here suggest 
that ΔKeff does not fully or not correctly account for crack closure. There 
appears to be an inconsistency in the definition of Sop: the phenome
nologically derived opening stress is likely not the physical opening 
stress. Sopphen can be understood as a virtual stress representing the 
applied work used for crack growth, in accordance with the ΔKeff 

approach. It is hypothesized that Sopphen is not necessarily equal to Sopphys , 
and this line of thought is further tested as explained in the next sections. 

3. Why Sop is phenomenological 

Consider Eq. (1); it is often implicitly assumed to hold for all R. Note 
that for R close to unity, the crack might not close at all, because during 
the load cycle, the stress never drops below the physical crack opening 
stress; in other words Smin > Sopphys . In such a case, in principle there 
should not be any closure correction. Literature confirms that closure is 
not measured at high R values; R = 0.7 is the maximum value for which 
closure has been reported [17,29]. 

Furthermore, plane strain conditions (mid-thickness) see signifi
cantly less plasticity induced closure compared to plane stress condi
tions (near or at the surface). Observing crack closure at a specimen 
surface therefore tends to overestimate the amount and influence of 
closure on the crack growth rate. The combination of geometry and Smax 

results in differences in the transition from plane strain to plane stress 

conditions during crack growth, which affects the observation of closure 
in different tests. It follows that Sopphys/Smax = f(R, Smax): even though 
closure corrections are normalized by Smax, there is still an Smax de
pendency related to the internal stress conditions. This finding is in line 
with the aforementioned doubts that Kujawski [42] states about the 
accuracy of ΔKeff . 

The choice of Smax (for example as ratio of flow stress σ0) at a given R 
also affects Sopphen/Smax, as the amount of crack tip plasticity changes. 
This effect is mentioned since the 1980s by Newman [29,45] and 
McClung et al. [46,47], but a physical explanation is not given in liter
ature. Fig. 3 is reproduced from Ref. [29], and shows the dependency of 
Sopphen on Smax. It clearly demonstrates the significant changes of Sopphen/

Smax versus R for plane stress. 
Furthermore, McClung [39] notes that the correlation of ratio of Smax 

over the flow stress σ0 and Sopphen/Smax works for CCT specimens only, as 
the correlation of this ratio and Sopphen/Smax for other geometries and/or 
loading conditions is not successful. A new correlation is obtained by 
introducing a normalized stress intensity parameter ΔKmax/K0, which 
appears to work well for small-scale yielding. This example serves to 
illustrate that improvements or corrections to Eq. (1) are sought using 
other parameters, rather than looking at the discrepancy between Sopphys 

and Sopphen . This results in corrections to the phenomenological descrip
tion of ΔK, and does not necessarily constitute a physically correct 
approach. 

It is shown that closure corrections, even with fitting parameters or 
alterations to the ΔKeff method, are not complete in describing crack 
closure. This paper suggests therefore another approach: an explanation 
and a solution for the incompleteness can be found in the opening stress 
itself: Sopphen ∕= Sopphys . They are related, but not equal. The true back
ground of Sopphen is explained in more detail further on. 

4. An energy equivalent area approach to Sopphen 

Alderliesten [48] provides a first step to an energy related explana
tion of crack closure corrections. An energy equivalent area analogy is 
presented, showing that ΔSeff = Smax − Sopphen is correlated to the actual 
cyclic energy applied between Smin and Smax, through an equivalent area 
in the stress–strain curve. It is best explained graphically, using the 
bilinear force–displacement curves in Fig. 4. For a given Smax, Smin, and 
an elastic material, the area under the curve between εmin and εmax re
lates to the cyclic energy ΔU. A rectangular area is spanned by a strain 
range 0⩽ε⩽εmax and a stress range Sopphen ≤ S ≤ Smax such that the area is 
equal to ΔU, and is called the equivalent area. 

Fig. 3. Opening stress Sopphen/Smax versus the ratio of Smax over the flow stress σ0 

for a range of R values, for both plane stress and plane strain. Reproduced 
from [29]. 

J.J.A. van Kuijk et al.                                                                                                                                                                                                                          



International Journal of Fatigue 143 (2021) 106016

5

Alderliesten assumed for this example that the crack opens or closes 
at S = 0, seen as a change of slope at this stress level. In reality the crack 
opening happens at a positive stress value Sopphys , Ref. [10], and the 
change of slope is actually a gradual nonlinear change over a certain 
small stress range. Crack tip plasticity effects will smoothen the transi
tion between a closed and an open crack. 

For modeling purposes, the stress–strain loading curve is simplified 
as a bilinear elastic curve with an instant change of slope at a positive 
nonzero Sopphys value. Both simplifications; the bilinear approximation, 
and only considering the loading curve, do not alter the applicability or 
trend of the energy equivalent area analogy. Both cases in Fig. 4 are 
rather similar, but show how the true crack opening stress alters the 
stress–strain slope and subsequent decrease of εmax. 

The difference in absolute U values in Fig. 4 is irrelevant since these 
are two different cases. The equivalent area approach holds for each 
individual case separately, and links the ΔU area to the rectangular 
equivalent area within that particular case. The increase of Sopphys thus 
results in a larger ΔU and equivalent area, which is only possible with a 
smaller Sopphen . 

This improved analogy obtains Sopphen/Smax values which closely 
follow known closure corrections, although the equivalent area has no 
direct physical meaning. It explains how Sopphen can be derived from the 
actual cyclic energy ΔU, but shows that this value is not equal to Sopphys . 

The analogy holds for all R. For sufficiently large R close to 1, where 
Smin > Sopphys , the energy equivalent area approach shows correctly that 
the crack stays open during the full cycle: Smin > Sopphen . The closure 
corrections however still predict Sopphen > Smin. 

Closure corrections can be described as corrections for closure effects 
with respect to the ideal bilinear elastic case where closure happens at 
Sopphys = 0, shown in Fig. 5. The stress–strain curve for the ideal bilinear 
elastic case is similar to case (a) in Fig. 4. Alderliesten [48] demon
strated that the ideal bilinear elastic case can be derived using the en
ergy equivalent area approach. The area under the curve (such as shown 
in Fig. 4) is a function of R2 (relates to the stress values), and a function 
of Sopphys (which influences the corresponding strain). Existing closure 
corrections are effectively correcting this ideal bilinear elastic case, 
Sopphys = 0, for cases where Sopphys ∕= 0, however not by using Sopphys but 
using the virtual Sopphen value. The corrections become more pronounced 
for decreasing R as plasticity and reverse plasticity effects increase. 

Fig. 4 is a function of R2 (relates to the stress values), and a function 

of Sopphys (which influences the corresponding strain). For S < 0, a 
compressive energy is present, but this does not affect crack growth as 
the crack is closed during this phase of the load cycle. The ideal bilinear 
elastic case therefore remains constant for R < 0, while the actual total 
cyclic energy increases as the sum of the tensile and compressive energy. 
The ideal curve can be described analytically: 

Sopphen

Smax

⃒
⃒
⃒
⃒

elastic
=

1
2
+

1
2
R2 for R⩾0

Sopphen

Smax

⃒
⃒
⃒
⃒

elastic
=

1
2

for R < 0
(3) 

Correcting the ideal bilinear case for Sopphys ∕= 0 results in Sopphen 

values similar to existing closure corrections. The approach of Alder
liesten [48] therefore also holds for Sopphys ∕= 0, providing a link between 
Sopphys and Sopphen . 

Fig. 4. Schematic bilinear stress–strain curves, explaining the energy equiva
lent area analogy of Alderliesten [48] and the difference between Sopphys and 
Sopphen . (a): Sopphys = 0. (b): Sopphys > 0. 

Fig. 5. Closure corrections; as Sopphen/Smax versus R. Shown are: Elber(1), New
man(2), Schijve(3), De Koning(4), Iwasaki(5), Kurihara et al.(6), Overbeeke 
et al.(7), Correia et al.(8), and the ideal bilinear elastic case as described by 
Alderliesten with closure at Sopphys = 0. 

Fig. 6. Two schematic force–displacement curves for a CCT fatigue specimen: 
(a) for R < 0, and (b) for R > 0. Tensile energy area depicted in blue, 
compressive energy area depicted in red. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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5. A spring analogy to crack closure using Sopphys 

The physics based energy approach put forward by Alderliesten is 
extended below with a model of the crack closure effect. Fig. 6 shows the 
storable energy in a plate with a crack for two different R values: R < 0 
and R > 0 with in both cases Sopphys > Smin. It is a similar schematic 
stress–strain curve as Fig. 4, but compressive energy is taken into ac
count for negative R. It is assumed that the crack is either fully open or 
fully closed: there is a distinct region with linear elastic stiffness E0 
(crack closed), and a region with linear elastic stiffness E1 (crack open), 
with E1 < E0. 

Consider a uniaxially loaded fatigue plate specimen. It is either 
loaded in tension or compression, or unloaded. With a crack present, it is 
convenient to model the plate as two springs of different stiffness 
working in parallel, with an equal displacement constraint. Fig. 7 pro
vides a schematic view of this model. If the plate has developed a crack, 
the spring system is no longer linear elastic for all S. Below the opening 
stress Sopphys , the total stiffness still equals E0. At the opening stress Sopphys 

the stiffness changes to just E1 (note that the line with slope E1 does not 
start at the origin). The change in stiffness is expressed as EΔ = E0 − E1. 

The cyclic energy, the change in energy during loading, is equal to 
the area under the force–displacement curve f(ε) of the plate, and 
indicated with ΔU: 

ΔU = ΔUtens for R⩾0

=

∫ εmax

εmin

f (ε)dε

ΔU = ΔUcomp + ΔUtens for R < 0

= −

∫ 0

εmin

f (ε)dε +
∫ εmax

0
f (ε)dε

(4) 

More specifically, the cyclic energy ΔU is the sum of the three regions 
or a part thereof, depending on the value of Smin and Sopphys : 

ΔU = ΔUa for Sopphys < Smin⩽Smax

=

∫ εmax

εmin

f (ε)dε

ΔU = ΔUb + ΔUa for 0 < Smin⩽Sopphys

=

∫ εSopphys

εmin

f (ε)dε +
∫ εmax

εSopphys

f (ε)dε

ΔU = ΔUc + ΔUb + ΔUa for Smin⩽0

= −

∫ 0

εmin

f (ε)dε +
∫ εSopphys

0
f (ε)dε +

∫ εmax

εSopphys

f (ε)dε

(5)  

ΔU is the total cyclic energy stored in the plate. The change in stiffness 
during loading results in increased cyclic energy. The energy equivalent 
area approach then obtains a lower Sopphen compared to the linear elastic 
case. Contrary to the ideal bilinear elastic curve outlined earlier, it is 

assumed that the compressive component of the cyclic energy is also 
involved even though the crack is closed during this part of the cycle: 
elastic stresses and reverse plasticity occur around the crack tip, influ
encing crack opening in the next loading phase. 

Furthermore, this physics based approach does not need fitting pa
rameters as used in several closure corrections such as Newman [17,16]. 
The use of FEA to obtain Sopphys values already includes Syield and a/W 
effects. This also reduces the need for fatigue tests to gather phenome
nological fitting data. 

6. Finite element analysis to obtain Sopphys 

In order to find true opening stress Sopphys , and given the difficulties of 
determining it experimentally, a finite element simulation approach was 
chosen. Literature contains many finite element analysis studies inves
tigating crack closure effects. The majority of these are 2D simulations, 
Refs. [49–55,39,47,56], using either plane stress or plane strain condi
tions. Newman [57] notes that since the mid-1980s relatively few 3D 
FEA studies have been undertaken, Refs. [58–61]. Kotousov et al., 
Ref. [62], note that progress in 3D FEA is still well behind that of 2D 
FEA. In nearly all FEA studies, the crack is instantaneously extended at 
maximum load, which corresponds well with measurement data. FEA of 
small crack growth, Ref. [63], might raise questions regarding the mesh 
size in comparison to the plastic zone size, but apart from that, literature 
shows that closure can be modeled well with FEA. The FEA analysis 
discussed below uses instantaneous crack extension at maximum load, 
and simulates a developed crack and plastic zone, in accordance with 
FEA studies in literature. 

A finite element analysis was performed with SIMULIA Abaqus 
software on a CCT plane stress plate under constant amplitude (CA) 
loading. Symmetry conditions apply, therefore only one quarter of the 
plate was simulated. An infinitely stiff beam was used to model contact 
along the crack path. Fig. 8 shows the quarter plate and a detail of the 
mesh around the crack tip. A 2D mesh of quadrilateral element type 
CPS4R was generated, with enhanced hourglassing control for error 
reduction. An FEA mesh study showed that a two times finer mesh 
resulted in similar convergence rates, and similar Sopphys values (< 3%). 
The material was an elastic–plastic model of Al 2024-T3, Ref. [64], of 
which the stress versus engineering strain curve is given in Fig. 9. This is 
a monotonic elastic–plastic curve. A cyclic curve may be used as well 
without changing the validity of the method. Crack opening was defined 
as contact removal between the node pair directly behind the crack tip. 
The starter crack length equals a = 10 mm, on a total plate width of 
160 mm. 

FEA simulations were made at different Smax values over the range 
− 1⩽R⩽1 in steps of 0.05. For each R, the model was run for 24 full 
cycles, with each half cycle divided in 200 equidistant partial loading 
steps. At maximum load of each cycle, a node on the crack center line 
was released to simulate crack propagation of one element distance; 
0.05 mm. Note that the simulation does not try to mimick realistic in
crease of the crack growth rate over a significant part of the crack life, 

Fig. 7. Schematic view of two-spring system analogy of a linear elastic cracked 
plate. Two parallel springs of different stiffness represent the plate stiffness. 
Case (a) shows an open crack: decreased stiffness and one spring is absent 
from model. 

Fig. 8. FEA model of CCT specimen, with detail of mesh. Due to symmetry 
conditions, only one quarter of the plate is modeled; center of plate at the left 
lower corner. Stress S is distributed as a pressure over the plate edge. 
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but rather it tries to obtain the opening stress at a crack length which is 
(nearly) constant. This strenghtens the assumption of constant da/dN 
(equal to one element length), and constant a/W. The initial crack 
length is 10.00 mm, the end crack length is 11.20 mm, giving a final 
crack length over width ratio of a/W = 0.07. Fig. 10 shows details of the 
loading sequence and the node release. 

The instant during the cycle where crack opening occurs is cross- 
referenced with the applied loading curve, to obtain the correspond
ing opening stress value Sopphys . The FEA results showed that for every R 
value, within a few cycles the Sopphys value had already converged to a 
steady state value, and the Sopphys value of the last cycle was taken as the 
steady state value for that particular R value. Fig. 11 shows such 
convergence of the opening stress for R = 0.5: within a few cycles, the 
crack tip plastic zone is well developed and reaches a steady state. This 
plastic zone development is the result of starting the FEA at a crack 
length without any plasticity history from prior cycles. 

Katcher [65], Zhang [66], and Newman [49] mention that releasing 
a node at maximum load is a realistic approach to crack growth simu
lation, and together with Schijve [15] they also suggest that steady state 
opening and closing stresses are generally observed to be quite similar 
which vindicates this approach to find the opening stress to assess 
closure effects. 

The results of the FEA analysis is shown in Fig. 12, for different 
values of Smax. Note that these are Sopphys/Smax values. Four distinct R 
regions are observed in each data set. In region 1 and 2 the values of 
Sopphys/Smax are linear functions of R, but the slopes are different. It is 

hypothesized that the more shallow slope of region 1 is a consequence of 
the force–displacement curve of the plate being influenced more by the 
closure effect at negative R. The compressive energy increases the 
reverse plasticity volume, thereby slightly raising the Sopphys value for the 
subsequent cycles. compared to the trend of region 2. Region 3 shows a 
transition to a crack that never fully closes. The FEA simulation shows 
that crack opening happens increasingly early with increasing R, until 
Sopphys = Smin. This upper limit matches the apparent maximum R limit 
where closure can be experimentally observed (such as R = 0.7 in 
Newman’s data, Ref. [17]). In region 4 (R ⪆ 0.7) the crack stays open 
during the full cycle, and as a result the simulation assumes Sopphys = Smin, 
meaning that the crack opens immediately at the beginning of the cycle. 

Three FEA data sets are shown in Fig. 12. Even though Sop/Smax 

values are normalized with respect to Smax, there is still an obvious Smax 

dependency. In regions 1 and 2 it holds that for a given R, an increase in 
Smax results in a decrease of Sopphys/Smax. This trend becomes stronger for 
smaller R, and is the equivalent of closure corrections moving away 
(down) from the ideal bilinear elastic curve. The increased Smin values 
for a given R result in more compressive stress, which needs to be 
overcome before the crack opens. This provides a physical explanation 

Fig. 9. Stress versus engineering strain curve of Al 2024 T3 material used for 
the opening stress FEA. Curve based on data from [64]. Dots indicate the points 
used in the Abaqus material model, which linearly interpolates inbetw
een them. 

Fig. 10. (a): Schematic view of one cycle in the CA spectrum, indicating the 
200 loading steps per half cycle and when mesh nodes are released to simulate 
crack growth. (b): Schematic mesh around crack tip, with the horizontal crack 
plane shown in red (cracked) and green (uncracked) nodes. 

Fig. 11. FEA convergence of opening stress of Al 2024 T3 plate at Smax = 100 
MPa and R = 0.5 over 24 cycles, a/W = 0.07. Within a few cycles the opening 
stress is already close to the stabilized end level. The Sopphys value of the last 
cycle is used for analysis. 

Fig. 12. FEA results: Sopphys/Smax versus R, plane stress, a/W = 0.07. The four 
bracketed numbers indicate four distinct discernible R regions of each curve. 
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for the observations of Newman [29], as shown in Fig. 3, but now 
explained using FEA. Furthermore, the boundary between region 1 and 
2 is observed to stay around R = 0 for all cases as compressive stress only 
becomes significant for R < 0. The slope of region 1 slightly increases at 
larger Smax, lowering the aforementioned Sopphys/Smax values. Increasing 
Smax also increases the R value at which the crack stays permanently 
open (boundary between region 3 and 4). 

It should not be attempted to directly compare the FEA opening 
stress results with other closure corrections from literature, as 
Sopphys ∕= Sopphen . Assuming that the FEA results are representative of real 
fatigue tests, ΔU values for each point can be obtained by determining 
the area under the actual force–displacement graph for each corre
sponding Smax and R value. As explained earlier, the force displacement 
curve is modeled as bilinear, with a change of slope at S = Sopphys . The 
energy equivalent area analogy then reworks the Sopphys based ΔU values 
into Sopphen/Smax values, which are shown in Fig. 13. Note how these 
reworked FEA results closely follow the known closure correction 
trends, and the obtained values are mainly within the spread of various 
published closure corrections. This implies that the Sopphen values found 
by the known crack closure corrections are a good measure of the 
equivalent area, but do not constitute the physical opening stress Sopphys . 

Another observation from the FEA is also seen in literature for 
different metals and alloys: the R dependency of the effective stress in
tensity factor ratio. This ratio is defined as: 

USIF =
ΔKeff

ΔK
(6)  

Maljaars et al. [68] have compiled several equations of USIF for steel and 
aluminum from literature, Refs. [23,69,24,22,70,3,71], including the 
respective valid R ranges. Fig. 14 shows (a), a comparison of the effec
tive SIF ratio USIF for steel reproduced from Ref. [68], and (b), the 
calculated effective SIF ratio for aluminum 2024-T3 from the FEA data. 
The trend for the curves is similar, even though the absolute values 
differ, likely due to the different material parameters considered, such as 
Syield and E. The flat section of USIF = 1 near R = 1 is correctly predicted 
by FEA, showing R values for which the crack is permanently open 
(Smin > Sopphys ). 

7. Closure corrections and the finite width correction 

Fatigue specimens have a finite width, contrary to most theoretical 

models, including crack closure models. The finite width causes the 
crack growth to increase faster compared to the theoretical ideal infinite 
plate case. As the crack grows in a finite width plate, the remaining 
cross-section decreases, causing the net-section stress over the crack 
plane to increase. This effect is usually accounted for in ΔKeff , Eq. (1), by 
a finite width correction β. There are various analytical expressions for 
β, often as a function of a and W; the Feddersen equation Ref. [72] is well 
known. Similar to the closure corrections it holds that these equations 
can be excellent approximations (of experimental data) but they do not 
describe the underlying physics. The finite width correction β follows 
from the change in specimen compliance due to reduced stiffness 
resulting from the decreasing cross-section. Zhao et al. [73,74] and 
Alderliesten [75] describe this effect from a physics standpoint in the 
non-isotropic composite material GLARE, but it holds for isotropic ma
terials as well since it is a consequence of the geometry, not the material. 

Crack closure is a local phenomenon around the crack tip, and is 
related to the local stress state and amount of crack tip plasticity. In a 
finite width specimen, this local stress increases related to the global 
specimen compliance, for reasons explained above. For a given R and 
Smax, crack closure is thus affected by the ratio a/W. During crack growth 
a/W and β increase, leading to increased stress around the crack tip, 
which results in the value of Sopphen/Smax decreasing. This movement of 
the closure correction is schematically shown in Fig. 15. It appears that 
closure corrections from literature implicitly assume Sopphen ∕= f(a), 
likely because the effect is small for positive R values. The R range of the 
original closure correction by Elber [10] (Fig. 1) contains mostly posi
tive R values, and presumably the crack length dependency therefore 
went unnoticed. The spread in closure corrections from literature 
mentioned earlier can be partly explained by different a/W ratios in the 
measurements. Since these a/W ratios are not reported, it is difficult to 
assess the extent of the finite width effect on known closure corrections 
from literature. To properly observe crack closure by experimental 
methods such as COD, it is beneficial to have a sufficiently large crack 
length a and a corresponding large change in specimen compliance upon 
loading (large da/dN). Because the finite width effect acts on local 
phenomena such as crack closure, it is therefore not the cause of the 
difference between Sopphen/Smax and Sopphys/Smax which are based on global 
parameters. It does mean that both Sopphen/Smax and Sopphys/Smax are f(R,
Smax,Syield,a/W). The FEA approach of finding Sopphys already contains the 
a/W dependency, removing the need for phenomenological fitting and 
correction parameters in the proposed model. 

8. Variable amplitude crack growth prediction with energy 
based closure correction for ΔKeff 

Many models for variable amplitude (VA) fatigue prediction make 
use of the ΔKeff Eq. (1): crack closure models and strip yield models such 
as ONERA [76], CORPUS [77,78], PREFFAS [79], NASGRO [12], and 
Refs. [80–83], based on Dugdale’s original work regarding strip yield 
models, Ref. [84]. In this section it is shown that the energy based 
closure correction may be used to obtain more accurate values for Sopphen 

from Sopphys , on a cycle-to-cycle basis, compared to strip yield models. 
A typical VA model would predict the Sopphen value for each load cycle, 

taking into account a certain amount of the spectrum history. Schijve 
[15] states that strip yield models are superior to other types of (global 
stress based) crack closure models, since the crack geometry around the 
crack tip is directly modeled. This statement corresponds with the idea 
that a strip yield model should be based on Sopphys , Fig. 12, rather than on 
Sopphen , Fig. 13. However, Matias et al. [85] evaluated the strip yield 
model of NASGRO [12] for various aircraft loading spectra (VA), and 
reported that it correlates reasonably only for negative R ratios. Note 
that for a given Smax, positive R values affect the tensile energy terms 
ΔUa and ΔUb of Eq. (5) which are dependent on Sopphys , while negative R 
values affect only the compressive energy term ΔUc where the crack is 

Fig. 13. Energy equivalent approach results from FEA output. The Sopphys
/Smax 

data from Fig. 12 is reworked to Sopphen/Smax versus R. Three Smax cases at a/W =

0.07 are shown. While Sopphen
/Smax is assumed to correct for an Smax dependency, 

there is still a clear Smax dependency, most pronounced at negative R. 
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closed. The energy approach outlined earlier can therefore be a more 
suitable candidate for fatigue modeling at any R: it works over the full R 
range unlike several closure corrections and strip yield methods, and it 
does not need scaling or fitting parameters as the energy based physics 
approach is used to obtain Sopphys and Sopphen . It is thereby also applicable 
for VA spectrum modeling. We will now discuss the qualitative example 
of an overload in a CA spectrum introducing crack growth retardation. 

Consider a cracked plate loaded with a CA fatigue spectrum at a 
small positive R with a single overload. A schematic view of the force
–displacement curves of the plate at various cycles during the spectrum 
is given in Fig. 16. The cyclic energy ΔU during the few CA cycles just 
before the overload can be considered essentially constant. When the 
single overload cycle occurs, the increase in Smax increases ΔU. It also 
raises the amount of plasticity and therefore Sopphys = f(Smin, Smax)

significantly. While for subsequent cycles the Smax value has returned to 
the CA spectrum level, the crack needs to grow through the enlarged 
plastic zone generated by the overload, which slowly lowers Sopphys from 
the elevated level back to its original level. Our method correctly pre
dicts this behavior from the physical Sopphys instead of the phenomeno
logical Sopphen . 

Refs. [86,15] report that the opening stress Sopphen indeed changes 
after an overload. Fig. 17 is reproduced from Ref. [86]. From the energy 
equivalent area approach it follows that Sopphys will have a similar 
behavior. It proves that our theoretical model of the effect of an overload 
on a CA spectrum is in agreement with what is reported in literature, 
such as results from COD measurements. 

In a truly random VA spectrum, every half cycle sees a new (Smin,

Smax) pair. Sopphys and ΔU change virtually every half cycle, but a steady 
state is never reached during each half cycle. This means that the Sopphys 

and ΔU are continuously chasing a non-existing CA equilibrium which 
changes each half cycle. The history of many consecutive cycles (ideally 
all previous cycles), needs to be taken into account to properly model the 
behavior of Sopphys , ΔU, plasticity, and da/dN, in order to understand and 
predict VA fatigue crack growth. Amsterdam [87] describes a method 
that uses a maximum reference stress different from Smax to account for 
VA spectra and pivot points. Pivot points connect multiple power law 
exponents at different crack length ranges of a Paris type crack growth 
curve. The altering of the maximum stress results in better power law 
curve fitting of the crack growth rate, but implicitly leaves Sopphys unaf
fected. Applying the method proposed here, i.e. calculating Sopphys for 
each half cycle, would give a similar outcome to the Amsterdam 
approach, as it would affect the ΔSeff used in the ΔKeff equation. Our 
method therefore gives a physical explanation for the ΔKeff value used in 
the Amsterdam approach. 

The shortcomings of the closure corrections and the inconsistency 
between plasticity effects and the LEFM ΔKeff approach suggest that an 
energy based approach (Sopphys , the elastic spring model, and the energy 
equivalent area approach) is an improvement over existing methods to 
properly include closure and plasticity effects. It results in more accurate 
descriptions of Smax, Sopphys , and a/W effects on the crack growth 
behavior, which can improve modeling accuracy for CA and VA fatigue. 
VA fatigue modeling will likely still require a cycle-by-cycle prediction 
method to include the (full) loading history effects on Sopphys . 

This new physics based approach is more realistic than existing 
closure models, as it is based on the true opening stress. It may be the 
way forward to increase prediction and modeling accuracy for both CA 
and VA fatigue crack growth cases. 

9. Conclusions 

Ample fatigue crack growth closure corrections exist which result in 
opening stress Sop values used in the ΔKeff approach. Literature shows 
that these corrections still do not fully account for closure effects, and 

Fig. 14. Comparison of effective SIF ratios for plane stress. (a) Reproduced from [68], showing data for steel and aluminum from [23,69,24,22,70,3,71]. (b) 
Reworked FEA results for the same R range for aluminum 2024-T3. Both show a flat section near R = 1, meaning that the crack is permanently open. 

Fig. 15. Illustration of the effect of finite width on crack closure. The finite 
width of a specimen increases the crack growth rate due to increased net- 
section stress on the remaining crack plane cross-section. As a result, crack 
tip plasticity increases too, lowering Sopphen/Smax. For a given Smax, the crack 
closure correction moves down as the crack progresses. 
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that they have a large spread. This led to the hypothesis that there are 
two distinct Sop values: Sopphen used in the ΔKeff approach, and Sopphys 

which is the true crack opening stress. The subsequent investigation has 
shown that this is true, and resulted in the following conclusions:  

1. Many known closure corrections, Refs. [10,15,17,16] result in 
different corrections for the same phenomenon, for unknown rea
sons. Our research suggests that existing closure corrections do not 
properly take into account the physical opening stress Sopphys .  

2. The same known closure corrections, Refs. [10,15,17,16], contain 
empirically determined correction factors, and different corrections 
result in different Sop/Smax values based on Sopphen for the same load 
cycle. Our results suggest that these observations may be explained 
by a failure to correctly account for the effect of Smax and a/W on the 
physical opening stress Sopphys . Thus the corresponding Sopphen needs to 
be corrected to make up for this. 

By applying the equivalent energy approach, Ref. [48], a value of 
Sopphen can be determined based on the correct Sopphys , as found via FEA. 
The Sopphen values found in this way matches the Sopphen found via 
previously known correction methods, but without relying on 
empirical correction factors. Thus our new method is more physi
cally realistic, and potentially requires less experimental calibration 
than existing methods.  

3. FEA shows that Sopphys follows four distinct regions over the full R 
range. From low to high R, these are: tensile-compressive loading 
with closure, tensile-tensile loading with closure, transition to an 
always open crack, and an always open crack. In the last case, it can 
be assumed that Sopphys = Smin. Using the energy equivalent area 
analogy to obtain Sopphen values for the full R range, the FEA results 
show close agreement with known correction curves, especially for 
R⩾0. This confirms that Sopphen in Sopphen/Smax is not the true opening 
stress.  

4. FEA confirmed that it at least holds that Sopphys = f(R, Smax) and that 
the derived Sopphen/Smax = f(R, Smax) too. 

During crack growth, the local net-section stress in the crack plane 

Fig. 16. Schematic view of ΔU (top) during a CA spectrum (bottom) with a single overload. Four specific cycles in the spectrum are shown, from left to right: a CA 
spectrum before an overload, a single overload, the first CA cycle after overload, a CA cycle many cycles after the overload. 

Fig. 17. CA spectrum with a single overload, associated crack growth retar
dation, and associated Sopphen 

measured with a COD technique. 
Figure reproduced from Schijve [86]. 
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increases due to the finite width effect. This does not affect Smax, but 
it does affect the local phenomenon which is crack closure. During 
crack growth at constant R and Smax, the Sopphen/Smax or Sopphys/Smax 

values slowly decrease because of the decreasing cross-section area. 
This dependency on a/W is not mentioned in literature, but may 
partly explain the spread of closure corrections. 

Furthermore, several closure corrections include a fitting param
eter to match measurement data, which tends to be dependent on R. 
In literature it is noted that Sopphen also depends on the ratio between 
Smax and σ0, where σ0 is related to Syield. 

These observations combined suggest that Sopphen = f(R, Smax, Syield,

a/W) and Sopphys = f(R,Smax,Syield,a/W). 

Inclusion of the energy approach into the ΔKeff equation may 
improve the accuracy over known models. Sopphys might be found through 
FEA or strip yield models. For VA fatigue a cycle-by-cycle integration of 
the loading history might still be necessary to keep track of changes in 
Sopphys and subsequent Sopphen . 
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