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SUMMARY

The backward/forward-facing step (BFS/FFS) is one of the canonical geometries in
aerospace engineering applications, the flow field over which has attracted extensive
attention in the past decades. In a supersonic flow, laminar-to-turbulent transition and
shock wave/boundary layer interaction (SWBLI) can occur over these configurations,
which considerably affect the performance of aircraft, through, for example, an increase
of flight drag and intense localized mechanical loads. In this thesis, a numerical study
is carried out to scrutinize the dynamics of a supersonic flow over a backward/forward-
facing step at M a = 1.7 and Reδ0 = 13718 using well-resolved large eddy simulations
(LES). For the transition aspect, our objective is to determine the transition path and
the roles of the instabilities involved in this process. Considering the topic of SWBLI, the
main objective is to scrutinize the various unsteady phenomena observed in SWBLI and,
in particular, identify the origin of the low-frequency unsteadiness.

The first part of the thesis concerns the dynamics of BFS flows by analyzing four
cases, differing in the character of the upstream flow conditions imposed at the inlet
of the computational domain: including a fully laminar case, two perturbed laminar
cases with low- and high-amplitude oblique Tollmien-Schlichting (T-S) waves, and a
turbulent case. The results from the fully laminar case indicate that the boundary layer
transition is initiated by a Kelvin-Helmholtz (K-H) instability of the separated shear
layer, followed by secondary modal instabilities of the K-H vortices, leading toΛ-shaped
vortices, hair-pin vortices and finally to a fully turbulent state. Imposed with low-
amplitude T-S waves at the inlet, the transition follows a similar path as the fully laminar
case although the linear growth of the oblique T-S waves is the prevailing instability
upstream of the step and they also act as the primary mode via a quasi-linear growth
within a short distance behind the step. In contrast, the case with high-amplitude T-S
waves shows a rapid transition due to the high initial disturbance level such that the
nonlinear interactions already occur upstream of the step, before the K-H instability
could get involved. Overall, these three cases all follow a modal transition road, excited
by a T-S or K-H instability. Together with the turbulent case, they all feature a broadband
range of low-frequency unsteady phenomena in the SWBLI system, including vortex
shedding in the shear layer, the flapping motion of the shock and the breathing of the
separation bubble. The spectral analysis reveals that the low-frequency behavior of
the system is related to the interaction between shock wave and separated shear layer,
while the medium-frequency motions are associated with the shedding of shear-layer
vortices. The dynamic mode decomposition (DMD) suggests that Görtler-like vortices,
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vi SUMMARY

which are induced by the centrifugal forces originating from the strong curvature of the
streamlines in the reattachment region, are strongly correlated with the low-frequency
unsteadiness. The comparison with the fully laminar case provides evidence that these
unsteady counter-rotating vortices are also affected by fluctuations in the incoming
boundary layer.

The second part of the thesis presents the similar investigation in FFS flows con-
sidering again four cases, covering a fully laminar case, two perturbed cases with
low- and high-amplitude oblique T-S waves, and a turbulent case. All laminar cases
follows a classic modal transition path, in which the transition is initiated by the growth
of the oblique T-S waves, followed by the generation of spanwise vorticity, induced
near-wall Λ-shaped vortices and finally turbulent spots with small hairpin vortices of
different spatial scales. Similar with the BFS flows, all the FFS cases feature unsteady
SWBLI with various spatial and temporal scales. Among the broadband frequencies,
the low-frequency contents are relevant to the oscillation of the shock wave and the
expansion/shrinking of the separation bubble, while the medium-frequency motions
involve the vortex shedding in the shear layer. Similarly, the centrifugal forces and
induced Görtler vortices are the main driving mechanism for the global low-frequency
unsteadiness in the turbulent FFS case.



SAMENVATTING

De achterwaarts/voorwaarts gerichte trede (BFS/FFS) is een van de canonieke geome-
trieën in de lucht-en ruimtevaarttechniek en het stroming veld waaraan veel aandacht
is geschonken in de afgelopen decennia. In een supersonische stroming kan bij
deze configuraties een laminair naar turbulente overgang en een schokgolf/grenslaag
interactie (SWBLI) optreden. Deze kunnen leiden tot aanzienlijk gevaarlijke effecten op
de prestaties van vliegtuigen, zoals een toename in luchtweerstand en zeer hoge lokale
mechanische belastingen. In dit proefschrift wordt, met behulp van een goed opgeloste
grote wervel simulatie (LES), een numerieke studie uitgevoerd om de dynamiek van de
supersonische stroming over een achterwaarts/voorwaarts gerichte trede bij M a = 1.7
and Reδ0 = 13718 te onderzoeken. Voor het transitie-aspect is ons doel het bepalen
van het transitie pad en het identificeren van de verschillende rollen van de betrokken
instabiliteiten in dit proces. Het belangrijkste doel is om de verschillende instabiele
verschijnselen die in de SWBLI zijn waargenomen nauwkeurig te onderzoeken en, in
het bijzonder, om de oorsprong van de lage-frequentie instabiliteit te identificeren.

Het eerste deel van het proefschrift onderzoekt de dynamiek van de BFS-stroming
door vier gevallen te analyseren die verschillen in de opwaartse stromings omstandig-
heden. De verschillende gevallen die worden opgelegd aan de inlaat van het computer-
domein zijn: een volledig laminair geval, twee verstoorde laminaire gevallen met lage en
hoge-amplitude schuine Tollmien-Schlichting (T-S) golven, en een turbulent geval. De
resultaten van het volledig laminaire geval geven aan dat de transitie van de grenslaag
wordt geïnitieerd door een Kelvin-Helmholtz (K-H) instabiliteit van de gescheiden
schuiflaag, gevolgd door secundaire modale instabiliteit van de K-H wervelingen, wat
leidt tot Λ-vormige wervelingen, haarspeld wervelingen en uiteindelijk tot een volledig
turbulente toestand. Wanneer bij de inlaat T-S golven met lage amplitude worden opge-
legd, volgt de transitie hetzelfde pad dan het deed in het volledig laminaire geval, hoewel
de lineaire groei van de schuine T-S golven de heersende instabiliteit stroomopwaarts
van de trede is. Daarnaast fungeren ze ook als de primaire modus via een quasi-lineaire
groei op korte afstand achter de trede. Daarentegen vertoont het geval met T-S golven
met hoge amplitude een snelle transitie vanwege het hoge initiële verstoringsniveau,
zodat de niet-lineaire interacties al stroomopwaarts van de trede plaatsvinden, voordat
de K-H instabiliteit erbij betrokken zou kunnen raken. Over het algemeen volgen deze
drie gevallen allemaal een modale transitie, geïnitieerd door een instabiliteit van de T-
S of K-H. Samen met het turbulente geval vertonen ze allemaal een breedband bereik
van lage frequentie, instabiele verschijnselen in het SWBLI-systeem, waaronder vortex
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afscheiding in de afschuiflaag, de flapperende beweging van de schok en de ademhaling
van de scheidingsbel. De spectrale analyse laat zien dat het laagfrequente gedrag van
het systeem gerelateerd is aan de interactie tussen de schokgolf en de afzonderlijke
afschuiflaag, terwijl de middenfrequente bewegingen geassocieerd zijn met het afstoten
van de afschuiflaag wervelingen. De dynamische modus ontleding (DMD) suggereert
dat Görtler-achtige wervelingen, die worden veroorzaakt door de middelpuntvliedende
krachten die voortkomen uit de sterke kromming van de stroomlijnen in het herbeves-
tigingsgebied, sterk verband houden met de lage frequentie instabiliteit. De vergelijking
met het vergelijkbare, maar puur laminair geval, levert het bewijs dat deze onstabiele,
tegengesteld draaiende wervelingen ook worden beïnvloed door schommelingen in de
binnenkomende grenslaag.

Het tweede deel van het proefschrift presenteert een soortgelijk onderzoek in FFS-
stromingen, waarbij opnieuw vier gevallen worden behandeld, een volledig laminair
geval, twee verstoorde gevallen met respectievelijk lage en hoge amplitude schuine T-
S golven en een turbulent geval. Alle laminaire gevallen volgen een klassiek modaal
transitie pad, waarbij de transitie wordt geïnitieerd door de groei van de schuine T-
S golven, gevolgd door de opwekking van spanwijdte-wervelingen, geïnduceerde Λ-
vormige wervelingen in de buurt van de wand en tenslotte turbulente plekken met
kleine haarspeld-wervelingen van verschillende ruimtelijke schalen. Net als bij de BFS-
stromingen, bevatten alle FFS-gevallen instabiele SWBLI met verschillende ruimtelijke
schalen en tijd schalen. Onder de breedbandfrequenties is de lage frequentie inhoud
relevant voor de oscillatie van de schokgolf en het uitzetten/krimpen van de scheidings-
bel, terwijl de midden frequentie bewegingen de werveling in de afschuiflaag met zich
meebrengen. Evenzo zijn de middelpuntvliedende krachten en geïnduceerde Görtler-
wervelingen het belangrijkste aandrijfmechanisme voor de globale lage frequentie in-
stabiliteit in het turbulente FFS-geval.



NOMENCLATURE

LATIN SYMBOLS

A area of the separation bubble or amplitude

c chord length of an airfoil

cph phase velocity

C f skin friction

E total energy

f frequency

G filter kernel

Gt Görtler number

H shape factor

h step height

I integral length scale or fluctuation intensity

l Blasius length

Lr reattachment/separation length

M a Mach number

p pressure

Pr Prandtl number

q heat flux or a general scalar

R specific gas constant or curvature radius

Ri j correlation coefficient between two signals

Re Reynolds number

S vortex stretching term

St Strouhal number

T temperature or vortex tilting term
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x NOMENCLATURE

t time

u streamwise velocity

u∞ free stream velocity

v wall-normal velocity

w spanwise velocity

x streamwise coordinate

xl shock location

xr reattachment location

xs separation location

y wall-normal coordinate

z spanwise coordinate

GREEK SYMBOLS

αi streamwise growth rate

αr streamwise wavenumber

βi spanwise growth rate

βr spanwise wavenumber

δ boundary layer thickness

δ∗ displacement thickness

δi j Kronecker delta function

εi j k Levi-Civita symbol

η shock angle

γ specific heat ratio

κ thermal conductivity

λ wavelength or spatial spacing

µ dynamic viscosity or eigenvalue

ν kinematic viscosity

ω vorticity or angular frequency

ωi temporal growth rate

ωr angular frequency

φ mode from dynamic mode decomposition

ρ density

σ population standard deviation

τi j viscous stress tensor



NOMENCLATURE xi

θ momentum thickness or wave/phase angle

SUBSCRIPTS/SUPERSCRIPTS

0 inlet or stagnation parameters

∞ free stream parameters

τ based on wall friction velocity

l based on Blasius length

h based on step height

δ based on inlet boundary layer thickness

r based on the separation length Lr or real part

i imaginary part

ref reference value

w property at the wall

ACRONYMS

ALDM adaptive local deconvolution method

BFS backward-facing step

CFD computational fluid dynamics

CFL Courant-Friedrichs-Lewy (number)

DF digital filter

DMD dynamic mode decomposition

DNS direct numerical simulation

FFS forward-facing step

FST free stream turbulence

FWPSD frequency weighted power spectral density

ILES implicit large eddy simulation

K-H Kelvin-Helmholtz

LES large eddy simulation

LST linear stability theory

N-S Navier-Stokes

NPLS nano-tracer-based planar laser scattering

O-S Orr-Sommerfeld

PIV particle image velocimetry

PLS planar laser scattering



xii NOMENCLATURE

PME Prandtl-Meyer expansion

PSE parabolized stability equations

RANS Reynolds-averaged Navier-Stokes

RMS root mean square

SGS subgrid scale

SPDMD sparsity-promoting dynamic mode decomposition

SVD singular-value decomposition

SWBLI shock wave/boundary layer interaction

T-S Tollmien-Schlichting

TVD total variation diminishing

WENO weighted essentially non-oscillatory

OTHER SYMBOLS

∗ convolution

·̄ spatially filtered quantity

·′ fluctuation

〈·〉 mean value or steady value

d·e ceiling function

∇ Nabla symbol∑
summation

× curl operator

·̃ numerical (discrete) approximation

·̌ analytical (continuous) approximation

E enstrophy

G general error or residual

P power spectral density

ℜ real part

ℑ imaginary part
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1
INTRODUCTION

Having a broad reading but only to absorb concisely.
Reserving a large accumulation but only to exploit prudently.

博观而约取，厚积而薄发

Su-Shi
苏轼
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2 1. INTRODUCTION

1.1. BACKGROUND
Nowadays, green aviation has become an active topic and a general consensus of the
entire aerospace community [1]. In order to achieve the goals of green aviation, i.e.,
pursuing reductions in noise, greenhouse gas emissions and specific fuel consumption,
alongside the safety requirements, the configuration of aircraft must undergo effective
aerodynamic optimization. Real aircraft, however, inevitably have geometry imperfec-
tions, such as the window frame of cockpits, skin joints of fuselage and inlets of the
propulsion system, that significantly degrade the aerodynamic vehicle performance.
The backward/forward-facing step (BFS/FFS) geometry can be seen as a canonical
configuration that represents an abstraction of these aerospace applications. This
geometry may accelerate the transition from laminar to turbulent flow (figure 1.1), which
results in an increase of flight drag, aerodynamic noise, and unsteady pressure loads
[2]. In addition, for high-speed flight applications, designing for space launchers and
supersonic transport in the near future, shock wave/boundary layer interaction (SWBLI)
can occur over these configurations due to the flow deflection. Figure 1.2 provides an
instantaneous visualization of SWBLI on a generic space launcher. The unsteady effects
caused by SWBLI can induce intense localized mechanical and thermal loads, possibly
leading to the failure of material and structural integrity [3].

Wall-normal
Pressure
Gradient

Figure 1.1: Schematic of the laminar-to-turbulent transition over an airfoil with (a) a smooth suction surface
and (b) a backward-facing step [4].

The first concern of the flow dynamics over a BFS/FFS is the transition from laminar
to turbulent flow. The first illustration of laminar-to-turbulent transition is traditionally
attributed to an early well-known experiment of Reynolds [6] in 1883. He demonstrated
a switch of the flow state from a smooth layered condition (laminar flow) to a chaotic
mixing state (turbulent flow) using a pipe flow with a dyed water jet injected into
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1

3

(a) (b)

Figure 1.2: Instantaneous streamwise velocity contours (a) on the symmetry plane and (b) cross sections at
several streamwise locations [5].

its center. A dimensionless governing parameter, named the Reynolds number and
representing the ratio of inertial forces to viscous forces, was proposed to estimate the
state of the flow. If the Reynolds number is above a (flow-configuration dependent)
critical value, the flow is assumed to become turbulent. Since then the laminar-to-
turbulent transition has been one of the most important and challenging topics in the
research area of fluid mechanics. Particularly, the boundary layer transition over a
wall-bounded surface is of utmost relevance. It is known that transition is governed
by various instabilities of the laminar boundary layer excited by external disturbances,
such as free stream disturbances, pressure gradient, surface roughness and curvature
[7]. An early review of the fundamental transition mechanism was given by Tani [8],
mainly based on experimental evidence from the low-speed regime. Later, Reshotko [7]
gave a comprehensive review of the stability and laminar-to-turbulent boundary layer
transition in high speed flows. Due to the different instabilities that may be involved,
the boundary layer transition can display various paths to turbulence, for instance a
natural transition caused by Tollmien-Schlichting (T-S) instability. A recent review by
Fedorov [9] indicated that low- and high-speed boundary layers share similar transition
paths although essential characteristics may be different in this process. The paths to
turbulence and corresponding instabilities will be discussed in the following section.

Shock wave/boundary layer interaction is our second and related research subject.
Generally, when a shock wave and a boundary layer interact, the boundary layer may
undergo deformation, separation and reattachment due to the adverse pressure gradient
imposed by the shock, while the shock wave foot bifurcates close to the boundary
layer, such that its interaction with the solid surface is different from the inviscid
case. The experiments of an airfoil in a high-speed wind tunnel by Ferri [10] probably
constitute the first report about SWBLI. Later, extensive experimental studies were
carried out, mainly on airfoils or other curved surfaces in the transonic regime [11]. They
emphasized the effects of SWBLI on shock wave pattern and pressure distribution, which
are particularly relevant to the state of the incoming boundary layer. Due to the existing
streamwise pressure gradient over the curved geometry and partial supersonic region
in these cases, however, the characteristics of SWBLI are difficult to be investigated
independently and systematically [12]. Thereafter, numerous experimental works put
efforts on several canonical two-dimensional configurations, including an impinging
shock over a flat plate, a compression ramp, BFS and FFS configurations, in a fully su-
personic flow. There are several crucial parameters reported to have significant impacts
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on SWBLI, among which the effects of Mach number, Reynolds number, shock intensity
and incoming boundary layer state have been studied in a series of early experiments
by Gadd et al. [13]. Later, the typical structures of SWBLI in various configurations
were reviewed by Green [14], mainly based on experimental results. In addition, they
also concluded several basic analytical methods, which can provide an approximate
prediction of the interaction properties in various forms, like free interaction theory,
boundary layer integral and inviscid shear layer analysis. More recently, remarkable
improvements of modern numerical tools and advanced flow measurement techniques
have been achieved which allowed a more complete understanding of SWBLI to be
obtained. Considering simplified two-dimensional interaction geometries in moderate
supersonic flow conditions, the particular topics of interest involve the mechanisms
of low-frequency unsteadiness and the application of flow control techniques [15]. A
sound knowledge of physical mechanisms in SWBLI, especially supported by a well-
resolved computational fluid dynamics (CFD) analysis, is the cornerstone for developing
effective control methods. Extensive contributions have been made to enhance the
understanding of this phenomenology and main conclusions obtained are detailed in
the following section.

For a better aerodynamic performance of aircraft, the effects of the laminar-to-
turbulent transition and SWBLI caused by surface imperfections must be assessed. From
the perspective of geometrical simplicity, BFS/FFS are appealing prototypes for investi-
gating the transition from laminar to turbulent flow without artificial disturbances in
the non-parallel open flow [16, 17], and also for studying shock wave/boundary layer
interaction (SWBLI) in the supersonic regime [18]. This forms the motivation to study
these configurations in this thesis.

1.2. BASICS OF LAMINAR-TO-TURBULENT TRANSITION
This section provides a brief review of the current state of knowledge about the boundary
layer transition in general, including the paths to turbulence and commonly used
analytical tools. Special attention is then given to the state of the art work in laminar-
turbulent transition over a BFS/FFS, especially in the supersonic regime.

1.2.1. CANONICAL TRANSITION PATHS

The boundary layer transition is a multifold process, which can take various paths
depending on the type of external disturbances and flow configuration involved. Gen-
erally, the overall process of boundary layer transition can be divided into three main
stages: the receptivity to the external disturbances, the gradual increase of the initial
disturbances by linear/transient growth of the perturbations or a bypass process, and
finally the breakdown to turbulence caused by nonlinear effects [19]. According to the
specific road, five main paths of transition were identified by Morkovin [20], as shown in
figure 1.3.

For the low levels of external disturbances (u′/u∞ < 0.1%), the transition path usually
consists of excitation, exponential growth of the primary instability, evolution of the
second modes, mode breakdown to turbulence (path A). The first mode can be Tollmien-
Schlichting (T-S) waves [21], cross-flow instability [22], Kelvin-Helmholtz (K-H) instabil-
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Figure 1.3: Roadmap of the boundary layer transition to turbulence [20].

ity [23], centrifugal instability [24], etc., depending mostly on the configuration of the
underlying “base flow". The growth of weak disturbances is initially governed by linear
equations, which predict an exponential growth or decay of the perturbation amplitude,
and followed by a nonlinear rapid growth to a certain level until three-dimensional
interactions become significant. The resulting secondary perturbations quickly develop
and break down to turbulence. This scenario is generally the appropriate road if the
laminar-to-turbulent transition occurs over relatively smooth surfaces in a quiescent
environment, like airfoils in a flight free-stream environment [25].

For higher initial amplitudes of disturbances, the transition scenario follows path B,
the transient growth will be dominant at the initial stage. Several eigenmodes are then
excited by disturbances with a higher amplitude, which may result in algebraic growth
and the rapid onset of nonlinear interactions. In the spatial growth theory, transient
growth is the optimal path for amplifying stationary streamwise disturbances, which
is a consequence of the non-orthogonality of the eigenvectors and usually features
an algebraic growth rate [26]. In contrast, linear growth, which usually refers to the
exponential growth of the primary mode, is largest for travelling transverse disturbances
at low speed and travelling oblique waves in a supersonic flow. There is no clear ex-
planation of the coupling between streamwise and transverse disturbances in different
stages. In addition, transient growth may induce spanwise differential amplification of
two-dimensional waves in the mean flow [27]. In this process, alternating high and low
levels of fluctuations are likely to be observed along the spanwise direction [28].
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When the linear growth of eigenmodes is absent, the transient growth prevails the
transition until secondary mechanisms are excited (path C). This transient growth is
the most salient mechanism of various examples for non-modal transition [27]. For
instance, the boundary layer transition over blunt geometry does not involve the growth
of modal instability because the fist mode is stable, decayed or less important. This
case is known as blunt-body paradox and has been investigated widely in the previous
numerical works [27]. The subcritical transition over a flat plate also follows this path.
Andersson et al. [29] proposed a semi-empirical model that predicts the transition
location based on the intensity of free stream turbulence (FST) in a framework of
transient growth. Reshotko and Tumin [30] indicated that surface roughness plays an
important role in this transition path and modified this model by considering the effects
of surface roughness using a spatial transient growth theory. Paredes et al. [31] further
improved this model by including curvature effects such that it can remain valid for other
geometries, like hemispherical nose tips.

If the resulting amplitude of environmental disturbances by transient growth is
larger, the boundary layer may enter a state where the spectra of fluctuations are similar
to a turbulent one although the mean flow is still more or less laminar. In the late stage
of path D, the turbulence intensity becomes stronger with the streamwise distance [32].
The transition path D is widely found in internal flows with an elevated turbulence level
[33].

If the amplitude of forcing disturbances is sufficiently large, the growth of eigen-
modes may be bypassed altogether. In this case, the boundary layer turbulence rapidly
develops with the emergence of the turbulent spots or subcritical instabilities. This
transition path E usually occurs when large roughness and high free stream turbulence
(u′/u∞ > 10%) are present [34].

1.2.2. MODAL TRANSITION

Modal transition is a classic transition path initiated by the growth of eigenmodes at
low levels of environmental disturbances (path A, B, C in figure 1.3), which occurs on
various flow configurations, like Blasius boundary layer, BFS and FFS, etc. For different
flow conditions and geometry, however, the dominant unstable mode and the specific
transition road could be very different. Correspondingly, different numerical tools are
required for the analysis of flow instabilities.

If the prevailing primary mechanism is the T-S instability, the corresponding tran-
sition process is referred to as the natural transition, which usually occurs on smooth
surfaces at low-turbulence free stream conditions. In this regime, the transition process
is initiated by the linear growth of unstable T-S waves, followed by the occurrence
of weakly and strongly nonlinear effects, and finally breakdown into turbulence, as
illustrated in figure 1.4. In the early linear growth stage, small random disturbances
are damped with the evolution of the transitional boundary layer along the streamwise
direction and their interactions with T-S waves usually can be neglected. The T-S
instability is one of the streamwise instabilities and also called viscous instability since
the boundary layer is stable in the restriction of inviscid flows [25].

For subsonic flow, up to M a ≈ 0.7, the least-stable T-S waves remain as two-
dimensional (spanwise wavenumber equals to zero) [36]. In the transonic and low
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Figure 1.4: Schematic of natural boundary layer transition over a flat plate at zero incidence [35].

supersonic regime, the three-dimensional oblique T-S waves are more unstable than the
two-dimensional waves. Mayer et al. [37] numerically confirmed that oblique waves
can individually induce a fully turbulent boundary layer in a supersonic flow. The
nonlinear process begins with a rapid (transient) growth of the primary modes caused
by the interaction of a pair of oblique waves, leading to the generation of streamwise
vorticity [38]. At much higher Mach numbers, M a∞ ≥ 4.0, there are second and higher
modes coexisting within the boundary layer [21]. These modes represent the inviscid
instabilities related to trapped acoustic waves and may be the most unstable modes
during the transition. Linear stability theory (LST) is widely used to identify these
unstable modes and predicts their growth in the early linear stage of the transition
process, the details of which are provided in section 2.2.1 of chapter 2. Reed et al.
[25] provided a comprehensive review of the application of LST for the boundary layer
stability analysis. In the present study, LST is used to calculate the least-stable modes at
the domain inlet and analyze the development of the oblique T-S waves upstream of the
step (see chapter 3).

In addition to T-S waves, other instabilities can also act as the primary mode in
the transition path A. For concave walls, like the aft section on the pressure side of
supercritical airfoils, the transition may be initialized by the Görtler instability caused
by centrifugal forces [39]. In the first stage, the primary instability modulated by
Görtler vortices undergoes linear growth. As the boundary layer develops, large counter-
rotating vortices are produced and secondary instability becomes dominant. In the
meantime, these streamwise-oriented Görtler vortices create alternating streamwise-
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aligned streaks near the wall where the flow is washed down towards the wall or washed
up away from the wall, as shown in figure 1.5. This behavior may result in a considerable
nonlinear distortion of the flow field and the evolution of highly inflectional velocity
profiles that give rise to strong K-H secondary instability. When the secondary waves
reach a certain level with the emergence of mushroom-like structures, they finally
will cause breakdown to turbulence. LST is not really applicable for modeling the
development of this instability because the aforementioned nonlinear effects occur
earlier and a nonparallel assumption is not always justified. In contrast to concave
surfaces, convex curvature stabilizes Görtler vortices; therefore the deployment of wavy-
wall can relieve the destabilizing effects of the Görtler instability on the boundary layer
[40].

downwash

upwash

Figure 1.5: Description of counter-rotating Görtler vortices caused by the curvature of the surface [41].

The inviscid Kelvin-Helmholtz (K-H) mode is often the primary instability in the
laminar-to-turbulent transition with a separation. The large eddy simulation (LES)
of Yang and Voke [42] shows that with separation the transition begins via the K-H
instability and the initial linear growth rate of the K-H waves is usually larger than that
of T-S waves. As the K-H rolls increase in size, the shear layer undergoes a sinusoidal
modulation via the secondary instability along the spanwise direction; the induced
highly three-dimensional vortices break down into turbulence with the rolling-up of
hairpin vortices [23]. The transition of the laminar separated shear layer with low-level
environmental disturbances usually follows this path via the primary K-H instability [43].
Since the separation flow is in conflict with the assumption of the parallel flow, LST is not
very appropriate for predicting the evolution of the K-H instability.

The laminar-to-turbulent transition induced by other instabilities can also follow
the path A, like the viscous attachment-line instability originating from a stagnation
point of a swept flow [44], or the inviscid crossflow instability over a swept geometry
[45]. However, these instabilities are not directly related to the configuration of the two-
dimensional unswept BFS/FFS and therefore are not of current interest.

1.2.3. TRANSITION OVER A BACKWARD-FACING STEP
The backward-facing step is one of the cases where other instabilities than T-S modes
are likely to prevail in the transition process [2]. For a subsonic BFS flow, the main
flow features include the separation bubble, shedding vortices in the shear layer and
reattachment, as in figure 1.6. The laminar-to-turbulent transition usually occurs in the
free shear layer and the boundary layer becomes turbulent behind the reattachment.
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There is considerable experimental and numerical evidence of the flow instabilities
behind a BFS. Overall, there are three main large-scale unsteady flow structures observed
behind the BFS, including a large primary recirculation eddy, as well as Görtler-like and
K-H vortices [17, 46, 47]. The leading transition mechanism depends on the geometry
configuration, and is mainly governed by the step height relative to the incoming
boundary layer thickness. For a BFS with a sufficiently large step height, the dominant
transition mechanism is reported to be the large curvature induced by the centrifugal
forces, as displayed in figure 1.7. The crucial feature of the flow field is a large primary
eddy behind the step with almost circular streamlines at the center of the separation
bubble. The highest perturbation levels are observed at the downward side of the
shear flow, where the streamline curvature and the corresponding centrifugal forces
are significant [17]. As the flow reattaches on the downstream wall, longitudinal high-
and low-speed streaks [figure 1.8(a)] may be generated by the Görtler instability if
the streamline curvature is large enough near the reattachment. The counter-rotating
longitudinal Görtler vortices [figure 1.8(b)] produced by the lift-up effect are the main
features of the near wall flow and they are self-sustained due to the feedback provided
by the recirculating flow in the separation bubble.
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Figure 1.6: Schematic of a subsonic flow over a BFS.
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Figure 1.7: Contours of the total energy E behind a BFS on the x − y plane, showing the large centrifugal forces
[17]. Black solid lines are the streamlines and the arrow lines represent the velocity field.

When the step height is smaller but exceeds a critical value, which is a function
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Figure 1.8: Contours of the total energy E behind a BFS on (a) the y − z plane, showing the counter-rotating
vortices and (b) the x −z plane, illustrating the high- and low-speed streaks [17]. The arrow lines represent the
velocity field.

of unit Reynolds number, the travelling and shedding of K-H vortices in the separated
shear layer (figure 1.9) usually is the main driver of the transition process [46]. The
classical transition path consists of the roll-up of the shear layer, the convection of
quasi-periodic K-H vortices, flapping motions of the shear layer and corresponding
periodic shrinking/expanding of the separation bubble, as well as the vortex breakdown
to turbulence [48]. Furthermore, Eppink et al. [49] indicated that the transition can be
accelerated by the interaction of various instability mechanisms behind the step, which
can be considered as a modulation of three different types of disturbances with sufficient
large amplitudes, but differing in a frequency band. The low-frequency disturbances
are related to travelling crossflow-like waves, while the medium and high frequency
contents are associated with T-S waves and shear layer instability, respectively. It seems
that the various instabilities and their interactions, instead of the individual effects by
the growth of T-S waves, have a great impact on the transition for such a configuration
where a separation bubble is present. Simulations by Brinkerhoff and Yaras [50]
observed that the streamwise vortices induced by the T-S waves are amplified inside
the separated shear layer due to the local adverse pressure gradient and develop into
coherent hairpin vortices eventually. In conclusion, the excitation of other instabilities,
rather than the linear growth of T-S waves, plays a more important role in the transition
process behind a BFS [22].

In the supersonic regime, the separated shear layer instability has also been widely
reported for the BFS case [51–53]. However, there are additional mechanisms involved,
that are related to compressibility and the occurrence of compression waves at flow
reattachment [54, 55]. Therefore, it is reasonable to conjecture that a different mech-
anism may contribute to the transition process in the supersonic case. Additionally,
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Figure 1.9: Temporal evolution of the K-H vortices at two instants, visualized by isosurfaces of the pressure
values.

with the existing focus on the instability in the shear flow, the role of primary T-S modes
in the incoming boundary layer in front of the step, and their interactions with the
excited other primary instabilities, as well as the secondary waves, in the transition
process of the free shear layer are not completely documented and understood. The
evolution of the T-S instabilities and their interaction with the secondary waves have
been well studied in the existing work, mainly for a Blasius boundary layer. Chang
and Malik [38] numerically investigated the interactions of oblique T-S waves and
secondary instabilities in the transition path. They addressed that the mutual and self-
interaction between linear growth of T-S waves and rapid growth of vortex waves is a
nonlinear wave-vortex triad process, which leads to the transient growth of secondary
subharmonic waves and transition acceleration. This subharmonic resonance usually
only occurs when the enforced waves have large spanwise wave numbers [56]. Mayer
et al. [57] indicated that the breakdown to turbulence can be triggered solely by the
development of a fundamental primary oblique wave. The interaction between one
oblique fundamental wave and two oblique subharmonic waves is also reported. This
subharmonic resonance triad can also accelerate the laminar-to-turbulent transition.
Marxen et al. [58] proposed that the transition is a slow resonant process between
primary and secondary waves in the presence of roughness, in which the amplitudes
of excited fundamental and subharmonic secondary waves are augmented significantly.
In addition, the primary waves tend to damp downstream when the excited secondary
waves and other large vortices become significant [59]. Paredes et al. [60] found that the
primary oblique wave can be stabilized by stationary streamwise streaks if the streak
spacing is less than half the spanwise wavelength of the primary oblique wave. In
contrast, when the streak spacing exceeds this critical value, the primary oblique wave is
destabilized by the streaks, which accelerates the oblique breakdown. This nonlinear
process usually features staggered Λ-shaped vortices along the boundary layer, the
following hairpin vortices caused by lift-up effects, and a breakdown of these coherent
vortices via nonlinear interactions between them [61].

In the above-mentioned investigations, the primary instability is mainly associated
with either T-S or K-H waves solely. It is not well understood how incoming T-S waves
behave in the background of the strong K-H instability for a separated shear layer. The
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interaction between these primary instabilities and the induced secondary instability is
also worthwhile to investigate. Similar work has been done in subsonic flow [49]. We
will scrutinize the transition process for a supersonic flow over a BFS, and furthermore
identify the dominant primary instability and the role of each instability in the transition.

1.2.4. TRANSITION OVER A FORWARD-FACING STEP
In comparison to the BFS, a forward-facing step has a greater upstream effect on the
laminar-to-turbulent transition and the flow topology over it is more complicated. In
addition to the separation bubble in front of the step, there may exist a second separation
region downstream of the step, as shown in figure 1.10. The exact flow topology depends
on the free stream velocity and the relative step height [62].
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Figure 1.10: Schematic of a subsonic flow over a FFS.

In the subsonic regime, if the step height is large enough to accelerate the laminar-to-
turbulent transition, two separation regions are usually observed, located upstream and
downstream of the step, respectively [63]. Previous experimental works indicated that
the separation length of the upstream and downstream recirculation region increases
with the free stream velocity and the step height (equivalent to Reynolds number)
[63, 64]. In an early direct numerical simulation (DNS), Worner et al. [65] made
the interesting observation that a FFS can have a stabilizing effect on the developing
boundary layer by damping the oncoming T-S waves. This conclusion was considered
to be incorrect by later studies [66, 67] due to the misinterpretation of the numerical
results. The early hot-wire anemometry measurements by Wang and Gaster [66] showed
that the boundary layer transition occurs at an earlier location downstream of the
step, compared to a smooth plate. The acceleration of the transition is caused by
the stronger amplification of unstable waves downstream of the step. Rizzetta and
Visbal [67] investigated the transition process over the FFS by forcing small amplitude
waves at the inlet using implicit LES, and observed the amplification dynamics of the
step. By analyzing the instantaneous flow field, they found that the transition starts
with small two-dimensional structures and then these vortical structures are convected
downstream of the step. Finally, these coherent vortices lose their coherence and
breakdown into a turbulent boundary layer. The experimental work of Costantini et al.
[68] showed that the transition is already initiated upstream of the step by the growth
and amplification of the incoming disturbances inside the boundary layer, which can be
inferred from the visualization of the laminar-to-turbulent transition over an airfoil with
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different step heights, shown in figure 1.11. Edelmann and Rist [69] used DNS to further
scrutinize the evolution of the instabilities across the transition process and observed
a strong amplification of the upstream linear disturbances in front of and behind the
step, as shown in figure 1.12. The experiments of Costantini et al. [68] showed that
these amplified disturbances are in the form of spanwise alternative strips in front of
the transition location. By means of parabolized stability equations (PSE), LST and
linearized Navier-Stokes (N-S) equations, Thomas et al. [70] found the amplification of
T-S waves inside the upstream boundary layer. Additionally, the growth rate of these
T-S waves becomes larger with a higher step height. The analytical work of Dong and
Zhang [71] also reported the amplification and deformation of T-S waves across the step.
Compared with the BFS, they found that the amplification effects of the FFS are not as
strong as those of a BFS.

Figure 1.11: Effects of forward-facing steps on the boundary layer transition over an airfoil, visualized by
the results of temperature-sensitive paint [68]. The black dashed lines indicate the location of the turbulent
boundary layer and c represents the chord length.
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Figure 1.12: N-factor (additional amplification factor caused by the step, compared with a smooth surface)
curves with Reynolds number at M a = 0.8 for a flat plate and different FFS cases [69]. The peak of the curves
indicates the step location.

Similar to the BFS configuration, there are other instabilities involved in the laminar-
to-turbulent transition over a FFS if the step height is larger. Wilhelm et al. [72]



1

14 1. INTRODUCTION

investigated the response of the flow field over a FFS to random three-dimensional
disturbances using DNS and LST. They found that the reaction of the boundary layer
is sensitive and becomes stronger with a larger amplitude of the inflow disturbances.
Forcing perturbations with an amplitude below 1%u∞, the separation flow ahead of
the step already has significantly three-dimensional features. Spiral vortical structures
in front of the step and counter-rotating vortices downstream of the step are observed
in the development of the turbulent boundary layer, as shown in figure 1.13. These
spanwise alternating streaks are also reported in the experimental work of Stüer et al.
[73]. Lanzerstorfer and Kuhlmann [16] performed a global temporal stability analysis
of the two-dimensional flow field and identified a critical mode corresponding to the
high- and low-speed streaks alternating in the spanwise direction on the top of the step.
The spanwise wavelength of these counter-rotating vortices is about three times the
step height. They believe that this dynamics is caused by the lift-up effects and flow
deceleration behind the step. In the LES of Abdalla et al. [74], the K-H instability is
found in the transition process. The instantaneous flow visualization showed that the
transition consists of the rolling and shedding of K-H vortices from the separated shear
layer ahead of the step, vortices stretching and pairing, the breakdown of large coherent
vortices into the turbulent flow upstream of the second mean reattachment location.
The well-known Λ-shaped vortices were not observed in this process. Zhu and Fu [75]
compared the evolution of disturbances in the boundary layer between the flat plate and
FFS configuration using a well-resolved implicit LES. They reported that the forcing inlet
disturbance does not grow with streamwise distance in the entire flow domain for the
flat plate case, while they already begin to grow upstream of the first separation region
ahead of the step for the FFS case. Mushroom-shaped vortices are induced in front of
the step by the growth of the oncoming disturbances via the Görtler instability and they
continue developing across the step. Secondary vortices then are generated near the step
and evolve into hairpin vortices further downstream of the step. The transition process
they observed resembles the Klebanoff-type transition in the boundary layer. If there are
crossflow waves in the coming boundary layer, the FFS can affect the development of
crossflow modes. Both the experimental work of Duncan Jr [46] and numerical efforts of
Tufts et al. [76] stated that there exists a critical step height as a function of unit Reynolds
number, below which the amplification of the crossflow instability caused by the FFS
dominates the laminar-to-turbulent transition. When the step height is above the critical
value, the shear layer instability is the prevailing mechanism of the transition.

In supersonic flows, there is a long separation region in front of the step, while
the separation after the step is absent or very weak. Balakumar et al. [52] reported
that the separation length in front of the step is around 5 ∼ 10 times the step height.
Their linear stability analysis showed that the general amplitudes of the disturbances
are not noticeably modified across the step compared with the flat plate case, because
the growth rate of the unstable waves becomes larger upstream of the step but decreases
downstream of the step. In contrast, the DNS results of Edelmann and Rist [69] indicated
that the transition process is overall accelerated by the step since the oncoming T-S
waves are highly amplified in front of the step and only slightly decayed behind the step,
as shown in figure 1.14. Additionally, a small secondary recirculation is observed within
the separated zone ahead of the step.
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Figure 1.13: Streamlines on the y−z sections at different streamwise locations, illustrating the pairs of counter-
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Figure 1.14: N-factor (additional amplification factor caused by the step, compared with a smooth surface)
curves with Reynolds number at M a = 1.06 for a flat plate and different FFS cases [69]. The peak of the curves
indicates the step location.

1.3. SHOCK WAVE AND BOUNDARY LAYER INTERACTION
Shock wave/boundary layer interaction (SWBLI) is ubiquitous in high-speed aerody-
namics, such as supersonic inlets, over-expanded nozzles, high-speed aerofoils [12,
14]. Shock-induced boundary-layer separation is a main contributor to flight drag of
transonic aerofoils and pressure loss in engine inlets, which illustrates its relevance.
Moreover, significant fluctuations of pressure and temperature are widely observed



1

16 1. INTRODUCTION

around the interaction regions. SWBLI can cause intense localized mechanical and
thermal loads, which may eventually result in the collapse of material and structural
integrity [3, 15]. It is therefore crucial to take the effects of SWBLI into account in the
process of aircraft design and maintenance, including material selection, assessment of
fatigue life and thermal protection systems.

1.3.1. UNSTEADY SWBLI WITH SEPARATION

Although SWBLI occurs on various types and parts of aircraft, canonical two-
dimensional configurations can be abstracted into three simplified cases: (1)incident
shock (impinging-reflecting), (2) compression ramp and (3) backward/forward-facing
step [77, 78]. In terms of viscous effects, SWBLI can be furthermore classified into weak
and strong interaction cases [18]. For the weakly interacting flows, thickening of the
boundary layer is observed, but there is no separation in the interaction region. Weak
SWBLI usually occurs in the weak incident shock induced interaction, compression
ramp with small deflection angle and BFS/FFS with small step height. For the strong
SWBLI, on the other hand, boundary layer separation occurs in the interaction region.
Since strong SWBLI is more common in the real physical flows of aircraft and has more
severe aerodynamic and thermodynamic impacts on aircraft, our focus is put on the
strong SWBLI with separation.

Considerable progress has been achieved in understanding the unsteady phenom-
ena and underlying mechanisms of SWBLI by means of advanced flow measurement
techniques and well-resolved computations [15], particularly for the configurations of
impinging-reflecting shocks and the compression ramp [18, 77]. These two cases share a
similar mean flow topology although the shocks are produced by different mechanisms,
as shown in figure 1.15(a) and (b). In the impinging/reflecting shock case, the incident
shock induces a strong adverse pressure gradient on the boundary layer, which leads
to the separation of the boundary layer. A separation shock is produced ahead of
the separation point and a reattachment shock is generated around the reattachment
location due to the compression of the boundary layer. For the ramp case, the strong flow
compression caused by the ramp geometry induces a strong (separation) shock, which
results in the separation of the incoming boundary layer. Subsequently, a reattachment
shock is generated as the separated shear layer reattaches on the ramp downstream. In
both cases, the SWBLI is accompanied by energetic unsteady motions at frequencies
that are one or two orders lower than the boundary layer characteristic frequency u∞/δ
[18]. The unsteady characteristics can be quantified by the dimensionless Strouhal
number Str = f Lr /u∞ based on the reattachment length and free stream velocity or
Stδ = f δ0/u∞ based on the inlet boundary layer thickness and free stream velocity.
Considerable research effort has been put into tracing the source of this low-frequency
unsteadiness.

In general, theories regarding the origin of this low-frequency motion of the separa-
tion shock are categorized as resulting from either upstream or downstream dynamics.
The first group of theories associates the unsteady motions with upstream fluctuations
within the incoming turbulent boundary layer. In an early work, Plotkin [79] proposed
a simple linear restoring model to explain the source of the shock wave oscillations,
in which the shock is displaced by velocity fluctuations inside the upstream turbulent
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Figure 1.15: Mean flow structures of SWBLI in canonical two-dimensional configurations (a) impinging shock
and (b) compression ramp.

boundary and tends to return to its mean location through a restoring mechanism de-
termined by the stability of the mean flow. The pressure measurement by Andreopoulos
and Muck [80] provided the first experimental evidence for a correlation of the shock
wave unsteadiness with bursting events upstream the boundary layer in a compression
ramp case at M a = 1.7. Unalmis and Dolling [81] found low-frequency pressure
fluctuations along the spanwise direction in the incoming boundary layer by measuring
the pressure signal in the ramp case at M a = 5. Poggie and Smits [82] performed
measurements of wall pressure fluctuations and schlieren visualization in a backward-
facing step/ramp configuration at M a = 2.9. They reported that also in this case the
shock motion was correlated with upstream large-scale wave structures. Based on the
cross-correlation analysis, they concluded that their experimental results are in good
agreement with the linear restoring mechanisms proposed by Plotkin [79]. Beresh et al.
[83] used particle image velocimetry (PIV) and high-frequency response wall pressure
transducers for a compression ramp interaction, and they found a clear correlation be-
tween streamwise velocity fluctuations in the lower part of the upstream boundary layer
and low-frequency shock motions. In addition, they found no correlation between shock
oscillations and the velocity fluctuations in the upper part of the upstream boundary
layer, as well as the variation of the upstream boundary layer thickness, as reported by
McClure [84] in earlier work. Ganapathisubramani et al. [85] also observed elongated
superstructures with low- and high-speed streaks upstream of the separation region
[figure 1.16(a)] in their stereoscopic PIV and planar laser scattering (PLS) measurements
of a Mach 2 compression ramp interaction and they proposed these upstream large-
scale structures are responsible for the low-frequency unsteadiness of the interaction
region. Humble et al. [86] further confirmed the presence of streamwise-elongated
low- and high-speed streaks inside the upstream boundary layer using tomographic PIV
for an incident shock interaction at M a = 2.1 [figure 1.16(b)]. Their results show that
this reorganization of the upstream boundary layer in both streamwise and spanwise
directions conforms to the overall streamwise translation and spanwise rippling of the
interaction region. However, Touber and Sandham [87] argued that the low-frequency
interaction motions (0.01 < Str < 0.1) do not necessarily require a forcing source from
upstream or downstream and are more like an intrinsic response to the broadband
frequency spectrum of the upstream turbulent fluctuations. Porter and Poggie [88]
consider that this response is a selective response of the separation region to certain
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large-scale perturbations in the lower half part of the upstream boundary layer based on
their high-fidelity simulation.
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Figure 1.16: Streamwise high- and low-speed streaks upstream of the separation region on a x − z plane.
(a) planar laser scattering image for a compression ramp case (the ramp corner is at x/δ = 0) [85] and (b)
tomographic PIV measurements of the instantaneous streamwise velocity for an impinging shock case (the
extrapolated wall-impingement point of the incident shock is at x/δ= 0) [86].

The second group of theories attributes the low-frequency dynamics to mechanisms
intrinsic to the interaction system itself, that is, with an origin downstream of the sepa-
ration line. Already early experimental studies suggested that the low-frequency motion
of the separation shock is linked to the expansion and contraction of the separation
bubble [89, 90]. For the impinging shock induced interaction, Dupont et al. [91] found
a clear statistical link between low-frequency oscillation of the separation shock and
the downstream interaction region by analysing experimental pressure signals. Further-
more, they also reported a quasi-linear relation between the separation shock and the
reattachment shock motions. By DNS of a Mach 2.25 impinging shock case, Pirozzoli
and Grasso [92] established a resonance theory, in which acoustic waves are produced
by the interaction between coherent structures in the bubble and the incident shock.
The upstream propagation of these acoustic waves is responsible for the low-frequency
oscillations of the SWBLI system. Touber and Sandham [93] performed a global linear
stability analysis of the mean flow field from their LES and detected an unstable global
mode inside the separation bubble, which provides a possible driving mechanism for
the low-frequency unsteadiness by displacing the separation and reattachment points.
Piponniau et al. [94] proposed a simple physical model that relates the low-frequency
oscillations to the breathing motions of the separation bubble, in which the collapse of
the separation bubble is caused by a continuous entrainment of mass flux, while the
dilation corresponds to a radical expulsion of the mass injection in the bubble. A similar
model was suggested by Wu and Martin [95] based on DNS of a compression ramp
configuration. They consider that a feedback loop, involving the separation bubble,
the detached shear layer and the shock system, is the underlying mechanism for low-
frequency shock motions. The DMD analysis of Grilli et al. [96] provided further evidence
that mixing across the separated shear layer leading to a contraction and expansion of
the separation bubble is the dominant mechanism for the low-frequency unsteadiness.
Numerical work of Grilli et al. [97] and Priebe et al. [98] identified streamwise-elongated
Görtler vortices originating around the reattachment location for compression ramp
configurations. For an impinging shock configuration, Pasquariello et al. [99] reported



1.3. SHOCK WAVE AND BOUNDARY LAYER INTERACTION

1

19

very similar observations of low-frequency (0.01 < Str < 0.2) DMD modes characterised
by streamwise-elongated regions of low and high momentum that are induced through
Görtler-like vortices. As the separation-bubble dynamics is clearly coupled to these
vortices, Görtler-like vortices might act as a source for continuous (coherent) forcing
of the separation-shock-system dynamics.

In an attempt to resolve this discrepancy, Souverein et al. [100] proposed that actually
both upstream and downstream mechanisms contribute to the SWBLI dynamics with
case dependent intensity. Which type of mechanism is more dominant in producing
the low-frequency dynamics depends on the shock strength and possibly the Reynolds
number. In weak interactions, the low-frequency unsteady motions can be mainly asso-
ciated with upstream effects, while the unsteadiness of the strong interactions is more
likely driven by the dynamics of the downstream separation bubble and reattachment
shock [77]. Also Priebe et al. [98] implied that upstream disturbances contribute to the
low-frequency behavior although they consider that the downstream Görtler instability
is the dominant one. Bonne et al. [101] indicated that the low-frequency oscillations
involve both the amplification of upstream disturbances by the separated shear layer
and a feedback excitation from the shock foot and backward travelling density waves.

1.3.2. SWBLI OVER A BFS
As discussed above, SWBLI in the impinging shock and compression ramp configuration
share similar unsteady behavior and physical mechanisms [77, 78]. In contrast to these
well-reported canonical cases, supersonic flow over a BFS shows a distinctly different
flow topology, as shown in figure 1.17. The incoming turbulent flow undergoes a centred
Prandtl-Meyer expansion (PME) with the separation location fixed at the step’s convex
corner due to the sudden geometry expansion. The free shear layer then develops
towards the downstream wall on which the flow reattaches. Compression waves are
generated around the reattachment location, which coalesce into a reattachment shock
[55, 102]. In this configuration, the upstream limit of the separation bubble is fixed,
hence, stationary and only the downstream reattachment shock is present.
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free stream

separation bubble reattachment
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streamline

new boundary 
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Figure 1.17: Schematic of a supersonic flow over a BFS

The dynamics of the recirculation and shock region is reported to be unsteady,
similar as other more conventional SWBLI cases [103]. In an early experimental study,
by examining the variation of skin friction, Ginoux [104] observed the systematic de-
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velopment of counter-rotating streamwise vortices around the reattachment, occurring
in laminar, transitional and turbulent flows alike. The wavelength of these vortices is
equal to two or three times the boundary layer thickness for a wide range of Mach
number. These spanwise well-aligned vortices were also reported in the experimental
visualization of a BFS with and without roughness via nano-tracer-based planar laser
scattering (NPLS) [53]. In addition, small unsteady shedding vortices along the shear
layer are identified by Chen et al. [105] using the same flow visualization techniques.
However, the common K-H vortices observed in the laminar and transitional cases are
not present in the turbulent shear layer [106]. The observed coherent vortical structures
cover in a wide range of length and frequency scales, involving the vortex shedding close
to the step, longitudinal vortices and hairpin vortices downstream of the shear layer
[47]. By means of particle image velocimetry and dynamic pressure measurements,
Bolgar et al. [103] inferred that for a flow at M a = 2.0 the dominant low-frequency parts
(Str ≈ 0.03) are associated with the separation bubble.

In the aforementioned studies, the unsteady behavior of SWBLI over the BFS is not
well investigated. More efforts are required to document in more detail the frequency
characteristics of SWBLI over the BFS and scrutinize the possible source of the low-
frequency unsteadiness. It is interesting to discover whether the BFS configuration
has a similar origin of low-frequency unsteadiness with other well-studied impinging
shock and ramp SWBLI cases. In addition, the unsteady SWBLI occurs both in the
laminar and turbulent flows, it is interesting to investigate to what extent the laminar and
turbulent cases share similar unsteady features and physical mechanisms. The acquired
knowledge may also shed light upon potential control strategies to alleviate the negative
effects caused by SWBLI.

1.3.3. SWBLI OVER A FFS
The flow topology over a supersonic FFS is more complicated than that over a BFS, but
has similar features with that over a compression ramp. As shown in figure 1.18, the
boundary layer separates relatively far upstream of the step and reattaches on the step
wall or downstream of the step. Compression waves are generated around the separation
point due to the deflection of the boundary layer by the separation. These compression
waves then coalesce into a separation shock away from the wall. A second compression
wave system forms in the vicinity of the step as the flow reattaches on the step wall and
is then compressed into a reattachment shock. An expansion fan is formed close to the
step corner due to the flow deflection by the upper surface. There may also be a small
secondary separation and reattachment on the upper wall [18, 107].

Similar with other canonical SWBLI configurations, the triangular structure, con-
sisting of the separation shock, shear layer and reattachment shock, represents a low-
frequency unsteady system [108]. In their early experimental works, Kistler [109] and
Behrens [110] observed low-frequency pressure and energy fluctuations in the separa-
tion region. Due to the limitation of former experimental equipment, they were not able
to acquire quantitative values of these low frequencies. Zukoski [111] provided a review
of experiments about the flow field induced by the FFS in a supersonic turbulent flow. He
found that the dimensionless pressure rise across the interaction system is independent
on the free stream Mach number and Reynolds number. By examining the instantaneous
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Figure 1.18: Schematic of a supersonic flow over a FFS.

flow field from LES and unsteady Reynolds-averaged Navier-Stokes (RANS) results,
Morgan and Visbal [108] reported that the reattachment shock originating from the
step edge has a larger unsteady spatial region compared with the separation shock
emanating upstream of separation bubble. For a cylindrical FFS case, White and Visbal
[112] calculated the pre-multiplied power spectral density of the wall pressure from
a numerical simulation and found that the value of the dominant low frequency is
approximately two orders lower than that of the wall turbulence. Recent PIV experiments
also confirmed these unsteady motions of the interaction system [113].

The origin of the low-frequency unsteadiness was investigated in several recent
studies. By means of a correlation analysis based on PIV measurements, Murugan
and Govardhan [114] found that the shock location outside the boundary layer is well
correlated to the separation bubble area but weakly connected to the disturbances
within the upstream boundary layer. On the other hand, the compression waves around
the shock foot are well correlated to the spanwise-aligned high- and low-speed streaks
in the upstream near-wall boundary layer. Therefore, they believed that the upstream
three-dimensional disturbances contribute most to the low-frequency unsteadiness of
the interaction system in the FFS configuration. Simonenko et al. [115] also observed
the longitudinal streaks, displayed as a counter-rotating vortex pair, upstream of the
step in their numerical results. Estruch-Samper and Chandola [116] proposed a physical
mechanism involving both upstream and downstream effects. Different from the
physical model proposed by Piponniau et al. [94], they also consider the response
of the upstream boundary layer to the shear layer and they believe that the induced
shear layer instabilities are independent of the downstream dynamics according to the
free-interaction theory [117]. The downstream effects are caused by the entrainment
of the mass flow as the shear layer is shedding downstream and the recharging of
the separation bubble when the shear layer reattaches on the downstream wall. The
frequency of the breathing bubble scales effectively as the ratio of mass ejection rate to
the reversed flow rate. Base on these observations, they believe that the separated shear
layer is the main driver of the low-frequency unsteadiness.
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1.4. MOTIVATION AND OBJECTIVES OF THE DISSERTATION
The objective of this research is the investigation of the dynamics of a supersonic
flow over a backward/forward-facing step by numerical methods. Depending on the
specific flow regime, our focus is mainly laid on two research topics, i.e., laminar-to-
turbulent transition and shock wave/boundary layer interaction. High-fidelity large
eddy simulation (LES) is the main method used for the current investigation. Since the
boundary layer transition is very sensitive to the environmental disturbances, imposing
appropriate flow conditions needs careful treatment. The uncertain and hard to control
perturbation environment in supersonic wind tunnels renders experiments very difficult
for the desired flow conditions, especially for the different levels of T-S waves. By
contrast, LES is able to provide a well controlled environment with high accuracy and
reasonable expense. Furthermore, all flow variables are simultaneously available in the
whole flow field and can be accessed directly without measurement errors, which makes
high-fidelity simulation very suitable for the investigation of fundamental mechanisms
in various flow phenomena. The research goals for each topic are as follows.

The first area of the current research is the evolution of different instabilities and the
path of the boundary layer transition as it occurs over a BFS/FFS in a supersonic flow. For
a step height larger than the incoming boundary layer thickness, the transition across
the step is usually not governed by the growth of T-S waves. Several other instabilities
have been reported in the transition process from previous experimental and numerical
works. A specific transition roadmap requires to be drawn for the BFS/FFS configuration
in a supersonic flow and the development of the involved instabilities needs to be scruti-
nized to identify the prevailing instability among the various modes. In addition, the role
of the incoming T-S waves is not clear in the transition process when other instabilities
are excited in the separation region, notably K-H instability. Since previous efforts have
only focused on one of the primary instabilities (either T-S mode or K-H mode), it is
interesting to investigate how the incoming T-S waves behave in the background of the
strong K-H instability. In the development of the turbulence, secondary instability may
be excited by the growth and deformation of the primary mode. The interaction between
different primary instabilities and the secondary instabilities is also one of our objectives
for the first research topic.

Due to the instability of the separated shear flow, the boundary layer behind the
separation region has usually become turbulent, while a shock wave is formed as the
flow reattaches downstream in the supersonic step flow. Therefore the interaction
of shock waves with the laminar, transitional or turbulent boundary layer reasonably
turns into our second research subject. It is well reported that the SWBLI system is
unsteady whatever the geometrical configuration is. Compared to the impinging shock
and compression ramp cases, one side of the separation bubble is stationary and the
height of the separation region is imposed (equal to the step height, only for the BFS) in
the step flow. Thus, more efforts are required to establish the frequency characteristics
of SWBLI over the step. Furthermore, the underlying mechanism related to the low-
frequency unsteadiness may also have differences. To reveal the potentially different
flow dynamics and clarify the discrepancy of the physical mechanisms in the existing
literature, a further aim of this research is to trace the possible source of the low-
frequency unsteadiness in the step flow.
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1.5. LAYOUT OF THE DISSERTATION
The dissertation is divided into five chapters in total, including this introduction chapter.
A brief description of the other chapters is as follows:

Chapter 2 provides a detailed introduction of the numerical method and flow
analysis techniques used. In the first section, the formulation of the physical problems
in a framework of implicit large eddy simulation (ILES) is presented, including the
governing equations, boundary conditions, numerical discretization and subgrid-scale
model. In the second section, techniques used for analyzing the results from LES are
described. Specifically, linear stability theory is applied for generating the least stable
mode imposed on the domain inlet and analyzing the growth of perturbations in the
linear regime. From a perspective of vorticity dynamics, the generation, development
and transformation of the vorticity are scrutinized and thus an understanding of the
instability evolution are obtained. For decoupling the complex flow field with various
dynamics, dynamic mode decomposition is implemented to identify the dominant flow
dynamics in the overall system of the interaction.

Chapter 3 discusses the flow dynamics over the BFS in different flow regimes. First,
the flow configuration and numerical setup for different BFS cases, especially the per-
turbations imposed at the inlet boundary conditions, are described. A brief comparison
among these cases is made to identify the appropriate cases for the following two
research topics. One focus of this chapter is the laminar-to-turbulent transition. The
transition path is scrutinized in a clean laminar case (without imposed disturbance at
the inlet) and the dominant flow phenomena in this process are analyzed. Then the
evolution of various instabilities and their interactions in the transition are examined
further in the perturbed cases, for which different levels of initial disturbances are
considered. For the turbulent case, our attention is paid on the unsteady SWBLI,
consisting of the unsteady motions, corresponding frequency characteristics and the
origin of the low-frequency unsteadiness.

Chapter 4 investigates the laminar-to-turbulent transition and SWBLI over the FFS.
The organization of this chapter is similar to that of chapter 3. Four cases are considered
in the FFS part, including a fully laminar case, two perturbed cases with low- and high-
amplitude oblique T-S waves, respectively, and a turbulent case. A detailed description
of the flow configuration and numerical setup for them are presented first. After
selecting the appropriate cases for the different research topics in the comparison
section, the transition process is studied then based on the fully laminar case in the next
section. In the transitional regime, the development of various instabilities and their
interactions are discussed. Using the turbulent case, the unsteady SWBLI, especially the
physical mechanism of the low-frequency unsteadiness, is studied.

Chapter 5 presents the research conclusions with a summary of the main findings for
both the BFS and FFS cases. The outlook and recommendations for the future work are
addressed at the end.
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2.1. NUMERICAL METHOD
An implicit LES method of Hickel et al. [118] is employed to solve the compressible
Navier-Stokes (N-S) equations for the current investigation. The physical and numerical
models are briefly described in this section, including the governing equations, dis-
cretization scheme and boundary conditions.

2.1.1. GOVERNING EQUATIONS
The physical problem is governed by the three-dimensional compressible N-S equations
with appropriate boundary and initial conditions, which represent the conservation of
mass, momentum and total energy

∂ρ

∂t
+ ∂

∂xi

(
ρui

)= 0 , (2.1)

∂ρu j

∂t
+ ∂

∂xi

(
ρui u j +δi j p −σi j

)= 0 , (2.2)

∂E

∂t
+ ∂

∂xi

(
ui E +ui p −u jσi j +qi

)= 0 , (2.3)

where ρ is the density, p the pressure and ui are the components of the velocity vector
in three directions. The total energy E is defined as

E = p

γ−1
+ 1

2
ρui ui . (2.4)

The viscous stress tensor τi j follows the Stokes hypothesis for a Newtonian fluid

σi j =µ
(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
, (2.5)

and the heat flux qi is computed by the Fourier’s law

q j =−κ ∂T

∂x j
. (2.6)

The fluid is air and assumed to behave as a perfect gas with a specific heat ratio γ=
1.4 and a specific gas constant R = 287.05J(kg ·K)−1. Accordingly, the thermodynamic
properties follow the ideal-gas equation of state

p = ρRT . (2.7)

The dynamic viscosity µ and thermal conductivity κ are a function of the static tempera-
ture T and are modelled according to Sutherland’s law and the assumption of a constant
Prandtl number Pr

µ=µref
Tref +S

T +S

(
T

Tref

)1.5

, (2.8)

κ= γR

(γ−1)Pr
µ. (2.9)

The reference values adopted for the computation are: µref = 18.21× 10−6 Pa · s, Tref =
293.15K, S = 110.4K and Pr = 0.72.
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2.1.2. FORMULATION OF THE FILTERED GOVERNING EQUATIONS
The principal idea of LES is imposing a scale separation or filtering on the governing
equations, in which the effects of small scales are modeled, while the large scales are
numerically resolved [119]. If we consider a simple scalar φ with the generic nonlinear
transport equation

∂tφ+∂x F (φ) = 0 , (2.10)

after applying a linear low-pass filter based on the convolution, the filtered scalar
becomes

φ(x) =G ∗φ. (2.11)

The large and small spatial scales are then separated. The filter kernel G , such as the Box,
top hat and Gaussian filter, is homogeneous and integrates to unity [120]. The filtered
transport equation is obtained by convolution of equation (2.10) with the filter kernel G ,
which leads to

∂tφ+G ∗∂x F (φ) = 0. (2.12)

For three-dimensional compressible N-S equations, most researchers used a density-
weighted variant of variables in LES, i.e., Favre filtering. The modification of variables is
determined mathematically by

ρφ= ρ̄φ̃. (2.13)

Using the aforementioned filter and Favre filtering, the equation (2.1) - (2.3) become
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where
τi j = ρ̄

(�ui u j − ũi ũ j
)

, (2.15)

σ̌i j =µ(T̃ )

(
2S̃i j − 2

3
δi j S̃kk

)
, (2.16)

S̃i j = 1

2

(
∂ũi

∂x j
+ ∂ũ j

∂xi

)
, (2.17)

q̌ j =−κ(T̃ )
∂T̃

∂x j
. (2.18)

However, we use the cell-averaged density, velocity, pressure and internal energy directly,
instead of Favre variables, in the current implicit LES method [118].



2

28 2. METHODOLOGY

2.1.3. DISCRETIZATION
The full right hand side of equation (2.14) must be modeled to consider the effects of
unresolved subgrid scales (SGS) in LES. In the current in-house ILES solver INCA, the
models for the different SGS terms are directly included in the numerical discretization
scheme [118, 121]. To simplify the description, continue considering the filtered generic
nonlinear transport equation (2.12) and it can be discretized onto a numerical grid xN =
{x j } as

∂tφN +G ∗∂x FN
(
φN

)=−G ∗∂xGSGS , (2.19)

where the overbar denotes the filtering and the subscript N indicates grid functions.
Since the non-represented scales cannot be recovered (i.e., φN 6= φ), the subgrid-stress
residual is

GSGS = F (φ)−FN
(
φN

)
(2.20)

In equation (2.19), however, the model error and truncation error due to the numer-
ical scheme are not included. Thus an exact solution considering these errors actually
satisfies a modified differential equation (MDE) for a general LES discretization scheme

∂tφN +G ∗∂x FN
(
φN

)=GN +GM −G ∗∂xGSGS , (2.21)

where the modeling error GM is defined as

GM =G ∗∂xGSGS −G ∗∂x MSGS . (2.22)

If the numerical truncation error GN approximates to the filtered subgrid-stress
residual, i.e.,

GN ≈−G ∗∂xGSGS , (2.23)

the subgrid stress residual is no longer needed explicitly in equation (2.21). In other
words, the truncation error from a suitable discratization scheme can act as an implicit
SGS model that replaces MSGS in this case.

A nonlinear finite-volume scheme, adaptive local deconvolution method (ALDM),
was proposed by Hickel et al. [118] to exploit equation (2.23) for more accurate time
advancement. ALDM is based on a solution-adaptive reconstruction operator and a
numerical flux function that incorporates the essential elements of LES, filtering and
deconvolution. The exact stable numerical scheme was calibrated through an opti-
mization process. The main process consists of designing consistent but very general
discretization methods with many free parameters, then analyzing the spectral energy
transfer, and finally determining values of discretization parameters by preparing the
objective implicit SGS model to approximate canonical turbulence problems as closely
as possible. Both the final model form and the parameter values of ALDM are essentially
designed to closely approximate the spectral energy transfer in turbulence. Since this
procedure starts from a nonlinearly stable numerical scheme (usually not a suitable
model of SGS turbulence in the first place) and towards a final ALDM scheme with the
capability of acting as an accurate SGS model, it is much closer to explicit SGS modeling
than a standard ILES. More details can be found in the dissertation of Hickel [122]. For
the temporal discretization, an explicit third-order total variation diminishing (TVD)
Runge-Kutta scheme is used [123].
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2.1.4. BOUNDARY CONDITIONS
The solution for a specific flow is determined by the general governing equations given
above and case-specific boundary conditions that result in a well posed problem. Most
of the boundary conditions used in the current study are typical ones for a compressible
viscous flow and the relevant details will be given in the case setup sections of the
following chapters. Particularly, the inlet boundary conditions used are presented here
briefly because they are different for the considered BFS/FFS cases.

BOUNDARY CONDITIONS BASED ON RIEMANN INVARIANTS

In the current study, the inlet boundary conditions for all laminar cases, as well as
the non-reflecting far field conditions for all cases, are based on Riemann invariants.
The characteristic analysis of Riemann invariants is on the basis of wave propagation
across the boundary. Therefore, the imposed Riemann invariants depend on eigenvalues
associated with their propagation speed and direction. Taking a supersonic far field
boundary condition as an example, the inflow and outflow Riemann invariants R− and
R+ are determined by

R− = un
∞− 2c∞

γ−1
, (2.24)

R+ = un
e + 2ce

γ−1
, (2.25)

where c is the local speed of sound. Symbols with subscripts ∞ and e represent the
variables at the free stream (or at the ghost cells) and the inner points closest to the
boundary, respectively. The velocity with the superscript n signifies the component of
the velocity vector normal to the boundary, i.e., un = u · n, where n is a space vector
normal to the boundary.

The normal component of the velocity un
b and speed of sound cn at the boundary are

then calculated by

un
b = 1

2

(
R++R−)

, (2.26)

cb = 1

4
(γ−1)

(
R+−R−)

. (2.27)

If the normal velocity on the boundary un
b is positive, the flow is coming out of the

computational domain and the entropy s is extrapolated from the interior. On the
contrary, if un

b < 0, the flow is entering the flow domain and the free stream entropy is
used, that is,

sb =


pe

ρ
γ
e R

, un
b ≥ 0

p∞
ρ
γ
∞R

, un
b < 0

. (2.28)

The density and pressure on the boundary are then computed by

ρb =
(

c2
b

sbγR

)1/γ−1

, (2.29)

pb = ρbc2
b

γ
. (2.30)
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For the inlet boundary conditions based on Riemann invariants, the computational
process is similar to the far field boundary, but the inflow variables are used for the
incoming Riemann invariants, instead of the free stream parameters.

TURBULENT INFLOW CONDITIONS BASED ON A DIGITAL FILTER

Imposing an accurate three-dimensional and time-evolving inlet boundary condition is
always necessary and challenging for the numerical simulation with turbulent boundary
layer as inflow. Therefore, special treatment is required to produce an appropriate
turbulent inlet boundary condition.

The most easily conceivable and implemented method would be prescribing a lam-
inar inflow and let it develop naturally in a sufficiently large domain to cover the whole
laminar-to-turbulent transition region. However, this approach is impracticable in most
cases due to its high computational cost, especially for DNS and LES. Probably, the
rescaling/recycling technique is the most popular practical approach. The main idea of
this method is extracting the turbulent data from a downstream location, which is then
rescaled and imposed on the inlet of the main computational domain. Unfortunately,
this technique can produce spurious low-frequency modes within the boundary layer
and contaminate our flow field. Especially, when our attention is laid on the low-
frequency unsteadiness related to the downstream boundary layer, for instance, the
low-frequency unsteady SWBLI, the interesting phenomenon may be modulated by this
artificial low-frequency content of the upstream boundary layer. Thus, an alternative
synthetic turbulence generation method based on digital filter (DF) is used in the
current study. This technique can model both given first- and second-order statistical
moments and spectra without introducing undesired low-frequency contents [124]. In
the following, more details about the DF technique are provided.

The overall procedure of DF technique is divided into three main steps. First, we
generate a three-dimensional random fluctuation fields and then transform them into
the real instantaneous velocity fluctuations that match the target auto-correlations,
cross-correlations and length scales using the method developed by Klein et al. [124].
Finally, these instant fluctuations are added to the prescribed mean flow field to obtain
the artificial turbulent inflow. Through this process, certain statistical characteristics are
reproduced, including the mean flow, fluctuations, length and time scales, and second-
order moments.

The first step is to have the desired intermediate velocity fluctuations with prescribed
length scales. If we define a discrete filter operator FN (N is a positive integer), the field
of fluctuations qk can be formulated and linearized as

qk = FN (rk ) =
N∑

l=−N
bl rk+l , (2.31)

where {rk }1≤k≤m is a set of m random numbers with zero-mean and unit-variance

rk =
m∑

k=1
rk /m = 0 ,

ri r j =
m∑

i , j=1
ri r j /m = δi j ,

(2.32)
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and {bl }−N≤l≤N is the coefficients of the “digital filter". Here, δi j is Kronecker delta
function. Furthermore we can easily derive

qk = 0 ,

qk qk+n =
N∑

l=−N+n
bl bl−n .

(2.33)

The two-point auto-correlation function is modeled by an exponential function

Rqq (∆L) = exp

(
−π∆L

2Iy

)
, (2.34)

which is reported to be closer to the real form of auto-correlation function than Gaussian
[125]. In equation (2.34),∆L is the distance between two different points and Iy is a given
integral scale [126].

If we implement equation (2.34) on a uniform grid, letting ∆y is the grid space and
Iy = ny∆y , then equation (2.34) is written in a discretized form

Rqq
(
yk +m∆y

)≡ qk qk+m

qk qk
= exp

(
−πm

2ny

)
. (2.35)

Combined with equation (2.33), the filter coefficients bm can be computed by solving
the following equation ∑N

l=−N+m bl bl−m∑N
l=−N b2

l

= exp

(
−πm

2ny

)
. (2.36)

The result is given approximately by [125]

bm ≈ b̃m(∑N
l=−N b̃2

l

)1/2
, (2.37)

where

b̃m = exp

(
−πm

ny

)
. (2.38)

A good filter size is set by N ≥ 2ny , which is large enough to capture twice the integral
length scale and not computationally expensive [124].

We use a Mersenne Twister generator [127] to produce the required random num-
bers. After applying the FN -operator with the above setup of the convolution coefficients
bm , the initial random field has featured with a coherence integral length scale Iy .

The aforementioned procedure can be extended to two dimensions by defining a
two-dimensional filter coefficients

b( j ′,k ′) = b j ′ ·bk ′ , (2.39)

and the corresponding filter operation

q( j ,k) =
NFy∑

j ′=−NFy

NFz∑
k ′=−NFz

b( j ′,k ′)r ( j + j ′,k +k ′) , (2.40)
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where 1 ≤ j ≤ n j and 1 ≤ k ≤ nk are the indices of the computational grid. The upper
limit of the summation is determined by

NFα = 2d Iα
/
∆α e with α= y, z (d·e is the ceiling function). (2.41)

Therefore we need a set of three two-dimensional random fields r with dimensions of
(−NFy +1 : NFy +n j ,−NFz +1 : NFz +nk ,3) for the three components of velocity.

Next the new field q tn
k and the previous one q tn−1

k are correlated with each other as
follows,

ρk = q tn−1
k exp

(
−π∆t

2τ

)
+q tn

k

√
1−exp

(
−π∆t

τ

)
, (2.42)

where ∆t is the time step. The Lagrangian time scale τ is computed by τ= Ix
/

u ,
where Ix is the prescribed integral length scale in the streamwise direction. Using this
transformation, the fluctuations field has the desired two-point correlations.

The single-point correlations are imposed by the Lund transform [128]
u(0, y, z, t )

v(0, y, z, t )

w(0, y, z, t )

=


〈u(0, y, z)〉
〈v(0, y, z)〉
〈w(0, y, z)〉


︸ ︷︷ ︸

Ui (0, y, z)

+


a11 0 0

a21 a22 0

a31 a32 a33



ρu(y, z)

ρv (y, z)

ρw (y, z)


︸ ︷︷ ︸

u′
i (0, y, z, t )

(2.43)

with a11 = (R11)1/2, a21 = R21
/

a11 , a22 = (
R22 −a2

21

)1/2
, a31 = R31/a11, a32 =

(R32 −a21a31)/a22, a33 = (
R33 −a2

31 −a2
32

)1/2
, where {Ri j }i , j=1,2,3 is the prescribed

Reynolds-stress tensor. Eventually, we have the expected velocity field for the turbulent
inflow. The instantaneous temperature T ′ and density ρ′ field can be computed from
the Strong Reynolds Analogy [129]

T ′ =−γ−1

γR
uu′ ,

ρ′

ρ
=−T ′

T
.

(2.44)

Prescribing accurate length scales are not crucial to the generation of precise enough
turbulence in the LES, however, length scales closer to real values always give faster
transition from synthetic to real physical turbulence. The imposed length scales should
be as least as large as the values of the real turbulent flow. Moreover, the inflow plane
for digital filter can be divided into several zones to accommodate that the flow field has
different integral length scales in different sublayers of the boundary layer and the outer
flow.

2.2. FLOW ANALYSIS TECHNIQUES
To analyse the results from LES, several well-established theoretical approaches and data
analysis techniques are applied, including linear stability theory (LST), vortex dynamics,
dynamic mode decomposition (DMD) and sparsity-promoting dynamic mode decom-
position (SPDMD). The details of these methods are addressed in the following section.
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2.2.1. LINEAR STABILITY THEORY
Linear stability theory is widely used to investigate the growth of perturbations in a
parallel flow within the linear regime with relatively low computational cost compared
with LES and DNS [130, 131]. There are two variants of LST depending on the considered
physical problems, i.e., temporal and spatial model. The temporal stability analysis
assumes that the growth of disturbances is constant in the streamwise direction and only
varies with time. The spatial theory supposes that the evolution of unstable mode is only
growing with the streamwise distance, which is relatively more realistic and closer to the
real physics of the flow field [25]. In the current study, the spatial variant of LST was
employed to scrutinize the streamwise evolution of the laminar-to-turbulent transition.

Considering the unsteady N-S equations, the instantaneous flow variables are de-
composed into a base flow q̄ and unsteady perturbations q ′,

q(x, y, z, t ) = q̄(x, y, z)+q ′(x, y, z, t ) . (2.45)

Assuming the x (streamwise) and z (spanwise) directions are homogeneous, based on
the linear assumption, the fluctuations can be represented by harmonic modes

q ′(x, y, z, t ) = q̃(y) ·e i (αx+βz−ωt ) + c.c , (2.46)

where the real part of α and β determines the streamwise and spanwise wavenumber,
and the imaginary part of α shows the growth rate in the x direction. The wave angle
θ of the traveling modes with respect to the x axis is given by arctan(βr /αr ). The real
and imaginary part of ω represent the frequency and temporal growth rate respectively.
The term c.c denotes the complex conjugate of the perturbation, in order to obtain a
real-valued quantity. In the LST, the reference length for these parameters is the local
Blasius length l = p

ν∞x/u∞, for instance the dimensionless streamwise wavenumber
αl = αl . In this dissertation, the parameters of wave properties with superscript l are
normalized by the Blasius length l , and those with superscript δ are normalized by the
inlet boundary layer thickness δ0.

For the spatial stability analysis, β and ω are prescribed real numbers, while α is to-
be-solved complex number. In this case, the formulation of the perturbations can be
rewritten as

q ′(x, y, z, t ) = e−αi x (q̃r cosθ− q̃i sinθ)︸ ︷︷ ︸
real part

+ i e−αi x (q̃r sinθ+ q̃i cosθ)︸ ︷︷ ︸
imaginary part

, (2.47)

where θ = αr x +βz −ωt . The base flow q̄ and perturbations q̃ are substituted into the
compressible N-S equations [equation (2.1))-(2.3)], the resulting linearized N-S equa-
tions are then further simplified by the parallel-flow assumption to the Orr-Sommerfeld
(O-S) equations. With appropriate boundary conditions, these equations represent an
eigenvalue problem. In the spatial analysis, the resulting eigenvalues of the O-S equa-
tions are the complex wavenumber α and the corresponding complex eigenfunctions
are the disturbances of three velocity components, pressure and temperature. The LST
solver used in the present study is a validated in-house code whose numerical details
and validation have been reported previously [132–134].
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2.2.2. VORTEX DYNAMICS
The dynamics of vorticity is one of the theoretical approaches to understand the
evolution of disturbances. By analyzing the generation, development, and structural
characteristics of the vorticity, like stretching, tilting and lift up, in the transition process,
we can obtain a deeper understanding of the involving instabilities [135].

For a compressible flow without external and potential forces, the momentum
equation (2.2) can be rewritten into a nonconservation form as

dui

dt
= ∂ui

∂t
+ui ·∇u j =−∇p

ρ
+ ∇·τi j

ρ
. (2.48)

Taking curl on both sides of this equation, and noticing ωi = ∇ × ui , it is finally
reorganized as

dωi

dt
=ω j

∂ui

∂x j
−ωi

∂u j

∂x j
+εi j k

1

ρ2

∂ρ

∂x j

∂p

∂xk
+εi j k

∂

∂x j

(
1

ρ

∂τkl

∂xl

)
, (2.49)

if expressed in tensor notation using Einstein’s summation convention and Levi-Civita
symbol εi j k ,

εi j k =


+1 if (i , j ,k) is (1,2,3), (2,3,1), or (3,1,2)

−1 if (i , j ,k) is (3,2,1), (1,3,2), or (2,1,3)

0 if i = j , or j = k, or k = i

. (2.50)

In the above derivation, the following notations and relations,

(a×b)i = εi j k a j bk , (2.51)

∇× (u ·∇)u =∇×∇
(

u2

2

)
−∇× (u ×ω) =∇× (ω×u) , (2.52)

∇× (ω×u) = (u ·∇)ω− (ω ·∇)u +ω(∇·u)+u(∇·ω) , (2.53)

∂ω

∂t
+ (u ·∇)ω= dω

dt
, (2.54)

and
∇·ω=∇· (∇×u) = 0 (2.55)

are useful.
The equivalent energy of vorticity can be quantified by enstrophy, which is defined

as the integral of the square of the vorticity

E = 1

2

∫
A
ω ·ωdA , (2.56)

where A is the area of the cross-section perpendicular to the i -direction (streamwise
direction). The vorticity transport equation (2.49) for the local enstrophy is then
formulated as

d

dt

(
1

2
ω2

i

)
=ωiω j

∂ui

∂x j︸ ︷︷ ︸
T+S

−ω2
i

∂u j

∂x j︸ ︷︷ ︸
D

+εi j k
ωi

ρ2

∂ρ

∂x j

∂p

∂xk︸ ︷︷ ︸
B

+ωi εi j k
∂

∂x j

(
1

ρ

∂τkl

∂xl

)
︸ ︷︷ ︸

V

. (2.57)
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In the right side of the equation, the first term can be decomposed into three parts, for
instance for the x direction,

T = Tx y +Txz = ∂u

∂y
ωyωx + ∂u

∂z
ωzωx ,

Sxx = ∂u

∂x
ωxωx ,

(2.58)

where the first two terms Tx y and Txz represent the vortex tilting caused by the wall-
normal and spanwise vorticity, while S specifies the vortex stretching. The second
term D represents the dilation effects in compressible flows. The function of this term
is to redistribute the existing vorticity, instead of creating or destroying. In response
to this term, the local enstrophy decreases if the flow field is undergoing expansion
and it increases in compression regions. The terms B and V signify baroclinic torque
and viscous dissipation, respectively. If the density gradient and pressure gradient are
nearly parallel in the flow field, the baroclinic torque is negligible. In a high speed
flow, especially when a large-scale vortex structure occurs, viscous dissipation can be
neglected due to the high Re. For this reason, V will not be considered in the current
investigation. The evolution of the instabilities and underlying vortical mechanism can
be scrutinized by assessing the contribution of each term in the enstrophy transport
equation. Suryanarayanan et al. [135] enhanced the mechanistic understanding of the
transition process induced by discrete roughness elements based on this vorticity-based
analysis.

2.2.3. DYNAMIC MODE DECOMPOSITION
Dynamic mode decomposition (DMD) is a reduced-order method to decouple the
complex spatial and temporal dynamical system in order to extract the representative
features. It was first proposed by Schmid [136] as a numerical tool to identify the most
important dynamic information of time sequential data. Basically, given an equal-
interval time series of data, DMD transforms this dynamical system into a set of modes,
each of which is associated with a single orthogonal frequency behavior whose dynamics
is governed by the corresponding eigenvalue. This algorithm has been widely applied for
diverse flow problems, including the transition mechanism from laminar to turbulent
flow [137], unsteadiness of the SWBLI [96], and the identification of coherent vortex
structures [138].

The process of DMD can be divided into the following steps. First, we collect a set
of time sequential snapshots from the numerical simulation or experimental data, given
by a matrix P N

1 ,

P N
1 = {p1, p2, p3, · · · , p N } , (2.59)

where p i represents the flow field at the i th moment and it belongs to RM×1 where M is
the spatial dimensions of the flow field. All these snapshots are in an ordered sequence,
separated by a constant sampling time∆t . We assume that there exists a linear mapping
A which links the current snapshot p i to the subsequent flow field p i+1, that is,

p i+1 = Ap i . (2.60)
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Matrix P N
1 is thus rewritten by

P N
1 = {p1, Ap1, A2p1, · · · , AN−1p1} . (2.61)

Then define another set of sequential snapshots P N
2 = {p2, p3, p4, · · · , p N }, and it can

be formulated as
P N

2 = {Ap1, Ap2, Ap3, · · · , Ap N−1} = AP N−1
1 . (2.62)

The linear mapping A is the system matrix of the dynamical flow system whose
eigenvector can represent the intrinsic characteristics of the unsteady flow system.
When continuously increasing the number of the snapshots, the vector space P N

1 will
become linearly dependent at a critical number, which means the rank of the vector
space will remain constant if further adding the flow data sequence p i . After reaching
this threshold, the vector p N can be expressed as a linear combination of the previous
linearly independent data sequence, that is,

p N = a1p1 +a2p2 +·· ·+aN−1p N−1 + r = P N−1
1 a + r , (2.63)

where a = {a1, a2, · · · , aN−1}T and r is the residual vector. The second sequential
snapshots can be further formulated as

P N
2 = {p2, p3, p4, · · · , p N−1,P N−1

1 a}+R , (2.64)

where R = {0,0, · · · ,r } ∈RM×(N−1). Combine equation (2.62) and (2.64), and rewrite them
in a matrix form

P N
2 = AP N−1

1 = P N−1
1 S +R . (2.65)

The matrices A and S are similar and share approximate eigenvalues.
Comparing the equations (2.64) and (2.65), the following relation is obtained

{p2, p3, p4, · · · , p N−1,P N−1
1 a} = {p1, p2, p3, · · · , p N−1}S . (2.66)

Substituting equation (2.64) into equation (2.66), it is easy to find that the matrix S is of
a companion type with

S =



0 a1

1 0 a2

. . .
. . .

...

1 0 aN−2

1 aN−1


. (2.67)

The eigenvalues of matrix S are easier to solve and can approximate the eigenvalues of
A. Thus the matrix S is computed by

S = argmin
S̃

‖P N
2 −P N−1

1 S̃‖2
F , (2.68)

where the Frobenius norm of the matrix B is defined by

‖B‖2
F = trace(B B H ) = trace(B H B ). (2.69)
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The superscript H denotes the conjugate transpose of a matrix (or vector). This
optimization problem can be solved by some standard algorithms, like the least square
method. However, the standard method does not show a good convergence behavior.
The robustness can be improved by a preprocessing procedure using a singular value
decomposition (SVD) of the vector space

P N−1
1 =UΣV H . (2.70)

In this SVD, the matrix U contains the proper orthogonal modes of the snapshots P 1, Σ
is a diagonal matrix containing the singular values, and V is the right singular matrix.
Because the matrix U and V both are orthogonal matrix, the following relations are
met: UU H = I , V V H = I . In equation (2.65), replacing P N−1

1 by equation (2.70), left
multiplying U H and right multiplying VΣ−1, we can get

U H P N
2 VΣ−1 =U H AU =ΣV H SVΣ−1 + R̃ . (2.71)

Let S̃ ≡ΣV H SVΣ−1+R̃ . As a result, S̃, S and A are similar and share the same dynamical
properties. The rank deficiency of the snapshots matrix can also be accounted by
discarding the singular values from SVD below a critical value. The eigenvectors of A,
namely dynamic modesφi , is determined by

φi =U y i , (2.72)

where y i is the i th eigenvector of S̃. The similar matrix S̃ can be obtained by the eigen
decomposition of S̃

S̃ y i =µi y i , (2.73)

where µi denotes the i th eigenvalue of S̃ corresponding to y i . Based on the above
decomposition, the experimental or numerical snapshots can be approximately repre-
sented by a linear combination of the DMD modes

pm =
N−1∑
i=1

φiµ
m
i αi , m ∈ {1,2, · · · , N −1} , (2.74)

where αi ∈ C can be considered as the amplitude of i th DMD mode φi . Rewrite this
reconstruction in a matrix form as

P N−1
1 = [φ1,φ2, · · · ,φN−1]︸ ︷︷ ︸

φ


α1

α2

. . .

αN−1


︸ ︷︷ ︸

Dα=diag{α}


1 µ1 · · · µN−1

1

1 µ2 · · · µN−1
1

...
...

. . .
...

1 µN−1 · · · µN−1
N−1


︸ ︷︷ ︸

Vand

. (2.75)

The Vandermonde matrix Vand ∈ Cr×N signifies the temporal evolution of the dynamic
modes. The eigenvalues µi are usually further converted onto a more familiar complex
stability plane through the logarithmic mapping λi = ln(µi )/∆t [139]. The dynamic
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information about the growth rate βi and angular frequency ωi of a specific DMD mode
are then computed by

βi =ℜ(λi ) = ln |µi |/∆t

ωi =ℑ(λi ) = arctan(µi )/∆t
. (2.76)

The computation of the unknown amplitude vector α is an optimization problem,
formulated by

α= argmin
α

‖P N−1
1 −φDαV and|2F . (2.77)

There are several methods to solve this optimization problem, like the least-mean-
square and Lagrange multipliers. Here we follow the method proposed by Jovanović
et al. [140]. Left multiply equation (2.77) with U H , and transform this problem into the
following form,

argmin
α

J (α) = ‖ΣV H −Y DαV and‖2
F . (2.78)

According to the deduction of Jovanović et al. [140], the objective function J (α) can be
equivalently expressed as

J (α) =αH Cα−D Hα−αH D + s , (2.79)

where

C = (Y H Y )◦ (V andV H
and), D = diag(V andVΣH Y ), s = trace(ΣHΣ). (2.80)

Here, ◦ represents the elementwise multiplication of two matrices, an overbar denotes
the complex conjugate of a matrix, and diag of a matrix is a vector consisting of its main
diagonal values.

Letting ∂J (α)/∂α= 0 in the objective function, equation (2.79), the optimal solution
of minimum-value problem equation (2.78) can be computed by

αopt = P−1q . (2.81)

By this method, we can obtain all the DMD modes φ for the dynamical system,
weighted by their amplitudes α. These modes may grow, decay or oscillate, revealed
by their temporal growth rate β, with a single angular frequency ω. The original flow
field can be reconstructed by superimposing the fluctuations from each mode φi onto
the mean flow qm , formulated as

q(x, t ) = qm +a f ·ℜ
{
αiφi e iθi

}
,θi =ωi t , (2.82)

where a f is the optional amplification factor of the corresponding mode φi . The
reconstructed flow field at different phase angles θi represents the temporal evolution
of the dynamic system, In this way, the imaginary part of the reconstruction at a phase
angle θi = 0 is equivalent to the real part at θi =π, and vice versa.
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2.2.4. SPARSITY-PROMOTING DYNAMIC MODE DECOMPOSITION
There is still an unsolved challenge after obtaining the DMD modes, identifying the
most important dynamical modes among them. Jovanović et al. [140] introduced a
sparsity-promoting dynamic mode decomposition (SPDMD) method to select a subset
of calculated DMD modes that have the most significant effects on the approximation
quality of the original snapshots.

The SPDMD mainly involves two steps. In the first step, the main objective is to find a
sparse structure which is a balance between the accuracy of approximation of snapshots
and the number of DMD modes. Thus an extra term is introduced into equation (2.78),

argmin
α

J (α)+γ
N−1∑
i=1

|αi | , (2.83)

whereγ is a positive regularization factor that is associated with the emphasis on sparsity
of the eigenvalue vector α. This additional term penalizes the number of the non-zero
values in the amplitude vector α and larger values of γ put more stress on the total
number of non-zero elements in α (a sparser structure). Jovanović et al. [140] also
provides the alternating direction method of multipliers (ADMM) to solve this convex
optimization problem.

In the next step, the non-zero amplitudes are obtained by fixing the sparsity structure
at a specific γ based on the previous tradeoff between decomposition accuracy and
the number of DMD modes. Therefore, a constrained convex optimization problem is
formed

argmin
α

J (α)

subject to Eα= 0
, (2.84)

where E ∈ RM×(N−1) contains the information of sparsity structure of the vector α. The
rows of E are unit vectors in RN−1 with non-zero elements corresponding to zero values
in α. For example, if we get a vector α5×1 = [α1 0 α3 0 0]T at a specific γ, the matrix E 3×5

is given as

E =


0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

 .

The method of Lagrange multiplier can be used to solve the optimization problem
[equation (2.84)]. See Jovanović et al. [140] for more details.
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Learning without thinking leads to confusion;
thinking without learning falls into danger.

学而不思则罔，思而不学则殆

Analects of Confucius
论语
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3.1. FLOW CONFIGURATION AND NUMERICAL SETUP

This section describes the flow configuration and numerical method for the present BFS
cases. Specifically, the generation of the unstable oblique waves and turbulence for the
inflow are introduced.

3.1.1. FLOW CONFIGURATION

The setup for the current study is an open BFS (no upper wall) with a supersonic inflow,
a schematic of which is shown in figure 3.1. With this configuration, we can remove the
effects of wave reflections from the upper wall. Four cases are considered on the same
geometry with different inflow conditions, featuring a laminar zero-pressure gradient
boundary layer superimposed with zero-amplitude (case BZA, i.e., clean laminar inflow),
low-amplitude (case BLA) and high-amplitude (case BHA) oblique waves at the inlet, as
well as a turbulent inflow (case BTB), respectively.

Figure 3.1: Schematic of the region of interest, which is in the center of the large computational domain with
the size of ([−40,70]× [−3,30]× [−8.0,8.0])δ0 in the x, y , z directions. The figure represents an instantaneous
numerical schlieren graph in the x − y cross section for the low-amplitude perturbed laminar inflow case.
Indicated are the wall-normal profiles of the mean velocity and perturbations.

The inflow is characterized by the free-stream Mach number M a∞ = 1.7 and the
Reynolds number Reδ0 = 13718 based on the inlet boundary layer thickness δ0 (at
99%u∞) and free-stream velocity u∞. The main flow parameters are summarized in
table 3.1. We indicate free stream flow parameters with subscript ∞ and stagnation
parameters with subscript 0. The size of the computational domain is [Lx , Ly , Lz ] =
[110δ0, 33δ0, 16δ0] including a length of 40δ0 upstream of the step in order to exclude
potential uncertain effects from the numerical inlet boundary conditions on the flow in
the region of interest. The height of the step is three times larger than the inlet boundary
layer thickness, which is large enough to induce the transition from laminar to turbulent
flow [46].

Table 3.1: Main flow parameters of the current case

M a∞ u∞ δ0 θ0 Re∞ T0 p0 h p∞
1.7 469.85 m/s 1 mm 0.107 mm 1.3718×107 m−1 300K 1×105 Pa 3 mm 20259 Pa
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3.1.2. NUMERICAL SETUP

The in-house ILES code INCA introduced in chapter 2 was employed to solve the com-
pressible Navier-Stokes equations. This solver has been successfully applied to various
supersonic flow cases, including shock wave/boundary layer interaction (SWBLI) on a
flat plate [99] and compression ramp [96], and transition between regular and irregular
shock patterns in SWBLI [141]. More details about the numerical method can be found
in Hickel et al. [118].

For the spatial discretization, a Cartesian grid structure with block-based local
refinement was applied for the entire domain, as displayed in figure 3.2. In addition,
hyperbolic grid stretching was used in the wall-normal direction downstream of the
step. Upstream of the step, the near wall grids are distributed uniformly. The mesh is
sufficiently refined near all walls to ensure a well-resolved wall shear stress. The grid
spacing becomes coarser with increasing wall distance but the expansion ratio is not
larger than two. Using this discretization strategy, the computation domain has around
3.6×107 cells; thus we obtain a spatial resolution of the flow field with ∆x+

max ×∆y+
max ×

∆z+
max ≈ 36 × 0.9 × 18 in wall units for the first level grid near the wall in the entire

domain (∆x+
max = 0.9 on the step wall). The temporal resolution, that is the time step,

is approximately ∆tu∞/δ0 = 7.6 × 10−4, corresponding to a Courant–Friedrichs–Lewy
condition CFL < 0.5.

Figure 3.2: Grid distribution in the x-y plane in the computational domain near the step.

The step and wall are modeled as non-slip adiabatic surfaces. All the flow variables
are extrapolated at the outlet of the domain. At the inflow and on top of the domain,
non-reflecting boundary conditions based on Riemann invariants are used. Periodic
boundary conditions are imposed in the spanwise direction. The grid and numerical
approach used in the current study are the same for all four cases, except for the
inlet boundary conditions. Case BZA has a clean compressible self-similar laminar
inflow boundary layer profile, while cases BLA and BHA contain oblique T-S waves
superimposed on the same mean laminar boundary layer profile at the inlet. The setup
of the imposed T-S mode will be described in the next section. The case BTB features a
turbulent inflow boundary layer generated by the digital filter technique.
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3.1.3. INFLOW CONDITIONS

For the present transitional case BLA and BHA, the compressible base flow was com-
puted by using a selective frequency damping technique [142]. Next, spatial LST is used
to find the local most unstable mode, i.e., corresponding to the smallest negative value
of αl

i , within a range of 0.03 ≤ βl ≤ 0.12 and 0.008 ≤ωl ≤ 0.024. The parameters of wave
properties with superscript l are normalized by the Blasius length l , and those with
superscript δ are normalized by the inlet boundary thickness δ0. Figure 3.3 shows the
contours of αl

i at the local Reynolds number Rel = 2167 based on Blasius length. As we

can see, the maximum |αl
i | is reached atαl

i =−0.00255 forβl = 0.06202 andωl = 0.01605.

The corresponding streamwise wave number and wave angle are αl
r = 0.04001 and

φ= 57.17◦. It has been reported that for corresponding flow conditions the wave angle of
the primary mode is between φ= 55◦ ∼ 60◦ (at M a > 1.6), the streamwise wave number
αl

r = 0.035 ∼ 0.09 (at Rel = 2000, M a = 1.6) and angular frequency ωl = 0.006 ∼ 0.03 (at
Rel = 2000, M a = 1.6) [21, 38, 143]. Our results fall into this reported range.

Figure 3.3: Contours of αi at the domain inlet obtained from LST

The eigenvalues spectra and corresponding disturbances profiles of the most un-
stable oblique wave are plotted in figure 3.4. The horizontal branch on the left rep-
resents the fast acoustic wave spectrum and the one on the right the slow acoustic
wave spectrum, see figure 3.4(a) [144]. These two continuous horizontal spectra are
generated from the streamwise wavenumber αr corresponding to the phase velocities
cph = 1 ± 1/M a. The vertical branch denotes the continuous vorticity and entropy
spectra cph = 1. At the current Reynolds number, these two branches overlap and
become indistinguishable, which is a common behavior in high Reynolds number flow,
as reported by Balakumar and Malik [145]. The mode with minimum negative value
belongs to another continuous spectrum (most of them are not shown in the plot due
to their large imaginary magnitudes), which will decay rapidly with the streamwise
distance and therefore is not our current concern. These spurious modes can be
identified by examining their eigenfunctions. The other discrete mode in the fourth
quadrant is the T-S mode and has the largest growth rate among all the physical modes.
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Figure 3.4(b) shows the perturbation profiles of the velocity components, pressure and
temperature for this mode. We substitute the computed αr , β and ω into equation
(2.47), retaining only the real part of q ′, where e−αi x is set as a constant initial amplitude.
We superimpose this single least stable T-S mode q ′ onto the laminar flow profile and
create two cases: one with low amplitude (e−αi x = 0.026, case BLA) and the other one
with high amplitude (e−αi x = 0.13, case BHA). Correspondingly, the averaged amplitude
of the streamwise velocity fluctuations is equivalent to Ain = 0.1%u∞ (case BLA) and
Ain = 0.5%u∞ (case BHA) in the disturbed region (0 ≤ y/δ0 ≤ 5.0).

Figure 3.4: (a) Eigenvalue spectra and (b) the wall-normal disturbances of the local least stable T-S mode at
ωδ0/u∞ = 0.10164 and βδ0 = 0.39270 obtained from LST.

For the turbulent case BTB, the synthetic turbulence generation method based on
digital filter technique [124] was used to produce the appropriate turbulent inflow.
This method can reproduce both given first- and second-order statistical moments and
spectra without introducing the low-frequency contents which may modulate with the
interested low-frequency phenomenon downstream. The reference data used are from
Petrache et al. [146] to specify realistic integral length scales and mean boundary layer
profiles. According to the existing work [97, 147], a transient length of around 10δ0

is sufficient for turbulence to develop in the supersonic boundary layer. Here, we
summarize the flow conditions for the four cases investigated in table 3.2.

Table 3.2: Flow information for all the investigated BFS cases

Case BZA BLA BHA BTB

flow regime laminar laminar laminar turbulent

fluctuation intensity I = 0 I = 0.8% I = 4% I = 6%
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3.1.4. GRID VALIDATION

We only study case BTB to scrutinize the grid sensitivity since all the cases use the
same mesh. The computed flow field reached a fully developed statistically steady state
after an initial transient period of tu∞/δ0 = 800. The samples then were collected
every u∞/δ0 = 0.25 over an interval of another tu∞/δ0 = 400, yielding an ensemble
size of 1200. The van Driest transformed mean velocity profile and Reynolds stresses
in Morkovin scaling are provided at x/δ0 =−5.0 in figure 3.5. For comparison, the figure
also includes the theoretical law of the wall and incompressible DNS data of Schlatter
and Örlü [148] at Reτ = 360 and Reθ = 1000. The present mean velocity profile is
consistent with both the logarithmic law of the wall (u+ = 1

κ log y++C with the constants
κ = 0.41 and C = 5.2) and the DNS data. The Reynolds stresses from the current LES
are also in a good agreement with the reference data. Since the current LES data is for a
compressible boundary layer that has a higher momentum thickness Reynolds number
Reθ = 2000 and friction Reynolds number Reτ = 400, the velocity profile has a slight
larger plateau value and streamwise Reynolds stress profile features with a higher peak
value in the buffer layer [149].
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Figure 3.5: Mean profiles of the upstream turbulent boundary layer (case BTB) in inner scaling at x/δ0 =−5.0
with Reτ = 400 and Reθ = 2000. (a) Van Driest transformed mean velocity profile and (b) Reynolds stresses
normalized by

√
ρ/ρw . –·–·, law of the wall; ——, present LES with the chosen fine grid; · · · · · · , coarser grid GX;

– – –, coarser grid GZ; ◦, incompressible DNS data of Schlatter and Örlü [148] at Reτ = 360 and Reθ = 1000.

The grid sensitivity has been checked using two coarser grids with ∆x+
max ×∆y+

max ×
∆z+

max = 72× 0.9× 18 and ∆x+
max ×∆y+

max ×∆z+
max = 72× 0.9× 36. As we can see from

figure 3.5, these two coarser grids give very similar results as the fine grid for the mean
velocity and Reynolds stress profiles. For the peak value and log layer of the Reynolds
stress profiles, a slight improvement is obtained using the fine grid.

3.2. PRELIMINARY COMPARISONS OF DIFFERENT CASES
The flow field is compared in this section to obtain a general view of the disturbance
evolution with different inflow conditions, i.e., among the four cases BZA, BLA, BHA.
BTB. First of all, an overview of the boundary layer development is provided by dis-
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cussing the streamwise variation of the time- and spanwise-averaged skin friction, as
shown in figure 3.6(a). The curves for the cases BZA and BLA coincide. The boundary
layer remains laminar upstream of the step as can be inferred from the low level of
〈C f 〉. In the first half of the separation bubble (0.0 ≤ x/δ0 ≤ 5.1), the recirculating flow
is still laminar and 〈C f 〉 is approximately zero. Then 〈C f 〉 decreases towards a global
minimum at x/δ0 ≈ 8.0, followed by an increase of 〈C f 〉. In both cases, the shear layer
reattaches around x/δ0 = 10.9. For the case BHA, the transition occurs much faster than
for the other two cases. Skin friction begins to grow shortly downstream of the inlet at
x/δ0 ≈−23.0, which indicates an early onset of transition. After a quick growth between
−14.0 ≤ x/δ0 ≤ −4.0, 〈C f 〉 reaches a typical turbulent level [150], indicating that the
boundary layer is already quite turbulent upstream of the step. For case BTB, the initial
variations of the skin friction are caused by the DF technique because the boundary layer
needs to develop physical coherent structures. Case BHA and BTB nearly follow the same
path behind the step because they are both in a similar turbulent state around the step.
As a result of the more energetic shear layer and thus the promotion of mixing, their
reattachment length (Lr /δ0 = 8.8) is 19% shorter than for the other two cases. The skin
friction coefficient reaches a steady value at about 〈C f 〉 = 2.9×10−3 for all the cases at
x/δ0 > 30.

Figure 3.6: Streamwise development of time and spanwise-averaged (a) skin friction and (b) root mean square
of wall pressure fluctuations (normalized by ρ∞u2∞) for case BZA (◦), case BLA (——), case BHA (rr), case
BTB (· · · · · · ).

Table 3.3 compares the reattachment length Lr from the current LES with existing
experimental and numerical results normalized with the step height h. In the laminar
case, the obtained Lr /h = 3.63 agrees well with the value reported by Karimi et al. [151]
for their low-turbulence case (turbulence intensity I = 0.5%) and is smaller than the one
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reported by Zhu et al. [53] due to the lower M a in the current case. For the turbulent
cases (case BHA and BTB), it can be seen that Lr /h = 2.93 is very close to the reported
values, for example Lr /h = 3.0 reported by Chakravarthy et al. [152].

Table 3.3: Comparison of the reattachment length reported in various studies of BFS cases. Note that the
reference length δ0 is the boundary layer thickness in front of the step in some cases and I is the free stream
or maximum inflow turbulence intensity.

Authors M a Re∞, m−1 h, mm δ0/h Lr /h Comments

Chakravarthy et al. [152] 1.5 4.41×107 6.35 0.32 3.0 LES, I ≈ 6%

Roshko and Thomke [153] 2.0 3.74×107 6.35 0.54 3.36 experiment, turbulent

Liu et al. [154] 2.0 3.35×107 3.18 0.25 3.0 LES, I ≈ 1%

Soni et al. [47] 2.0 3.34×107 3.2 - 4.1 LES, I ≈ 2.9%

Karimi et al. [151] 2.0 3.32×107 3.18 - 3.56 RANS, I ≈ 0.5%

Bolgar et al. [103] 2.0 2.77×107 7.5 0.47 3.24 experiment, I ≈ 2%

Chen et al. [105] 3.0 0.77×107 5 - 3-4 experiment, turbulent

Zhu et al. [53] 3.4 0.61×107 3 0.33 5.9 experiment, laminar

Zhu et al. [53] 3.4 0.61×107 3 0.33 3.6 experiment, turbulent

Present case BZA 1.7 1.37×107 3 0.33 3.63 LES, laminar

Present case BLA 1.7 1.37×107 3 0.33 3.63 LES, I ≈ 0.8%

Present case BHA 1.7 1.37×107 3 0.33 2.93 LES, I ≈ 4%

Present case BTB 1.7 1.37×107 3 0.33 3.0 LES, I ≈ 6%

The root mean square (RMS) of the wall pressure prms =
√< p ′p ′ >/ρ∞u2∞ is plotted

in figure 3.6(b), illustrating the level of fluctuations and the generation of turbulence.
Due to the imposed oblique waves, the RMS of wall pressure for the cases BLA and BHA
are around two and three orders higher than for the clean laminar inflow case at the
inlet [not visible in figure 3.6(b) due to its level lower than 10−5]. In the case BHA, the
pressure fluctuations start to increase at x/δ0 = −20.0 which confirms that transition is
initiated at this point. After reaching a local maximum at x/δ0 = −10.0, prms, they keep
steady at a level of prms = 0.005 upstream of the step. For the case BTB, the RMS of wall
pressure remains a steady high level upstream of the step after an initial drop caused by
the DF technique and overlaps with that of case BHA when x/δ0 > −10. For the cases
BZA and BLA, the pressure fluctuations grow very slowly upstream of the step. Behind
the step, all four cases display a similar variation tendency but with different rates. Case
BHA and BTB have a higher initial level of the pressure fluctuations behind the step and
a higher peak value than the other two cases. The case BLA follows nearly the same
trajectory as the case BZA downstream of the step, notwithstanding it being imposed
with low-amplitude oblique waves, which provides further support to the assumption
that these two cases share the same transition path throughout the separated shear layer
region. The wall pressure fluctuations finally reach identical levels for all three cases at
x/δ0 > 30.

The visualization of instantaneous vortical structures for all four cases is presented
by means of iso-surfaces of the λ2 vortex criterion [155] in figure 3.7, 3.8 and 3.9. For



3.2. PRELIMINARY COMPARISONS OF DIFFERENT CASES

3

49

both case BZA and BLA, there is a strong shear layer produced at separation which is
subject to the inviscid instability, inducing large K-H vortices. Subsequently, these large
vortices break down into small vortices as they move towards the bottom wall, which
is likely caused by the secondary instability. Finally, a fully turbulent boundary layer
flow develops downstream of the separation bubble, as illustrated by the small hairpin
vortices resulting from the breakdown of the large Λ-shaped vortices and reattachment
of all these unsteady waves. These similar features of the instantaneous flow field
provide further confirmation that cases BZA and BLA follow the same transition path.
For the low-amplitude case, however, the development of the upstream boundary layer
also shows the imposed oblique T-S waves upstream of the step, as shown in figure 3.6
and will be discussed in more detail in section 3.4.

In contrast, case BHA undergoes a much earlier transition, which takes place already
in the attached boundary layer upstream of the step [figure 3.8(a)]. The visualization
shows oblique vortices that are excited by the large-amplitude T-S waves and their
secondary instabilities which form the arc-shaped vortices. These disturbances of the
boundary layer already become highly three dimensional upstream of the step. Since
the incoming flow is effectively turbulent at the step [figure 3.8(b)], the free shear layer
of case BHA is more energetic than for the case BZA/BLA. Note that the increased level of
λ2 in figure 3.8(b) is aimed to remove the small homogenous vortices and better visualize
the interesting vortical structures. The shear layer reattaches earlier because of the more
energetic shear layer, while the generated reattachment shock has a smaller shock angle
and stronger intensity (see the included numerical schlieren in figure 3.8). The latter
observations are in qualitative agreement with the predictions from a theoretical inviscid
model of the flow reattachment configuration.

For the turbulent case BTB, we see the expected small-scale coherent structures in
the incoming turbulent boundary layer, as shown in figure 3.9. Since the separated
shear layer is inviscidly unstable, it rolls up and larger and stronger vortical structures are
generated over the bubble region. As the shear layer evolves downstream, the upstream
small turbulent structures develop into larger coherent structures due to the shear layer
instability, indicated by the arc-shaped vortices in the outer region of the boundary
layer downstream of the bubble. These coherent vortical structures propagate above
the reversed flow from the separation to the reattachment location, and they also exist
within the turbulent boundary layer downstream of the bubble. These large coherent
vortices are caused by the vortex pairing process behind the step, as reported by Soni
et al. [47]. Similar with the case BHA, the typical K-H vortex structure present in the
laminar case is not observed in the turbulent regime where the quasi two-dimensional
vortices are probably distorted by the highly three-dimensional turbulence. In the
middle of the shear layer, large coherentΛ-shaped vortices are formed and transformed
into arc-shaped vortices downstream in the laminar case as a result of vortex stretching
and tilting, whereas only arc-shaped vortices are present downstream in the turbulent
case. From the numerical schlieren image shown on the x − y slice, the shock intensity
in the laminar case is weaker than that of the turbulent one.

By comparison, the transition path of case BLA is very similar to what was observed
in case BZA. However, we can not rule out the effects of the imposed oblique waves
without the further quantitative comparison and analysis. In the following sections, we
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(a)

Primary K-H 
 vortices

Secondary  vortices

Turbulent structures

Figure 3.7: Instantaneous vortical structures at tu∞/δ0 = 912, visualized by isosurfaces of λ2. A numerical
schlieren based on z = 0 slice is also included with |∇ρ|/ρ∞ = 0 ∼ 1.4. (a) case BZA and (b) case BLA at λ2 =
−0.02.

first scrutinize the transition process of the fully laminar case BZA and then examine
the effects of possible T-S, K-H and secondary instability interactions in the transition
focusing on the case BLA. For the case BHA, on the other hand, the gradual growth of
the oblique T-S waves appears to saturate soon and other instabilities already take effect
well upstream of the step. Consequently, the flow field is highly turbulent in the shear
layer, which may be the cause that the rolling up of large K-H vortices is suppressed,
as the same with case BTB. Last, our concern is laid on the unsteady behavior of the
shock wave/turbulent boundary layer interaction system, especially the low-frequency
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Turbulent structures

Arc-shaped vortices

Oblique vortices

Figure 3.8: Instantaneous vortical structures at tu∞/δ0 = 912 for case BHA, visualized by isosurfaces of λ2. A
numerical schlieren based on z = 0 slice is also included with |∇ρ|/ρ∞ = 0 ∼ 1.4. (a) upstream of the step at
λ2 =−0.02 and (b) downstream at λ2 =−0.08.

unsteadiness, by analyzing the case BTB in detail.

3.3. LAMINAR REGIME

In this section, we investigate the self-excited transition process and unsteady features of
the BFS case with a undisturbed laminar inflow by analyzing the case BZA. The transition
process of the current case is presented by examining the mean and instantaneous
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arc-shaped vortices

shock wave

Figure 3.9: Instantaneous vortical structures at tu∞/δ0 = 912 for case BTB, visualized by isosurfaces of λ2 =
−0.08. A numerical schlieren based on z =−4 slice is also included with |∇ρ|/ρ∞ = 0 ∼ 1.4.

flow structures. The effects of shock and reattachment on the transition are inspected
by spectral and statistical analysis. Finally, the dominant modes in the evolution of
the transitional flow are discussed using dynamic mode decomposition. In addition,
different with the incompressible BFS case which has been well studied in the existing
works, there are probably additional mechanisms involved in the supersonic flow,
that are related to compressibility and the occurrence of compression waves at flow
reattachment. It is reasonable to conjecture that a different mechanism may contribute
to the transition process in the supersonic flow. Therefore, the comparison between
incompressible and compressible cases are also included in the following discussion.

3.3.1. MEAN FLOW VISUALIZATION
The main flow features are visualized by the time- and spanwise-averaged density
contours shown in figure 3.10. The incoming laminar flow experiences a centered
Prandtl-Meyer expansion when it separates at the step corner due to the sudden
geometry expansion. Then the free shear layer develops towards the downstream wall
and finally impinges on the wall surface. Compression waves are generated around the
reattachment location, which coalesce into a reattachment shock (white solid line). The
low-speed recirculating flow forms a separation bubble underneath the dividing line
(here defined for convenience as the isoline of u = 0 indicated by black dashed line),
while the high-speed part proceeds downstream by overcoming the slight pressure rise
[154]. The mean reattachment length is about Lr = 10.9δ0 (3.6h), which is consistent
with the existing results, reporting that the reattachment length is usually within 3.0 ∼
4.0h around the current Mach number [151, 154]. Behind the reattachment point,
the distance between the sonic line (white dashed line) and wall decreases with the
streamwise distance as a result of the increasing velocity gradient near the wall, which
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indicates the evolution towards a fully turbulent boundary layer. The reattachment
length Lr = 3.6h is much smaller than the typical values reported for incompressible
cases (e.g. 19.8h [48]) due to the more energetic mixing of the shear layer with the
increasing Reynolds number. This interpretation is in accordance with the finding that
the reattachment length is reduced with the Reynolds number in the transitional regime
[156].

reattachment shock

Figure 3.10: Time and spanwise-averaged contour of density with isolines of streamwise velocity and Mach
number (case BZA). A solid circle (•) indicates the reattachment point. The white dashed and solid lines denote
the isolines of M a = 1.0 and |∇p|δ0/p∞ = 0.24. The black dashed and solid lines signify isolines of u = 0.0 and
u/ue = 0.99.

The reattachment length is further confirmed by the mean skin friction distribution
in figure 3.11(a), where 〈C f 〉 represents the skin friction normalized by 0.5ρ∞U 2∞. The
intensity of separated flow is not uniform in terms of 〈C f 〉, varying with streamwise
distance along the separation bubble. The level of 〈C f 〉 remains almost zero in the
upstream part of the separation bubble (0 < x/δ0 < 6.3), which is followed by a decrease
of 〈C f 〉 towards a global minimum at x/δ0 = 8.4. Then 〈C f 〉 slowly climbs up and
eventually stays steady at about 〈C f 〉 = 2.9 · 10−3 for x/δ0 > 25, which is a typical level
of the turbulent boundary layer at the current Reynolds number range. The trend and
level of 〈C f 〉 match well with the numerical results of Spazzini et al. [157] despite the
different inlet boundary conditions and reattachment length. As will be shown later, this
structure of 〈C f 〉 inside the recirculating region seems to be related to the low-frequency
unsteadiness.

The wall pressure in figure 3.11(b) displays a sharp drop by about 50% in front of
the step. The wall pressure then gradually reduces further to reach its global minimum
at x/δ0 = 7.3 in the separation bubble. In terms of the trend and relative variation,
our results are in good agreement with the numerical works of Karimi et al. [151]. The
three inflection points of the wall-pressure distribution are considered to be associated
with the separation, emergence of compression waves and reattachment, as reported by
Délery et al. [158].

The boundary layer state can be characterized basically by the evolution of the wall-
normal velocity profile along the streamwise direction, see figure 3.12, where ∆y/δ0

signifies the normalized wall distance. Sufficiently upstream of the step edge, the
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(a) (b)

Figure 3.11: Time- and spanwise-averaged (a) skin friction and (b) wall pressure for case BZA. The dash line
indicates the averaged separation and reattachment location.

velocity profile corresponds to a typical laminar boundary layer. At the step corner
(x/δ0 = 0), the streamwise velocity gradient increases significantly due to the upstream
effect of the sharp expansion of the geometry. Accordingly, the boundary layer thickness
gradually decreases along the streamwise distance upstream of the step (see figure 3.10).
It is noticeable that there exists an inflection point of the velocity profile at this location,
which means that the boundary layer has an inviscid instability at the step. The mean
streamwise velocity increases across the expansion due to the favorable pressure gradi-
ent [see also figure 3.11(b)]. Compared to the upstream velocity profile, the boundary
layer profile displays a large momentum deficit in the separated region, for example, at
x/δ0 = 5 there is only a small reverse flow region, however, the velocity deficit of 1.0u∞
extends up to around ∆y/δ0 = 1.5. Also shortly downstream of reattachment (which
takes places near x/δ0 = 11), the shape of the velocity profile, at x/δ0 = 15 and x/δ0 = 20,
has not yet reached an equilibrium state. The outer flow velocity gradually returns to
its initial level with the adverse pressure gradient behind the reattachment shock, see
figure 3.11(b). The flattening of the velocity profile and steeper velocity gradient near
the wall, compared to the upstream velocity profile, both indicate the development of
the turbulent boundary layer.

Figure 3.12: Streamwise evolution of spanwise and time-averaged streamwise velocity profile for case BZA.
Note: the y-axis is the non-dimensional normal distance from the wall.
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3.3.2. INSTANTANEOUS FLOW VISUALIZATION
The instantaneous vortical structures in a typical instantaneous flow realization are
visualized by means of the λ2 vortex criterion, providing an overall view in figure 3.7(a)
and a zoom-in view in figure 3.13. The laminar-to-turbulent transition process can be
divided into five stages based on the appearance of the vortical structures. The first stage
is the relatively short range where two-dimensional spanwise structures are initiated due
to the inviscid K-H instability of the shear layer, as shown in figure 3.13(a).

In the second stage, the spanwise structures evolve further into large quasi two-
dimensional vortices [figure 3.13(b)]. These spanwise-aligned K-H vortices are subse-
quently deforming into oblique waves as a result of their secondary instability, probably
triggered by small horseshoe vortices beneath as the free shear layer flow develops
downstream.

1.2

0.8

0.4

0.0

-0.4

A

D

C
B

E

Figure 3.13: Instantaneous vortical structures of case BZA at tu∞/δ0 = 793, colored by contours of streamwise
velocity, visualized by isosurfaces of (a) λ2 = −0.005, (b) λ2 = −0.005, (c) λ2 = −0.02, (d) λ2 = −0.1 and (e)
λ2 =−0.5.

The streamwise velocity is not distributed uniformly along the oblique waves, which
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induces the formation of low and high momentum zones along the spanwise direction.
With the spanwise modulation of the vortices, the low-momentum parts form into the
legs of a Λ-shaped vortex structure and the high-momentum parts develop into the
head of a Λ-shaped vortex in the third stage, see figure 3.13(c). At the same time, the
distorted vortices pair with each other since the high-speed part of upstream vortices
catch up with the low-speed part of downstream vortices. The separated shear layer
flow thus exhibits the formation of large-scale vortices via K-H and secondary instability,
and then these vortices keep stretching, pairing as the shear layer evolves. In the
incompressible case of Schäfer et al. [48], the vortex pairing is not observed and thus
the K-H vortices keep aligned in the spanwise direction upstream of the reattachment
point. However, compressible shear layers exhibit three-dimensional instabilities at a
high Mach number, as reported by Sandham and Reynolds [159]. Therefore, the oblique
waves emerge in the shear layer, which makes the K-H vortices tilting in the spanwise
direction and pairing with each other due to the promotion of the shear layer mixing.
Existing experimental results have confirmed the behavior of the vortex pairing in the
supersonic laminar flow [53]. However, if the separation length is too short, like in
supersonic turbulent flow, there is not enough resident time for K-H vortices to grow
and pair within the shear layer.

In the next stage, the large coherentΛ-shaped vortices break down into several small
Λ-shaped vortices staggered in the spanwise direction due to the streamwise stretching
of vortices, in which the head part of the vortex (relatively far away from the wall)
is convected faster than the leg parts until this behavior tears down the large vortex
[figure 3.13(d)]. Emerging smaller Λ-shaped vortices indicate the onset of the nonlinear
regime, which originates from the upstream self-excited quasi-periodical K-H vortices,
instead of the natural spanwise differential amplification of the Tollmien-Schlichting
waves [160]. There also exist low-momentum zones in leg parts and high-momentum
zones in head parts of the smallΛ-shaped vortices.

In the last stage, the vortex-stretching mechanism continues and the hairpin vortices
appear to be lifted up due to the stretched legs [161, 162]. This rolling up contributes
to the formation of large hairpin vortices, which is the signature of turbulent boundary
layer flow, illustrated in figure 3.13(e).

We do not observe Görtler vortex pairs from the visualizations of the vortical struc-
ture. This suggests that the Görtler instability may not be a predominant mechanism in
the transition. We evaluated the Görtler number Gt to quantify the development of the
Görtler instability along the streamwise distance to provide more physical evidence. The
characteristic Görtler number Gt is defined as

Gt = θ

0.018δ∗

√
θ

R
(3.1)

where δ∗, θ and R signify the local displacement thickness, the momentum thickness
and the curvature radius along a specific streamline, respectively. When the local Görtler
number exceeds the critical value Gt = 0.6 for a wide range of compressible laminar flow
conditions, Görtler vortices will emerge in the boundary layer [78, 99]. We computed
the value of the local Görtler number along the boundary layer edge and found that
it remains below this threshold at every x coordinate as far downstream as the mean
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reattachment location, where significant turbulence is already observed. Based on the
combined evidence of vortical visualizations and the analytical values, we conclude that
the Görtler instability does not play an important role in this transitional case.

For each stage of the transition process, spanwise profiles of the fluctuations of the
streamwise velocity are shown in figure 3.14 (note the smaller scale for the first two sta-
tions). We can clearly see the differences of dimensional features of the traveling waves
in each stage. In the first stage, the spanwise waves are completely two-dimensional, and
their wavelength is about half of the spanwise domain size, figure 3.14(a). Then these
two-dimensional waves modulate into oblique waves and their amplitudes increase by
approximately one order, figure 3.14(b). The three-dimensional features of unstable
waves are obvious and their fluctuations becomes more energetic in the following three
stages. As reviewed by Herbert [163], the vortex pairing process is usually observed
in inflectional boundary layers at very large amplitudes of the periodic modulation. It
seems that the three-dimensional characteristics of the unstable waves emerge in a very
short distance behind the step and soon become highly energetic before reaching half of
the reattachment length.

(a) (b) (c) (e)(d)

Figure 3.14: Fluctuations of streamwise velocity (case BZA) along the spanwise direction at five different
locations shown in figure 3.13 (marked as A, B, C, D and E, each of which corresponds to one stage of the
transition process).

The root-mean-square (RMS) and amplification factor of the streamwise velocity
fluctuations are plotted as function of the streamwise direction through the fives stages
of the transition in figure 3.15. Based on the profile of streamwise velocity RMS at a
specific xi location, we find yi where the local profile has the maximum. The position
(xi , yi ) is considered to be the local most unstable point and computed along the
streamwise direction. The RMS of the streamwise velocity we display (solid line in
figure 3.15) are the results at these locations (xi , yi ). Then we compute the perturbation
amplitudes Ai from the time series data at (xi , yi ). The amplification factor is normalized
based on the amplitude A0 at x = 0. The level of fluctuations grows smoothly in the first
two stages and experiences an accelerated growth caused by the secondary instability
and vortex breakdown in the third and fourth stage (solid line in figure 3.15). The
streamwise modulation of low and high momentum parts of Λ-shaped vortices also
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contributes to the accelerated growth. In the last stage, the fluctuations reach their
maximum around the reattachment point and return to an almost constant level in the
turbulent boundary layer (not shown in the figure). Concerning the amplification factor
(dashed line in figure 3.15), at first, the amplitude of fluctuations displays a rapid modal
growth of K-H vortices. In the next two stages, the growth rate (presented by the slope of
the amplification factor) is much smaller than before although the amplification factor
still slowly increases. Then the amplification factor continues increasing because of a
rapid onset of non-linear distortion and breakdown to turbulence in the fourth stage. In
the last stage, the amplification factor almost keeps steady at a high level.

(a) (b) (c)

(e)(d)

Figure 3.15: RMS (solid line) and amplification factor (dashed line) of streamwise velocity fluctuations (case
BZA) along streamwise direction through the five stages of the transition in figure 3.13 based on the spanwise-
averaged flow field.

In conclusion, the above visualization and analysis show rapid modal growth of K-
H type transition right behind the step. The amplitude of fluctuations exceeds 0.1%u∞
after a short distance from the step, which indicates that nonlinear interactions become
important. Therefore, we believe the transition process consists of onset and modal
growth of K-H vortices (stage 1, 2), secondary instability (stage 3), breakdown of the large
coherent vortices (stage 4) and turbulent state (stage 5).

3.3.3. UNSTEADY BEHAVIOR
The unsteadiness of the flow field is examined to find the most energetic mechanism in
the laminar-to-turbulent transition. First, the map of RMS values for the wall-normal
velocity fluctuations is considered, as plotted in figure 3.16. We do not see any energetic
activity upstream of the step. The velocity fluctuations are only noticeable starting from
the separated shear layer and reach a global maximum around the reattachment region.
In addition, relatively small fluctuations are observed in the reattachment shock area,
which is likely indication of the unsteadiness of the shock position.

We analyze the dynamic behavior by means of the frequency weighted power
spectral density (FWPSD) of the pressure along the dividing line in figure 3.17. Note that
all values of FWPSD have been normalized by the local integral values

∫
P ( f )d f in order

to better highlight the relative local contributions at different frequencies, independent
of the overall fluctuations strength. The sampling interval is tu∞/δ0 = 800 ∼ 1150
with a sampling frequency of fsδ0/u∞ ≈ 2. Welch’s method with Hanning window was
applied to compute the PSD using eight segments with 50% overlap (the same for the
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reattachment sh
ock

Figure 3.16: Contours of the variance of the wall-normal velocity for case BZA. A solid circle (•) indicates the
mean reattachment point. The white dashed and solid line denote the isolines of M a = 1.0 and ∇p = 0.24. The
black dashed and solid lines signify isolines of u/u∞ = 0.0 and u/u∞ = 0.99.

following PSD calculations of this section). As we can see in figure 3.17, in the first
stage, the separated shear layer features a significant low-frequency oscillation with
f δ0/u∞ ≈ 0.02 immediately behind the step. This unsteady behavior is believed to be
associated with the breathing motion of the separation bubble, as we will discuss in
the following section. The dominant frequency then shifts towards higher values of
f δ0/u∞ ≈ 0.2 in the second stage where the oblique K-H vortices are observed. Although
we can infer that there is still low-frequency breathing unsteadiness in this stage, the
dominant frequency is around the characteristic frequency of the K-H vortices, which
underlines the important role of the K-H instability in the transition scenario. As the
shear layer develops, the energetic content of the shear layer gradually shifts to lower
frequencies in the following stages (3.2 < x/δ0 < 12) and evolves towards a broadband
frequency spectrum from the low to high frequency. Downstream of the transition region
(x/δ0 ≥ 12), the fluctuations in the turbulent boundary layer are distributed over the
spectrum without a clear preferred frequency.

Figure 3.17: Frequency weighted power spectral density map of pressure signals along the dividing line based
on z = 0 slice (case BZA). At every streamwise location the weighted spectra are normalized by

∫
P ( f )d f . The

five stages of the transition process are indicated by vertical dashed lines.
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Time signals of three aerodynamic parameters are shown in figure 3.18 to further
characterize the unsteady behavior of the interaction, including the spanwise-averaged
reattachment point xr , the reattachment shock location xl and the cross-sectional area
of the separation bubble A. The value of xr is computed as the intersection of the
dividing line (isoline of u = 0) and the wall in the range from x/δ0 = 8.5 to 13.5. The
separation bubble area A is the area of the zone below the dividing line. The shock
location xl is determined based on the pressure gradient outside the boundary layer
by fitting the isolines of |∇p|δ0/p∞ = 0.24. We obtain two x values by intersecting the
isolines of |∇p|δ0/p∞ = 0.24 at y/δ0 = 0.0 and then take the average of these two x values
as the first streamwise coordinate of shock position. A second point of the shock position
is obtained by repeating the same operation at y/δ0 = 5.0. A straight line is fitted based
on these two points and the intersection between the fitting line and wall is considered as
the shock location xl . A similar method of obtaining these parameters has been applied
to investigate SWBLI [114, 164].

(a)

(b)

(c)

Figure 3.18: Temporal variation of the spanwise-averaged (a) reattachment point, (b) shock location and (c)
separation bubble (case BZA). The dashed line denotes the mean value.

These temporal signals are extracted in time ranges tu∞/δ0 = 800 ∼ 1150 with a sam-
pling frequency fsδ0/u∞ = 2 as the frequencies above the characteristic frequency of the
turbulent integral scales u∞/δ0 are not of the current interest. All these signals include
broadband frequency scales because all the plots are irregular and aperiodic. The curve
of the reattachment position in figure 3.18(a), displays an almost instantaneous drop
when it moves upstream, for example at around tu∞/δ0 = 924. When the reattachment
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location shifts downstream, it experiences a less rapid relaxation. This sawtooth-like
trajectory of the reattachment point was also reported in direct numerical simulation
(DNS) results of a compression ramp by Priebe and Martín [164]. The dynamics of
the shock location, figure 3.18(b), is slightly smoother, without such strong sawtooth-
like behavior. The passage of large-scale vortices in the shear layer and their shedding
into the downstream flow contributes to sawtooth-like motions [165, 166]. In terms of
the separation bubble size, shown in figure 3.18(c), its temporal behavior seems more
periodical, with the absence of high-frequency fluctuations.

The FWPSD for the three signals is shown in figure 3.19. The spectra of reattachment
and shock location both have two narrow-band peaks around f δ0/u∞ = 0.06 and
0.2. For the reattachment point, figure 3.19(a), most of the energy is contained at
f δ0/u∞ = 0.2, near the characteristic frequency of the K-H vortices. The K-H frequency
f δ0/u∞ = 0.2 is in good agreement with the incompressible data of Schäfer et al. [48],
which, however, does not show the second peak around f δ0/u∞ = 0.06. We thus
conclude that the lower-frequency content is a characteristic compressible feature due
to the occurrence of the compression waves. As for the shock position in figure 3.19(b),
the spectrum peaks are located at around f δ0/u∞ = 0.06, while the oscillation of the
separation bubble has a single dominant frequency peak at f δ0/u∞ ≈ 0.03 displayed in
figure 3.19(c), which is two orders of magnitude lower than the characteristic frequency
of the energetic turbulent scales u∞/δ0, in agreement with the widely reported low-
frequency unsteadiness in SWBLI [93, 96, 98]. The experimental work of supersonic BFS
flows reported two types of low frequencies centered at f δ0/u∞ ≈ 0.02 and f δ0/u∞ ≈
0.05 [103], which is very close to our current results.

(b)(a) (c)

Figure 3.19: Frequency weighted power spectral density of the spanwise-averaged (a) reattachment point, (b)
shock location and (c) separation bubble size (case BZA).

3.3.4. STATISTICAL ANALYSIS

Three distinct dominant frequencies of the unsteady motions in the interacting system
are identified in the previous section. In order to explore their origin, the statistical
connections between the reattachment point and several signals, including pressure
fluctuations induced by K-H vortices, shock location and the area of separation bubble,
are investigated using the temporal correlation coefficient Ri j between two signals qi
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and q j with time delay, defined as

Ri j (∆t ) = Cov(qi (t ), q j (t +∆t ))

σi ·σ j
(3.2)

where Cov is the covariance between these two signals and σ indicates the population
standard deviation of the specific signal.

The correlation between the reattachment point and pressure fluctuations of the K-
H vortices is shown in figure 3.20(a). The pressure signals used are obtained at the same
location of B in figure 3.13, i.e., x/δ0 = 2.5625, y/δ0 = −0.4375, z/δ0 = 0. High values of
the correlation are observed around every multiple of ∆tu∞/δ0 ≈ 5.0, which suggests
that these two signals are slightly correlated to each other at a frequency f δ0/u∞ ≈ 0.2.
In terms of correlation coefficients between reattachment location and bubble size,
figure 3.20(b), there are strong positive and immediate connections between them with
a quasi period ∆tu∞/δ0 ≈ 40.0. Therefore, the area of the separation bubble increases
when the reattachment location moves downstream, and vice verse. This confirms that
the low frequency ( f δ0/u∞ ≈ 0.025) appears to originate from the breathing motion of
the separation bubble. Concerning the connections between reattachment and shock
location, they are obviously in the phase but with a slight time delay around ∆tu∞/δ0 ≈
6.1. Physically, when the reattachment location moves upstream, the shock location also
moves upstream after ∆tu∞/δ0 ≈ 6.1. It can be explained that the reattachment shock
shifts upstream because the reattachment-induced compression waves, which coalesce
into the reattachment shock, move upstream. The slight time delay is due to the wave
propagation speed and probes causality. It should be noted that the sensitivity of above
statistical correlations to the number of samples was verified by calculating the cross-
correlation coefficients with half of the total time samples.

(a) (b) (c)

Figure 3.20: Temporal cross-correlations between the spanwise-averaged reattachment location and (a)
pressures fluctuations inside the shear layer, (b) area of the separation bubble and (c) shock location (case
BZA).

3.3.5. TWO-DIMENSIONAL DYNAMIC MODE DECOMPOSITION
The above analysis provides a first characterization of the unsteady features of the inter-
actions and statistical links between them. In order to better decouple various frequency
dynamics and further validate our obtained results, a modal decomposition of the two-
dimensional flow field is carried out based on dynamic mode decomposition (DMD).
The current DMD analysis is based on 700 snapshots of the spanwise-averaged flow field
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(covering the time interval tu∞/δ0 = 800 ∼ 1150) at a sampling frequency fsδ0/u∞ = 2,
which yields a frequency resolution of 2.9 ·10−3 < Stδ0 < 1. In figure 3.21(a), we provide
the eigenvalue spectrum resulting from the standard DMD. The input snapshots are real
numbers while the computed modes appear as complex conjugate pairs, which results
in a symmetric spectrum. The magnitudes of the corresponding DMD modes are shown
in figure 3.21(b) for the positive frequencies. All the magnitudes are normalized by the
maximum magnitude. This is a statistically stationary system since all of the eigenvalues
are distributed near the unit circle |µi | = 1, which means the snapshots sequence falls in
an attracting set[167].

(a) (b)

L M H

Figure 3.21: (a) Eigenvalues spectrum from the standard DMD algorithm (b) Normalized magnitudes of all the
DMD modes with positive frequency (case BZA, • illustrates the most important 15 pairs of modes calculated
by SPDMD).

The sparsity-promoting DMD (SPDMD) [140] is employed to select the dynamically
important modes. This method picks modes based on their contribution to a repro-
duction of the original dynamic system over the given time interval. By taking the
positive regularization parameter equal to 780, we obtained the 15 pairs of modes that
are indicated by the gray solid circles in figure 3.21. They are considered to be the
most dynamically important modes and have the most significant influence on data
sequences. These modes can be categorized as three sets based on their main flow
structures and frequency range, with 0.003 ≤ f δ0/u∞ ≤ 0.029, 0.04 ≤ f δ0/u∞ ≤ 0.08
and 0.09 ≤ f δ0/u∞ ≤ 0.20, respectively. These frequency ranges have been indicated in
figure 3.21(b) and labeled as L, M, H, which stands for low, medium and high frequency.
The frequencies of dominant modes are seen to be consistent with our previous spectral
and statistical analysis in the preceding section.

For the branch with lower frequencies, we choose the mode with frequency Stδ =
0.017, indicated as mode φ1, to scrutinize the flow dynamics. The selected modes
in the other two branches are labeled as mode φ2 (Stδ = 0.06) and φ3 (Stδ = 0.172).
In figure 3.22, 3.23 and 3.24, the real and imaginary part of these modes illustrating
the contour of streamwise velocity and pressure fluctuations are shown. To assist
interpretation, we also reconstructed the real-valued flow field of the individual modes
by superimposing the fluctuations of each mode φi onto the mean flow φm , formulated
as q(x, t ) = φm + a f · ℜ{αiφi e iωi t }, to examine the dynamical behavior represented by
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every mode, where αi and a f are the amplitude and optional amplification factor of the
corresponding modeφi . In the following analysis, these amplification factors are a f = 10
for the velocity fluctuations and a f = 90 for pressure disturbance for all the modes in
order to have a distinguishing visualization.

The lower frequency mode φ1 falls into the frequency of the breathing motion of the
separation bubble, which is the reason that high fluctuations of the streamwise velocity
are distributed along the dividing line as a consequence of the flapping of the shear layer,
shown in figure 3.22(a). In addition, strong pressure fluctuations are observed along the
reattachment shock in figure 3.22(b) due to flapping motion of the shock wave, which
is caused by the contraction and dilatation of separation bubble. Hence, we conclude
that this mode involves a breathing behavior of the separation bubble and concurrent
streamwise motion of the shock wave system.

Figure 3.22: Real and Imaginary part of DMD mode φ1 indicating contours of modal (a) streamwise velocity
and (b) pressure fluctuations for case BZA. The green solid and dashed lines indicate the mean reattachment
shock and sonic line. The black solid and dashed lines signify the boundary layer edge and dividing line.

The contours of mode φ2 show strong streamwise velocity fluctuations around the
reattachment location, see figure 3.23(a), which illustrates the large vortices originating
in the shear layer. These vortices rapidly decay in downstream turbulent boundary layer,
indicated by the low levels of the streamwise velocity fluctuations. Additionally, the
reattachment compression and convection of large vortices produce high pressure fluc-
tuations in the supersonic part along the reattachment shock, as shown in figure 3.23(b).
A shock wrinkling dynamics is observed in the transient process of mode φ2. The
corrugation of the shock is a result of the interaction between the large coherent vortices
and the reattachment compression. Similar results have been reported in the LES of an
incident shock wave and boundary layer interactions by Pasquariello et al. [99].

Considering mode φ3 in figure 3.24, we find alternative high positive and negative
fluctuations along the streamwise direction both in streamwise velocity and pressure
contour. The frequency of mode φ3 is Stδ = 0.172, which is close to the characteristic
frequency of the K-H vortex based on the spectral analysis. The traveling of K-H vortices
induces eddy Mach waves in the supersonic portion of the flow field. From the temporal
evolution of this mode, we can clearly observe the shedding of the K-H vortices with a
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Figure 3.23: Real and Imaginary part of DMD mode φ2 indicating contours of modal (a) streamwise velocity
fluctuations and (b) pressure fluctuations for case BZA. The green solid and dashed lines indicate the mean
reattachment shock and sonic line. The black solid and dashed lines signify the boundary layer edge and
dividing line.

relatively steady intensity along the streamwise direction and the propagation of Mach
waves along the reattachment shock. Therefore, we consider that this mode is associated
with the convection of the K-H vortices.

Figure 3.24: Real and Imaginary part of DMD mode φ3 indicating contours of modal (a) streamwise velocity
fluctuations and (b) pressure fluctuations for case BZA. The green solid and dashed lines indicate the mean
reattachment shock and sonic line. The black solid and dashed lines signify the boundary layer edge and
dividing line.

Based on the above analysis, the unsteady motions of the interacting flow field
contain three types of dynamic behavior. The lower frequency branch (0.003 ≤ Stδ ≤
0.03) describes a flow modulation that involves the breathing motion of shock and
separation bubble system; the medium-frequency (0.04 ≤ Stδ ≤ 0.08) modes relate to
the reattachment compression; while the higher-frequency part (0.09 ≤ Stδ ≤ 0.20) is
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associated with the convection of K-H vortices and induced Mach waves.

3.3.6. SUMMARY
The dynamics of a BFS in a laminar backward-facing step flow was investigated at
M a = 1.7 and Reδ0 = 13718, with special attention on the laminar-to-turbulent tran-
sition mechanism and the global unsteady behavior. The mean flow shows that the
boundary layer is turbulent behind the reattachment location. The instantaneous flow
visualizations provide a clear view of the transition process, which is summarized in
the schematic drawing in figure 3.25. Five distinct stages are identified in the transition
process. At the first stage, upon separation a quasi-steady two-dimensional shear layer
is formed due to the velocity difference of the flow on both sides of the separation line.
Then clockwise rotating spanwise vortices are induced by the K-H instability with a
frequency of Stδ ≈ 0.2.

These K-H vortices grow rapidly and are subsequently deforming as a result of the
ejection from the horseshoe vortices below as the free shear flow travels downstream
in the second stage. The wavy K-H vortices have different traveling velocity in the
spanwise direction and thus spanwise modulation occurs (third stage), which reduces
the frequency of the breathing separation bubble to f δ0/u∞ ≈ 0.02. The high-speed
parts develop into the head ofΛ-shaped vortex and the low-speed parts develop into the
legs parts due to the secondary instability. At the fourth stage, the large coherent vortices
break down into several smallΛ-shaped vortices caused by the streamwise stretching of
vortices and the reattachment. The convection of the coherent structure and induced
compression waves have an intermediate frequency with δ0/u∞ ≈ 0.06. Then the small
vortices roll up and develop into larger hairpin vortices in the last phase, which is the
indicator of the turbulent flow. The transition to turbulence is almost completed with
the appearance of turbulent streaks.

Figure 3.25: Conceptual model of the laminar-to-turbulent transition process in the supersonic BFS.

Given the rapid modal growth of the disturbances behind the step and high levels
of amplitudes, we believe the nonlinear behavior is significant in the transition process,
which involves the modal growth of K-H and secondary instability, vortices breakdown
and eventually fully developed turbulence, in the current case. The power density
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spectrum indicates that the unsteadiness of the interacting system is characterized by
a modulation of a broadband frequency dynamics. Furthermore, the spectral and sta-
tistical analysis associates the flow phenomena with the unsteady behavior at different
frequencies. The low-frequency breathing motions of the separation bubble exists in
the whole transition process. However, the K-H instability seems to take the lead in the
second stage and secondary instability in the third stage. We infer that the reattachment
events and the oscillation of the shock appear to accelerate the transition process in the
fourth stage.

The unsteadiness of the interacting system is characterized by a modulation of a
broadband frequency dynamics. By means of SPDMD, we further extracted the most
important modes representing the dynamics of the flow field that are characteristic for
specific frequency ranges. The flapping motion of the shock and separation bubble is
associated with a lower frequency centered at f δ0/u∞ = 0.017. The medium frequency
mode ( f δ0/u∞ = 0.06) is related to the large coherent vortex shedding around the reat-
tachment location and the wrinkling behavior of the shock, while the higher frequency
mode ( f δ0/u∞ = 0.172) is associated with the traveling of K-H vortices and induced
Mach waves. Flow reconstruction based on the selected DMD modes further elucidates
the dynamic behavior of the interaction system.

3.4. TRANSITIONAL REGIME
Laminar case BZA and transitional case BLA share the similar transition path behind the
step, as we indicate in section 3.2. By comparison, for case BLA, the growth of the T-S
modes is the main source of the disturbances upstream of the step (phase 1: x/δ0 < 0).
In the second phase (phase 2: 0 ≤ x/δ0 ≤ 4), the development of large K-H vortices is
the most significant feature of the flow field. However, in the current BLA simulation
case, we can also observe the effect of the oblique waves in this region, such as the
harmonic undulation of the K-H vortices compared to the more straight K-H vortices
in case BZA. The secondary instability dominates the growth of the turbulence in the
third phase (phase 3: 4 ≤ x/δ0 ≤ 7.5). Near the reattachment location, the breakdown of
vortices promotes the transition to fully developed turbulence (phase 4: x/δ0 ≥ 7.5). The
role of oncoming primary T-S modes, their interactions with the excited K-H modes, and
the secondary waves in the transition process of the free shear layer are not completely
documented and understood. Therefore, our interest is laid on the evolution of possible
primary and secondary instabilities, as well as their interactions, in this section.

3.4.1. TOLLMIEN-SCHLICHTING INSTABILITY

The wavenumber and frequency of the least stable waves depend on the local Reynolds
number Rel based on Blasius length [36]. We traced the eigenvalues of the unstable
modes, including the least unstable one, along the streamwise direction. The stability
diagram is displayed in figure 3.26, where three levels of αl

i are computed at a constant

spanwise wavenumber βl = 0.06202 and angular frequency ωl = 0.01605 against Rel .
Since the Reynolds number of our case is very close to the critical one, the variation of
ω is relatively small for each level of αl

i when Rel < 2225 at βl = 0.06202 [figure 3.26(a)].
For increasing Rel (moving downstream), the upper and lower branches of the stability
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diagram move towards each other until they finally meet. The unstable region of the
oblique waves is decreasing with increasing Rel and |αl

i |. Figure 3.26(b) shows the same

levels of αi l with different Rel and βl at a specific angular frequency ωl = 0.01605. A
similar trend of βl with Rel is observed as that of ωl in figure 3.26(a). The development
of the most unstable mode (the one with maximum |αl

i |) at the given βl and ωl is also
included in figure 3.26 (the dash-dot lines). We can see that the frequency and spanwise
wavenumber of the least unstable modes are relatively constant along the streamwise
distance. In conclusion, the wavenumber and frequency of the oblique wave imposed at
the inlet remain in the unstable region and are very close to the values of the local most
unstable oblique T-S wave upstream of the step. Therefore, in the following discussion,
we only look into the spatial development of the unstable mode with the imposed
wavenumber and frequency using both LST and LES.

(a) (b)

Figure 3.26: Contours of αi computed from LST at the imposed (a) spanwise wavenumber βl = 0.06202 and
(b) angular frequency ωl = 0.01605 for case BLA (——, αl

i =−0.0014; – – –, αl
i =−0.0015; · · · · · · , αl

i =−0.0016;

–·–·–, |αl
i |max).

The evolution of the oblique waves computed by LES can be measured by the
maximum root mean square of the streamwise velocity fluctuations. The semi-log plot
in figure 3.27 already indicates that the current LES can well predict the exponential
growth rate of the oblique T-S waves. The averaged streamwise growth rate is given by
the slope of the curve, whose value approximates to 0.0155 and is very close to LST result
αδ = 0.0161 for the inflow perturbation. We also provide the shape factor of the boundary
layer in figure 3.27 (dashed line). The shape factor is almost a constant upstream of the
step and its mean value equals to 4.36. Chang et al. [168] proposed that the shape factor
is a function of pressure gradient and free stream Mach number in compressible laminar
flow with adiabatic wall and provided the following empirical fit

H
(
M a∞,λ′

θ

)= 3.182λ′
θ
+0.57757

λ′2
θ
+1.49λ′

θ
+0.223

·
(
1+ γ−1

2
M a2

∞
)

(3.3)
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Figure 3.27: Maximum RMS of streamwise velocity fluctuations (solid line) and shape factor of the boundary
layer (dashed line) along the streamwise direction (case BLA).

where λθ is a corrected pressure gradient factor in compressible flow, which equals to
zero in our case without pressure gradient. We obtain H = 4.09 using this empirical
formula, which is close to the current mean shape factor.

Next, we calculate the streamwise wavenumber and growth rate using LES results.
The temporal Fourier transform of the LES data is computed at every streamwise
location

Q ′(x, f ) =
N∑

k=1
q ′(x, tk )e i f tk , (3.4)

where tk denotes the discrete time samples. In the present case, the extracted signals
are from the wall pressure and include 1200 samples within five periods of the imposed
oblique waves. Next, the corresponding phase angle θ(x) and amplitude A(x) of the
perturbation q ′ are obtained via θ = arctan

ℑ(Q ′)
ℜ(Q ′)

A = ∥∥Q ′∥∥ . (3.5)

After θ(x) and A(x) are collected at every streamwise location, the streamwise wave
number and growth rate finally are determined by [56, 169]

αr (x) = ∂θ(x)

∂x

αi (x) =− 1

A(x)

∂A(x)

∂x

. (3.6)

The obtained results are compared with the results from LST in figure 3.28. The
LES results give slightly oscillating wave number and growth rates upstream of the
step (x/δ0 < −10.0). This modulation usually happens when the forcing amplitude
is relatively large and is caused by weak acoustic disturbances traveling within the
boundary layer [37, 56]. Near the step, the large variation of αr and αi is caused by the
non-parallel effects and acceleration in front of the step. We are very satisfied with the
agreement of LST and LES.
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(a) (b)

Figure 3.28: Streamwise development of (a) wavenumberαr and (b) growth rateαi for case BLA,resulting from
LST (◦) and LES (——).

For further comparisons, the wall-normal amplitude distributions for streamwise
velocity and pressure fluctuations are plotted for both LST and LES in figure 3.29, at
x/δ0 = −25.0, βl = 0.062 and ωl = 0.016. The values of all variables are normalized by
their respective maximum value of the profiles. Results from these two techniques are
found to be in excellent agreement. It manifests that our current LES can reproduce
the exponential growth of the oblique T-S waves predicted by LST in the present
study. Therefore, we are confident that well-resolved LES is an appropriate method for
computing the spatial evolution of these T-S waves downstream.

3.4.2. PRIMARY KELVIN-HELMHOLTZ INSTABILITY

The incoming laminar boundary layer separates at the step edge, upon which a strong
initially two-dimensional shear layer is generated (see figure 3.7). The spanwise vorticity
propagates and redistributes along the free shear layer via the K-H instability. Imme-
diately downstream of the step, two-dimensional vortices are produced due to the K-
H instability which is absolutely unstable to small disturbances, such as incoming T-
S waves and the additional effect of the small numerical round-off errors. Then these
two-dimensional waves undergo deformation and distortion caused by the growing dis-
turbances. In the meantime, the region of strong spanwise vorticity gradually expands
and simultaneously vorticity peaks develop at certain locations where the quasi two-
dimensional K-H vortices are formed. These spanwise vortical structures behind the
step are also visualized by the pressure contours of spanwise-normal slices in figure 3.30.
The vortex lines (black) point to the negative spanwise direction, corresponding to
clockwise rotation looking from the left side. In the case BZA, the vortex lines are straight
in the spanwise direction, whereas these lines are sinusoidal due to the incoming oblique
T-S waves in the case BLA, corresponding to the harmonic undulation of the K-H vortices
in figure 3.7(b).

In the following sections, we provide a further analysis of the involved instabilities
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(a) (b)

Figure 3.29: Comparison of wall-normal profiles of perturbation amplitudes between LST (◦) and LES (——)
for (a) streamwise velocity and (b) pressure at x/δ0 =−25.0, βl = 0.062 and ωl = 0.016 (case BLA).

Figure 3.30: K-H vortices illustrated by contours of pressure at tu∞/δ0 = 912. Black arrow lines represent the
vortex lines. (a) case BZA and (b) case BLA.
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Figure 3.31: Streamwise development of the integrated enstrophy in y − z plane for case BLA. The grey dashed
lines distinguish the different phases in the transition process.

from the perspective of vorticity dynamics. By analyzing the generation, development,
and structural characteristics of the vorticity, like stretching, tilting and lift up, in the
transition process, we obtain an understanding of how the primary instability evolves
and the secondary instability is excited. The streamwise distribution of the integral
enstrophy is computed using equation (2.56), for the three individual coordinate direc-
tions, as well as for the total enstrophy, with the results as shown in figure 3.31. The
integration area is selected as −8.0 ≤ z/δ0 ≤ 8.0 and −3.0 ≤ y/δ0 ≤ 0.0, where most
of the vortical activity occurs. At the step (x/δ0 = 0), the large spanwise enstrophy
component is caused by the strong inviscid instability of the shear layer. The total
enstrophy subsequently decays and reaches a minimum at x/δ0 ≈ 2.5 due to the
spatial redistribution of the spanwise vorticity (as will be shown in figure 3.34). The
total enstrophy increases gradually with the streamwise distance in the second phase
between 2.5 < x/δ0 < 7.5, mainly due to the evolution of spanwise and streamwise
vorticity. Then the enstrophy remains at a high and relatively constant level in the vortex
breakdown and reattachment region (7.5 < x/δ0 < 14.0). This observation provides
supporting evidence that the vortex breakdown usually occurs in the vicinity of the
location where a local maximum of enstrophy is present [170]. The spanwise enstrophy
Ez is the most significant one in the region of 0.0 < x/δ0 < 5.0, and then again in the
downstream region x/δ0 > 15.0.

Using the decomposition according to the separate terms in equation (2.57) and
(2.58), the balance of the most important enstrophy Ez and its evolution along the
streamwise direction is shown in figure 3.32. The integration area in the y − z plane is
the same as for figure 3.31. The dilatation term is the most significant contribution near
the step, which is expected because the vorticity field is subject to a strong expansion.

For 2.5 < x/δ0 < 4.0, the development of the vorticity field is dominated by Szz , i.e.,
the vortex stretching of the induced K-H vortices, caused by the gradient of the spanwise
velocity ∂w/∂z. Based on the above vortex visualization and vorticity dynamics analysis,
the most significant disturbances are the K-H vortices in this stage and the development
of the eddies is mainly due to the dilation and stretching of the spanwise vorticity itself.
It can be inferred that the primary K-H instability plays the most important role in this
process, instead of T-S and secondary instabilities.
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Figure 3.32: Streamwise variation of the integrated production terms for Ez behind the step for case BLA. The
grey dashed lines distinguish the different phases in the transition process.

Although the T-S waves are not clearly visible in figure 3.30, they still coexist with the
K-H modes in the second phase. They do not show up prominently in the visualization
because T-S waves only have a weak velocity gradient, which is overwhelmed by the
strong contribution of the K-H vortices. To better assess the development of the T-S
waves, three stations have been selected (one just upstream of the step and two in the
separated shear layer downstream of it) to analyse the spatial evolution of the wave
pattern across the step. Figure 3.33 provides the signals of the streamwise velocity
at these stations, alongside with their frequency weighted power spectral density.
Compared with the case BZA, the case BLA shows large amplitude fluctuations and a
single dominant frequency peak at f δ0/u∞ ≈ 0.016 for station A, corresponding to the
amplitude and frequency of the imposed oblique waves. Shortly downstream (station
B), the sinusoidal footprint of the oblique waves can still be recognized but it is mixed
with higher frequency fluctuations. At the same time, it is observed that the oblique
waves are strongly amplified and their energy is about 20 times larger than at the
upstream station A. In this small region, the original information of the T-S waves can
be extracted with amplified amplitude by a low-pass filter since the interacting signals
are not strongly coupled yet. Further downstream (station C), the velocity fluctuations
exhibit a wide-band frequency spectrum. The most significant peak is at f δ0/u∞ ≈
0.2, which corresponds to the natural frequency of the K-H vortices for the current
configuration according to the previous section. The fluctuation energy of the case BLA
is still larger than for the case BZA, for example, around two times larger at f δ0/u∞ = 0.2.
Additionally, the incoming T-S waves and intrinsic K-H waves are fully coupled already
without a significant low-frequency feature of the T-S waves. Therefore, we believe that
the K-H instability acts as an amplifier of the incoming weak oblique waves and spanwise
K-H waves themselves in the interaction between primary T-S and K-H modes [171, 172].

On the other hand, the spanwise wavenumber modulation also contributes to the in-
teraction. As we can see in figure 3.7(b), the large quasi two-dimensional K-H vortices are
undulated in the shape of the incoming T-S waves along the spanwise direction between
2.0 < x/δ0 < 3.0). Compared to the straight vortex lines in the case BZA [figure 3.30(a)],
the vortex lines of case BLA present harmonic (sinusoidal) wave forms with the spanwise
wavelength of the incoming T-S waves [figure 3.30(b)]. The vortex pairing may occur
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(c)

(a)

(b)

Figure 3.33: Temporal evolution of the streamwise velocity perturbations (left) and the corresponding
frequency weighted power spectral density (right) at (a) station A (x/δ0 =−0.1875, y/δ0 = 0.03125), (b) station
B (x/δ0 = 0.203125, y/δ0 = 0.0390625) and (c) station C (x/δ0 = 0.59375, y/δ0 =−0.171875) based on the slice
z = 0 for case BZA (green line) and BLA (blue line).

with the mutual interaction of the neighboring wavy vortices, as well as the convected
shear layer. The vortex merging process is visualized by the streamlines in figure 3.34.
At the initialization phase of the vortices pairing, the upstream K-H vortices are slightly
weaker and smaller [figure 3.34(a)]. As both of the vortices are convected downstream,
the weaker vortices cannot resist the stronger strain field generated by the other one and
are stretched by the velocity gradient [figure 3.34(b)]. Finally, the upstream vortices are
striped off from the outer recirculation region downstream and merged into the stronger
one during the convection process [figure 3.34(c)] [173, 174].

In the weak coupling region, both of the T-S and K-H modes are the primary mode.
The growth rate of the fluctuations caused by them is examined in figure 3.35(a). In a very
short distance (0 < x/δ0 < 0.8), the growth rate of existing waves within the shear layer
falls into a quasi linear regime, but with a much larger value compared to the growth
rate of the upstream T-S waves. Wu et al. [175] also reported the linear growing behavior
of the K-H waves in the early roll-up process of the large K-H vortex. In contrast, the
small disturbances (around 10−6u∞) upstream of the step in the case BZA are drastically
amplified in the redistribution region of the spanwise vorticity. Once the spanwise K-H
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Figure 3.34: Contour of spanwise vorticity with the streamlines in the x− y plane at three instants, showing the
K-H vortices pairing (case BLA).

vortices emerge, both cases BZA and BLA display a similar level of fluctuations in the
shear layer. The dominant frequency of the unsteady waves shifts from the low value
( f δ0/u∞ ≈ 0.016) to a much higher one ( f δ0/u∞ ≈ 0.2 ∼ 0.4), which suggest the leading
instability switching from the T-S instability to K-H instability, shown in figure 3.35(b).
When the maximum amplitude of the fluctuations exceed 2%u∞, the K-H mode plays a
more important role and undergoes a rapid growth (0.8 < x/δ0 < 4.0). We infer that the
redistribution of the spanwise vorticity (the dilatation term in figure 3.32) has a greater
effect on the high-frequency waves caused by the shear layer instability than on the low-
frequency oblique waves. Subharmonic K-H waves are produced between 2.5 < x/δ0 <
4.0 due to the vortex pairing of the fundamental K-H vortices, which reduces the leading
frequency to f δ0/u∞ ≈ 0.2.

3.4.3. SECONDARY INSTABILITY

The velocity is not uniform along the spanwise direction and the K-H vortices are
not strictly two dimensional in the shear layer, which induces two types of secondary
instability in the transition. As we can see in figure 3.31, there is significant creation
of wall-normal and streamwise vorticity after the first phase (x/δ0 ≥ 4.0). First of all,
the wall-normal velocity is non-uniform in the spanwise direction due to the existing
disturbances within the shear layer. The originally spanwise-aligned vortices then may
be lifted up at some locations where there is high wall-normal velocity. These high-
velocity regions are obvious in the instantaneous vortical structures visualization of
figure 3.36(a). This secondary lift-up effect produces wall-normal vorticity. As we can see
in figure 3.36(d), the coherent vortices are gradually lifted up in the streamwise direction.
If we consider the enstrophy balance for the wall-normal direction (figure 3.37), it is
obvious that the upward tilting of spanwise vorticity is the dominant mechanism in
producing the wall-normal vorticity.

Moreover, the bent-up parts of the vortices are convected faster than the other parts
due to larger streamwise velocity in the upper region of the shear layer. This secondary
behavior leads to the non-uniformity of the streamwise velocity in the spanwise direc-
tion, which generates streamwise vorticity. By the analysis of the enstrophy balance
for the x−direction (figure 3.38), we can see that the tilting of wall-normal vortices is a
significant contributor to increasing the streamwise vorticity. In turn, the streamwise
velocity gradient along the induced vortex line ∂u/∂x lead to the stretching of the
streamwise vortices, which also is the main mechanism for the enstrophy evolution in
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Figure 3.35: (a) Maximum RMS of streamwise velocity fluctuations along streamwise direction (case BZA, green
circle; case BLA, blue solid line) and (b) Frequency weighted power spectral density map of maximum pressure
signals along the streamwise direction based on z = 0 slice between −5.0 ≤ x/δ0 ≤ 20.0 for case BLA. At every
streamwise position the weighted spectra are normalized by the minimum of P ( f ). The gray dashed line
signifies the frequency at which f P ( f ) is maximum. The grey dashed lines distinguish the different phases in
the transition process.

Figure 3.36: Iso-surfaces of vortical criterion Q = 0.08 at tu∞/δ0 = 912 (case BLA), contoured by (a) streamwise
velocity, (b) streamwise vorticity (purple: ωx < 0, orange: ωx > 0), (c) wall-normal vorticity in the x − z plane
and (d) wall-normal vorticity in the x − y plane (blue: ωy < 0, red: ωy > 0).

this stage.
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Figure 3.37: Streamwise variation of the integrated production terms for Ey behind the step for case BLA. The
grey dashed lines distinguish the different phases in the transition process.

Figure 3.38: Streamwise variation of the integrated production terms for Ex behind the step for case BLA. The
grey dashed lines distinguish the different phases in the transition process.

The combination of these two secondary instabilities results in the initiation of the
large Λ-shaped vortices (see figure 3.36), in which high-speed parts of the spanwise
vortices are elevated by the secondary lift-up effects and subsequently the streamwise
vorticity is produced due to the secondary streamwise tilting dynamics. The low-
momentum parts form into the legs of the Λ-shaped vortices and the high-momentum
parts develop into the head of Λ-shaped vortices in this region. Since the strong
spanwise vorticity has a negative sign, the left leg of the Λ-shaped vortex has positive
streamwise [figure 3.36(b)] and wall-normal [figure 3.36(c)] vorticity, while the right leg
has negative vorticity. As long as the streamwise vortices are produced, they will keep
stretching because of the higher speed in the bending parts until they break down. In
general, the streamwise enstrophy is more significant than the wall-normal enstrophy
in this stage (see figure 3.31).

As shown in figure 3.35, the secondary instability undergoes a rapid growth to 20%u∞
in this stage and the frequency characteristic shifts from a dominant value f δ0/u∞ ≈ 0.2,
the same value of subharmonic K-H waves, to a low-frequency broadband spectrum,
which is also reported by Sansica et al. [176] in their shock-induced laminar separation
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bubble case. The unsteadiness of the primary T-S modes is much less energetic than the
subharmonic waves. We believe that the primary T-S waves appear to be contaminated
or retarded. Our observations support the opinion that the primary T-S waves diminish
in the region where the excited secondary disturbances have a large amplitude [56]. The
dominant mechanism is the slow resonance between subharmonic K-H vortices and
the secondary instability in this region, in which disturbances slowly grow due to the
induced secondary instability and their frequency features still remain the same as those
of subharmonic K-H vortices.

3.4.4. BREAKDOWN AND REATTACHMENT
In the following stage (x/δ0 ≥ 7.5), the streamwise vortices keep being elongated in the
streamwise direction and lifted up due to stretching dynamics (see figure 3.37 and 3.38).
This rolling up and prolongation lead to the formation of the small hairpin vortices,
which is the signature of fully developed turbulent flow, illustrated in figure 3.39. The
enstrophy reaches its global maximum before the shear flow impinges on the wall, which
occurs around x/δ0 = 10.9. Then the strong vorticity tilting and stretching terms start
to decrease until they vanish gradually far downstream. Across the reattachment, the
hairpin vortices keep their typical structure, apparently without significant effects from
the compression waves in their proximity. The streamwise and spanwise spacing of the
hairpin vortices are λx ≈ λz ≈ 90ν/uτ based on the local wall shear stress, which is the
typical spacing of the coherent structures as reported in previous experimental studies
[177]. The fluctuations of velocity reach their highest level at the mean reattachment
point, shown in figure 3.35(a). The pressure power spectral density [figure 3.35(b)] shows
a broadband distribution typical for developed turbulence. In addition, more energy is
observed around the reattachment in the low-frequency parts ( f δ0/u∞ ≈ 0.2).

Figure 3.39: Iso-surfaces of vortical criterion λ2 = −0.1 at tu∞/δ0 = 908 (case BLA), contoured by the
streamwise velocity.

In summary, the imposed low-amplitude oblique waves undergo slow growth in
agreement with the expected linear dynamics upstream of the step and damp close to
the step due to the expansion fan. In a short distance behind the step, both oblique T-S
waves and generated K-H waves act as the primary mode. The interaction of T-S and
K-H waves leads to the rapid growth of the disturbances within 0 ≤ x/δ0 ≤ 1. Pairing
of the adjacent undulating K-H vortices generates subharmonic K-H waves. Then
the large-amplitude secondary instability, including the lift-up effects and streamwise
tilting, begins to take the lead. In the meantime, the weak T-S waves vanish in the
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competition with the strong subharmonic waves and can no longer be discerned. As
the flow reattaches downstream, the transition to fully developed three-dimensional
turbulence with a broadband frequency spectrum (cf. figure 3.35) is almost completed.

3.4.5. SUMMARY

The transition path and unsteady behavior of the supersonic flow over a backward-
facing step geometry show large differences between the two cases with low- and
high-amplitude upstream disturbances. For the case BHA with high-amplitude initial
perturbation, we obtain the excitation of oblique and secondary vortices, as well as non-
linear breakdown already upstream of the step. This leads to a turbulent boundary layer
upstream of the separation bubble. In contrast, the imposed low-amplitude oblique T-
S wave (case BLA) remains within the linear growth regime, which is the initial stage
of the natural transition. Therefore, the laminar-to-turbulent transition scenario does
not differ much from the fully laminar case BZA, i.e., initiation of the K-H instability,
followed by the secondary instability, leading toΛ-shaped vortices, hairpin vortices and
finally to a fully turbulent state. In a short distance behind the step, the interaction
between T-S and K-H modes is a weak coupling process, in which the amplitude of T-
S waves is amplified significantly by the strong shear layer but their frequency remains
unchanged. In addition, the spanwise K-H vortices show a harmonic undulation with
the wavelength of the T-S wave. Due to effects of the energetic three dimensional
fluctuations downstream of the separation bubble, the interaction enters a non-linear
stage and the unsteady behavior features a broad range of space and time scales. Behind
the reattachment point, the boundary layer is highly turbulent.

3.5. TURBULENT REGIME
Shock wave/boundary layer interaction is also a major topic for a supersonic flow over
a BFS. From the previous sections, the significant unsteady behavior of the interaction
system has been observed in both the laminar and transitional cases. Since the shear
layer is almost turbulent in the interaction region (proximity to the reattachment
location), we use the turbulent case BTB to investigate the unsteady SWBLI, especially
the low-frequency dynamics in this section. In this way, we can avoid the nonlinear
effects of the transition on the unsteady SWBLI.

3.5.1. MEAN FLOW FEATURES

Figure 3.40 provides an overall view of the main flow topology. The upstream turbulent
flow separates at the step edge and undergoes a centred Prandtl-Meyer expansion. The
deflected shear layer travels downstream and finally reattaches on the downstream
wall at x/δ0 = 8.9. Compression waves are produced around the reattachment point,
which coalesce into a reattachment shock oriented at an angle of 21◦ to the positive
streamwise direction. Compared to the ramp and incident shock cases [101, 164], the
freestream variables behind the interaction recover almost to their initial levels in the
BFS configuration because there is only the weak reattachment shock generated by the
compression waves whereas there are at least two stronger shocks in the other cases. The
mean flow features of the laminar case are very similar to the present turbulent one, but
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the separated flow reattaches later at x/δ = 10.9 and the mean shock angle is smaller,
around 19◦ [178]. These differences are caused by the stronger mixing in the turbulent
case and are qualitatively consistent with existing experimental work [106].

Figure 3.40: Density contours of the time- and spanwise-average flow field. The white dashed and solid lines
denote the isolines of M a = 1.0 and |∇p|δ0/p∞ = 0.24 (case BTB). The black dashed and solid lines signify
isolines of u = 0.0 and u/ue = 0.99.

The mean reattachment length (equal to Lr = xr = 8.9δ0 ≈ 3.0h) is defined by
the location of zero mean skin friction, 〈C f 〉 = 0, in figure 3.41(a). The value of 〈C f 〉
increases upstream of the step due to the flow acceleration induced by the expansion
near the separation point (x = 0). Behind the step, there is a ‘dead-air’ zone where the
recirculating velocity is extremely low. Thus, uniform 〈C f 〉 ≈ 0 is observed in the first 30%
of the separation bubble (0.0 ≤ x/δ0 ≤ 2.8). The separated flow then rapidly reaches its
strong level at x ≈ 2.1h ≈ 6.2δ0, which is very close to the value (x ≈ 2h ≈ 6.4δ0) reported
by Chakravarthy et al. [152]. As the free shear layer reattaches on the downstream
wall (x/δ0 = 8.9), the turbulent boundary layer recovers and 〈C f 〉 returns to a typical
turbulent level (〈C f 〉 = 0.0027). The reattachment length Lr ≈ 3.0h based on the step
height is in a good agreement with the previous experimental work by Bolgar et al. [103]
and the numerical study by Chakravarthy et al. [152], who reported values of Lr = 3.2h
and Lr = 3.0h, respectively. Compared with the laminar case (blue dotted lines), the
mean skin friction further confirms the shorter separation length in the turbulent case.
The turbulent case has a much higher 〈C f 〉 upstream of the step. The laminar case
reaches, however, a similar level downstream of the separation region, because laminar-
to-turbulent transition is triggered within the separated shear layer.

Figure 3.41(b) shows the streamwise variation of the wall pressure. As we can see,
upstream of the step, the wall pressure remains at almost the same level. The pressure
ratio drops drastically by more than half of the initial values in the first half of the
separation bubble due to the expansion and the less energetic recirculating flow. The
wall pressure then continues decreasing slowly to its global minimum at x/δ0 = 4.6,
corresponding to the relatively strong reversed flow in terms of 〈C f 〉 in figure 3.41(a). As
the boundary layer reattaches on the wall and undergoes compression, the wall pressure
quickly returns to the initial level. In terms of the trend and relative variation, the current
results are in a good agreement with the experimental work of Hartfield et al. [179]. In
the laminar regime, the expansion fan is not as strong as for the turbulent case. Similarly,
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Figure 3.41: Streamwise variation of (a) skin friction and (b) wall pressure. The time- and spanwise-averaged
values are indicated by the black solid lines (turbulent case BTB) and blue dotted lines (laminar case BZA). The
vertical dashed line denotes the averaged separation and reattachment location for the turbulent case.

the intensity of the reattachment shock is weaker in the laminar case corresponding to a
slower wall-pressure rise downstream.

3.5.2. UNSTEADY CHARACTERISTICS
The flow field over the BFS is highly unsteady, with vortices of various spatial scales
observed in the visualization of figure 3.9. To characterize the regions of most prominent
unsteadiness, the variance of the wall-normal velocity is provided in figure 3.42. As
we can see, the most active region can be found along the separated shear layer
(between the isoline of u = 0 and boundary layer edge), especially in the proximity
of the reattachment location with a maximum of approximately 0.18u∞ occurring at
x/δ0 = 7.2, y/δ0 = −2.2. These major fluctuations caused by the recompression have
also been reported in previous experimental work [103]. Additionally, relatively weak
fluctuations are found along the reattachment shock, reflecting its unsteady position.
For the other normal Reynolds stress components 〈u′u′〉 and 〈w ′w ′〉, high levels of
fluctuations are similarly observed around the reattachment point. We see that the
separated shear layer and shock wave system is highly unsteady over the BFS with similar
fluctuation intensities as in other canonical SWBLI geometries [87, 99].

Our attention then is put on the zones of the shear layer, reattachment location and
shock wave to scrutinize the dynamic motions by examining a number of snapshots
of the instantaneous flow field. First of all, we take a closer look at the shear layer.
Figure 3.43 displays the contours of the streamwise velocity and isolines of spanwise
vorticity at two arbitrarily selected instants tu∞/δ0 = 1292,1295. There are positive and
negative streamwise velocity fluctuations alternating along the shear layer, which is the
expected footprint of the K-H instability behind the step. The isolines of the spanwise
vorticity show the roll-up of the vortex street. As the free shear flow evolves downstream,
the instantaneous spanwise vorticity of the free shear layer becomes weaker due to the
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Figure 3.42: Contours of time- and spanwise-averaged variance of the wall-normal velocity for case BTB. The
white dashed and solid lines denote the isolines of M a = 1.0 and |∇p|δ0/p∞ = 0.24. The black dashed and
solid lines signify isolines of u = 0.0 and u/ue = 0.99.

attenuation of the K-H instability. However, these shedding vortices are not typical two-
dimensional structures in the turbulent regime, as we observe in figure 3.9. For a BFS
case, similar shedding vortices are observed both in subsonic and supersonic regimes
[53, 180].

(a) (b)

Figure 3.43: Contours of the instantaneous streamwise velocity for slice z = 0 at (a) tu∞/δ0 = 1292 and (b)
tu∞/δ0 = 1295 (case BTB). The black dashed lines signify the isolines of ωzδ0/u∞ =−3.6.

Figure 3.44(a) shows the contours of the instantaneous skin friction coefficient.
Distinctly different features are observed in the different regions of the flow field. In
the upstream turbulent boundary layer, the levels of C f are homogeneously distributed
and show clear evidence of the streamwise preferential orientation of the near-wall
coherent structures. Figure 3.44(b) provides the weighted power spectral density of
the streamwise wall shear stress for the spanwise wavenumber kz at two stations. As
we can see, the dominant wavenumber of the upstream structures (x/δ0 = −5.0) is
kz ≈ 2.0, corresponding to a spanwise wavelength λz ≈ 0.5δ0. The shear stress is
relatively uniform at a low level downstream of the step (0 < x/δ0 < 5.0) due to the
less energetic flow in this region. Shortly upstream of the mean reattachment location
(5 < x/δ0 < 8.9), there is significant reverse flow, cf. figure 3.41(a), and C f indicates an
increased spanwise length of the coherent structures. After reattachment, streamwise-
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oriented features are observed in the skin friction maps that indicate large scale streaks
with a spanwise alternation of high and low velocity. For example at x/δ0 = 10, the
prevailing spanwise wavenumber of the streamwise skin friction is kz ≈ 0.35 (λz = 2.9δ0),
as shown in figure 3.44(b). Further downstream, the distribution of C f becomes more
homogeneous again in the spanwise direction. Similar phenomena have been reported
in previous experiments of BFS with a wide range of Mach number [104]. The up-wash
and down-wash effects of the Görtler-like vortices are believed to induce the alternating
low and high skin friction in the spanwise direction around the reattachment, as will
be discussed in the following sections. The characteristic wavelength of these streaks
is between λz = 2.0δ0 and 3.3δ0, which is consistent with previous experimental and
numerical observations, reporting that the wavelength of these vortices is between two
and three times the boundary layer thickness [97, 99, 104, 164].

Figure 3.44: Contours of the instantaneous skin friction for the turbulent case BTB. The dashed line indicates
the mean reattachment location. (b) weighted power spectral density of the skin friction over the spanwise
wavenumber kz (black line: x/δ0 =−5.0; blue dashed line: x/δ0 = 10.0).

In addition to the these relatively local phenomena, a large-scale unsteady motion
is identified in the interaction system, as shown by the instantaneous velocity fields at
two instants in figure 3.45. These two instants represent different states of the separation
bubble, i.e., expansion and shrinking. At tu∞/δ0 = 954.5, the length of separation bubble
is around Lr /δ0 = 7.5, while the flow reattaches further downstream at about x/δ0 =
9.0 when expanding at tu∞/δ0 = 1080. In addition, the position of the shock (marked
as white isolines of |∇p|δ0/p∞ = 0.4) moves, most notably in the shock foot region. At
tu∞/δ0 = 954.5, the shock foot locates somewhere between x/δ0 = 7.5 ∼ 10.0 and the
shock angle is η = 22.2◦. At tu∞/δ0 = 1080, shock foot is between x/δ0 = 5.0 ∼ 7.5 and
shock angle reduces to η = 16.8◦. It is clear from this comparison that the recirculation
area and shock location vary in time.

For the laminar case, we also observe vortex shedding along the shear layer and
the flapping motions of the shock [178]. However, there are notable differences in the
near wall dynamics, as can be seen when comparing the instantaneous skin friction
contours and the weighted power spectral density in figure 3.44 (turbulent case) with
figure 3.46 (laminar case). The distribution of the skin friction is obviously spanwise
uniform upstream of the step in the laminar case. As the separated shear layer
undergoes laminar-to-turbulent transition, the skin friction contours develop weak two-
dimensional features around the reattachment location and further downstream. The
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22.2

(a)

(b)

Figure 3.45: Contours of the instantaneous streamwise velocity for slice z = 0 at (a) tu∞/δ0 = 954.5 and (b)
tu∞/δ0 = 1080 (case BTB). Black solid line denotes the isoline of u = 0 and white dashed line signifies the
isoline of |∇p|δ0/p∞ = 0.4.

dominant spanwise wavenumber near the reattachment location is kz ≈ 0.8 (λz ≈ 1.2δ0).
The large low- and high-speed streaks are not observed near the reattachment point
in the laminar case (λz ≈ 2.9δ0 around the reattachment in the turbulent case). This
difference suggests that there are probably no counter-rotating Görtler vortices in the
laminar case.

Figure 3.46: Contours of the instantaneous skin friction for the laminar case BZA. The dashed line indicates
the mean reattachment location. (b) weighted power spectral density of the skin friction over the spanwise
wavenumber kz at x/δ0 = 10.
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3.5.3. SPECTRAL ANALYSIS
An overview of frequency characteristics for the shock wave and separated boundary
layer system is provided by the frequency weighted power spectral density of the wall
pressure at selected streamwise locations in figure 3.47. The sampling interval is
tu∞/δ0 = 950 ∼ 1350 with a sample frequency fsδ0/u∞ = 4. Welch’s method with Han-
ning window was applied to compute the PSD using eight segments with 50% overlap
(the same for the following PSD calculations). Upstream of the step (x/δ0 = −3.0), the
spectrum shows a broadband bump centred around Stδ = f δ0/u∞ = 0.8, which is close
to the characteristic frequency (u∞/δ) of the upstream turbulent boundary layer [12].
Upstream of the step, the amplitude of the low-frequency content is very small, which
demonstrates that the digital filter technique does not introduce significant spurious
low-frequency features into the boundary layer. Downstream of the step, we observe
broadband low-frequency content between Stδ = 0.01 ∼ 0.8 (Sth = f h/u∞ = 0.03 ∼
2.4), in addition to the typical signature of boundary layer turbulence at the higher
frequencies. Two significant low frequencies can be identified along the streamwise
distance. The lower one is around Stδ = 0.013 (lower blue dashed line in the graph),
which is most significant in a short distance behind the step (x/δ0 ≤ 3.0). It appears
that this low frequency is not the dominant one further downstream of the separation
bubble and a branch of intermediate frequencies at Stδ = 0.1 ∼ 0.3 (upper region
marked by green dashed lines) begins to take the lead up to x/δ0 = 20.0. In the
traditional ramp and impinging shock cases [85, 99, 181], the medium-frequency shear-
layer oscillations arise after the separation and the downstream propagation of this
dynamics affects the reflected-shock dynamics at intermediate frequencies, while the
interaction between separation shock and boundary layer exhibits the low-frequency
behaviour. The medium frequency motions of the present BFS case are probably related
to the shear-layer instability, the downstream advection of which produces a significant
medium-frequency unsteadiness around the reattachment location (x/δ0 = 9.25). The
low-frequency contents of our BFS case are likely connected to the interactions of the
reattachment shock and the separation bubble, the feedback of which leads to the low-
frequency peak immediately downstream of the step (x/δ0 = 1.0).

medium

low

Figure 3.47: Frequency weighted power spectral density of the wall pressure with the streamwise distance for
case BTB.

To further confirm this conjecture, several aerodynamic parameters are extracted
from the current results. For the medium-frequency behaviour, the temporal variation
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of the streamwise velocity within the separated shear layer and the spanwise-averaged
reattachment position are plotted in figure 3.48. These data are extracted with the
same sampling frequency as the aforementioned pressure signal. The location of the
spanwise-averaged reattachment point xr is obtained as follows: the isolines of the
streamwise velocity u = 0 are collected at each time step; and in each spanwise plane
the most downstream position meeting this condition (u = 0) is determined as the
instantaneous value of xr . An unsteady motion at a frequency around Stδ = 0.2 (Sth =
0.6) appears energetically dominant for both shear layer velocity and reattachment
location, which is more clear in the spectra of figure 3.48. This medium frequency
is the characteristic frequency of the shedding vortices within the shear layer. These
vortices are shedding downstream as the shear layer and pass through the reattachment
downstream of the bubble, which explains that a similar frequency is observed in the
spectrum of the reattachment location. There are also less energetic peaks at lower
frequencies around Stδ = 0.03, which will be discussed in the next paragraph. When
taking a closer look on a short interval in figure 3.49, the velocity signal of the shear layer
is more periodic and regular. In contrast, the curve for the reattachment point follows
a more sawtooth-like trajectory, along which its value undergoes a sharp drop when
the reattachment point moves upstream, while it experiences a less rapid relaxation as
the reattachment location shifts downstream, for instance around tu∞/δ0 = 1160. The
sawtooth-like behaviour was also reported for incident shock and ramp cases [99, 164],
and is attributed to the passage of shedding vortices formed in the shear layer near the
reattachment.

(a)

(b)

Figure 3.48: Temporal evolution and corresponding frequency weighted power spectral density of (a)
streamwise velocity within the shear layer at x/δ0 = 3.0625, y/δ0 = −1.0625 and (b) the spanwise-averaged
reattachment location (case BTB). The black dashed line signifies the mean value.

With regard to the global dynamics, the temporal variation of the spanwise-averaged
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(a) (b)

Figure 3.49: Details of figure 3.48 showing temporal evolution of (a) streamwise velocity within the shear layer
at x/δ0 = 3.0625, y/δ0 = −1.0625 and (b) the spanwise-averaged reattachment location in a shorter period
(case BTB). The black dashed lines signify the mean values.

reattachment shock angle and volume of the separation bubble are shown in figure 3.50.
The volume of bubble per unit spanwise length is defined as the area between the isoline
of u = 0 and the bottom wall. The shock angle is determined based on the pressure
gradient outside the boundary layer by fitting the isolines of |∇p|δ0/p∞ = 0.24. We
obtain two x values by intersecting the isolines of |∇p|δ0/p∞ = 0.24 at y/δ0 = 0.5 and
then take the average of these two x values as the first streamwise coordinate of the
shock position. A second point of the shock position is obtained by repeating the same
operation at y/δ0 = 5.0. A straight line is fitted based on these two points and the
angle between the fitting line and the x−direction is considered as the shock angle.
Both curves of the separation bubble size and shock angle are irregular and aperiodic
in time, which suggests that the unsteady motion involves a range of time scales, cf. Refs
[98, 182]. For the signal of the volume of the separation bubble, shown in figure 3.50(a),
there is a significant low-frequency peak at Stδ = 0.023 in the spectrum. It indicates
that the bubble expands and shrinks with a frequency whose value is about two-order
lower than the frequency of the typical turbulence. The spectrum of the shock angle also
displays a peak at Stδ = 0.023, see figure 3.50(b), which is much more pronounced than
the peak observed for the reattachment location at the same frequency in figure 3.48(b).
In addition, there is a second frequency peak around Stδ = 0.13, which corresponds to
the dominant frequency in the spectrum of reattachment location. Since the shock is
formed by the compression waves originating at reattachment, spectra for the shock and
reattachment locations include peaks at common frequencies.

The statistical connection between the low-frequency signals can be quantified
through coherence Cx y and phase θx y . The spectral coherence Cx y between two
temporal signals x(t ) and y(t ) is defined as

Cx y ( f ) = ∣∣Px y ( f )
∣∣2 /

(
Pxx ( f )Py y ( f )

)
,0 ÉCx y É 1, (3.7)

where Pxx is the power spectral density of x(t ) and Px y ( f ) represents the cross-power
spectral density between signals x(t ) and y(t ). The phase θx y is determined by

θx y ( f ) =ℑ(
Px y ( f )

)
/ℜ(

Px y ( f )
)

,−π< θx y Éπ. (3.8)
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(a)

(b)

Figure 3.50: Temporal evolution and corresponding frequency weighted power spectral density of spanwise-
averaged (a) bubble volume per unit spanwise length A and (b) shock angle η (case BTB). The black dashed
line signifies the mean value.

For a specific frequency, if 0 < Cx y < 1, it means that there is noise in the datasets or
the relation between these two signals is not linear. When Cx y equals to 1, it indicates
that the signals x(t ) and y(t ) are linearly related, and Cx y = 0 signifies that they are
completely unrelated.

The coherence and phase between the spanwise-averaged separation bubble size
and shock location are shown in figure 3.51. A high value of coherence (C = 0.42)
is observed at the frequency Stδ = 0.028, which manifests that the separation bubble
and reattachment shock are nonlinearly related to each other around the low frequency
observed in the spectrum of figure 3.50. Moreover, these two signals are approximately
in phase, as can be seen from the low level of θ. The above observations provide
evidence that the unsteady low-frequency behaviour is related to the breathing of the
separation bubble and the flapping motion of the shock, while the medium-frequency
motions are associated with the shedding vortices of the shear layer. Thus a decoupling
of the frequency scales is required to further trace the sustained source of the intrinsic
unsteadiness of the interaction, which is the objective of section 3.5.4.

Similar low- and medium-frequency are also observed for the laminar cases. Fig-
ure 3.52 plots the corresponding frequency weighted power spectral density of stream-
wise velocity around the mean reattachment location and the spanwise-averaged sep-
aration bubble size. To compare the laminar and turbulent cases, the frequency is
rescaled by the reattachment length as Str = f Lr /u∞. For the signal of streamwise
velocity in figure 3.52(a), the results show a broadband low-frequency spectrum for both
the laminar and turbulence cases. However, a local spectrum peak is clearly observed
at Str = 0.15 (Stδ = 0.017) in the turbulent case and at Str = 0.20 (Stδ = 0.018) for the
laminar case. Since there are distinct shedding vortices in the shear layer for both flow
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Figure 3.51: Statistical relation between the spanwise-averaged reattachment point and the area of separation
bubble: (a) coherence and (b) phase (case BTB).

regimes, the relevant prevailing medium frequencies are close to each other. For the
bubble size in figure 3.52(b), the dominant frequency of the separation bubble in the
laminar case is Str = 0.33, while the corresponding value is lower (Str = 0.22) in the
turbulent case. These differences suggest that there are probably other flow dynamics
involved, which leads to a lower frequency of the unsteady motions in the turbulent
case. As previously discussed, Görtler-like vortices are likely to be associated with the
low-frequency unsteadiness of SWBLI [98]. Therefore, we infer that the streamwise
streaks in the turbulent regime may play a role in the transformation of the dominant
low frequency.

3.5.4. DMD ANALYSIS OF THE THREE-DIMENSIONAL FLOW FIELD

To better separate the different dynamics from the coupled broadband frequency spec-
trum, a frequency-orthogonal modal decomposition of the three-dimensional flow field
is conducted based on DMD, the details of which has been described in chapter 2. In the
above analysis, we identified two types of unsteady behaviour at different frequencies.
However, part of the signals was extracted from the spanwise-averaged field, like
reattachment location, bubble size and shock angle; thus spanwise unsteady features
may be missing from the two-dimensional flow field and a three-dimensional DMD
analysis is required. Considering the large size of the data ensemble, a spatial subdomain
(−5.0 ≤ x/δ0 ≤ 20.0 and −3.0 ≤ y/δ0 ≤ 5.0, covering the most interesting region) is
extracted with a downsampled spatial resolution in all directions. The present DMD
analysis of the three-dimensional subdomain is carried out based on 1200 equal-interval
snapshots with the same temporal range of the previous signals and a smaller sampling
frequency fsδ0/u∞ = 2 as the frequencies above the characteristic frequency of the
turbulent integral scale u∞/δ0 are not of our current interest. The resulting frequency
resolution is 1.67 × 10−3 ≤ Stδ ≤ 1. Figure 3.53(a) shows the calculated eigenvalue
spectrum provided by the standard DMD. The obtained modes appear as complex
conjugate pairs and most of them are well distributed along the unit circle |µk | = 1 except
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(a) (b)

Figure 3.52: Frequency weighted power spectral density of (a) streamwise velocity around the mean reattach-
ment location and (b) spanwise-averaged bubble volume per unit length A (case BTB). The black solid line is
the laminar case BZA and dotted line represents the turbulent case BTB.

Table 3.4: Information of the selected modes

Mode Stδ |ψk | βk

φ1 0.02151 0.42644 -0.026404

φ2 0.07546 0.29303 -0.007900

φ3 0.59361 0.80066 -0.009204

a few decaying modes within the circle, which means the resulting modes are saturated
[167]. The magnitudes of the corresponding DMD modes are shown in figure 3.53(b)
for the positive frequencies and gray shaded by the growth rate βk . Here, the strongly
decaying modes (|µk | ≤ 0.95) have been removed, as they do not contribute to the long-
time flow evolution. The darker the vertical lines are, the less decayed the modes are. The
convergence of the DMD results was verified by repeating the DMD using 400 snapshots
less, which confirmed that the current DMD results are well-converged with respect to
the number of the snapshots.

From the frequency-magnitude spectrum, we identified three interesting frequen-
cies, a lower one (marked as A) with Stδ < 0.06, a medium one (marked as B) with
0.06 ≤ Stδ ≤ 0.2, and a higher one (marked as C) with Stδ > 0.2. Based on the growth rate
and magnitudes of the modes, three modes are selected from the frequency spectrum,
one representative for each of the frequency ranges, labelled as mode φ1, φ2 and φ3.
Table 3.4 provides the frequency, magnitudes and growth rate of these modes. All these
modes have comparatively large magnitudes with |ψk | > 0.1. At the same time, these
modes are the relatively darker ones in figure 3.53(b) with decay rate |βk | < 0.03, which
suggests that their effects play a role during the entire process.

For the branch with lower frequencies, mode φ1 has been selected to illustrate the
flow dynamics. Figure 3.54 shows the real part of the selected mode φ1 with the isosur-
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(a)

BA C

(b)

Figure 3.53: (a) Eigenvalue spectrum from the standard DMD and (b) normalized magnitudes for DMD modes
with positive frequency, coloured by the growth rate βk (case BTB).

(a) (b)

Figure 3.54: Isosurfaces of the pressure fluctuations from DMD mode φ1 with phase angle (a) θ = π/2 and (b)
θ = 7π/4 for case BTB, only including the real part (red: p ′/p∞ = 0.02, blue: p ′/p∞ =−0.02).

faces of the pressure fluctuations at phase angle θ = π/2 and 7π/4. At both instants,
the key features of this mode from the pressure signals are the significant structures
along the shock and compression waves caused by the reattachment. Additionally, the
fluctuations around the shock and reattachment are three dimensional, and indicate a
slight wrinkling of the shock. Comparing the modal fluctuations at these two phases,
the sign switch between them describes the oscillation of the reattachment shock.
Figure 3.55(a) provides the pressure fluctuations at the slice z = 0, in which the effect that
mode φ1 has on shock and compression waves is more clear. Note that perturbations
in the upstream turbulent boundary layer are too weak to be visible at the given levels
(|p ′/p∞| = 0.01) of isosurfaces and in the contours.

In figure 3.56, the fluctuations of the streamwise velocity component from DMD
mode φ1 (at the slice z = 0) are given. As we can see, large fluctuations are aligned with
the streamwise direction with negative and positive values alternating in the spanwise
direction. These longitudinal structures appear to start within the fore part of the free
shear layer and extend beyond the reattachment location. Additionally, they are mainly
located in the near-wall part of the boundary layer, as shown by the streamwise velocity
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(a) (b)

Figure 3.55: Real part of DMD mode φ1 indicating contours of modal (a) pressure fluctuations and (b)
streamwise velocity fluctuations on the slice z = 0 (case BTB). The green solid line indicates the mean
reattachment shock. The dashed line signifies the dividing line. The green dashed lines represent the
streamlines passing through x/δ0 = 0, y/δ0 = 0.125 and x/δ0 = 0, y/δ0 = 0.5625.

fluctuations in figure 3.55(b). We also superimpose the modal fluctuations (with the
optional amplification factor a f = 1.0) onto the mean flow and plot the contours of
streamwise velocity in the x − z slice at y/δ0 =−2.875 in figure 3.57. The high- and low-
speed streaks are obvious in the contours and show very similar features as the contours
of skin friction in figure 3.44. Other low-frequency modes between Stδ = 0.008 ∼ 0.05
have been also examined, and they all share common structures with mode φ1. The
pressure and velocity fluctuations of DMD mode φ1 suggest that the low-frequency
flapping motion of the shock is coupled with streamwise-elongated structures in the
interaction region.

(a) (b)

Figure 3.56: Isosurfaces of the streamwise velocity fluctuations from DMD mode φ1 with phase angle (a) θ =
π/2 and (b) θ = 7π/4 for case BTB, only including the real part (red: u′/u∞ = 0.42, blue: u′/u∞ =−0.42).

These spanwise-aligned structures are the signature of counter-rotating Görtler-like
vortices, as shown by the contours of modal streamwise vorticity in figure 3.58. The
location and strength of these vortex pairs are changing with the phase angles. At the
given instants (θ = 0 and θ = 5π/8), the spanwise wavelength of the vortex pair is ranging
from 1.9δ0 to 1.6δ0. The instantaneous snapshots of the reconstructed flow field fromφ1

shows the flapping motion of the reattachment shock, i.e., the displacement of the shock
around its mean shock location. The counter-rotating Görtler vortices are also unsteady
in terms of their strength. Additionally, figure 3.58 indicates that these vortices can move
in both the spanwise and wall-normal directions.

For mode φ2, the pressure isosurfaces in figure 3.59 show high levels of fluctuations
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Figure 3.57: Contours of the reconstructed streamwise velocity from DMD modeφ1 in the x−z plane at y/δ0 =
−2.875.

Figure 3.58: Contours of the streamwise vorticity from DMD mode φ1 with phase angle (a) θ = 0 and (b) θ =
5π/8 in the z − y plane at x/δ0 = 10. Black arrow lines represent the streamlines on the slice.

along the reattachment shock, but the three-dimensional features are stronger com-
pared to mode φ1. Positive and negative fluctuations are alternating in both spanwise
and wall-normal directions, which represents a propagation of waves from the shear
layer and outwards along the shock. The radiation of the Mach waves is in agreement
with the results from a global linear stability analysis of an impinging shock case in
laminar regime [183]. The emission of these waves induces large disturbances along the
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streamwise direction in the supersonic part of the flow field. In the contours of modal
spanwise-averaged pressure fluctuations in figure 3.61, the radiation of the waves along
the streamwise direction and shock is easier to observe.

(a) (b)

Figure 3.59: Isosurfaces of the pressure fluctuations from DMD mode φ2 with phase angle (a) θ = 0 and (b)
θ = 3π/4 for case BTB, only including the real part (red: p ′/p∞ = 0.02, blue: p ′/p∞ =−0.02).

Considering the fluctuations of the streamwise velocity, shown in figure 3.60, smaller
longitudinal vortical structures are observed, compared to mode φ1. These vortices
alternate along both the spanwise and streamwise directions, and are mainly concen-
trated within the boundary layer. Clearly, this mode represents the convection of the
shear layer vortices and the induced Mach waves in the supersonic part of the flow field,
which can also be seen in the contours of modal spanwise-averaged streamwise velocity
in figure 3.61(b). Similar observations were also reported in the two-dimensional DMD
analysis of an incident shock case [99].

(a) (b)

Figure 3.60: Isosurfaces of the streamwise velocity fluctuations from DMD mode φ2 with phase angle (a) θ = 0
and (b) θ = 3π/4 for case BTB, only including the real part (red: u′/u∞ = 0.3, blue: u′/u∞ =−0.3).

The higher frequency modes, branch C, are related to the small-scale turbulent
dynamics. For example for mode φ3, pressure fluctuations in figure 3.62 show small
highly three-dimensional arc-shaped vortices. These spanwise-aligned vortices are
generated from the downstream part of the shear layer. The streamwise displacement
of the fluctuations contours at different phase angles indicates the convection of the
coherent vortices.

The convection behavior of this mode is also evident from isosurfaces of the stream-
wise velocity fluctuations, shown in figure 3.63. The velocity fluctuations originate from
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(a) (b)

Figure 3.61: Real part of DMD mode φ2 indicating contours of modal spanwise-averaged (a) pressure
fluctuations and (b) streamwise velocity fluctuations (case BTB). The green solid line indicates the mean
reattachment shock. The dashed line signifies the dividing line. The green dashed lines represent the
streamlines passing through x/δ0 = 0, y/δ0 = 0.125 and x/δ0 = 0, y/δ0 = 0.5625.

(a) (b)

Figure 3.62: Isosurfaces of the pressure fluctuations from DMD mode φ3 with phase angle (a) θ = 0 and (b)
θ = 3π/8 for case BTB, only including the real part (red: p ′/p∞ = 0.06, blue: p ′/p∞ =−0.06).

the strong shear layer behind the step. It is also noticed that these fluctuations are
distributed along the free shear layer and downstream boundary layer. Additionally,
this mode shows less anisotropic features, compared with the other two modes. The
frequency of this mode is close to the typical frequency of the turbulence considering
the thicker boundary layer downstream of the step. Thus, we consider this mode to be
related to the convection of typical turbulent structures that result from an amplification
of the incoming turbulence by the separation bubble, cf. the stability analysis of Guiho
et al. [183] for an incident shock SWBLI case.

(a) (b)

Figure 3.63: Isosurfaces of the streamwise velocity fluctuations from DMD mode φ3 with phase angle (a) θ = 0
and (b) θ = 3π/8 at slice z = 0 for case BTB, only including the real part (red: u′/u∞ = 0.6, blue: u′/u∞ =−0.6)
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Similarly, the DMD modes from the two-dimensional analysis for the laminar case
are also divided into three branches [178]. The branch with higher frequencies centred
at f δ0/u∞ ≈ 0.1 is associated with the shedding of large coherent shear vortices, which
is also observed in the present turbulent case. The other two branches with lower
frequencies are related to the unsteady motions of the separation bubble and the shock.
In contrast to the turbulent case, we found no evidence of Görtler-like vortices in the
laminar case.

3.5.5. PHYSICAL MECHANISM OF LOW-FREQUENCY UNSTEADINESS

The current BFS case shows similar unsteady motions as those usually observed for
SWBLI on flat plates and on compression ramps. Compared with these cases, however,
the flow topology of the present case shows significantly different features. In canonical
impinging shock and ramp cases, the separation bubble is enclosed by a separation
shock and reattachment shock. In contrast, the recirculation region in a BFS case
is surrounded by the step expansion fan, and reattachment shock. In terms of the
mean skin friction, the recirculating flow is usually less uniform downstream of the
mean separation position and recovers slower in the ramp and incident shock cases
[99, 164]. The fluctuations of 〈C f 〉 inside the separation bubble in these cases are usually
related to the low-frequency unsteadiness. In the current case, however, the skin friction
(figure 3.41) is relatively uniform in the fore part of the bubble, which is caused by the
‘dead-air’ region close to the stationary step wall. The wall pressure is usually increasing
throughout the separation bubble in the ramp and incident shock cases [164, 176]. In the
current case, the pressure drastically drops at the step and keeps a relatively steady low
level in the separation bubble, which is typical for strong interactions. These differences
may suggest different low-frequency features between these cases. To compare with
other canonical SWBLI cases, the dimensional frequencies are rescaled based on the
separation length Lr as Str = f Lr /u∞ in the following discussion.

The instantaneous visualizations displayed in section 3.5.2 illustrate both relatively
localized and global unsteady motions in the flow field, involving high and low speed
streaks, breathing bubble and oscillating reattachment shock, as well as vortex shedding
in the separated shear layer. A linear stability analysis of the mean flow shows that
the most unstable global mode is mainly distributed along the dividing line (u = 0),
especially around the reattachment location [183]. The RMS wall-normal velocity in
figure 3.42 is consistent with this observation. The spectral analysis in section 3.5.3
reveals that there are two kinds of low-frequency unsteadiness in the interaction region
and the lower frequency around Str = 0.2 (Stδ = 0.023) is associated with the coupling of
separation bubble and reattachment shock wave. Furthermore, the three-dimensional
DMD analysis separates the different dynamics contributing to low-frequency interac-
tion. Apart from the unsteady separation bubble and reattachment shock, the low-
frequency mode φ1 also reveals the unsteady Görtler-like vortices, see figure 3.58.
Although these Görtler vortices are rather weak compared to other energetic dynamics
such that they are hard to identify in the vortical visualization in figure 3.9, the skin
friction contours in figure 3.44 capture the footprint of the associated high- and low-
speed streaks.

These observations share qualitative similarities to the low-frequency DMD modes
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calculated by Priebe et al. [98]. In their ramp case, the fluctuations of the low-frequency
mode clearly show shocks (mainly separation shock) and longitudinal Görtler vortices
near the reattachment. In the impinging shock case of Pasquariello et al. [99], both the
visualization of streamwise vorticity and the DMD analysis of the skin friction support
the finding of the Görtler vortices downstream of the reattachment location. Both report
that the frequency of this unsteadiness is between 0.01 < Str < 0.2, while the current
results for a BFS correspond to a Strouhal number range of 0.027 ≤ Str ≤ 0.54 (0.003 ≤
Stδ ≤ 0.06 in the DMD analysis), which is about three times larger than the values of
other canonical cases.

We believe that the higher frequency in the current case is caused by the fixed
separation location and confinement by the step wall. In the ramp and impinging
shock cases, the recirculation region can move from both separation and reattachment
sides. By comparison, the current case can only move in the reattachment part due
to the limitation of the step, and it is reasonable to assume that this leads to a smaller
oscillation amplitude and correspondingly to a higher frequency. This explanation is
supported by the temporal evolution of the reattachment point. In figure 3.49(b), the
calculated minimum, mean and maximum reattachment location are xr /δ0 = 8.3,8.9
and 10.2, which leads to an oscillation range of about 15%Lr . For ramp cases, oscillations
of up to 70%Lr have been reported [164]. Moreover, the separation length is around three
times the maximum separation height (Lr = 3h, the maximum separation height equals
to the step height) in our BFS case, whereas the recirculating flow regions are typically
much thinner in ramp and impinging shock cases. Estruch-Samper and Chandola
[116] proposed an entrainment-recharge mechanism to associate the low-frequency
unsteadiness with the shedding effects. In this theory, the Strouhal number of the low-
frequency breathing can be related to the entrainment frequency by

St low
r =παεξBδ

′2 Lr

h

(
X ent

r

)2
St ent

r ≈Cε
Lr

h

(
X ent

r

)2
St ent

r , (3.9)

where αε is the length-to-thickness ratio of the shedding coherent structures; ξB

represents the percentage of the entrainment mass and δ′ is the spreading rate of the
mixing layer. Huang and Estruch-Samper [184] showed that the variations of these three
parameters between different cases are small if the incoming flow conditions are close,
which results in an approximate constant Cε ≈ 0.08. The ratio of the bubble length
to bubble height Lr /h and the dimensionless entrainment length X ent

r depend on the
specific geometry. In a similar entrainment and injection model by Piponniau et al.
[94], they consider the entrainment usually only occurs in the rear half of the separation
bubble, i.e., the downward part of the shear layer, which leads to a dimensionless
entrainment length X ent

r ≈ 0.5 in the impinging shock and ramp cases. The geometry

dependent transformation factor is C ent = (
X ent

r

)2 Lr /h ≈ 1.5 for these canonical cases.
In the current BFS case, the entrainment length X ent

r is one, which gives the transform
factor C ent ≈ 3. The entrainment frequencies St ent

r of the shear layer shedding behaviour
are similar for all these cases; thus the BFS case will yield about two times larger St low

r
than the impinging shock and ramp cases. However, this model only provides an
estimate of the low frequency, and we do not expect to obtain an accurate value.

Several works in the literature have found evidence of Görtler-like vortices in SWBLI.
Görtler vortices typically have a spanwise length-scale in the order of the incoming
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boundary layer thickness [185]. The Görtler number, defined as,

Gt = θ3/2

0.18δ∗|R|1/2
, (3.10)

gives an indication on whether such vortices can form [78], where R is the radius of
curvature of the streamline, δ∗ is the boundary layer displacement thickness and θ is
the boundary layer momentum thickness. Figure 3.64 shows the curvature δ/R and
Görtler number Gt along two streamlines of the mean flow inside the shear layer (shown
in figure 3.55 and figure 3.61). Streamline 1 is closer to the wall and passes through the
coordinate x/δ0 = 0 and y/δ0 = 0.125. Significantly large streamline curvature occurs
at the separation point and around the reattachment. Correspondingly, two distinct
peaks are observed at these locations. The large curvature and Görtler number at the
separation is mainly caused by the sudden change of the geometry at the step edge.
In a laminar flow, the critical Görlter number is around Gt = 0.6 (marked as gray dot-
dashed line) for a wide range of Re, above which the flow exhibits significant centrifugal
instability and local Görtler vortices will emerge inside the boundary layer [78]. We see
that the Görtler number is larger than the critical value between 7.7 ≤ x/δ0 ≤ 18.5 and
reaches its extremum Gt = 1.2 at x/δ0 = 10.9, close to the reattachment. Streamline
2 is in the middle of the boundary layer and passes through the point x/δ0 = 0 and
y/δ0 = 0.5625. The spatial evolution of the curvature and Görtler number has a similar
trend as for the streamline 1 and the Görtler number is above the critical value for
7.0 ≤ x/δ0 ≤ 19.3. In figure 3.44, we show that the high and low speed streaks are
observed within the region 6.8 ≤ x/δ0 ≤ 17.8, which is consistent with the zones with
large Görtler number. The intrinsic spanwise wavelength of these streamwise vortex
pairs is reported as λz ≈ 2δ in SWBLI systems [98, 186], which is also in agreement with
the current observations λz = 2.0δ0 ∼ 3.1δ0. The streamwise velocity field reconstructed
from DMD mode φ1 also displays these high and low speed streaks, see figure 3.57.
Although there is no general critical Gt reported in the literature for turbulent separated
flow, the high levels of Gt provide an indication of sufficiently strong Görtler instability
at the reattachment location, which provides an explanation for the low and high speed
streaks observed in figure 3.44 and the detected streamwise-oriented structures in DMD
mode φ1.

Görtler vortices resulting from strong curvature could be unsteady in the turbulent
flow, as concluded by Floryan [24] from various experiments in low-speed turbulent
flows. One of the situations proposed is that the generated streamwise-oriented vortices
oscillate in the spanwise direction if they are affected by three-dimensional disturbances
in the incoming flow. The unsteady streamwise vortices observed in the incident shock
and ramp cases [98, 99, 187] both fall into this category. The mode structure shown in
figure 3.56 oscillates in spanwise direction. It is noticed that this proposition involves
incoming disturbances, which may suggest a certain dependence on upstream flow
conditions. From figure 3.55(b), we can observe that weak upstream disturbances and
fluctuations are part of the same DMD modes as the downstream Görtler vortices,
which manifests that the observed Görtler vortices in the present study indeed have a
significant correlation with upstream disturbances.

For comparison, we also show the Görtler number for our laminar case [178] in
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Figure 3.64: Curvature δ0/R and Görtler number Gt along two streamlines of the mean flow (case BTB). (a)
streamline 1 through x/δ0 = 0 and y/δ0 = 0.125, (b) streamline 2 through x/δ0 = 0 and y/δ0 = 0.5625. Vortical
dashed lines indicate the separation and reattachment point. Horizontal dot-dashed line signify the critical
Gr in a laminar flow.

figure 3.65. As we can see, the curvature around the reattachment location in the laminar
case is smaller than the one in the turbulent flow. As a result, Gt has a smaller value
than for the turbulent case (cf. figure 3.64). Specifically, Gt is below the critical value
in the whole separation bubble, which probably is the reason that there are no Görtler
vortices around the reattachment point in the laminar case (cf. figure 3.46). In addition,
this difference also shows how the existence of Görtler vortices is affected by upstream
fluctuations: more turbulent incoming flow leads to a smaller separation length and thus
stronger Görtler instability. On the other hand, the flow field around the reattachment
location is more likely to reorganize and form into the spanwise-aligned vortices in the
turbulent regime due to the incoming three-dimensional fluctuations.

Based on the above discussion, the following physical mechanism is proposed for
the production of the low-frequency unsteadiness. The incoming turbulent flow experi-
ences strong shear and curvature upon separation, which leads to large coherent vortical
structures along the shear layer. Near the reattachment, there is significant centrifugal
instability within the shear layer due to the concave streamlines. The Görtler instability,
excited by incoming 3D turbulence, leads to large streamwise oriented vortices, which
produce high- and low-speed streaks around the reattachment region (cf. figure 3.44
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Figure 3.65: Curvature δ0/R and Görtler number Gt along the streamline through x/δ0 = 0 and y/δ0 = 0.5625
for the laminar case BZA. Vortical dashed lines indicate the separation and reattachment point. Horizontal
dot-dashed line signify the critical Gr in a laminar flow.

and 3.57). These Görtler vortices are unsteady, which leads to spanwise shock wrinkling
at very low frequencies, as we see from the streamwise velocity fluctuations from
DMD mode φ1. Vortex driven mixing and mass entrainment results in the breathing
of the separation bubble and the reattachment shock. Therefore, we believe that
the centrifugal force and induced Görtler vortices are the main driving force of the
global low-frequency unsteadiness in the turbulent case, which suggests that the low-
frequency oscillation of SWBLI is inherently a three-dimensional mechanism. In the
meantime, there is also notable dependence on the upstream fluctuations within the
incoming turbulent boundary layer.

3.5.6. SUMMARY

The unsteady dynamics of SWBLI over a BFS, with particular attention to the low-
frequency unsteadiness, has been investigated at M a = 1.7 using a well-resolved LES.
The mean flow field illustrates the main flow topology of SWBLI in the BFS, consisting
of a centred Prandtl-Meyer expansion fan originating from the fixed separation point,
a separation bubble behind the step and a reattachment shock generating from the
compression waves. Different from the canonical impinging shock and compression
ramp cases, the separation point is stationary and only one shock occurs in the BFS
case. The instantaneous flow field shows that the unsteady behavior is however similar
to other SWBLI configurations, including the vortex shedding in the separated shear
layer, as well as the breathing of the separation bubble and a flapping shock motion. The
spectral analysis shows that there is a broad band of low-frequency oscillations, which
we classify into two branches with the dominant frequencies centered near Stδ = 0.02
and 0.2 in the current case. The lower frequency dynamics is related to the unsteady
separation bubble size, as well as the shock angle and position, while the second one
connects to the shedding of shear layer vortices, which also affects the reattachment
location.

Three-dimensional DMD analysis was used to reveal the characteristic mode struc-
tures that contribute to the observed unsteady behavior. The low-frequency mode
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φ1 provides evidence for the statistical link between the shock motion (by pressure
fluctuations) and the unsteady Görtler vortices (by the streamwise velocity fluctuations)
around the reattachment position. The high- and low-speed streaks in the contours of
C f in figure 3.44 and the reconstructed velocity field in figure 3.57 are the signature of
these spanwise-aligned vortices. The medium-frequency mode φ2 represents shear-
layer vortices and Mach waves. We thus believe that the unsteady Görtler vortices
around the reattachment provide the unsteady forcing that sustains the low-frequency
motions of shock and separation bubble. In particular through the comparison with a
laminar inflow case [178], we show that the upstream fluctuations have a notable effect
on the formation and existence of the unsteady spanwise-aligned Görtler vortices.
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4.1. FLOW CONFIGURATION AND NUMERICAL SETUP

This section presents the flow configuration and numerical setup for the FFS geometry.
Four cases with different inlet conditions are considered, covering the laminar, transi-
tional and turbulent flow regime.

4.1.1. FLOW CONFIGURATION

The geometry chosen is a FFS in a supersonic external flow, as shown in figure 4.1.
Again, four cases are considered for this configuration with different inflow conditions,
consisting of a laminar zero-pressure gradient boundary layer superimposed with zero-
amplitude (case FZA, i.e., clean laminar inflow), low-amplitude (case FLA) and high-
amplitude oblique waves (FHA) on the inlet, as well as a turbulent inflow (case FTB),
respectively. For the laminar and transitional cases, the computational domain size
is ([−120,40] × [0,33] × [−8.0,8.0])δ0 in the x, y , z directions, while it is ([−70,40] ×
[0,33] × [−8.0,8.0])δ0 in these three directions for the turbulent case. The upstream
streamwise length of the domain is relatively longer for laminar and transitional cases in
order to avoid that the separation shock reaches the inflow boundary during the violent
startup transient. In the turbulent case, the upstream turbulent boundary layer is able
to resist this upstream propagation; thus a smaller domain size is allowed to reduce the
computational cost.

TurbulentTransitionLaminar

Figure 4.1: Schematic of the region of interest, which is in the center of the large computational domain. The
figure represents an instantaneous numerical schlieren graph in the x − y cross section for the low-amplitude
perturbed laminar flow case. Indicated are the wall-normal profiles of the mean velocity and perturbations.

To better compare with the BFS cases, the main flow parameters remain as the same
with those of the BFS cases: Mach number M a∞ = 1.7 and Reynolds number Reδ0 =
13718 based on the inlet boundary layer thicknessδ0 (at 99%u∞) and free stream velocity
u∞. The main flow parameters are summarized in table 4.1. The height of the step is
three times larger than the inlet boundary layer thickness.

Table 4.1: Main flow parameters of the current FFS cases

M a∞ U∞ δ0 θ0 Re∞ T0 p0 h p∞
1.7 469.85 m/s 1 mm 0.107 mm 1.3718×107 m−1 300K 1×105 Pa 3 mm 20259 Pa
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4.1.2. NUMERICAL SETUP
Similar as in the previous chapter, the in-house code INCA was used for the flow
simulations. A Cartesian mesh based on local block refinement was generated for the
flow domain, as shown in figure 4.2. The spatial resolution of the grid is∆x+

max×∆y+
max×

∆z+
max = 40× 1.0× 20 (∆x+

max = 1.0 on the step wall, excluding the singular point at the
step). The temporal resolution (i.e., the time step) is around ∆tu∞/δ0 = 7.6 × 10−4,
resulting in CFL < 0.5. The four cases have the same spatial and temporal resolution.

Figure 4.2: Grid distribution in the x-y plane in the computational domain near the forward-facing step.

The boundary conditions are the same as those of the BFS cases: the bottom surface
and step are modeled as non-slip adiabatic walls. All the flow variables are extrapolated
at the outlet of the domain. For the far field on the top, non-reflecting boundary
conditions based on Riemann invariants are imposed. The spanwise borders are treated
as periodic boundaries. The present four cases have different inlet boundary conditions.
Case FZA is provided with a clean compressible self-similar zero-pressure-gradient
laminar inflow boundary layer profile without any perturbations. The two perturbed
laminar cases have the same mean flow profile as case FZA, but superimposed with a
single low- and high-amplitude oblique T-S wave for the case FLA and FHA, respectively.
The profiles of the T-S waves are calculated by LST and are the same as those of the
BFS transitional cases given in section 3.1.3. Since a longer streamwise length of the
flow domain is used upstream of the step, the averaged amplitudes of the streamwise
velocity fluctuations at inlet are taken ten times smaller than those of the BFS cases,
i.e., Ain = 0.01% for case FLA and Ain = 0.05% for case FHA in the disturbed region
(0 ≤ y/δ0 ≤ 5.0). Case FTB has a turbulent inflow boundary layer produced by the digital
filter technique. The inflow conditions for the present four cases are summarized in
table 4.2.

4.1.3. GRID VALIDATION
The grid validation is provided only for case FTB because all FFS cases share the same
grid topology and resolution. For the current computations, the time- and spanwise-
averaged statistics were sampled at every tu∞/δ0 = 0.5. We simulated an initial period
of tu∞/δ0 = 600, during which the flow reached a fully developed, statistically steady
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Table 4.2: Flow information for all the investigated FFS cases

Case FZA FLA FHA FTB

flow regime laminar laminar laminar turbulent

fluctuation intensity I = 0 I = 0.08% I = 0.4% I = 6%

state. After this initial transient, statistics were sampled over another tu∞/δ0 = 400. The
van Driest transformed mean velocity profile and Reynolds stresses in Morkovin scaling
are plotted at a streamwise station x/δ0 = −50.0 (where Reτ = 370) in figure 4.3. The
asymptotic solutions for the laminar sublayer and the log-law, as well as incompressible
DNS data of Schlatter and Örlü [148] at Reτ = 360 are also included for comparison. The
mean velocity profile is in a good match with both the logarithmic law of the wall (u+ =
1
κ log y++C with the constants κ= 0.41 and C = 5.2) and DNS results. The corresponding
Reynolds stresses are also in very good agreement with the reference data.
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Figure 4.3: Mean profiles of the upstream turbulent boundary layer in wall units at x/δ0 = −50.0 and Reτ =
370. (a) Van Driest transformed mean velocity profile and (b) Reynolds stresses normalized by

√
ρ/ρw . –·–·,

law of the wall; ——, present LES with the chosen fine grid; · · · · · · , coarser grid GX; – – –, coarser grid GZ; ◦,
incompressible DNS data of Schlatter and Örlü [148] at Reτ = 360 and Reθ = 1000.

The grid sensitivity has been checked using two coarser grids with ∆x+
max ×∆y+

max ×
∆z+

max = 80× 1.0× 20 and ∆x+
max ×∆y+

max ×∆z+
max = 40× 1.0× 40. As we can see from

figure 4.3, these two coarser grids give very similar results as the fine grid for the mean
velocity and Reynolds stress profiles, but the fine grid does produce better agreement
with the reference data, especially for the streamwise Reynolds stress.

4.2. PRELIMINARY COMPARISONS OF DIFFERENT CASES
This section provides a general overview of the flow field for the FFS cases at different
inflow conditions, i.e., among the four cases FZA, FLA , FHA. FTB. First, the evolution of
the boundary layer is displayed by the streamwise variation of the time- and spanwise-
averaged skin friction in figure 4.4(a). Note that the inlet position for the computations



4.2. PRELIMINARY COMPARISONS OF DIFFERENT CASES

4

107

is at x/δ0 = −120 for the laminar cases and x/δ0 = −70 for the turbulent case. The
mean skin friction of all cases shows qualitatively the same behavior, consistent with a
separation region upstream of the step. The curves for the laminar and transitional cases
(case FZA, FLA, FHA) appear to almost overlap over the entire flow domain. Initially,
the boundary layer remains laminar far upstream of the step, as can be inferred from
the low level of 〈C f 〉, of the order of 0.0003. From x/δ0 = −80.0, the mean skin friction
starts to increase gradually, which indicates the onset of transition. At x/δ0 = −29.0,
the mean skin friction reaches a high level of 〈C f 〉 ≈ 0.002, indicating that the boundary
layer is already highly perturbed and close to turbulent, at a location that is still well
upstream of the separation region. Approaching the separation bubble (x/δ0 > −29.0),
the skin friction rapidly decreases until the boundary layer separates at x/δ0 = −15.9.
In the fore part of the recirculation region, 〈C f 〉 keeps a relatively low level close to
zero. Then the mean skin friction drastically decreases towards a global minimum
〈C f 〉 < −0.002 near the step, followed by a sharp increase of 〈C f 〉 across the step as
reattaching on the step wall. On the upper wall, the flow reattaches again at x/δ0 ≈ 0.5.
Behind the second separation bubble, the mean skin friction reaches a local maximum
〈C f 〉 ≈ 0.0035 at x/δ0 ≈ 2.4. The mean skin friction then slightly decreases and remains at
a typical turbulent level downstream. Based on the evolution of the mean skin friction,
the transition probably follows a same path for case FZA, FLA and FHA. For case FTB,
the initial variations of the skin friction are caused by the DF technique because the
boundary layer needs to develop physical coherent structures. After this initial transient
region, the mean skin friction slowly decreases in the region x/δ0 < −20, as the local
Reynolds number increases along the streamwise distance. Then, 〈C f 〉 drops abruptly
in front of the separation point (x/δ0 = −13.0) to negative values inside the separation
bubble. The mean skin friction reaches its minimum very close to the step wall and
then rises again across the step. Behind the step, the curves of 〈C f 〉 follow a similar
trajectory approaching a value of 〈C f 〉 = 3.0×10−3 for all cases, which suggests that they
reach a similar turbulent state downstream. Because turbulent flow is more resistant to
separation, the separation length (Lr /δ0 = 13.0) is 18% shorter than for the other three
cases.

The separation length Lr from the present cases is compared with existing ex-
perimental data from literature in table 4.3. Similar as for the BFS cases presented
in chapter 3, the separation length Lr is normalized by the step height h. For the
turbulent case FTB, the separation length Lr /h = 4.3 is close to the data of most existing
experiments (Lr /h ≈ 3.9 ∼ 5.1). In the review of Zukoski [111], they indicated that the
normalized separation length is Lr /h ≈ 4.1, roughly independent of the step height and
Mach number if h/δ > 1.2 and M a > 2.0 in the turbulent regime, and it increases if the
Mach number decreases, which is consistent with the current results. For the laminar
and transitional cases, the computed separation length is Lr /h = 5.3, larger than the
value reported by Zhang et al. [113], which can be attributed to the lower Mach number.

The root mean square (RMS) of the wall pressure prms =
√< p ′p ′ >/ρ∞u2∞ is plotted

in figure 4.4(b), illustrating the level of fluctuations and reflecting the development of
turbulence. Due to acoustic waves emitted by the downstream separation region, the
RMS of wall pressure for the laminar and transitional cases (case FZA, FLA and FHA)
rapidly grows at the inlet and reaches a similar level of prms = 0.003 at x/δ0 ≈ −60.0.



4

108 4. FORWARD-FACING STEP

Figure 4.4: Streamwise development of time and spanwise-averaged (a) skin friction with a zoom into the
region near the step and (b) root mean square of wall pressure fluctuations (normalized by ρ∞u2∞) for case
FZA (◦), case FLA (——), case FHA (rr), case FTB (· · · · · ·).

The curves for these three cases follow a similar trend when x/δ0 >−60.0. The pressure
fluctuations slowly increase until x/δ0 ≈ −30 and then quickly grow in front of the
separation region (x/δ0 < −20.0) due to the emergence of compression waves. After
reaching a local maximum prms ≈ 0.04, they suddenly decrease across the separation
point (x/δ0 =−15.9). In the separation region, the pressure fluctuations continue rising
to a maximum prms ≈ 0.055 caused by the reattachment, followed by a quick drop after
the reattachment on the step. For case FTB, the RMS of wall pressure keeps a steady
level far upstream of the separation region x/δ0 > −20. The pressure fluctuations then
grow very rapidly to a local maximum prms ≈ 0.013 at x/δ0 = −15.0, followed by a slow
decrease in the fore part of the separation region. Close to the step, they increase again
to a maximum prms ≈ 0.032 and then rapidly drop after the reattachment. All four cases
display a similar variation tendency but with different rates. The fully turbulent case
(FTB) has a notably lower level of wall pressure fluctuations compared to the laminar
or transitional cases. The cases FLA and FHA follow nearly the same trajectory as the
case FZA downstream of the step, notwithstanding they being imposed with oblique
waves, which provides further support to the assumption that these three cases share
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Table 4.3: Comparison of the reattachment length reported in various FFS studies, where I is the free stream
or maximum inflow turbulence intensity.

Authors M a Re∞, m−1 h, mm δ0/h Lr /h Comments

Czarnecki et al.[188] 1.6 1.9×107 20.4 0.3 4.2 experiment, turbulent

Estruch-Samper et al. [116] 2.0 6.5×107 22.5 0.13 3.9 experiment, turbulent

Rogers et al. [189] 2.2 1.1×104 12.7 1.0 2.8 experiment, laminar

Murugan et al. [114] 2.5 2.82×107 12 0.5 4.1 experiment, I ≈ 1.5%

Spaid [190] 2.9 4.8×106 10.2 0.74 4.2 experiment, turbulent

Estruch-Samper et al. [116] 3.0 6.1×107 22.5 0.14 4.3 experiment, turbulent

Zhang et al. [113] 3.0 7.5×106 10 1.02 3.4 experiment, laminar

Zukoski [111] 3.0 3.9×108 7.6 0.33 4.2 experiment, turbulent

Chandola et al. [191] 3.9 7.01×107 22.5 0.17 5.1 experiment, turbulent

Zukoski [111] 3.9 1.2×107 10.2 0.6 4.5 experiment, turbulent

Behrens [110] 4.0 1.2×107 18.5 0.5 4.25 experiment, turbulent

Present case FZA 1.7 1.37×107 3 0.33 5.3 LES, laminar

Present case FLA 1.7 1.37×107 3 0.33 5.3 LES, I ≈ 0.08%

Present case FHA 1.7 1.37×107 3 0.33 5.3 LES, I ≈ 0.4%

Present case FTB 1.7 1.37×107 3 0.33 4.3 LES, I ≈ 6%

the same transition path throughout the separated shear layer region. The wall pressure
fluctuations finally reach identical levels for all three cases at x/δ0 > 30.

The development of the oblique T-S waves is measured by the maximum root-mean-
square of the streamwise velocity fluctuations. The semi-log plot in figure 4.5 shows a
rapid transient growth of the incoming T-S waves far upstream of the separation region.
The averaged streamwise growth rate is given by the slope of the curve αi

δ
≈ 0.066,

which is much larger than the LST results αi
δ
≈ 0.016 for the inlet unstable T-S waves.

Approaching the separation region x/δ0 >−15.9, the boundary layer is almost turbulent
and the level of fluctuations almost remains steady. We additionally observe small
and drastic growth of the fluctuations around the separation point x/δ0 = −15.9 and
reattachment location. Correspondingly, the laminar-to-turbulent transition occurs
upstream of the separation bubble, with a typical laminar shape factor H = 4.4 at
x/δ0 =−80.0 to a shape factor H = 2.5 (close to a typical turbulent one) at x/δ0 =−20.0.
The computational investigation of Edelmann and Rist [69] also reported this significant
amplification of the unstable waves by the FFS upstream of the step.

The instantaneous snapshots of vortical structures for cases FZA, FHA and FTB are
presented by means of isosurfaces of the λ2 vortex criterion [155] in figure 4.6, 4.7 and
4.8, respectively. For case FZA, the transition region is divided into two sub-sections, i.e.,
the far upstream region (−80 ≤ x/δ0 ≤−30.0) and the part near the step (−30 ≤ x/δ0 ≤ 0).
Around x/δ0 = −80.0, negative spanwise vorticity is produced, which is caused by the
growth of the oblique T-S waves. The streaks of the spanwise vorticity induce the near-
wall Λ-shaped vortices and then develop into separate turbulent spots. The patches
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Figure 4.5: Maximum RMS of streamwise velocity fluctuations (solid line) and shape factor of the boundary
layer (dashed line) along the streamwise direction for case FZA.

of the turbulent spots contain small hairpin vortices of different spatial scales. There
are also small streamwise vortices located between the two legs of the hairpin vortices.
Approaching the separation region, these secondary hairpin vortices are amplified and
continue travelling in the shear layer of the main separation bubble. Behind the main
separation, the boundary layer is highly turbulent and develops towards the canonical
equilibrium state downstream of the step (see also figure 4.4). These flow structures in
the present transition are typical flow phenomena for a natural modal transition induced
by the T-S waves in a zero-pressure-gradient flat-plate boundary layer, as reported in the
DNS of Wu and Moin [192].

Cases FLA and FHA follow the same transition path with case FZA since similar
vortical structures are observed. Therefore, only the vortical visualization of case FHA
is provided here. As we can see, the typical spanwise vorticity, Λ-shaped vortices,
hairpin vortices are also identified. Therefore, we believe that the fully laminar case
FZA, perturbed cases FLA and FHA belong to the same transition road, i.e, the modal
transition induced by the oblique T-S waves.

For the turbulent case FTB, the near-wall region features small homogenous vortices
in the incoming boundary layer in front of the step. Since the shear layer over the
separation bubble is inviscidly unstable, the shear layer rolls up and vortical structures
are enhanced due to the strong K-H instability, as shown in figure 4.8. However, a
clear signature of K-H vortices is not observed because it is hidden by the energetic
turbulent structures. In addition, the separation shock is stronger than for the laminar
and transitional cases. Finally, it may be noted in summary that all the cases share
similar flow features in the separation region and downstream because they all reach
a turbulent state already near the separation point.

By visual comparison, we find that the flow is turbulent at or directly after the mean
separation line. The fully laminar and perturbed cases share the same modal transition
induced by T-S waves. Since the conventional modal transition in supersonic flows has
been well studied [9, 37, 193], we focus our attention on the analysis of the unsteady
behavior of the shock wave/turbulent boundary layer interaction system, especially the
low-frequency unsteadiness, by analyzing case FTB in more detail.
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(a) streamwise vortices

spanwise vorticity

hairpin vortices

Λ-shaped vortices

(b) separation shock 

hairpin vortices

Figure 4.6: Instantaneous vortical structures of case FZA at tu∞/δ0 = 660, visualized by isosurfaces of λ2. A
numerical schlieren based on z = 0 slice with |∇ρ|/ρ∞ = 0 ∼ 1.4 and contours of spanwise vorticity based on
y/δ0 = 0.003 with ωzδ0/u∞ =−5.0 ∼ 0 are also included. (a) upstream of the separation bubble and (b) close
to the bubble at λ2 =−0.05.

4.3. TURBULENT REGIME
This section presents the unsteady motions of the FFS SWBLI and its frequency char-
acteristics mainly using case FTB. The origin of the low-frequency unsteadiness is
investigated.

4.3.1. MEAN FLOW FEATURES
The mean flow topology of case FTB is shown in figure 4.9, visualized by means of density
ρ. The incoming turbulent boundary layer is deflected by the upward step, which results
in the compression of the boundary layer and produces a separation shock. The angle of
the separation shock to the streamwise direction is around 45.6◦. The shock-induced
adverse pressure gradient leads to the separation of the boundary layer upstream of
the step at x/δ0 = −13.0. As the separated flow travels over the separation region and
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(a)
streamwise vortices

spanwise vorticity

hairpin vorticity

Λ-shaped vortices

(b)

hairpin vortices

separation shock

Figure 4.7: Instantaneous vortical structures of case FHA at tu∞/δ0 = 660, visualized by isosurfaces of λ2. A
numerical schlieren based on z = 0 slice with |∇ρ|/ρ∞ = 0 ∼ 1.4 and contours of spanwise vorticity based on
y/δ0 = 0.003 with ωzδ0/u∞ =−5.0 ∼ 0 are also included. (a) upstream of the separation bubble and (b) close
to the bubble at λ2 =−0.05.

reattaches on the step wall, compression waves are generated near the step corner.
Behind the step, the reattached shear flow travel across the step edge and undergoes a
centered Prandtl-Meyer expansion. There is a very small separation bubble and a weak
reattachment shock behind it on the upper wall. Further downstream, the boundary
layer starts to relax and finally returns to an equilibrium state. These mean flow features
share many similarities with those of the compression ramp [98], including the relatively
strong separation shock, separated shear layer, weak reattachment shock and expansion
fan, as discussed in section 1.3.3. With regard to the laminar FFS case in figure 4.10, the
flow structures are very similar to the turbulent ones because the oncoming boundary
layer is already turbulent when it separates. However, the laminar case has a longer
mean separation length (x/δ0 = −15.9). The lower resistance to the adverse pressure
gradient indicates that turbulence has not yet reached a fully developed state. Morever,
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separation shock

arc-shaped vortices

reattachment shock

Figure 4.8: Instantaneous vortical structures at tu∞/δ0 = 400 for case FTB, visualized by isosurfaces of λ2 =
−0.08. A numerical schlieren based on z =−8 slice is also included with |∇ρ|/ρ∞ = 0 ∼ 1.4.

the mean separation shock is weaker with a larger shock angle (49.0◦) in the laminar case,
which is consistent with the longer separation length and a more gradual compression.

Figure 4.9: Density contours of the time- and spanwise-averaged flow field for case FTB. The white dashed and
solid lines denote the isolines of M a = 1.0 and |∇p|δ0/p∞ = 0.26. The black dashed and solid lines signify
isolines of u = 0.0 and u/ue = 0.99.

Figure 4.11(a) provides a close comparison of the mean skin friction around the inter-
action region between the laminar case FZA and turbulent case FTB. As we discussed in
the previous section, the mean separation (or reattachment) length (equal to Lr = |xr | =
13.0δ0 ≈ 4.3h) in case FTB is shorter than that in case FZA (Lr = |xr | = 15.9δ0 ≈ 5.3h).
Moreover, the turbulent case has a much higher 〈C f 〉 upstream of the separation region.
Both of them reach, however, a similar level of skin friction downstream of the step,
because the laminar-to-turbulent transition is accelerated within the separated shear
layer.

Figure 4.11(b) compares the streamwise variation of the wall pressure. As we can
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Figure 4.10: Density contours of the time- and spanwise-averaged flow field for case FZA. The white dashed
and solid lines denote the isolines of M a = 1.0 and |∇p|δ0/p∞ = 0.2. The black dashed and solid lines signify
isolines of u = 0.0 and u/ue = 0.99.
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Figure 4.11: Streamwise variation of (a) skin friction and (b) wall pressure. The time- and spanwise-averaged
values are indicated by the black solid lines (turbulent case FTB) and blue dotted lines (laminar case FZA). The
vertical dashed line indicates the averaged separation and reattachment location for the turbulent case.

see, the wall pressure is constant upstream of the separation bubble. The wall pressure
ratio starts to increase at about x/δ0 ≈ −20.0 for the turbulent case (at x/δ0 ≈ −26 for
the laminar case FZA) and forms a plateau with a value of 〈pw 〉/p∞ ≈ 1.8 inside the
recirculation region. It drastically drops by about 75% of the maximum at the step corner
due to the expansion and then rises again to its initial (freestream) value as the flow
reattaches on the upper wall. In terms of the trend and relative variation, the current
results are in a good agreement with the experimental work of Chandola et al. [191].

4.3.2. UNSTEADY CHARACTERISTICS
The interaction system over the FFS features various unsteady motions and vortical
scales, as shown in figure 4.8. The variance of the wall-normal velocity 〈v ′v ′〉 presents a
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general view of the distribution of the main unsteady regions. As displayed in figure 4.12,
the separated shear layer (between the isoline of 〈u〉 = 0 and the boundary layer edge)
and the following recompression near the step corner (i.e., around the reattachment
shock) are the most energetic unsteady regions of the flow field. Moreover, there are
relatively weak fluctuations along the mean separation shock. Similar observations were
reported in the experimental work of Estruch-Samper and Chandola [116]. The other
normal Reynolds stress components 〈u′u′〉 and 〈w ′w ′〉 allow similar observations, as
has also been reported in the impinging shock and compression ramp SWBLI [96, 99].

Figure 4.12: Contours of time- and spanwise-averaged variance of the wall-normal velocity for case FTB. The
white dashed and solid lines denote the isolines of M a = 1.0 and |∇p|δ0/p∞ = 0.26. The black dashed and
solid lines signify isolines of u = 0.0 and u/ue = 0.99.

We then put our focus on the regions of the separated shear layer, together with the
separation and reattachment shock, to scrutinize the dynamic motions, as illustrated
by snapshots of the instantaneous flow field. Figure 4.13 shows the contours of the
streamwise velocity and isolines of the pressure gradient magnitude (white dashed lines)
at two arbitrarily selected instants tu∞/δ0 = 600,700. There are small turbulent vortices
travelling along the separated shear layer (cf. figure 4.8). The variations of the isolines
of u = 0 (solid black lines) indicate the breathing of the separation bubble. Moreover,
the location of the separation and reattachment shock (marked as white isolines of
|∇p|δ0/p∞ = 0.4) is moving with time, most notably in the shock-foot region. For the
separation shock, the shock angle is η = 44.7◦ at tu∞/δ0 = 600, while η = 46.2◦ at
tu∞/δ0 = 700. It is clear from this comparison that the recirculation area and shock
location are unsteady.

To better identify the vortical topology near the wall, contours of the skin friction
coefficient at the same instants are provided in figure 4.14. There are different flow
features in the different regions of the flow field. Upstream of the separation region
x/δ0 < −18.0, C f is uniformly distributed in the spanwise direction and show weak
streamwise preferential orientation of the near-wall coherent structures. In the sep-
aration region, the skin friction remains at a low level with streamwise and spanwise
streaks distributed on the wall. In the fore part of the separation bubble, the shear
stress is relatively low due to the less energetic flow. There are streamwise-oriented
features in the skin friction map behind the step on the upper wall. These high- and
low-speed streaks are alternatingly distributed in the spanwise direction with a spanwise
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(a)

(b)

Figure 4.13: Contours of the instantaneous streamwise velocity for slice z = 0 at (a) tu∞/δ0 = 600 and (b)
tu∞/δ0 = 700 (case FTB). Black solid line denotes the isoline of u = 0 and white dashed line signifies the
isoline of |∇p|δ0/p∞ = 0.4.

wavelength between λz /δ0 = 2.0 ∼ 4.0, which is consistent with previous experimental
and numerical observations, reporting that the wavelength of these streaks is between
two and three times the boundary layer thickness [97, 99, 104].

For the laminar case FZA (figure 4.15), we observe similar flow features, including
the uniform distribution of C f upstream of the separation region, streamwise streaks in
the separation region and downstream of the step, although the instantaneous levels of
C f are different for the laminar and turbulent cases. As we indicated before, the shear
layer is already turbulent in the separation region and therefore similar structures are
expected for these two cases. Based on the experiments of Murugan and Govardhan
[114] and our observations in the BFS cases, we believe that these alternating low and
high-speed skin friction streaks are probably caused by the up-wash and down-wash
effects of the Görtler-like vortices, which will be discussed in the following sections.

4.3.3. SPECTRAL ANALYSIS

The frequency characteristics of the flow field are quantified by the frequency weighted
power spectral density. Figure 4.16 shows the variation of dominant frequency in the
flow field at selected streamwise locations. All data is extracted at the local wall-
normal positions where the pressure fluctuations are maximum. The sampling interval
is tu∞/δ0 = 600 ∼ 1100 with a sample frequency fsδ0/u∞ = 4, thus excluding the
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Figure 4.14: Contours of the instantaneous skin friction at (a) tu∞/δ0 = 600 and (b) tu∞/δ0 = 700 for the
turbulent case FTB. The dashed line at x/δ0 =−13.0 indicates the mean separation location.

Figure 4.15: Contours of the instantaneous skin friction for the laminar case FZA. The dashed line at x/δ0 =
−15.9 indicates the mean separation location.

initial transient stage of the simulation. Upstream of the step (x/δ0 = −20.0), the
spectrum shows a broadband bump centered around Stδ = f δ0/u∞ = 0.8, which is
close to the characteristic frequency (u∞/δ) of the upstream turbulent boundary layer
[12]. The digital filter technique does not introduce spurious low-frequency features
into the boundary layer, as can be concluded from the absence of any significant low-
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frequency content upstream of the step. Close to the separation bubble (x/δ0 =−17.0),
the prevailing frequency suddenly shifts to a low frequency around Stδ = 0.01. In the
separation bubble, there is a noteworthy low-frequency bump between Stδ = 0.005 ∼
0.05 (lower blue dashed line in the graph). In addition, we can observe a medium
frequency band with Stδ = 0.06 ∼ 0.3 (upper region separating by green dashed lines),
most clearly visible at the station in the upstream half of the separation bubble at
x/δ0 = −11.0 and at the station shortly downstream of the second separation bubble
at x/δ0 = 6.0.

medium

low

Figure 4.16: Frequency weighted power spectral density of the wall pressure with the streamwise distance (case
FTB).

As we know from the previous chapter and the literature [85, 99], the low-frequency
unsteadiness is usually associated with the shock wave/boundary layer interaction and
the medium-frequency motions are related to the shedding of vortices. We therefore
examine the frequency characteristics of several aerodynamic parameters to validate if
these conclusions similarly apply to the FFS cases. The first group of the present param-
eters, including the spanwise-averaged streamwise velocity within the separated shear
layer and the reattachment location, shows dominant medium-frequency unsteadiness.
These data are extracted with the same sampling frequency as the aforementioned
pressure signal. The location of the spanwise-averaged reattachment point yr is the
y coordinate of the intersection between the isolines of the streamwise velocity u = 0
and the step wall. As shown in figure 4.17(a), an unsteady behavior at a frequency
around Stδ = 0.1 (Sth = 0.3) appears energetically dominant for the shear layer velocity.
This medium frequency is the characteristic frequency of the shedding vortices within
the shear layer. These vortices are shedding along the shear layer and travel across
the step edge, which explains that a similar frequency is observed in the spectrum of
the reattachment location. In addition, there are energetic disturbances with higher
frequencies related to the turbulence when the flow reattaches on the wall.

The second group of parameters is mainly related to the low-frequency unsteadiness.
Figure 4.18 displays the temporal evolution of the spanwise-averaged separation point,
separation shock angle and separation bubble volume, as well as their frequency-
weighted power spectral density. The calculation of the separation point, shock angle
and bubble volume is the same with that for the BFS cases (see section 3.3.3). The
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Figure 4.17: Temporal evolution and corresponding frequency weighted power spectral density of (a) stream-
wise velocity within the shear layer at x/δ0 =−11.0625, y/δ0 = 2.5 and (b) the spanwise-averaged reattachment
location (case FTB). The black dashed line signifies the mean value.

curve of the mean separation point follows a sawtooth-like trajectory, along which its
value drops drastically when the separation point moves upstream while it undergoes
a less rapid relaxation when the separation position shifts downstream. The irregular
and aperiodic variation of the separation shock angle suggests that the shock flapping
involves a range of time scales, as reported by Dussauge et al. [182] and Priebe et al. [98],
although the dominant one is the low-frequency one. For the variation of the separation
bubble volume, it shows less irregular features, which indicates that the bubble expands
and shrinks mainly with a leading frequency. In the PSD spectra, we observe a significant
low-frequency peak between Stδ = 0.02 ∼ 0.05 for these parameters. Since the separation
shock is directly related to the separation of the boundary layer, it is reasonable that these
signals share a peak at common frequencies. In addition, there exists a small peak at a
medium frequency Stδ ≈ 0.1 for the separation point. It is reasonable to assume that this
parameter shares common frequencies with the shear layer velocity because the vortex
shedding is usually initiated by the separation of the shear layer.

The statistical connection between the low-frequency signals can be quantified
through coherence Cx y and phase θx y . We first calculate the coherence and phase
between the separation location and shock angle, as shown in figure 4.19. There is
a significant low-frequency peak observed in the spectrum of the coherence. The
high coherence of C = 0.32 at Stδ = 0.035 indicates that the separation point and
shock are nonlinearly related to each other at the low-frequency part. Moreover, a
high value of coherence (C = 0.33) is found at the frequency Stδ = 0.15, which is
attributed to the effects of the shedding shear layer vortices. In addition, these two
signals are approximately out of phase, as can be seen from the high level of θ. The
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(a)
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(c)

Figure 4.18: Temporal evolution and corresponding frequency weighted power spectral density of spanwise-
averaged (a) separation location, (b) separation shock angle and (c) volume of the main separation bubble per
unit spanwise length A (case FTB). The black dashed line signifies the mean value.

statistical connection between the separation location and the main bubble volume
is also provided, displayed in figure 4.20. Similarly, a notable coherence (C = 0.18) is
observed in the low-frequency range at Stδ = 0.03 and these two signals are also out of
phase. The high levels of coherence at higher frequencies (Stδ > 0.2) is related to the
shedding vortices and turbulent structures.

The spectral and statistical analysis suggests that the low-frequency unsteady mo-
tions are related to the breathing of the main separation bubble and the flapping of
the separation shock, and that these unsteady motions are coupled to each other. In
addition, the shedding vortices of the shear layer are responsible for the medium-
frequency unsteadiness. To decouple the various frequency scales of the interaction
system and track the origin of the intrinsic unsteady behavior, a mode decomposition
analysis is demanded, which is the objective of the following section.

4.3.4. DMD ANALYSIS OF THE THREE-DIMENSIONAL FLOW FIELD

We use again dynamic mode decomposition to identify the different dynamics con-
tributing to the coupled broadband frequency spectrum. In section 4.3.3, we observed
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Figure 4.19: Statistical relation between the spanwise-averaged separation point and the shock angle: (a)
coherence and (b) phase (case FTB).

Figure 4.20: Statistical relation between the spanwise-averaged separation shock angle and the volume of
separation bubble: (a) coherence and (b) phase (case FTB).

two types of frequencies for different unsteady behavior. However, part of the signals
were extracted from the spanwise-averaged field, like reattachment location, bubble
volume and shock angle; thus spanwise unsteady features may be missing from the
two-dimensional flow field and a three-dimensional DMD analysis is required. A spatial
subdomain is extracted from the simulated flow domain for the three-dimensional DMD
analysis in order to reduce the computational cost. The subdomain is Lx × Ly × Lz =
([−25,15]× [0,8]× [−8,8])δ0, covering the most interesting region, with a downsampled
spatial resolution in all directions. Since the frequencies above the characteristic
frequency of the turbulent integral scale u∞/δ0 are not of our current interest, the
present DMD analysis of the three-dimensional subdomain is performed based on 1000
equal-interval snapshots with the same time range as the previous signals and a smaller
sampling frequency fsδ0/u∞ = 2, which yields a frequency resolution 1×10−3 ≤ Stδ ≤ 1.
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The calculated eigenvalue spectrum and magnitudes of the corresponding DMD modes
are displayed in figure 4.21. The resulting DMD modes come as complex conjugate
pairs and most of them are well distributed along the unit circle |µk | = 1 except a few
decaying modes within the circle, which means the resulting modes are sufficiently
saturated [167]. In figure 4.21(b), the shown modes are shaded by the growth rate βk .
Here, the strongly decaying modes (|µk | ≤ 0.96) have been removed because they do not
contribute to the long-time flow development. The darker the vertical lines are, the less
decaying the modes are.

(a) (b)
A B C

Figure 4.21: (a) Eigenvalue spectrum from the standard DMD and (b) normalized magnitudes for DMD modes
with positive frequency, colored by the growth rate βk (case FTB).

From the previous spectral analysis, two types of frequencies are identified. These
frequencies are also significant in figure 4.21(b). Therefore, two corresponding branches
of modes are extracted from the spectrum, a low-frequency branch at Stδ < 0.04 (branch
A) and a medium-frequency branch at 0.04 ≤ Stδ ≤ 0.3 (branch B), by examining
the features of modal fluctuations from each mode. In addition, an extra branch of
modes at Stδ > 0.3 (branch C, close to the characteristic frequency of the turbulent
integral scale) is also analyzed. Based on the growth rate and magnitudes of the modes,
three modes are selected from the frequency spectrum, each of which representative
of a single branch, marked as mode φ1, φ2 and φ3, respectively. Table 4.4 gives the
non-dimensional frequency, magnitude and growth rate of these selected modes. All
of them have relatively large magnitude with |ψk | > 0.3 and small growth rate with
|βk | < 0.02 [relatively darker in figure 4.21(b)], which indicates that they have a relevant
contribution to the evolution of the flow field over the full analyzed time span.

For the group of lower frequencies, mode φ1 is the selected representative for
illustrating the flow dynamics. Figure 4.22 shows the pressure fluctuations from mode
φ1 at two different phase angles. The main features of the pressure fluctuations are
structures along the separation shock and the reattachment shock. The sign switch at
the two phase angles indicates the oscillation of the shock. Note that the fluctuations
around the separation and reattachment shock are also changing in the spanwise direc-
tion, suggesting a slight wrinkling of the shocks. Figure 4.23(a) provides the pressure
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Table 4.4: Information of the selected modes

Mode Stδ |ψk | βk

φ1 0.01257 0.39418 -0.017209

φ2 0.11636 0.46151 -0.016515

φ3 0.44869 0.49939 -0.012177

fluctuations of φ1 at the slice z = 0. Again, large fluctuations are observed around the
separation and reattachment shock. There are also waves induced by the separation
shock propagating along the streamwise direction.

(a) (b)

Figure 4.22: Isosurfaces of the pressure fluctuations from DMD mode φ1 with phase angle (a) θ = 0 and (b)
θ = 3π/4 (case FTB), only including the real part (red: p ′/p∞ = 0.03, blue: p ′/p∞ =−0.03).

(a) (b)

Figure 4.23: Real part of DMD mode φ1 indicating contours of modal (a) pressure fluctuations and (b)
streamwise velocity fluctuations on the slice Z = 0 (case FTB). The green solid line indicates the mean
separation shock. The black dashed line signifies the dividing line. The green dashed line represents the
streamline passing through x/δ0 = 0, y/δ0 = 3.75.

The fluctuations of the streamwise velocity component from DMD mode φ1 are
given in figure 4.24. We observe longitudinal streamwise structures, which emerge
around the separation location and extend in the shear layer and into the downstream
boundary layer. From the contours of the streamwise velocity fluctuations on the z = 0
slice, figure 4.23(b), we found that these high- and low-speed structures are mainly
located above the separation bubble. In addition, weak fluctuations in the upstream
turbulent boundary layer are also identified.
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(a) (b)

Figure 4.24: Isosurfaces of the streamwise velocity fluctuations from DMD mode φ1 with phase angle (a) θ = 0
and (b) θ = 3π/4 (case FTB), only including the real part (red: u′/u∞ = 0.2, blue: u′/u∞ =−0.2).

The streamwise-elongated structures could be the signature of counter-rotating
Görtler-like vortices. Therefore, we plot the contours of the modal streamwise vorticity
and projected streamlines at two phase angles, as shown in figure 4.25. The counter-
rotating Görtler-like vortices are clearly illustrated by the arrow streamlines. Addition-
ally, these vortices move in both the spanwise and wall-normal directions, and their
strength is also changing with phase angle. At the given instants (θ = 3π/16 and θ =
7π/16), the spanwise wavelength of the vortex pair is ranging from 1.5δ0 to 1.7δ0. Based
on these observations, we believe that the dynamics represented by the low-frequency
mode φ1 involves the flapping motions of the separation and reattachment shock, as
well as oscillating Görtler-like vortices in the shear layer. Other modes from the low-
frequency branch A were found to share very similar flow features with mode φ1.

For the medium-frequency mode φ2, the pressure isosurfaces in figure 4.26 show
large spanwise structures along the free shear layer. These fluctuations along the shear
layer represent the travelling of the shear-layer vortices. In the contours of modal
spanwise-averaged pressure fluctuations in figure 4.27, the radiation of the Mach waves
along the shear layer is easier to observe. The emission of these waves induces large
disturbances along the streamwise direction in the supersonic part of the flow field. The
propagation of the Mach waves is in agreement with the results from a global linear
stability analysis of an impinging shock case in a laminar regime [183].

Figure 4.28 shows isosurfaces of the streamwise velocity fluctuations associated with
mode φ2. The Λ-shaped structures are observed in the free shear layer and alternate
along both the spanwise and streamwise directions. Based on these observations,
we believe this mode represents the convection of the shear layer vortices. Similar
observations were also reported in the two-dimensional DMD analysis of an incident
shock case [99].

Considering the high-frequency mode φ3, the pressure fluctuations provided in
figure 4.29 show the evolution of the small-scale arc-shaped vortices. These spanwise-
aligned vortices are generated from the separation region. The streamwise displacement
of the fluctuations contours at different phase angles indicates the convection of the
coherent vortices.

For the streamwise velocity fluctuations of mode φ3 in figure 4.30, we can also
observe the convection behavior of small arc-shaped vortices. These vortices originate



4.3. TURBULENT REGIME

4

125

(a)

(b)

Figure 4.25: Contours of the streamwise vorticity from DMD mode φ1 with phase angle (a) θ = 3π/16 and (b)
θ = 7π/16 in the z − y plane at x/δ0 =−6.0 (case FTB). Black arrow lines represent the streamlines on the slice.

(a) (b)

Figure 4.26: Isosurfaces of the pressure fluctuations from DMD mode φ2 with phase angle (a) θ = 0 and (b)
θ = 3π/4 (case FTB), only including the real part (red: p ′/p∞ = 0.03, blue: p ′/p∞ =−0.03).

from the upstream turbulence and are considerably amplified in the separated shear
layer. Additionally, this mode shows less anisotropic features, compared with the other
two modes. The frequency of this mode is close to the typical frequency of the turbulence
considering the thicker boundary layer downstream of the step. Thus, we consider this
mode to be associated with the convection of typical turbulent structures that result
from an amplification of the incoming turbulence by the separation bubble, cf. the
stability analysis of Guiho et al. [183] for an incident shock SWBLI case.
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(a) (b)

Figure 4.27: Real part of DMD mode φ2 indicating contours of modal spanwise-averaged (a) pressure
fluctuations and (b) streamwise velocity fluctuations on the slice Z = 0 (case FTB). The green solid line
indicates the mean separation shock. The black dashed line signifies the dividing line. The green dashed
line represents the streamline passing through x/δ0 = 0, y/δ0 = 3.75.

(a) (b)

Figure 4.28: Isosurfaces of the streamwise velocity fluctuations from DMD mode φ2 with phase angle (a) θ = 0
and (b) θ = 3π/4 (case FTB), only including the real part (red: u′/u∞ = 0.2, blue: u′/u∞ =−0.2).

(a) (b)

Figure 4.29: Isosurfaces of the pressure fluctuations from DMD mode φ3 with phase angle (a) θ = 0 and (b)
θ = 3π/4 (case FTB), only including the real part (red: p ′/p∞ = 0.06, blue: p ′/p∞ =−0.06).

4.3.5. PHYSICAL MECHANISM OF LOW-FREQUENCY UNSTEADINESS
The present FFS case shows unsteady behavior at similar low frequencies as those ob-
served for SWBLI on flat plates, compression ramps and BFS. Similar to the compression
ramp, the flow topology of the FFS case is encompassed by a separation shock, free
shear layer and reattachment shock. In terms of the mean skin friction in figure 4.11,
the recirculating flow is less uniform upstream of the separation region, than observed
in the canonical impinging shock and ramp cases. The fluctuations of 〈C f 〉 inside
the separation bubble are usually related to the low-frequency unsteadiness [98, 99].
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(a) (b)

Figure 4.30: Isosurfaces of the streamwise velocity fluctuations from DMD mode φ3 with phase angle (a) θ = 0
and (b) θ = 3π/4 at slice z = 0 (case FTB), only including the real part (red: u′/u∞ = 0.4, blue: u′/u∞ =−0.4)

However, there is a drastic drop of 〈C f 〉 downstream of the separation bubble caused
by the step wall for the FFS case, which is not observed in the ramp and incident shock
cases [164, 176]. The wall pressure is also increasing across the separation bubble as
observed in the ramp and impinging shock cases, but has a significant drop at the step
corner. The differences of the mean flow parameters probably suggest that there could
be some different low-frequency features among these case.

The instantaneous flow field shown in section 4.3.2 visualize the main unsteady
phenomena, including the high- and low-speed streaks, breathing bubble, and the
oscillation of the separation and reattachment shock, as well as the shear layer. These
unsteady flow features are also reported in the ramp and impinging shock cases. From
the spectral analysis, we distinguish two kinds of low-frequency unsteadiness in the
interaction region. The lower frequencies are related to the coupling of the separation
bubble and shock waves. Furthermore, the DMD analysis of the three-dimensional flow
field successfully decoupled the different dynamics associated with the low-frequency
interaction. Moreover, the low-frequency mode φ1 from DMD also identifies unsteady
counter-rotating vortices. These Görtler-like vortices are relatively weak compared with
other unsteady dynamics such that they do not show up in the vortical visualization of
figure 4.8. Similar observations have been reported in the impinging shock and ramp
cases, as well as in our BFS cases.

We believe that the FFS case has the same low-frequency mechanism as proposed in
section 3.5.5 for the BFS case. Figure 4.31 shows the curvature δ0/R and Görtler number
Gt along the streamline of the mean flow inside the shear layer (shown in figure 4.23).
As we can see, two distinct peaks are observed in the variation of the curvature, located
around the separation and reattachment points. This strong curvature induces strong
Görtler instability, corresponding to the high levels of Gt around the separation and
reattachment locations. At 19 ≤ x/δ0 ≤ −10 and 0 ≤ x/δ0 ≤ 3, the Görtler number is
larger than the critical value Gt = 0.6, above which local Görtler vortices will emerge for
a laminar flow [78]. The streamwise velocity fluctuations (figure 4.24) and streamlines
(figure 4.25) from DMD mode φ1 visualize these Görtler-like vortices.

In terms of the magnitude of the low frequencies, the current results for a FFS yield a
Strouhal number range of 0.02 < Str < 0.52 (normalized by the separation length), close
to the frequencies obtained in the BFS case, which is two or three times larger than the
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Figure 4.31: Curvature δ0/R and Görtler number Gt along the mean streamline passing through x/δ0 = 0 and
y/δ0 = 3.75 (case FTB). Vortical dashed lines indicate the separation and reattachment point. The horizontal
dot-dashed line denotes the critical Gr in a laminar flow.

values of other canonical cases. The higher frequency in the FFS case is also caused
by the confinement of the step wall, which results in a fixed reattachment location,
as we analyzed in section 3.5.5. Therefore, the Görtler vortices induced by the strong
curvature around the separation and reattachment location are the main driver for
the low-frequency unsteadiness of SWBLI in the FFS case. The weak dependence of
the unsteadiness on the upstream fluctuations is also observed in the DMD analysis
(figure 4.23). Morever, both the laminar and turbulent cases that were analysed here
have the same physical mechanism because the incoming boundary layer is already
turbulent in the interaction region, even for the laminar inflow case.

4.3.6. SUMMARY

The low-frequency unsteady dynamics of the SWBLI over a FFS is scrutinized at M a = 1.7
and Reδ0 = 13718 using a well-resolved LES. The main flow topology of the SWBLI
region, as shown in the mean flow field, contains a separation shock, a main separation
bubble in front of the step, a centered Prandtl-Meyer expansion fan and a reattachment
shock. The instantaneous vortical visualizations indicate that the unsteady behavior
is similar to what we observe in the BFS case, including the vortex shedding in the
separated shear layer, the breathing of the separation bubble and the flapping shock
motion. From the spectral analysis, we observe that there is a broadband low-frequency
motion in the interaction region, which we classify into two branches with the dominant
frequencies at Stδ = 0.01 ∼ 0.05 and Stδ = 0.06 ∼ 0.3 in the current FFS case. The
medium-frequency contents are associated with the shedding of shear layer vortices,
and the lower frequency dynamics connects to the unsteady volume of the separation
bubble, as well as the shock angle.

Three-dimensional DMD analysis was applied to identify the individual single-
frequency mode that contributes to the observed unsteady behavior. Similar to what
we observed in the BFS case, the extracted low-frequency mode φ1 suggests that there
is a statistical link between the shock motions (shown by pressure fluctuations) and
the unsteady Görtler-like vortices (shown by the streamwise velocity fluctuations) along
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the shear layer. These counter-rotating vortices are visualized in the contours of the
modal streamwise vorticity in figure 4.25. The flow features displayed by the medium-
frequency mode φ2 represents the shedding behavior of the shear-layer vortices and the
radiation of the induced Mach waves.

Based on the above observation and combined with the discussion in chapter 3, we
believe that the physical mechanism of the low-frequency unsteadiness in the FFS is the
same as for the BFS case, i.e, the unsteady Görtler-like vortices in the shear layer impose
an unsteady forcing that sustains the low-frequency motions of shocks and separation
bubble.
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CONCLUSIONS AND OUTLOOK

One with understanding is not as good as one with interest,
which in turn is not as good as doing something one enjoys.

知之者不如好之者，好之者不如乐之者

Analects of Confucius
论语
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5.1. TRANSITION MECHANISMS

The transition mechanism behind a backward/forward-facing step in the supersonic
regime at M a = 1.7 and Reδ0 = 13718 was investigated using large-eddy simulation.
For each geometry, different inflow conditions were considered: a fully laminar case
and two perturbed cases with different levels of (unstable) oblique T-S waves. First,
the transition path of the fully laminar case was scrutinized. For both BFS and FFS
cases, the boundary layer transition consists of the growth of primary instabilities, the
excitation of secondary modal instabilities, breakdown of various vortices and finally
the turbulent state. However, there are certain differences of the transition path between
these two configurations. Specifically, for the BFS case, the primary instability involved
is mainly the K-H modes of the separated shear layer, while the oblique T-S waves are
the primary instability for the FFS cases. The transition process behind the BFS is
initiated by a K-H instability of the separated shear layer, followed by secondary modal
instabilities of the K-H vortices, leading to Λ-shaped vortices, hair-pin vortices and
finally to a fully turbulent state. The laminar-to-turbulent transition basically begins
behind the step and is completed shortly downstream of the reattachment. For the
FFS case, the boundary layer transition begins with the growth of the T-S waves and
the relevant spanwise vorticity, followed by the development of Λ-shaped and hairpin
vortices, the formation of the turbulent spots and finally a fully turbulent boundary
layer. This transition process follows a typical natural transition path induced by the
T-S waves. Due to the upstream influence of the FFS, the upstream disturbances are
additionally amplified such that the boundary layer is already turbulent (though not
yet in its equilibrium state) in front of the separation bubble. Then the disturbances
undergo a significant amplification in the shear layer and the boundary layer becomes
more energetic behind the main separation bubble (step wall). In contrast, for the BFS
case, the upstream amplification effects are restricted by the step and therefore the
boundary layer is still in the laminar regime before the separation.

Influence of upstream disturbances on the evolution of the boundary layer was also
investigated. The imposed T-S waves have significantly different effects on the laminar-
to-turbulent transition for the BFS and FFS cases. For the BFS configuration, case BLA
(imposed with low-amplitude T-S waves) shares a similar transition road map with the
fully laminar case BZA, with transition occurring in the separated shear flow behind the
step. For the case BLA, specifically, the linear growth of the oblique T-S waves is the pre-
vailing instability upstream of the step. Both T-S and K-H modes act as the primary mode
within a short distance behind the step and undergo a quasi-linear growth with a weak
coupling. Upon pairing of the large K-H vortices, subharmonic waves are produced, and
secondary instabilities begin to dominate the transition. Simultaneously, the growth
of T-S waves is retarded by slow resonance between subharmonic K-H and secondary
instabilities. The vortex breakdown and reattachment downstream further contribute to
the development of the turbulent boundary layer. In contrast, the case BHA (imposed
with high-amplitude oblique T-S waves) shows a rapid modal transition due to the high
initial disturbance level, such that the boundary layer transition already occurs upstream
of the step in a typical natural path, before the K-H instability could get involved. For the
FFS configuration, the imposed T-S waves appear not to affect the laminar-to-turbulent
transition path regardless of the amplitude of the initial disturbances. In all laminar and
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transitional cases of the FFS, the upstream T-S modes are significantly amplified by the
feedback waves from the separation region downstream, and therefore they all follow a
typical modal transition induced by the T-S waves.

5.2. LOW-FREQUENCY UNSTEADINESS OF SWBLI
The unsteady behavior behind a backward/forward-facing step at M a = 1.7 and Reδ0 =
13718 was studied thoroughly, especially in the turbulent regime. For the BFS case, the
unsteady system involves the vortex shedding in the shear layer, the flapping motions
of the reattachment shock, the breathing of the separation bubble, streamwise streaks
near the wall and arc-shaped vortices in the turbulent boundary layer downstream of the
separation bubble. The FFS case share almost all these flow features with the BFS, but
also has unique differences. For the FFS case, the streamwise streaks are located along
the free shear layer and there is a separation shock in front of the separation bubble.
The flow topology of the FFS configuration resembles the main flow patterns of the
compression ramp cases. For both BFS and FFS cases, the interaction system features
a broadband low-frequency dynamics. The spectral analysis reveals that the low-
frequency behavior of both configurations is related to the interaction between shock
wave and separated shear layer, while the medium-frequency motions are associated
with the shedding of shear layer vortices.

The driving force of the low-frequency unsteadiness was further scrutinized using a
three-dimensional dynamic mode decomposition. Based on the extracted DMD modes,
we analyzed the individual contributions of each mode to the unsteadiness of SWBLI.
For both configurations, the low-frequency mode provides evidence for the statistical
link between the shock motions and streamwise-elongated vortices in the interaction
region. Compared to SWBLI in flat plate and ramp configurations, slightly higher non-
dimensional frequencies (based on the separation length) of the low-frequency modes
are observed, as shown in table 5.1. Combined with the streamwise evolution of the
Görtler number (larger than the critical value Gt = 0.6 around the reattachment location,
see table 5.1), we believe that the physical mechanism of the low-frequency unsteadiness
is very similar or the same for BFS and FFS. In this theory, Görtler-like vortices, which
are induced by the centrifugal forces originating from the strong curvature of the
streamlines in the reattachment region (BFS case) or separation region (FFS case), are
strongly correlated with the low-frequency unsteadiness of the interaction system. Our
DMD analysis of the turbulent BFS flow and the comparison with an identical but
laminar case provide evidence that these unsteady Görtler-like vortices are affected by
upstream fluctuations in the incoming boundary layer.

5.3. OUTLOOK IN LAMINAR-TO-TURBULENT TRANSITION
For the current flow configuration, the laminar-to-turbulent transition behind a BFS
is mainly initiated by the growth of the primary K-H instability, while the transition
is induced by the amplification of the primary T-S waves in the FFS case. However,
the transition path and the possibly involved instabilities vary if the flow or geometry
parameters are different [46, 52]. The step height, relative to the boundary layer
thickness, and free-stream Reynolds number are relatively important ones among the
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Table 5.1: Aerodynamics parameters as well as Strouhal number range and maximum Görtler number Gt
around the reattachment location.

References M a∞ Reδ Lr /δ Str Gt configuration

Pasquariello et al. [99] 3.0 203000 15.5 0.01 ∼ 0.14 1.2 impinging shock

Priebe et al. [98] 2.9 43808 3.0 0.01 ∼ 0.1 1.3 ramp

Present case BTB 1.7 13718 8.8 0.03 ∼ 0.6 1.3 BFS

Present case FTB 1.7 13718 13.0 0.02 ∼ 0.52 2.5 FFS

parameters in supersonic flows. By exploring the relationship between the transition
process and flow configuration, a simple physical criterion or model could be proposed
to predict the laminar-to-turbulent transition over a BFS/FFS. Therefore, the following
proposals are recommended for further study.

5.3.1. EFFECTS OF THE STEP HEIGHT
For the BFS configuration, the dominant instability of the transitional flow may be
centrifugal forces, lift-up effects or K-H instability depending on the relative step height,
as reported in the literature [194, 195]. In the current BFS cases, the step height is
three times larger that the inlet boundary layer thickness, which is sufficiently large
to excite strong K-H vortices that form the main factor to induce the laminar-to-
turbulent transition. If the step height is decreased to a value considerably smaller
than the boundary layer thickness, the incoming boundary layer probably remains
attached and thus K-H waves may not be initiated [70]. Under these circumstance,
the transition process follows a more conventional modal transition dominated by the
evolution of the T-S modes [66]. Similarly, for the FFS, the oncoming boundary layer
is just disturbed by the step but no (appreciable) separation may take place when
the step height is relatively small. Correspondingly, the boundary layer transition is
accelerated due to the larger growth rate of T-S waves [46]. On the other hand, when
the step height is strikingly increased, besides the K-H waves, strong centrifugal forces
are produced by the large curvature of the streamlines. In this situation, the boundary
layer transition may be dominated by the development of Görtler instability [17]. For the
FFS configuration with a large step height, Görtler instability could also become one of
the dominant instabilities. To determine the specific transition path and the evolution
of various instabilities involved for the BFS/FFS cases with different step heights, further
investigation is highly recommended.

5.3.2. EFFECTS OF REYNOLDS NUMBER
Free-stream Reynolds number is also one of the main parameters which have impacts on
the laminar-to-turbulent transition. Existing studies reported that the mean separation
length varies with the unit Reynolds number for the BFS/FFS flow [68, 154, 196]. If the
separation length is too small (usually at a high Reynolds number), the large-scale K-
H vortices may not be fully developed due to the short residence time of the flow in
the shear layer [180]. The boundary layer transition thus may be dominated by the
rapidly growth of the T-S waves. On the other hand, the T-S instability is one of the
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viscous instabilities and is significantly affected by the Reynolds number [25]. When the
Reynolds number is very close to the critical Reynolds number, the unstable region of
the T-S waves is extremely small and the boundary layer easily becomes unstable due to
large growth rate of the T-S waves. In this situation, the boundary layer transition is likely
to be dominated by the rapid growth of the T-S waves in spite of the strong K-H instability
induced by the step. Based on the analysis from these two aspects, the effects of Reynolds
number should be considered for identifying the transition path and assessing the role
of different instabilities behind the BFS/FFS.

5.3.3. CRITICAL STEP HEIGHT

From the investigation of the subsonic step cases by Duncan Jr [46], a critical step
height, which is a function of the unit Reynolds number, is reported. When the step
height exceeds the critical value, the evolution of the K-H instability is the main driver
of the laminar-to-turbulent transition; otherwise, the amplification of the T-S waves
dominates the transition. Similarly, we expect that there also exists a critical step height
for the transition mechanism in supersonic flows. Based on a comprehensive study
of the above considerations, i.e, the effects of the step height and Reynolds number
on the laminar-to-turbulent transition over a BFS/FFS, a critical step height could be
found. Furthermore, an approximate correlation between the step height and the unit
Reynolds number would be established. This relationship could provide an instructive
guideline to predict the transition mechanism or select an appropriate physical model
for simulating the transition in a BFS/FFS supersonic flow. From the perspective of
engineering practice, we could limit the height of the skin joints at least smaller than the
critical value for the purpose of delaying the laminar-to-turbulent transition over airfoils
because the initial growth rate of K-H waves is usually larger than that of T-S waves.

5.4. OUTLOOK IN SWBLI
In the supersonic BFS/FFS flow, there are various large-scale unsteady motions with
a broadband low-frequency spectrum. This unsteadiness introduces significant fluc-
tuations of pressure and temperature around the interaction region, which can cause
intense localized mechanical and thermal loads, and even the failure of material and
structural integrity [3]. To alleviate or eliminate the negative effects caused by SWBLI,
a variety of flow control techniques have been developed, where one may distinguish
between passive and active methods [15, 197, 198]. For the BFS/FFS configuration with
a notable step height, the flow separation and the accompanying shock formation may
be unavoidable, and thus the effects of controlling separation and shock are probably
relatively limited. It is reasonable that we set the main objective of SWBLI control as
diminishing the amplitude of the low-frequency oscillations in the BFS/FFS flow.

Based on our current investigation, we concluded that unsteady Görtler-like vortices
are strongly correlated with the low-frequency unsteadiness. One of the ideas for an
effective flow control method is to exchange the near-wall high and low momentum
produced in the interaction region [15]. In terms of the passive control techniques,
the micro vortex generator, like micro-ramps, is one of the popular options. In the
PIV experiments of Blinde et al. [199], they reported that the micro-ramps can induce
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Figure 5.1: Conceptual sketch of the controlled interaction using micro-ramps: (a) presence of the vortex
structures downstream of micro-ramps, and high-speed regions at intermediate locations, (b) conceptual
model [199].
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Figure 5.2: Schematic of the expected control effects generated by the microjets at a pitch angle equal to (a)
90◦ and (b) 45◦. (c) the proposed evolution of the flow topology in the interaction region [200].

counter-rotating vortices along the wake. Based on their conceptual control model,
as shown in figure 5.1, high-speed streaks occur in the space between the adjacent
micro-ramps, and low-speed streaks are produced behind the ramps. The vorticity
induced by the vortex generator could suppress the Görtler-like vortices generated in
the separation region by entraining high momentum fluid from the main flow and
increasing the boundary layer velocity near the wall [198], which weakens the low-
frequency unsteadiness of SWBLI. For better control effects, the micro-ramps should
be placed in front of the regions with high-speed streaks of the original flow, and the
spanwise distance between two adjacent micro-ramps is approximate to the spanwise
wavelength of the Görtler-like vortices. In addition, the size and deflection angle of
the micro-ramps must be carefully chosen to ensure the induced vortices featuring an
appropriate strength and streamwise wavelength.

Passive control methods have been popular in the past because they do not require
additional energy input. However, it only works well at certain conditions. In the
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recent years, active flow control techniques, like micro-jets and plasma-based actuators,
have attracted considerable attention due to their flexibility. For controlling the low-
frequency unsteadiness of SWBLI driven by the unsteady Görtler-like vortices, the active
flow control methods are theoretically more effective for various operating conditions.
Verma and Manisankar [200] experimentally studied the control effects of micro-jets.
They found that this active vortex generator can induce counter-rotating vortices near
the wall, where the low-speed streaks occur right behind the micro-air-jets and high-
speed streaks appear between them. It is observed that these micro-jets manage to
reduce the amplitude of unsteady pressure fluctuations in the interaction region by an
order of magnitude. In addition, the pitching angle of the micro-jets also has impact on
the control effect of SWBLI. Kinefuchi et al. [201] reported that plasma-based actuator
could induce momentum transfer from the main flow to the boundary layer and thus
suppress the low-frequency unsteadiness. Same with other control techniques, several
parameters of the actuator should be carefully chosen to achieve the desired effects,
including the shape of jet-hole, electrical characteristics, frequency, etc. A schematic of
the flow pattern in the interaction region is shown in figure 5.2. Although several studies
have demonstrated the potential effectiveness of these flow control techniques, research
about the optimization of the control parameters are still needed.
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