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1 Introduction

To what extent do self-consistency principles constrain, or even determine, the behavior of
a system? This question underlies many topics in mathematics and physics. One notable
example is the conformal bootstrap program [1–4] (see [5–7] for reviews), which seeks
to map the space of possible conformal field theories (CFTs) and to identify those on
the boundary of theory space (i.e., those with extremal properties, almost but not quite
inconsistent). A more down to earth example is the sphere packing problem, in which the
goal is to maximize the fraction of Rd covered by congruent spheres whose interiors are not
allowed to overlap. In low dimensions it is not hard to guess the optimal packings, but even
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that remains mysterious in high dimensions. Proving upper bounds for the packing density
is particularly difficult, and in most cases the best bounds currently known are obtained via
the linear programming bound of Cohn and Elkies [8], which relies on harmonic analysis.

While these problems sound completely unrelated, Hartman, Mazáč, and Rastelli [9]
discovered a surprising connection between them: the spinless modular bootstrap for two-
dimensional CFTs is very nearly the same as the linear programming bound for sphere
packing. The underlying optimization problems are exactly equivalent when the current
algebra U(1)cleft × U(1)c̄right with total central charge ctotal = c + c̄ acts on the CFT and
the sphere packing dimension is given by d = ctotal, and they are closely related (but not
equivalent) under the Virasoro algebra. The relationship between the modular bootstrap
and linear programming bounds seems to be specific to these particular techniques, rather
than being based on a direct connection between CFTs and sphere packings.

In this paper we will focus on the spinless modular bootstrap for U(1)cleft × U(1)c̄right
with ctotal large. The analysis depends only on ctotal, not on the left and right central
charges individually. To simplify the notation we set c̄ = c and refer simply to the U(1)c

modular bootstrap, parameterizing our results by c = ctotal/2.
Neither the modular bootstrap nor the linear programming bound has been completely

analyzed, either theoretically or numerically. Each depends on producing some additional
information (namely, an auxiliary function or linear functional satisfying certain inequali-
ties), which must be chosen carefully to optimize the resulting bound, and this optimization
has proved difficult. The equivalence between these problems adds to the motivation for
studying them, because any consequences will shed light on two seemingly disparate top-
ics. A third application is to generalizations of the Bourgain-Clozel-Kahane uncertainty
principle for signs of functions [10, 11]. Thus, these problems live at a particularly fruitful
intersection of several fields.

In this paper, we carry out the first large-scale numerical study of the U(1)c spinless
modular bootstrap with c large, or equivalently the linear programming bound on sphere
packing in high dimensions, by adapting the numerical techniques introduced by Afkhami-
Jeddi, Hartman, and Tajdini for the Virasoro case [12]. These techniques closely parallel
the approach independently taken by Cohn, Elkies, Kumar, and Gonçalves [8, 11, 13, 14] in
the sphere packing literature, but the paper [12] introduced better extrapolation techniques
and achieved superior performance.

In CFT terms, the spinless modular bootstrap corresponds to constraints on the parti-
tion function at zero angular potential. A natural question is whether the spinning modular
bootstrap, i.e., including an angular potential, also bounds the density of general sphere
packings. The answer is that it does not, as this would contradict known packings. The
spinning bootstrap analysis for CFTs with U(1)cleft × U(1)cright symmetry has interesting
implications for holographic duality and will appear in a separate paper [15].

1.1 Results from the spinless modular bootstrap for large c

For sphere packing in high dimensions, the central question is the asymptotic behavior of
the packing density. It is at least 2−d in Rd, with only much lower-order improvements
known [16–18], and it is at most 2−(κ+o(1))d with κ = 0.59905576 . . . . The latter bound was
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found by Kabatyanskii and Levenshtein [19] in 1978, and the exponential decay rate has
not been improved since then. Cohn and Zhao [20] showed how to obtain it via the linear
programming bound, and a fundamental open question is whether the linear programming
bound is capable of improving on this decay rate.

In terms of the U(1)c spinless modular bootstrap, bounding the packing density
amounts to bounding the spectral gap of the CFT. Specifically, the Kabatyanskii-
Levenshtein bound says that the scaling dimension of the lowest non-vacuum primary
is at most c/(K + o(1)) as c→∞, where K = eπ22κ−1 = 9.79674646 . . . . No better bound
is known for the spectral gap.

One of our primary results in this paper is a numerical estimate of the fully optimized
U(1)c spinless modular bootstrap bound for the spectral gap (Conjecture 3.1). In sphere
packing terms, it amounts to an upper bound of 2−(λ+o(1))d for the sphere packing density
in Rd as d → ∞ with λ ≈ 0.6044; in modular bootstrap terms, it amounts to an upper
bound of c/(Λ + o(1)) for the spectral gap as c→∞ with Λ ≈ 9.869. This bound is based
on numerical extrapolation, with no proof or even heuristic derivation, but we give a careful
accounting of the potential error from the extrapolation. We furthermore guess that the
exact value of Λ is π2 (Conjecture 3.2), although that conjecture is much more speculative.

Conceptually, what our computations indicate is that the Kabatyanskii-Levenshtein
upper bound can be decreased by an exponential factor through optimizing the linear
programming bound. If proved, this bound would settle a longstanding open problem in
discrete geometry. However, the improvement in the decay rate will be small.

The analytical [9] and numerical [12] results for Virasoro symmetry are quite a bit
further away from each other (the analytical bound for the spectral gap is c/8.503, while the
numerical bound is c/9.08). We have no conceptual explanation for why the Kabatyanskii-
Levenshtein bound should come rather close to optimizing the U(1)c case, yet fall slightly
short. Perhaps generalizing this bound will offer new techniques for optimizing the modular
bootstrap more broadly, but we do not expect that it will lead to an exact solution without
some new idea.

Sphere packings are error-correcting codes for a continuous communication channel,
and they therefore play an important role in information theory. Their discrete counter-
part is error-correcting codes for a binary channel, and these two theories are in many
ways closely analogous [21], with substantial interplay between them, both in results and
in techniques. The linear program bound originated in the discrete setting, in a funda-
mental paper by Delsarte [22], before being generalized to sphere packing by Cohn and
Elkies [8], and the Kabatyanskii-Levenshtein bound was inspired by the MRRW bound,
due to McEliece, Rodemich, Rumsey, and Welch [23].

Much like the case of sphere packing, the asymptotic rate in the MRRW bound has
not been beaten by any method, and it is an open problem whether it optimizes the
linear programming bound. Barg and Jaffe [24] examined this issue numerically, and they
conjectured that it is the optimal rate in the linear programming bound. Their conjecture
is widely believed, but the evidence is not conclusive. While our results have no direct
implications for binary error-correcting codes, they suggest that the MRRW bound may
not be optimal, because it is the discrete analogue of the Kabatyanskii-Levenshtein bound.
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It would be valuable to perform a more extensive study than Barg and Jaffe were able to
do in 2001, as well as to compare the data with section 3.2 of [25].

At the optimum, the linear programming approach provides not just a bound on the
spectral gap, but a candidate spectrum for a CFT that saturates it. In sphere packing
terms, this spectrum amounts to the pair correlation function of the packing. We study the
spectrum numerically in section 4 and find some intriguing structure. For computational
purposes, the infinite set of bootstrap constraints is truncated to a finite system of 2N
equations, with N taken as large as possible. The corresponding spectrum has N states
other than the vacuum, with scaling dimensions ∆1 < ∆2 < · · · < ∆N . We conjecture
a formula for the ratio ∆n/N in the limit N → ∞ with n/N held fixed. The formula
is piecewise smooth, with an abrupt transition from linear to nonlinear behavior at n ∼
(2/π)N . We have no analytic explanation for this transition. The linear portion of the
spectrum matches the spectrum of the generalized free fermion in one dimension, which was
used to construct analytic functionals for CFT in [26] and adapted to sphere packing in [9].

1.2 New constraints on tight sphere packing bounds

In addition to studying the asymptotic behavior of the modular bootstrap, we also search
for exceptional behavior at finite central charge. Four particular values are known to play a
special role, namely c = 1/2, 1, 4, and 12. In sphere packing terms, these cases correspond
to exact solutions of the sphere packing problem in dimensions 1, 2, 8, and 24. While
d = 1 is trivial, d = 8 and d = 24 are far deeper, and they are the only cases in which the
sphere packing problem has been solved above d = 3 (which was solved by Hales [27, 28],
with no connection to the modular bootstrap). Dimension 8 was a breakthrough due to
Viazovska [29], and dimension 24 built on her techniques [30]. The linear programming
bound seems to be exact when d = 2 as well, but no proof is known, although the two-
dimensional sphere packing problem can be solved directly [31, 32].

These cases are more subtle for CFTs than they are for sphere packings. For (c, c̄) =
(4, 4), there is indeed a CFT invariant under U(1)cleft ×U(1)c̄right that achieves the spinless
modular bootstrap bound, namely eight free fermions [33]. No such CFT exists for (c, c̄) =
(12, 12) (see [15]), but there is a chiral CFT with (c, c̄) = (24, 0), namely the 24 chiral
bosons compactified using the quotient of R24 by the Leech lattice.1 The case c = 1/2 is
not an integer, so U(1)cleft × U(1)cright symmetry does not even make sense, but again we
can use a chiral boson with (c, c̄) = (1, 0). This time, however, it is not fully conformally
invariant. Instead, it has a nontrivial phase under the action of the generator T of SL2(Z),
but the spinless modular bootstrap nevertheless applies. Finally, in the case c = 1 no CFT
invariant under U(1)cleft×U(1)cright achieves the spinless bound (see [15]), but it is achieved
by two chiral bosons with (c, c̄) = (2, 0) and a nontrivial phase under the T transformation.
Thus, the CFT picture encompasses all four exceptional cases, provided we allow chiral
CFTs and are willing to relax conformal invariance.

1Note that we do not take an orbifold quotient, as in the Monster CFT of Frenkel, Lepowsky, and
Meurman [34], because we want current algebra U(1)24. Similarly, 8 chiral bosons compactified using E8

meet the bound with (c, c̄) = (8, 0), but the (c, c̄) = (4, 4) case is more noteworthy.
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Why should the exceptional solutions of the sphere packing problem be limited to these
specific dimensions? It comes as no surprise to see sporadic behavior tied to E8 and the
Leech lattice (for c = 4 and 12, respectively), but it is difficult to explain why this behavior
is not more widespread. For a provocative example, why shouldn’t the linear programming
bound solve the sphere packing problem in all sufficiently large dimensions? We do not
know how to rule out this possibility, although it is utterly implausible.

To shed light on this problem, we examine the conditions that would have to hold to
obtain a sphere packing meeting the linear programming bound. To do so, we incorporate
additional constraints beyond the modular invariance of the partition function. Specifically,
we study the implied kissing number, the average number of tangencies between spheres
in a hypothetical packing with this property. In all dimensions up through d = 250 other
than 1, 2, 8, 24, 180, 181, and 192, we show that the implied kissing number from our
numerically optimized bound is impossibly large. Thus, no sphere packing can attain the
exact linear programming bound in these dimensions.2 We do not expect optimal solutions
in dimensions 180, 181, or 192, and we see no sign of them, but our bounds do not rule
them out.

As the unexpected occurrence of dimensions such as 181 indicates, this problem has
a surprisingly intricate structure. While certain aspects behave in straightforward ways
that are not hard to extrapolate, other aspects are far more subtle. One feature of our
numerical solutions for which we have no conceptual explanation is a kind of periodicity:
the degeneracies are especially well described by a Cardy-like entropy formula when c is a
multiple of 8, and the scaling dimensions are especially close to those for generalized one-
dimensional free fermions when c is 4 more than a multiple of 8. In other words, multiples
of 4 behave particularly well, but no value of c looks equally simple from all perspectives.
The reason for this behavior remains mysterious.

2 The spinless modular bootstrap

2.1 Setting up the bootstrap

In this section, we will briefly review the spinless modular bootstrap, which is a technique
for proving bounds on the possible scaling dimensions of primary fields in a compact,
unitary 2d CFT [33, 35, 36]. Given such a CFT, let Z(τ, τ̄) be its partition function, i.e.,
the sum over all states of qh−c/24q̄h̄−c̄/24, where h and h̄ are the conformal weights of the
state, c and c̄ are the left and right central charges, and q = e2πiτ and q̄ = e−2πiτ̄ (with τ
and −τ̄ in the upper half-plane).3 Because of conformal invariance, the partition function
satisfies modular invariance:

Z

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
= Z(τ, τ̄) (2.1)

2Strictly speaking, our work does not amount to a proof, because it leaves open the possibility that we
have not fully optimized the linear programming bound. However, we present strong numerical evidence
that we have optimized it.

3Mathematicians should note that the bars do not denote complex conjugates.
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whenever (
a b

c d

)
∈ SL2(Z) (2.2)

(where in these formulas c is of course not necessarily the left central charge). In terms of
the usual generators

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
(2.3)

of SL2(Z), modular invariance amounts to

Z(−1/τ,−1/τ̄) = Z(τ + 1, τ̄ + 1) = Z(τ, τ̄). (2.4)

For the spinless modular bootstrap, we specialize the partition function to have zero
angular potential. In other words, we set τ̄ = −τ (i.e., q̄ = q) and use the restricted
partition function

Z(τ) = Z(τ,−τ). (2.5)

The action of S on τ and τ̄ preserves the condition τ̄ = −τ , and thus

Z(−1/τ) = Z(τ), (2.6)

but the action of T does not. Thus, we expect that usually Z(τ + 1) 6= Z(τ).
The spinless modular bootstrap is based on the identity Z(−1/τ) = Z(τ). Because

we make no use of the action of T , the bound applies even to theories that are invariant
only under S. A simple example is a single chiral boson at the self-dual radius, for which
Z(τ, τ̄) = θ3(τ)/η(τ) in terms of the Jacobi theta function and Dedekind eta function. Such
theories are not fully conformally invariant, but the spinless modular bootstrap still applies.

The combined contribution of the descendants of a primary field of scaling dimension
∆ = h + h̄ to the partition function Z(τ) is a character χ∆(τ) of a Verma module of the
current algebra, and thus the partition function is given by a sum

Z(τ) =
∑
∆
d∆χ∆(τ) (2.7)

over the scaling dimensions of the primary fields, each with multiplicity given by the de-
generacy d∆. The vacuum corresponds to ∆ = 0, with degeneracy d0 = 1, and the other
scaling dimensions are positive numbers ∆1 < ∆2 < · · · that tend to infinity.

The precise form of the characters depends on the current algebra. Our main interest
in this paper will be the algebra U(1)cleft×U(1)c̄right (more precisely, the corresponding affine
Lie algebra), in which case

χ∆(τ) = e2πiτ∆

η(τ)c+c̄ , (2.8)

where η is again the Dedekind eta function. In particular, the only dependence on the
central charges is through their sum c+ c̄.

The spectral gap of the CFT is the lowest scaling dimension ∆1 of a primary other
than the vacuum. We can obtain an upper bound for the spectral gap by producing a
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linear functional that acts in a certain way on functions of τ . The key observation is that
if we set

Φ∆(τ) = χ∆(τ)− χ∆(−1/τ), (2.9)

then we obtain the crossing equation∑
∆
d∆Φ∆(τ) = 0 (2.10)

by modular invariance. Now suppose ω is a linear functional such that

ω(Φ0) > 0 (2.11)

and
ω(Φ∆) ≥ 0 (2.12)

whenever ∆ ≥ ∆gap for some constant ∆gap. If we apply ω to the crossing equation, we
find that

ω(Φ0) +
∑
∆>0

d∆ω(Φ∆) = 0, (2.13)

which would be impossible if all the non-zero scaling dimensions were at least ∆gap, because
the total would be positive. Thus, we conclude that some primary must have a scaling
dimension strictly between 0 and ∆gap. In other words, ∆gap is a strict upper bound for
the spectral gap. One can show that it is a weak upper bound even if ω(Φ0) = 0, as long
as ω(Φ∆) is not identically zero (see appendix A), and that ω(Φ0) = 0 must hold for the
optimal choice of ω.

The optimal functional ω is not known, except in a handful of special cases discussed
below. In sections 3 and 4, we will give the most detailed numerical study so far of how ω

and ∆gap behave.
As noted earlier, because the spinless modular bootstrap for U(1)cleft×U(1)c̄right depends

only on c + c̄, we will set c̄ = c and refer just to c. Strictly speaking this notation is
misleading when c+ c̄ is odd, because the current algebra U(1)cleft ×U(1)c̄right makes sense
only when c and c̄ are nonnegative integers. For example, the only physically meaningful
cases with c+ c̄ = 1 are (c, c̄) = (1, 0) or (0, 1), and they are therefore what we mean when
we refer to the c = 1/2 case. More generally, the abstract problem of optimizing the bound
makes sense for any c > 0, but there are consequences for CFTs only when c is an integer
or half-integer.

2.2 Uncertainty principle

Hartman, Mazáč, and Rastelli [9] reformulated the U(1)c spinless modular bootstrap in
terms of an uncertainty principle for eigenfunctions of the Fourier transform as follows.
Suppose d = 2c is an integer, which is the meaningful case for CFTs. Given a functional ω
as above, we define a radial function fω : Rd → R by fω(x) = ω(Φ|x|2/2). If we normalize
the Fourier transform in Rd by

f̂(y) =
∫
Rd
dx f(x)e−2πi〈x,y〉, (2.14)
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then fω is an eigenfunction of the Fourier transform with eigenvalue −1; in other words,
f̂ω = −fω. To see why, we start with

Φ|x|2/2(τ) = χ|x|2/2(τ)− χ|x|2/2(−1/τ)

= eπiτ |x|
2

η(τ)d −
eπi(−1/τ)|x|2

η(−1/τ)d .

= eπiτ |x|
2 − (i/τ)d/2eπi(−1/τ)|x|2

η(τ)d ,

(2.15)

because the Dedekind eta function satisfies the identity η(−1/τ) = (τ/i)1/2η(τ). The
complex Gaussian x 7→ eπiτ |x|

2 on Rd has Fourier transform y 7→ (i/τ)d/2eπi(−1/τ)|y|2 .
Thus, the function x 7→ eπiτ |x|

2 − (i/τ)d/2eπi(−1/τ)|x|2 in the numerator of Φ|x|2/2(τ) is a −1
eigenfunction of the Fourier transform for each τ , because it is the difference of a Gaussian
and its Fourier transform. We conclude that fω also satisfies f̂ω = −fω, by the linearity
of ω. The same holds even when 2c is not an integer, if we interpret the radial Fourier
transform in non-integral dimension as a Hankel transform.

Conversely, every radial −1 eigenfunction of the Fourier transform in Rd arises as fω
for some ω, which we can obtain as follows by constructing a basis. If we let

ωk = ∂k

∂τk

∣∣∣∣∣
τ=i

, (2.16)

then ωk(Φ∆) is the product of e−2π∆ with a polynomial in ∆ of degree at most k, in which
the coefficient of ∆k is

(2πi)k − (i/τ)d/2(2πi)k(1/τ2)k

η(τ)d

∣∣∣∣∣
τ=i

=

0 if k is even, and
2(2πi)k/η(i)d if k is odd.

(2.17)

For comparison, the Laguerre polynomials L(d/2−1)
k give a basis for radial functions on Rd

as x 7→ L
(d/2−1)
k (2π|x|2)e−π|x|2 , with eigenvalues (−1)k under the Fourier transform. We

conclude that the functions x 7→ ωk(Φ|x|2/2) with k = 1, 3, 5, . . . , 2m − 1 must span the
same space as the Laguerre eigenfunctions with these values of k, and thus they span the
entire −1 eigenspace as m→∞.

We have seen that choosing the linear functional ω in the U(1)c spinless modular
bootstrap amounts to choosing an integrable, radial function f : Rd → R with f̂ = −f
such that f is not identically zero. The constraints on ω say that f(0) ≥ 0 and f(x) ≥ 0
whenever |x| ≥ r for some radius r. Then ∆gap = r2/2, and optimizing the bound means
minimizing r. This optimization problem for signs of eigenfunctions was first studied by
Cohn and Elkies [8], and it was placed in the context of more general uncertainty principles
for signs of functions by Cohn and Gonçalves [11].

The corresponding problem for +1 eigenfunctions asks for an integrable, radial function
g : Rd → R with ĝ = g such that g(0) ≤ 0 and g(x) ≥ 0 for |x| ≥ r. Again the goal is to
minimize r, without letting g vanish identically. This problem does not arise in the spinless
modular bootstrap as set up above, but it would apply if the partition function satisfied
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Z(−1/τ) = −Z(τ) and d∆ < 0 for ∆ > 0 (see section 2.1 of [11]). It behaves much like
the −1 case. For example, Cohn and Gonçalves [11] obtained an exact solution of the +1
problem for c = 6, which is analogous to the solutions of the −1 problem with c = 4 or 12.
The partition function in this case is given by Z(τ) =

√
j(τ)− 1728, which also arises as

the Norton series for a certain pair of elements in the Monster group (see equation (7.3.4c)
in [37, p. 425]). Although we do not have a direct physical interpretation for this problem,
generalized modular transformations do arise in theories with discrete anomalies [38] or
fermions [39, 40], including sectors that obey Z(−1/τ) = −Z(τ).

2.3 Sphere packing

The −1 eigenfunction uncertainty principle plays a fundamental role in discrete geometry,
where it underlies the linear programming bound for the sphere packing density. Linear
programming bounds are a powerful technique for proving upper bounds for packing density
or error-correcting code rates. They were introduced for discrete error-correcting codes by
Delsarte [22] in 1972, and extended to sphere packing in Euclidean space by Cohn and
Elkies [8] in 2003. The connection with the spinless modular bootstrap for U(1)c was
derived by Hartman, Mazáč, and Rastelli [9] in 2019.

The linear programming bound for sphere packing in Rd converts an auxiliary function
satisfying certain inequalities into a sphere packing density bound, as follows.4

Theorem 2.1 (Cohn and Elkies [8]). Let h : Rd → R be an integrable, continuous, radial
function such that ĥ is integrable, and let r be a positive real number. If h(0) = ĥ(0) = 1,
h(x) ≤ 0 whenever |x| ≥ r, and ĥ(y) ≥ 0 for all y, then every sphere packing in Rd has
density at most the volume of a sphere of radius r/2 in Rd, i.e.,

πd/2

(d/2)!

(
r

2

)d
. (2.18)

The problem of choosing h so as to minimize r is clearly reminiscent of the −1 eigen-
function uncertainty principle, but not obviously equivalent to it. One direction is simple:
if h satisfies the hypotheses of Theorem 2.1, then the function f = ĥ−h satisfies f(0) = 0,
f̂ = −f , and f(x) ≥ 0 for |x| ≥ r. Conversely, Cohn and Elkies conjectured that an
optimal solution f of the −1 eigenfunction problem can always be lifted to a function h

for use in Theorem 2.1 with the same value of r, such that ĥ− h = f . In other words, the
linear programming bound for sphere packing should be identical to the spinless modular
bootstrap. No proof is known, but no counterexample has been found, either numerically
or analytically.

At first glance, it is not obvious that any auxiliary function satisfies the hypotheses of
the linear programming bound. For a first example, let χ : Rd → R be the characteristic
function of a ball Br/2 centered at the origin, with its radius r/2 chosen so that vol(Br/2) =
1. Then the convolution h := χ ∗ χ has Fourier transform ĥ = χ̂2. By construction,
h(x) = 0 for |x| ≥ r and ĥ(y) ≥ 0 for all y; furthermore, h(0) = vol(Br/2) = 1 and
ĥ(0) = vol(Br/2)2 = 1. Thus, the sphere packing density in Rd is at most vol(Br/2) = 1.

4The original technical hypotheses in [8] were slightly stronger; see [20] and [41].
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This bound is sharp when d = 1, but it is of course not an exciting packing bound. For
d > 1 the linear programming bound is much better than this first attempt.

In fact, it is the best upper bound known for the sphere packing density in high
dimensions [20], but it is generally far from a tight bound [41]. Only four cases seem to
be sharp: d = 1 (as shown above), 2, 8, and 24. The case d = 8 was a breakthrough due
to Viazovska [29], and the case d = 24 extended her techniques [30]. These are the only
cases in which the sphere packing problem has been solved above three dimensions. The
optimal auxiliary functions for d = 8 and 24 can also be derived from analytic functionals
constructed that same year by Mazáč [26] in the four-point function bootstrap for 1d
CFTs, as shown by Hartman, Mazáč, and Rastelli [9]. Remarkably, the case d = 2 remains
unsolved analytically. There is no doubt that it matches the two-dimensional packing
density,5 but no proof is known.

Linear programming bounds can be applied not just to sphere packing, but to un-
derstand ground states under pair potential functions more broadly [42–44]. We will not
address that topic in this paper, except to note that our numerical results seem consistent
with Conjecture 7.2 in [44], which says that the linear programming bound for sphere pack-
ing extends to the Gaussian core model and thereby proves a form of universal optimality,
despite the failure of the analogous statement for binary error-correcting codes [45].

2.4 Numerics

To obtain numerical bounds for the U(1)c spinless modular bootstrap, we must choose a
finite-dimensional space of functionals ω. We truncate at derivative order 4N − 1; in other
words, ω will be a linear combination of ω1, ω3, . . . , ω4N−1, where as above ωk = ∂k/∂τk

∣∣∣
τ=i

.
For convenience let f(∆) = ω(Φ∆), which differs from the −1 Fourier eigenfunction in

being a function of ∆ rather than x with ∆ = |x|2/2. Then f(∆) can be written in terms
of the Laguerre eigenfunctions as

f(∆) =
2N∑
j=1

αjfj(∆), (2.19)

where
fj(∆) = L

(c−1)
2j−1 (4π∆)e−2π∆. (2.20)

For fixed ∆gap and N , the question is whether f can be chosen to satisfy the positivity con-
ditions f(0) ≥ 0 and f(∆) ≥ 0 for ∆ ≥ ∆gap without vanishing identically. This problem
can be solved using semidefinite programming, or approximated using linear programming.

Let ∆LP,N
1 (c) be the best bound that can be obtained for a fixed truncation order N ,

and let ∆LP
1 (c) be the best bound without restriction on ω. Increasing N improves the

bound, and we expect that
∆LP

1 (c) = lim
N→∞

∆LP,N
1 (c). (2.21)

5With the techniques from appendix A of [13], we can prove rigorously that they agree to more than a
thousand decimal places, by using 300 forced double roots at the vector lengths from the hexagonal lattice.
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Numerical linear or semidefinite programming succeeds at small N , but has been limited
to N . 100 by the computational cost. It is much faster to trade the linear program for a
nonlinear optimization over the roots of f(∆).

At the optimum, f(∆) is found empirically to have single roots at ∆0 = 0 and ∆1 =
∆gap, and N − 1 double roots ∆2,∆3, . . . ,∆N . Assuming this to hold in general, we can
restate the optimization problem as follows: fix ∆1, and maximize f(0) over the parameters
αj for 1 ≤ j ≤ 2N and ∆n for 2 ≤ n ≤ N , subject to the pattern of roots

f(∆1) = 0 and
f(∆n) = f ′(∆n) = 0 for 2 ≤ n ≤ N.

(2.22)

If the optimized function has f(0) > 0, then this value of ∆1 is excluded. The marginal
bound has f(0) = 0, and the corresponding ∆1 gives ∆LP,N

1 (c).
If this problem can be solved with some mild non-degeneracy conditions, then it prov-

ably gives ∆LP,N
1 (c) (see section 5 of [11]). However, there is no guarantee that the opti-

mum must be of this form, and it fails for c = 3/2. Specifically, when c = 3/2 it works
for 1 ≤ N ≤ 21 and 27 ≤ N ≤ 32, but for 22 ≤ N ≤ 26 and N = 33 there is a different
pattern of roots. We do not know what happens as N →∞.

Aside from c = 3/2, this method has always worked in practice.6 The resulting bound
can be made rigorous simply by proving that the optimal functional satisfies the positiv-
ity conditions.

This is essentially the method used by Cohn and Elkies [8]. In the conformal boot-
strap, a similar approach was first discussed by El-Showk and Paulos in the context of 1d
correlation functions [46]. Recently, their methods were improved by Afkhami-Jeddi, Hart-
man, and Tajdini and applied to the modular bootstrap [12]. The first step is to dualize
the optimization problem. The dual problem, together with the equation f(0) = 0, leads
to the equations

fk(0) +
N∑
n=1

dnfk(∆n) = 0 for 1 ≤ k ≤ 2N . (2.23)

Here the unknowns are d1, . . . , dN and ∆1, . . . ,∆N . These equations are nothing but
the original crossing equation (2.10) truncated to N states. If we absorb the factors of
e−2π∆n from fk(∆n) into the coefficients dn, we are left with 2N polynomial equations in
2N unknowns.

Solutions to (2.23) with dn > 0 place a lower bound ∆LP,N
1 (c) ≥ ∆1, almost by

definition. What is more surprising is that the solution saturating ∆1 = ∆LP,N
1 (c) has

exactly N states and can be found efficiently by Newton’s method. The last ingredient we
need in the algorithm is a procedure to generate the initial guess for Newton’s method.
We start at small N , where it is easy to find a guess by hand, and then gradually increase
N , using the results from lower N to generate the next guess as in appendix B of [12].
This method allows for large jumps in N , while still converging to the bound within a few
Newton steps.

6Our primary interest is in large c, and the main role of c = 3/2 is to dash any hope of proving that
the method works for all c. We have no conceptual explanation for why this case seems to differ from all
the others.
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Figure 1. The linear programming bound for the sphere packing density.

3 Numerical results

3.1 Data and plots

The linear programming bound for the sphere packing density in Rd is shown in figure 1 for
d ≤ 48, along with the record packing densities from [21, table I.1, pp. xix–xx], and table 1,
while figure 2 shows ∆LP

1 (c)/c. We believe that the truncation order in our calculations
is high enough that these plots and table are indistinguishable from the fully optimized
bounds; see appendix B for how we calibrated the convergence rate. All of our data is
available from https://hdl.handle.net/1721.1/125646, including truncation orders, scaling
dimensions, and degeneracies.

The linear programming bound is sharp when d = 1, 2 (conjecturally), 8, or 24,
and seemingly nowhere else. From the perspective of discrete geometry, one of the most
mysterious aspects is the role of these special dimensions. Unlike some other cases of the
conformal bootstrap (see, for example, [47, section V.B.4]), the bound itself shows no sign
of kinks or other non-analytic behavior at these points in figure 1. Instead, the upper
bound looks much the same there as elsewhere, and it is the packing densities that show
anomalous behavior.

Figures 1 and 2 faithfully reflect the qualitative properties of these bounds, but they
are of limited use in extrapolating to high dimensions. For that purpose, a log-log plot
is more effective, as in figure 3. This figure shows the linear programming bound and
the record sphere packing densities from [21] in black. The green and red curves show

– 12 –

https://hdl.handle.net/1721.1/125646


J
H
E
P
1
2
(
2
0
2
0
)
0
6
6

∆LP
1 (c)/c

Lower bound

central charge c

∆
1(

c)
/
c

0

1

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 2. The ratio ∆LP
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Figure 3. A comparison of the linear programming bound with other bounds. The annotations on
the right show the limits of the colored curves in high dimensions, including our conjectured limit
for the linear programming bound from Conjecture 3.1.
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the best bounds that have been analytically derived: the green curve is Levenshtein’s
bound [48], and the red curve is the Kabatyanskii-Levenshtein bound [19], computed using
Levenshtein’s universal bound for spherical codes [49, 50] and the approach of Cohn and
Zhao [20] (we review these bounds in sections 5.2 and 5.3). It is known that the linear
programming bound is at least as strong as these bounds [8, 20], but no further analytic
results are known. As shown in figure 3, our numerical calculations indicate that the linear
programming bound is not much stronger than the better of these two bounds.

The blue curve in figure 3 is a lower bound for the linear programming bound due
to Scardicchio, Stillinger, and Torquato [51], which is a variant of a bound obtained by
Torquato and Stillinger [52]. No better lower bound is known for the linear program-
ming bound in the limit as d → ∞, and the known lower bounds for the sphere packing
density are much worse. For example, the Minkowski-Hlawka bound says that there ex-
ist sphere packings of density at least 2−d in Rd, which amounts to the bottom edge of
figure 3; this exponential decay rate is the same as in the ideal glass phase of the hard
sphere model (see [53, p. 247]), and no known lower bound improves on this rate. These
lower bounds are obtained from probabilistic or averaging arguments, and as far as we are
aware, no explicit construction in dimension 2048 or greater has been shown to achieve the
Minkowski-Hlawka bound.

3.2 Extrapolation

The annotations on the right side of figure 3 show the limits of the various curves as d→∞.
The limits of the green, red, and blue curves are known explicitly, and one can see that
even d = 2048 is not especially close to the asymptotic limit as d→∞. We know that the
black curve always lies below the red curve, and it appears to be getting steadily closer.
Thus, we expect the linear programming bound to be at most slightly better than the
Kabatyanskii-Levenshtein bound in the limit as d → ∞. What figure 3 does not reveal is
whether the gap in fact tends to zero.

To estimate the asymptotic gap between the red and black curves, it is helpful to
examine numerical data. Table 1 shows the difference KL−LP between these two bounds,
as well as the differences between consecutive values of KL − LP and their ratios. The
KL−LP column does indeed seem to decrease for d ≥ 2, and we expect that it is converging
towards its limit at a rate proportional to 1/d. In that case, the difference column to its
right should be decreasing towards zero at the same rate 1/d, and so the ratios in the last
column should tend to 2. The behavior of the ratio column is not absolutely clear, but it
does look like it may be increasing towards 2 beyond d = 32.

We therefore hypothesize that the difference column will continue to decrease by a
factor between 1.92 and 2 in each additional row. In that case, the sum of all the entries
below 0.00070 in the difference column must lie between

∞∑
n=1

0.00070
2n = 0.00070 and

∞∑
n=1

0.00070
1.92n < 0.00077. (3.1)

In other words, the KL−LP column will fall below 0.00611 by an amount between 0.00070
and 0.00077, and so its limiting value will be between 0.00534 and 0.00541. We conclude
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d LP KL KL− LP Difference Ratio
1 0.00000 0.00000 0.00000
2 −0.07049 0.29248 0.36297
4 −0.15665 0.17511 0.33176 0.03122

8 −0.24737 −0.04879 0.19858 0.13318 0.23

16 −0.33192 −0.21692 0.11501 0.08357 1.59

32 −0.40382 −0.33342 0.07040 0.04461 1.87

64 −0.46101 −0.41947 0.04154 0.02885 1.55

128 −0.50432 −0.47947 0.02485 0.01669 1.73

256 −0.53589 −0.52023 0.01566 0.00919 1.82

512 −0.55824 −0.54749 0.01075 0.00491 1.87

1024 −0.57370 −0.56553 0.00816 0.00259 1.90

2048 −0.58418 −0.57737 0.00682 0.00135 1.92

4096 −0.59120 −0.58508 0.00611 0.00070 1.92

∞ ? −0.59906 ?

Table 1. Numerical comparison of the linear programming bound in Rd (denoted LP) with the
Kabatyanskii-Levenshtein bound (denoted KL). The bounds are in the form (log2 density)/d, and
are rounded rather than truncated.

that the limit of the LP column must be −0.6044 ± 0.0001 (i.e., between −0.6045 and
−0.6043). In other words, the linear programming bound will be approximately 2−0.6044d

when d is large.

Conjecture 3.1. There exists a constant λ with 0.604 < λ < 0.605 such that the linear
programming bound for the sphere packing density in Rd is 2−(λ+o(1))d as d→∞ when the
auxiliary function is fully optimized.

Of course we have no proof of this conjecture, or even a heuristic derivation. It is
possible that the numbers could behave entirely differently when d is much larger, but that
does not seem plausible. We are very confident in the first three decimal places of the
estimate 0.6044 for λ, and fairly confident in the fourth. In fact, we have a proposal for
the exact constant:

Conjecture 3.2. The constant λ in Conjecture 3.1 is given by 2−λ =
√
e/(2π). Equiva-

lently,

lim
c→∞

∆LP
1 (c)
c

= 1
π2 (3.2)

and
lim
d→∞

A−(d)√
d

= 1
π
, (3.3)

where A−(d) denotes the optimal radius for the −1 eigenfunction uncertainty principle
in Rd.

Of course Conjecture 3.2 is speculative, and four digits of accuracy is far from enough to
make a definitive argument for this value. The equivalent limits are much more appealing
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d −1 radius +1 radius Ratio
4 1.2038 0.9660 1.2462
8 1.4142 1.2173 1.1618

16 1.7393 1.5812 1.1000
32 2.2241 2.1000 1.0591
64 2.9317 2.8359 1.0338

128 3.9515 3.8787 1.0188
256 5.4109 5.3565 1.0102
512 7.4905 7.4504 1.0054

1024 10.446 10.417 1.0028
2048 14.640 14.619 1.0014

Table 2. The ratio of the −1 eigenfunction uncertainty principle radius to the +1 radius.

than the formula for λ, and their simplicity justifies going out on a limb. We have no
great faith in this conjecture, but it is worth noting that a simple formula fits the data
beautifully. For comparison, λ = 0.6044± 0.0001 would amount to

0.318287 < lim
d→∞

A−(d)√
d

< 0.318333, (3.4)

and 1/π = 0.318309 . . . .
Our calculations also support Conjecture 1.5 from [11], which says that the sign change

radii for the +1 and −1 eigenfunction uncertainty principles in Rd are the same asymptot-
ically as d→∞. See table 2 and https://hdl.handle.net/1721.1/125646 for the numerical
data.7 In the notation of [11],

lim
d→∞

A+(d)√
d

= lim
d→∞

A−(d)√
d

. (3.5)

Specifically, the ratio A+(d)/A−(d) seems to be 1 +O(1/d).

4 Properties of the spectrum and degeneracies

The spectra of our numerically optimized solutions of the spinless modular bootstrap be-
have remarkably regularly when the central charge c is large. Figure 4 shows the scaling
dimensions for c ≤ 64, with the sharp cases c = 1/2, 1, 4, and 12 highlighted. When c = 4
or 12, the scaling dimensions are positive integers, excluding 1 when c = 12. The green
lines in the figure extrapolate these arithmetic progressions to other values of c. In other
words, the n-th green line from the bottom amounts to ∆n = n + (c − 4)/8. While this
equation never holds exactly except when c = 4 or 12, it is an excellent approximation when
n is large and c ≥ 4. Later in this section we will examine how close this approximation is.

The equation ∆n = n+(c−4)/8 amounts to the 1d generalized free fermion spectrum.
This spectrum arose in analytic functionals for the 1d conformal bootstrap constructed by

7The reason why this table omits d = 1 and 2 is that we do not have good numerical data in these
dimensions. See the end of section 4 in [11].
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Figure 4. The spectra ∆LP
n (c) for 2 ≤ c ≤ 64 and c ∈ {1/2, 1}, drawn in black. The dots highlight

the spectra for c ∈ {1/2, 1, 4, 12}, and the green lines show the 1d generalized free fermion spectra.

Mazáč [26], which were generalized to a basis by Mazáč and Paulos [54]. Hartman, Mazáč,
and Rastelli [9] discovered that these functionals could be adapted to the 2d modular boot-
strap with U(1)c or Virasoro symmetry, and special cases were independently constructed
by Rolen and Wagner [55] and by Feigenbaum, Grabner, and Hardin [56].

Figure 5 shows the sphere packing bounds obtained from these functionals. No proof
is known that the functionals satisfy the required inequalities, and indeed they do not
for 8 < d < 24; in particular, they would prove an impossibly good linear programming
bound for d = 16 (see the dual bounds in [41]). However, the inequalities seem to hold for
other values of d. Unfortunately, the resulting bounds are disappointing. The fact that the
∆LP

1 (c) curve in figure 4 bends below the free fermion line ∆1 = 1 + (c− 4)/8 is crucial for
obtaining a strong bound, and the quality of the bound depends on the degree of deflection.

In contrast to the behavior for large c, the spectra for small c are much less regularly
spaced. As we decrease c below 4, the scaling dimensions in figure 4 start to diverge
unpredictably from the green lines, and the behavior for c ∈ {1/2, 1} is entirely different.
Our numerical techniques break down at c = 3/2, and it is presumably not a coincidence
that this failure occurs at the transition between different regimes. It would be interesting
to explore this transition for 1 < c < 2.

4.1 Convergence to the free fermion spectrum

Figure 6 shows how the spectrum converges as we increase the truncation order N . The
limiting values for ∆LP,N

n (c) as N → ∞ are quite close to the 1d generalized free fermion
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Figure 5. The linear programming bound and the hypothetical bound based on the 1d generalized
free fermion spectrum ∆n(c) = n+ (c− 4)/8.
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Figure 6. The spectrum for c = 128 computed using truncation order N = 1, 2, 4, . . . , 128 (red
through black) and the free fermion spectrum ∆n(c) = n+ (c− 4)/8 (green).
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Figure 7. The probability density function for the normalized spectrum is 1 on [0, 2/π] and
x 7→ x−1/2(4/π − x)1/2 on [2/π, 4/π].
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Figure 8. The cumulative distribution functions for the normalized spectrum ∆LP,N
n (4)/N with

1 ≤ n ≤ N when N = 128 (red) and in the limit as N →∞ (black).

values, but there is a substantial divergence when n is large enough relative to N , as
noted in [57, section 3] and [12, Figure 2]. Although we have no proof, we can predict the
form of this divergence. It occurs starting at n ∼ (2/π)N , with shape determined by the
following conjecture:

Conjecture 4.1. For each c ≥ 2, the distribution of the normalized spectrum ∆LP,N
n (c)/N

with 1 ≤ n ≤ N converges as N →∞ to the probability distribution on the interval [0, 4/π]
with density function 1 on [0, 2/π] and x 7→ x−1/2(4/π − x)1/2 on [2/π, 4/π], shown in
figure 7.

See figure 8 for a comparison with numerical data for c = 4 and N = 128. The behavior
is similar for all c ≥ 2, with slower convergence as c grows.
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Figure 9. The gaps log10(1/|∆n(c) − (n + (c − 4)/8)|) for c = 16 (black), c = 20 (red), c = 24
(green), and c = 28 (blue).

Conjecture 4.1 says that the distribution shifts from uniform to a beta distribution
around n ∼ (2/π)N . The uniform distribution corresponds to the 1d generalized free
fermion spectrum, and the beta distribution describes the root distribution of high-degree
Laguerre polynomials (see [58, Theorem 1]). Specifically, if we normalize the roots of the
highest-degree polynomial L(c−1)

4N−1(4π∆) from the truncated crossing equation (2.23) by
dividing by a factor of N , then their distribution converges as N →∞ to the beta function
on [0, 4/π] with density x 7→ x−1/2(4/π − x)1/2/2. From this perspective, the transition
in Conjecture 4.1 is between the uniform limiting behavior as N → ∞ and a generic root
distribution corresponding to high-degree Fourier eigenfunctions.

Conjecture 4.1 gives the following description of the curves in figure 6 via Theorem 4
in [59]. We wish to approximate ∆LP,N

n (c)/N as N →∞ with n/N → α for some constant
α ∈ [0, 1]. The conjecture says that

∆LP,N
n (c)
N

→

α if α ≤ 2/π, and
(2/π)(1 + cos β) if α ≥ 2/π,

(4.1)

where β is the solution of β − sin β = (1 − α)π/2 with 0 ≤ β ≤ π/2. We will give
some motivation for the high-energy portion of this formula in section 4.6, after dis-
cussing degeneracies.

4.2 Deviations from the free fermion spectrum

Aside from c = 4 or 12, the spectrum ∆LP
n (c) is not exactly equal to the 1d generalized

free fermion spectrum ∆n(c) = n + (c − 4)/8. Instead, we always find some error in
this approximation, and one natural question is whether the error tends to 0 as n → ∞.
Figure 9 shows four test cases, namely c ∈ {16, 20, 24, 28}. In each of these cases, the error
|∆LP

n (c) − (n + (c − 4)/8)| becomes small, no more than 10−5 when n is large. However,
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Figure 10. The maximum ε(c) of |∆LP
n (c)− (n+ (c− 4)/8)| over 2c ≤ n ≤ 128.

there is a striking difference between two different scenarios: when c = 16 or 24, the error
stabilizes above zero, while it seems to converge to 0 when c = 20 or 28. We have no
conceptual explanation of this behavior, which seems to be periodic modulo 8 as c varies,
with multiples of 8 being the worst case and 4 modulo 8 being the best case (and the only
case with convergence to zero). Note that c = 4 and 12 fall into the latter category.

Figure 10 shows another aspect of this periodicity. In this figure, we plot

ε(c) = max
2c≤n≤128

|∆LP
n (c)− (n+ (c− 4)/8)|. (4.2)

Here the upper bound of 128 for n should be viewed as a stand-in for infinity, and the lower
bound 2c is intended to exclude sporadic behavior for small n before convergence; in other
words, we view ε(c) as an approximation to

lim sup
n→∞

|∆LP
n (c)− (n+ (c− 4)/8)|. (4.3)

In the plot, there are singularities at c = 4 and 12 that correspond to ε(c) = 0, with
similar cusps at c = 20, 28, and 36, and again we see the largest error terms when c is a
multiple of 8. This unexpected periodicity shows that the spinless modular bootstrap has
a much richer number-theoretic structure than is apparent from the smooth plot of ∆LP

1 (c)
in figure 2.
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We can summarize figures 9 and 10 with the following conjecture:

Conjecture 4.2. For c ≥ 4, the quantity

lim sup
n→∞

|∆LP
n (c)− (n+ (c− 4)/8)| (4.4)

vanishes if and only if c is an integer congruent to 4 modulo 8, and there is a constant α
such that

lim sup
n→∞

|∆LP
n (c)− (n+ (c− 4)/8)| ≤ α2−c (4.5)

for all c ≥ 4. Furthermore, we can take α = 1/π + o(1) as c→∞.

4.3 Growth rate of the degeneracies

Solving the truncated crossing equation (2.23) yields not just scaling dimensions ∆LP,N
1 (c)

but also corresponding degeneracies dLP,N
n (c), which converge as N →∞ to the degenera-

cies dLP
n (c) of a hypothetical CFT that attains the spinless modular bootstrap bound. For

c ≤ 50 and c 6∈ {1/2, 1, 4, 12}, numerical calculations show that these degeneracies are not
integers, and thus they cannot come from an actual CFT.8 For larger c, it is difficult to as-
sess integrality, because the degeneracies grow exponentially as c→∞ and must therefore
be computed to high precision.

The cumulative growth rate of the degeneracies is determined by modularity as follows.
Because η(−1/τ) = (τ/i)1/2η(τ), the modular invariance of the partition function Z(τ) =
η(τ)−2c∑

∆ d∆e
2πiτ∆ implies the identity∑

∆
d∆e

2πiτ∆ = (i/τ)c
∑
∆
e−2πi∆/τ . (4.6)

If we set τ = iβ/(2π) and let β → 0, we find that∑
∆
d∆e

−β∆ ∼ (2π/β)c. (4.7)

Now the Karamata Tauberian theorem [60, Theorem 4.3 of Chapter V] implies that

∑
∆≤A

d∆ ∼
(2πA)c

Γ(c+ 1) (4.8)

as A→∞.
In other words, the function

ρc(∆) = (2π)c∆c−1

Γ(c) (4.9)

is the U(1)c analogue of the Cardy formula [61] for degeneracies, because∫ A

0
d∆ ρc(∆) = (2πA)c

Γ(c+ 1) . (4.10)

8They could still come from a sphere packing. In that case dn would be the average number of sphere
centers at distance

√
2∆n from a given sphere center, which need not be an integer.
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Figure 11. The normalized degeneracies dLP
n (4)/ρ4(∆LP

n (4)) for 1 ≤ n ≤ 256. As n → ∞, they
fluctuate between 1/ζ(4) = 0.9239 . . . and ζ(3)/ζ(4) = 1.1106 . . . , shown with gray lines, and they
are bounded away from 1.

A similar formula applies to operator-product coefficients that appear in the bootstrap
equations for conformal correlators [62].

Because the scaling dimensions ∆LP
n (c) are uniformly spaced with distance 1 asymp-

totically, we expect that dLP
n (c) will be roughly ρc(∆LP

n (c)) as n → ∞. The asymptotic
formula (4.8) gives a sense in which this approximation is true on average, but we will see
that the precise behavior is far more delicate. In the Virasoro case, a more fine-grained un-
derstanding of the asymptotic spectrum has been obtained recently using complex Taube-
rian theorems [63–67]. It would be interesting to do the same for sphere packing. This
could perhaps explain the linear portion of the large-c spectrum, where the level spacing
is very close to 1.

4.4 Degeneracies for c = 4 and 12

The degeneracies dLP
n (4) and dLP

n (12) are the coefficients of the theta series of the E8 and
Leech lattices, respectively. Much is known about these modular forms, including precise
descriptions of their coefficients (see, for example, [21, p. 122 and p. 134]). The degeneracies
are well understood, but far more subtle than the scaling dimensions ∆LP

n (4) = n and
∆LP
n (12) = n+ 1.

Figure 11 shows the normalized degeneracies dLP
n (4)/ρ4(∆LP

n (4)) for c = 4. They are
bounded above and below, but do not converge to 1; instead, they are strictly bounded
away from 1. The most noteworthy aspect of figure 11 is that the normalized degeneracies
are almost, but not quite, periodic.9 This near periodicity is explained by a classical
formula for coefficients of Eisenstein series: dLP

n (4)/ρ4(∆LP
n (4)) = σ3(n)/(ζ(4)n3), where

σk(n) denotes the sum of the k-th powers of the divisors of n, and ζ is the Riemann zeta
9See [68, Theorem 5.13A.1] for the theory of almost periodic functions.
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Figure 12. The maximum δ(c) of |dLP
n (c)/ρc(∆LP

n (c))− 1| over 2c ≤ n ≤ 128.

function. This function is not periodic, but for each ε > 0, there exists a natural number
m such that if n1 ≡ n2 (mod m), then |σ3(n1)/n3

1 − σ3(n2)/n3
2| < ε. In other words,

for each ε > 0 it is approximately periodic to within ε, with the period length growing as
ε→ 0. Similarly, the function n 7→ dLP

n (12)/ρ12(∆LP
n (12)) is the sum of the almost periodic

function n 7→ σ11(n)/(ζ(12)n3) and a term converging to zero as n→∞.

4.5 Degeneracies for arbitrary c

The unexpected periodicity modulo 8 for scaling dimensions has a counterpart for degen-
eracies, as shown in figure 12. Here the multiples of 8 are the best case for the accuracy
of the U(1)c Cardy formula, while integers that are 4 modulo 8 are the worst case. Unlike
the case of scaling dimensions, the cusps in figure 12 do not seem to correspond to zero
error in the limit as n → ∞. Instead, see figure 13. Perhaps this discrepancy indicates
that ρc(∆) should be replaced with some better approximation.

Based on this data and the cases c = 4 and 12, we make the following conjecture,
which is a more precise analogue of Conjecture 4.2:

Conjecture 4.3. For c > 2,

lim sup
n→∞

dLP
n (c)

ρc(∆LP
n (c)) ≤

ζ(c− 1)
ζ(c) = 1 + 2−c +O(3−c) (4.11)

and
lim inf
n→∞

dLP
n (c)

ρc(∆LP
n (c)) ≥

1
ζ(c) = 1− 2−c +O(3−c), (4.12)
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Figure 13. The gaps log10(1/|dLP
n (c)/ρc(∆LP

n (c)) − 1|) for c = 8 (black), c = 12 (red), c = 16
(green), and c = 20 (blue).

with equality whenever c is an integer that is congruent to 4 modulo 8.

Equality provably holds for c = 4 or 12.

4.6 Possible explanation of the high-energy spectrum

The formula for the upper portion of the high-energy spectrum, given by the second line
in (4.1), was motivated by the following calculation. It does not fully explain the formula,
but it indicates why it is a reasonable guess.

The counterpart of the Cardy formula in terms of functionals acting on the crossing
equation is the integral identity

∫ ∞
0

d∆(2π)c∆(c−1)

Γ(c) e−2π∆L
(c−1)
k (4π∆) = (−1)kL(c−1)

k (0), (4.13)

which is the evaluation at 0 of the condition of being a radial Fourier eigenfunction. We
will use this identity to generate an exact solution of the truncated crossing equations,
which has too many states but is otherwise suggestive of the optimal solution.

For small enough k, we can evaluate the integral exactly using the Gauss-Laguerre
quadrature formula ∫ ∞

0
dxxc−1e−xp(x) =

n∑
m=1

wmp(xm), (4.14)

which holds for all polynomials p of degree at most 2n− 1 if we use the roots of L(c−1)
n (x)

as the quadrature nodes xm with weights

wm = Γ(n+ c)xm
n!(n+ 1)2(L(c−1)

n+1 (xm))2
. (4.15)
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If we take n = 2N and p(x) = L
(c−1)
k (2x), we find that for k ≤ 4N − 1,

∫ ∞
0

d∆(2π)c∆(c−1)

Γ(c) e−2π∆L
(c−1)
k (4π∆) =

2N∑
m=1

dmL
(c−1)
k (4π∆m), (4.16)

where dm = wm/Γ(c) and the dimensions ∆m satisfy L(c−1)
2N (2π∆m) = 0. In other words,

we have generated a solution to the equations

L
(c−1)
k (0) +

2N∑
m=1

dmL
(c−1)
k (4π∆m) = 0 (4.17)

for odd k ≤ 4N − 1. This solution has 2N + 1 states, while our numerical method involves
finding a solution to these truncated crossing equations with only N + 1 states, so this
solution has no direct bearing on the bound. However we observe numerically that the high
energy spectrum approximately agrees. The roots of the Laguerre polynomial L(c−1)

2N (2π∆)
for large N and ∆ are given by the beta distribution described in section 4.1, which
motivates its appearance.

5 Spherical codes and implied kissing numbers

In sphere packing terms, the scaling dimensions ∆n measure the distances
√

2∆n between
distinct sphere centers in the packing, and the corresponding degeneracy is the average
number of centers at that distance from a given center. In particular, the first degeneracy
d1 is the average number of tangencies for spheres in the packing, i.e., the average kissing
number of the packing. De Laat, Oliveira, and Vallentin [69] showed how to strengthen the
linear programming bound for sphere packing by incorporating geometric bounds for the
degeneracies, which go beyond the modular invariance of the partition function. In this
section, we will use this idea systematically to explore when the linear programming bound
can be sharp and how to improve on it. Along the way, we will review the Kabatyanskii-
Levenshtein bound.

As motivation for this line of work, consider the implied kissing number dLP
1 (d/2),

which is the average kissing number in a hypothetical d-dimensional packing achieving the
linear programming bound. When d = 1, 2, 8, or 24, we of course obtain the kissing number
of the optimal packing, but in general we obtain unrealistic numbers. For example, when
d = 4 the implied kissing number is 26.43 . . . , which exceeds Musin’s optimal bound of 24
for the four-dimensional kissing number [70]; it is therefore impossible for any packing to
achieve the exact linear programming bound in R4. As figure 14 shows, the implied kissing
number is impossibly high for every d ≤ 24 except the known sharp cases. Within this
range of dimensions, it perfectly delineates which cases are sharp.

Figure 15 shows how the implied kissing number grows in high dimensions. Comparing
it with upper bounds turns out to be surprisingly subtle, and we will do so in figure 16 once
we have explained more about the needed bounds. Aside from low dimensions, figure 15
looks similar to figure 3, and that is not a coincidence: table 3 indicates that the implied
kissing number is 2d+o(d) times the linear programming bound as d→∞. This relationship
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Figure 14. The implied kissing number from the linear programming bound, compared with the
best upper bound known for the actual kissing number [71] and the current record [21].

is easily explained using the U(1)c Cardy formula, because the sphere packing density is
ρc(∆1)∆1/(c4c) in terms of the spectral gap ∆1 and c = d/2. We can approximate the
implied kissing number dLP

1 (c) by ρc(∆LP
1 (c)) using the Cardy formula; because of the size

of ∆LP
1 (c) we expect some error, but the error factor should be subexponential in c, in fact

roughly ∆LP
2 (c)−∆LP

1 (c). We conclude that the linear programming bound for the packing
density is dLP

1 (c)/(4 + o(1))c as c→∞, which is the desired relationship.
To prove bounds for kissing numbers, the relevant optimization problem is the spherical

code problem, which is a compact analogue of the sphere packing problem. In dimension
d and with minimal angle θ this problem asks how large a subset C of the unit sphere in
Rd can be if 〈x, y〉 ≥ s for all distinct x, y ∈ C, where s = cos θ. In other words, all points
in C must be separated by at least a distance of θ along the surface of the sphere, and so C
yields a packing with spherical caps of radius θ/2. Such a set is called a spherical code with
minimal angle θ. The kissing problem amounts to the case θ = π/3; note that here we are
considering the kissing problem for a single sphere, rather than averaged over a packing in
Euclidean space.

Let A(d, s) be the largest possible size of such a code. Delsarte, Goethals, and Sei-
del [74] introduced a linear programming bound for A(d, s), which Kabatyanskii and Leven-
shtein [19] used to obtain the best sphere packing density bounds known in Euclidean space.

After briefly reviewing this linear programming bound, we will discuss two applications
of spherical codes to the sphere packing problem, followed by a new average kissing bound.
First we discuss the Kabatyanskii-Levenshtein bound, using the approach from [50]. Then
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Figure 15. The implied kissing number in high dimensions, compared with the record kissing
number [21, 72] and the excluded volume lower bound for the kissing number from [73].

d LP IK 1 + LP− IK
1 0.00000 1.00000 0.00000
2 −0.07049 1.29248 −0.36297
4 −0.15665 1.18103 −0.33768
8 −0.24737 0.98836 −0.23573

16 −0.33192 0.81510 −0.14702
32 −0.40382 0.68279 −0.08661
64 −0.46101 0.58837 −0.04937

128 −0.50432 0.52325 −0.02757
256 −0.53589 0.47929 −0.01518
512 −0.55824 0.45003 −0.00827

1024 −0.57370 0.43077 −0.00447
2048 −0.58418 0.41822 −0.00240
4096 −0.59120 0.41009 −0.00128
∞ −0.6044 0.3956 0.00000

Table 3. Numerical comparison of the linear programming bound for the sphere packing density
in Rd (denoted LP) with the implied kissing number (denoted IK), both in the form log2(·)/d.
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we discuss a strengthening of the linear programming bound for the sphere packing problem
through bounds for spherical codes, and its implications for when the bound can be tight.
We conclude with a linear programming bound for the average kissing number.

The results of this section rely on the geometry of the sphere packing problem and do
not appear to have any direct application to CFTs. On the other hand, conceptually, upper
bounds on the average kissing number are similar to upper bounds on operator-product
coefficients often considered in the bootstrap literature (e.g., [75, 76]). It is also our hope
that the methods in this section (in particular, the application of the Christoffel-Darboux
formula to produce positive auxiliary functions) will inspire new analytic approaches to the
conformal bootstrap.

5.1 The linear programming bound

The analogue of the radial Fourier transform on the surface of a sphere is the expansion
in terms of zonal spherical harmonics, which uses the following orthogonal polynomials.10

Let d be the dimension of the spherical code, and let a and b be nonnegative integers.
(We can take a = b = 0 for now, but we will make use of a and b in the Kabatyanskii-
Levenshtein bound.)

Let

wa,b(t) = Γ(a+ b+ d− 1)
2a+b+d−2Γ(a+ d−1

2 )Γ(b+ d−1
2 )

(1− t)a(1 + t)b(1− t2)(d−3)/2, (5.1)

where the normalization is chosen so that
∫ 1
−1 dtw

a,b(t) = 1. Define the orthogonal poly-
nomials Qa,bi (t) with deg(Qa,bi ) = i and positive leading coefficients by∫ 1

−1
dtQa,bi (t)Qa,bj (t)wa,b(t) = δi,j (5.2)

for i, j ≥ 0. Up to normalization, these polynomials are the Jacobi polynomials with
parameters (d− 3)/2 + a and (d− 3)/2 + b.

The parameters a = b = 0 are particularly important, and the polynomials Qi := Q0,0
i

are known as the ultraspherical polynomials in dimension d. For a continuous function
f : [−1, 1]→ R,

f0 :=
∫ 1

−1
dt f(t)w0,0(t) =

∫
Sd−1

dµ(x) f(〈x, e〉), (5.3)

where e ∈ Sd−1 is an arbitrary point and µ is the surface measure on the sphere Sd−1,
normalized so that µ(Sd−1) = 1. Therefore the polynomials Qi are orthogonal if we think
of them as zonal functions on Sd−1, i.e., functions x 7→ Qi(〈x, e〉) invariant under the
stabilizer subgroup of O(d) with respect to e. Moreover, these polynomials are of positive
type: for all finite C ⊆ Sd−1 and all coefficients cx ∈ R for x ∈ C,∑

x,y∈C
cxcyQi(〈x, y〉) ≥ 0. (5.4)

10One key conceptual difference between spheres and Euclidean space is that Rd is its own Pontryagin
dual, which means Fourier eigenfunctions make sense, while that concept does not apply to spheres.
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This inequality follows from the addition formula

Qi(〈x, y〉)
Qi(1) = 1

ri

ri∑
j=1

vi,j(x)vi,j(y), (5.5)

where the functions vi,j : Rd → R for j = 1, . . . , ri are an orthonormal basis of the spherical
harmonics of degree i (see [77, Theorem 9.6.3]); specifically, the addition formula shows
that the left side of (5.4) is a square and therefore nonnegative.

The linear programming bound for spherical codes converts an auxiliary function into
an upper bound on the greatest size of a spherical code:

Theorem 5.1 ([74]). Let f : [−1, 1] → R be a continuous function and s ∈ [−1, 1]. If f
is of positive type as a zonal function on Sd−1, f(t) ≤ 0 for t ∈ [−1, s], and f0 6= 0, then
A(d, s) is at most f(1)/f0.

By Schoenberg’s theorem [78], every continuous function f : [−1, 1] → R of positive
type is of the form f(x) =

∑∞
n=0 fnQn(x) with fn ≥ 0, where convergence is uniform and

absolute. Therefore the linear programming bound can be approximated arbitrarily well
by the minimum of f(1)/f0 over functions f of the form

f(t) =
N∑
n=0

fnQn(t) (5.6)

with f0 > 0, f1, . . . , fN ≥ 0, and f(t) ≤ 0 for t ∈ [−1, s].
One can optimize this bound numerically for given d andN using semidefinite program-

ming. Specifically, we can create a semidefinite program where f0, . . . , fN are one-by-one
positive semidefinite matrices, and the inequality constraint is modeled as

f(t) =

−v0(t)TXv0(t)− (t+ 1)(s− t)v1(t)TY v1(t) if N is even, and
−(t+ 1)v0(t)TXv0(t)− (s− t)v0(t)TY v0(t) if N is odd,

(5.7)

where X and Y are positive semidefinite matrices and

vk(t) = (Q0(t), . . . , QbN/2c−k(t)). (5.8)

If we additionally require f0 = 1, then the objective is f(1), which means we are mini-
mizing a linear functional over positive semidefinite matrices with linear constraints. This
semidefinite program can be solved numerically on a computer.

Shtrom [79] computed the exact linear programming bound for the kissing number
A(d, 1/2) when d ≤ 146, by determining the optimal value of N , beyond which there is
no improvement. We have extended these computations to d ≤ 424 using N = 95, which
appears to be high enough in this range of dimensions and in any case should closely
approximate the optimum. Figure 16 shows the ratio of the implied kissing number to
this upper bound. They are very close to each other in size, but their precise ratio seems
difficult to predict, and we do not know what happens as d→∞. No sphere packing can
match the linear programming bound for density when this ratio is strictly greater than
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Figure 16. The ratio of the implied kissing number to the linear programming bound for the kissing
number. It dips below 1 at dimensions 180–181, 192, 282–283, 294–296, and many beyond that.

1. Our initial hope was that this condition would rule out every dimension d > 24, but it
does not. Instead, further progress may depend on more powerful bounds for the kissing
number, such as semidefinite programming bounds [71, 80].

This approach can rule out exact equality in the linear programming bound for packing
density, but it does not give a quantitative improvement. We will return to the problem
of improving the density bound, once we explain Levenshtein’s universal bound and the
Kabatyanskii-Levenshtein bound.

5.2 Levenshtein’s universal bound

Levenshtein’s universal bound is the best bound that has been analytically derived from
Theorem 5.1; our explanation follows section 5.4 in [50]. Let ta,bk ∈ [−1, 1) be the largest
root of Qa,bk (t), where we set t1,10 = −1. One can show that

t1,1k−1 < t1,0k < t1,1k (5.9)

for all k ≥ 1 (see (5.89) in [50]). For s ∈ [−1, 1), define the function

f (s)(t) =

(t− s)
(
K1,0
k−1(t, s)

)2 if t1,1k−1 ≤ s < t1,0k , and
(t+ 1)(t− s)

(
K1,1
k−1(t, s)

)2 if t1,0k ≤ s < t1,1k ,
(5.10)

where

Ka,b
k−1(t, s) =

k−1∑
i=0

Qa,bi (t)Qa,bi (s). (5.11)

This function f (s) will prove a bound in Theorem 5.1, once we verify the hypotheses of
the theorem (see Theorem 5.42 in [50] for more details than we give here). By construction,
f (s)(t) ≤ 0 for −1 ≤ t ≤ s. To show f (s)(t) is of positive type for t1,1k−1 ≤ s < t1,0k , one can
check that for such s,

Q1,0
0 (s) > 0, . . . , Q1,0

k−1(s) > 0, and Q1,0
k (s) < 0. (5.12)
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Since Q1,0
k (t) is of positive type, these inequalities show K1,0

k−1(t, s) is of positive type as a
function of t. Moreover, they also show (t − s)K1,0

k−1(t, s) is of positive type as a function
of t by using the Christoffel-Darboux formula, which says

(t− s)K1,0
k−1(t, s) = (ck−1/ck)

(
Q1,0
k (t)Q1,0

k−1(s)−Q1,0
k (s)Q1,0

k−1(t)
)
, (5.13)

where ck > 0 is the leading coefficient of Q1,0
k . Since the product of functions of positive

type is also of positive type, it follows that f (s)(t) is of positive type for t1,1k−1 ≤ s < t1,0k .
By using the property that

(t+ 1)Q1,1
i (t)Q1,1

j (t) (5.14)

is of positive type, this argument can be extended to show f (s)(t) is of positive type for all
s ∈ [−1, 1].

Thus, these function can be used as auxiliary functions for Theorem 5.1, which gives
Levenshtein’s universal bound for the sphere. In terms of the normalized polynomials
Qi(s) = Qi(s)/Qi(1), we arrive at the bound

A(d, s) ≤


(k+d−3
k−1

) (2k+d−3
d−1 − Qk−1(s)−Qk(s)

(1−s)Qk(s)

)
if t1,1k−1 ≤ s < t1,0k , and

(k+d−2
k

) (2k+d−1
d−1 − (1+s)(Qk(s)−Qk+1(s))

(1−s)(Qk(s)+Qk+1(s))

)
if t1,0k ≤ s < t1,1k .

(5.15)

In certain cases this bound is the best that can be obtained from Theorem 5.1, but in
general it does not fully optimize the choice of auxiliary function.

5.3 The Kabatyanskii-Levenshtein bound

The following geometric inequality shows how the sphere packing density ∆Rd in Rd can
be bounded using A(d, s):

∆Rd ≤ min
π/3≤θ≤π

sind(θ/2)A(d, cos θ) = min
−1≤s≤1/2

(1− s
2

)d/2
A(d, s) (5.16)

(see (6.9) in [50] or Proposition 2.1 in [20]).
To obtain a good bound for fixed d, this inequality can be combined with Levenshtein’s

universal bound for A(d, s), where the best value of s can be found by optimizing a piece-
wise differentiable function. The resulting bound is the one shown as the Kabatyanskii-
Levenshtein bound in figure 3, although Kabatyanskii and Levenshtein [19] used a slightly
worse bound for A(d, s) as well as for ∆Rd in terms of A(d, s).

To obtain an asymptotic bound as d→∞, we can use the inequality

A(d, s) ≤ A(d, t1,1k ) ≤ f (t1,1
k

)(1)

f
(t1,1

k
)

0

= 2
(
d+ k − 1

k

)
(5.17)

when s ≤ t1,1k (see (6.13) in [50]). If k, d→∞ with k/d→ α, then

t1,1k →
2
√
α(1 + α)
2α+ 1 (5.18)
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by Corollary 5.17 in [50]. For θ < π/2, taking

α = 1− sin θ
2 sin θ (5.19)

ensures that t1,1k → cos θ, and applying Stirling’s formula shows that

1
d

log2A(d, cos θ) ≤ 1 + sin θ
2 sin θ log2

1 + sin θ
2 sin θ −

1− sin θ
2 sin θ log2

1− sin θ
2 sin θ + o(1) (5.20)

as d→∞. It now follows from (5.16) that the sphere packing density is at most 2−(κ+o(1))d,
where

κ = − log2 sin θ2 −
1 + sin θ
2 sin θ log2

1 + sin θ
2 sin θ + 1− sin θ

2 sin θ log2
1− sin θ
2 sin θ . (5.21)

Optimizing for the best choice of θ between π/3 and π/2 yields the root θ = 1.09951240 . . .
of

sec θ + tan θ = e(tan θ+sin θ)/2, (5.22)

at which point we obtain the Kabatyanskii-Levenshtein bound κ = 0.59905576 . . . .
Cohn and Zhao [20] gave a general transformation showing that any bound obtained

from Theorem 5.1 and (5.16) can also be obtained directly from the Euclidean linear pro-
gramming bound. Thus, there is no need to use spherical codes to obtain the Kabatyanskii-
Levenshtein bound. However, the transformation sheds little additional light on this bound,
and it is difficult to see how someone might think of it without using spherical codes.

5.4 Implied kissing numbers

One can strengthen the linear programming bound by taking into account constraints on
spherical codes. The following relaxation of the kissing number will prove useful in doing
so. Let C be the set of sphere centers in a packing. For x ∈ C and r ≥ 0, let

Nx(r) = #{y ∈ C : 0 < |x− y| ≤ r}, (5.23)

and let N(r) be the average of Nx(r) over x ∈ C (we can restrict our attention to periodic
packings, so that this average is well defined). If r0 is the minimal distance in C, then N(r0)
is the average kissing number of C, and for t > 0 we define the average t-neighbor number to
be N(tr0). In other words, the average kissing number is the average 1-neighbor number.

The following strengthening of the linear programming bound is a special case of
Theorem 1.4 in [69], where it was used to give improved bounds in dimensions 4 through
7 and 9. The proof in [69] amounts to retaining more terms in the Poisson summation
argument from [8].

Theorem 5.2 ([69]). Let g : Rd → R be a radial Schwartz function, and suppose that g
satisfies the following inequalities for some η ≥ 0 and s > r > 0:

(1) g(0) > 0 and ĝ(0) > 0,

(2) g(x) ≤ ηg(0) for r ≤ |x| ≤ s,
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(3) g(x) ≤ 0 for |x| ≥ s, and

(4) ĝ(y) ≥ 0 for all y.

Suppose furthermore that every sphere packing in Rd has average s/r-neighbor number at
most M . Then the sphere packing density in Rd is at most

πd/2

(d/2)!

(
r

2

)d g(0)
ĝ(0)(1 + ηM). (5.24)

The linear programming bound is equivalent to taking η = 0. The extra flexibility of
being able to choose g(0) and ĝ(0) is irrelevant, because we can rescale g and its input
variable, but it will be convenient below.

When the implied kissing number is impossibly large, we can apply Theorem 5.2 to
improve on the linear programming bound from Theorem 2.1 as follows. Suppose h is a
Schwartz function satisfying the hypotheses of the linear programming bound with radius
r. One can check by a rescaling argument that the average kissing number of any sphere
packing that achieves this bound must be

K = − d

rh′(r) , (5.25)

where h′(r) denotes the radial derivative at radius r (see Lemma 5.1 in [57]). Thus, if h is
the optimal auxiliary function in the bound, then K must be the implied kissing number.

Suppose furthermore that for some t > 1 we can prove an upper bound B for the
average t-neighbor number in every packing in Rd with B < K. For example, B could be
an upper bound for A(d, cos θ) for some θ > π/3, which can be arbitrarily close to π/3.

Given such a bound B < K, Theorem 5.2 proves a strictly stronger density bound
than Theorem 2.1 using h, as follows. Let s = (1 + ε)r for some small ε > 0, and
define g by g(x) = h(x/(1 + ε)). Then g satisfies the hypotheses of Theorem 5.2 with
η = −rh′(r)ε+O(ε2), g(0) = 1, and

ĝ(0) = (1 + ε)d = 1 + dε+O(ε2). (5.26)

If ε is small enough, then we can take M = B in Theorem 5.2, and

g(0)
ĝ(0)(1 + ηM) = 1− rh′(r)Bε+O(ε2)

1 + dε+O(ε2) = 1 + d(B/K − 1)ε+O(ε2), (5.27)

which is less than 1 when ε is sufficiently small, because B < K. The improvement here is
not large, but the resulting density bound is strictly better than that from Theorem 2.1.
Thus, figure 16 shows that we can extend the improved density bound from [69] to 10 ≤
d ≤ 23, 25 ≤ d ≤ 179, and a number of larger values of d. However, we do not know what
happens as d→∞.
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5.5 Bounds for the average kissing number

The implied kissing number has a concrete geometric meaning, beyond being the average
kissing number of a hypothetical packing. It turns out to be an upper bound for the average
kissing number of any sphere packing, subject to some conjectures about interpolation. The
key tool is the following theorem, which is the Euclidean analogue of Proposition 4.1 in [81]
by Bourque and Petri.

Theorem 5.3. Let f : Rd → R be a radial Schwartz function and r > 0, and suppose that
f satisfies the following inequalities:

(1) f(r) < 0,

(2) f(x) ≤ 0 for |x| ≥ r, and

(3) f̂(y) ≥ 0 for all y.

Then the average kissing number of any d-dimensional sphere packing is at most

− f(0)
f(r) . (5.28)

Here f(r) denotes the value of f(x) when |x| = r.

Proof. It suffices to prove the inequality for finite packings and take a limit. Let C be any
finite subset of Rd with minimal distance r, and let

N = #{(x, y) ∈ C2 : |x− y| = r}/|C| (5.29)

be its average kissing number. Then Fourier inversion implies that

∑
x1,x2∈C

f(|x1 − x2|) =
∫
Rd
dy f̂(y)

∣∣∣∣∣∑
x∈C

e2πi〈x,y〉
∣∣∣∣∣
2

≥ 0, (5.30)

while ∑
x1,x2∈C

f(|x1 − x2|) ≤ |C|f(0) +N |C|f(r) (5.31)

thanks to the inequalities for f . By combining these two bounds, we conclude that N ≤
−f(0)/f(r).

One can also prove this theorem using Poisson summation, along the lines of [8] or [81].
The conditions for equality are similar to those for the linear programming bound for
packing density, if we assume self-duality.11 Specifically, equality holds iff f vanishes at
radius rn :=

√
2∆n for n ≥ 2, f̂ vanishes at rn for n ≥ 0 (with r0 = 0), r = r1, and

f ′(r1) = 0 (because otherwise shifting r would improve the bound). For comparison, the
equality conditions for h in Theorem 2.1 are identical, except that the conditions f ′(r1) = 0
and f̂(0) = 0 are replaced with h(r1) = 0.

11This is the same issue as the conjectured agreement between the linear programming bound and the
−1 eigenfunction uncertainty principle.
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Suppose rn =
√

2∆LP
n (d/2) and dn = dLP

n (d/2) come from the optimal solution to the
linear programming bound in Rd. The crossing equation says that∑

n≥0
dnf(rn) =

∑
n≥0

dnf̂(rn) (5.32)

for every radial Schwartz function f : Rd → R. If f satisfies the equality conditions for
Theorem 5.3, then this equation reduces to

f(0) + d1f(r1) = 0. (5.33)

In other words, the bound −f(0)/f(r1) for the average kissing number is d1, as desired.
When should such a function f exist and satisfy the hypotheses of Theorem 5.3?

First, note that the condition f̂(0) = 0 is redundant, for the following reason. If we let
F (x) = |x|f ′(x), then F̂ (y) = −df̂(y)−|y|f̂ ′(y). The other conditions on f guarantee that
F (0) = F (rn) = F̂ (rn) = 0 for n ≥ 1, and then the crossing equation implies that F̂ (0) = 0
and hence f̂(0) = 0. What we need is for f to satisfy the same equality conditions as h,
except for changing h(r1) = 0 to f ′(r1) = 0.

These conditions arise naturally in interpolation problems [44, 82]. Specifically, Open
Problem 7.3 from [44] raised the question of whether radial Schwartz functions g : Rd → R
are uniquely determined by the values and radial derivatives of g and ĝ at the radii rn for
n ≥ 1. While this assertion fails for d ≤ 2 and is difficult to test for d = 3, it seems to hold
numerically for d ≥ 4. Proving or disproving it would be an important step forward in our
understanding of the modular bootstrap.

The conditions on f and h mean they are part of an interpolation basis for reconstruct-
ing g from these values, since all but one of the values must vanish for f and h. Thus,
Theorem 5.3 gives a natural geometric interpretation for one of the basis functions, just as
Theorem 2.1 does.

Aside from d = 8 or 24 (in which case [44] proves an interpolation theorem), we do not
know how to prove that an interpolation basis exists, or that the basis functions satisfy the
right sign conditions for these theorems. However, the numerical evidence indicates that
both are true. If so, the implied kissing number is an upper bound for the average kissing
number of every sphere packing.

This relationship has a pleasing consequence: in each dimension, either the implied
kissing number is the best bound known for the average kissing number, or we can use a
better bound in Theorem 5.2 to improve on the packing density bound.12 In other words,
if we fail to improve on the linear programming bound for density, it can only be because
we have obtained an excellent bound for the average kissing number.

A The limiting case of the spinless modular bootstrap

In this appendix, we explain why ∆gap is an upper bound for the spectral gap in the
spinless modular bootstrap even if ω(Φ0) = 0 (in the notation of section 2.1). We expect

12Technically we need a bound for the average t-neighbor number for some t > 1, but that is practically
the same as a bound for t = 1.
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that any such functional ω is the limit of functionals with ω(Φ0) > 0, but it is not clear
how to justify that expectation. Instead, we can use essentially the same argument as the
proof of Proposition 2.4 in [11]. We will translate it into modular bootstrap terms for the
convenience of the reader.

First, we note that the spectrum 0 = ∆0 < ∆1 < ∆2 < · · · must satisfy

lim
j→∞

∆j+1
∆j

= 1, (A.1)

since otherwise (4.8) could not hold for ∆j < A < ∆j+1 with j large.
Now suppose ω is a linear functional such that ω(Φ0) ≥ 0, ω(Φ∆) ≥ 0 whenever ∆ ≥

∆gap, and ω(Φ∆) is not identically zero. We wish to obtain a contradiction if ∆1 > ∆gap.
The crossing equation

ω(Φ0) +
∑
∆>0

d∆ω(Φ∆) = 0 (A.2)

shows that ω(Φ∆j
) must vanish for each j, but that does not directly yield a contradiction.

Instead, for each constant λ ≥ 1 we will replace ω with a modified functional ωλ such
that ωλ(Φ∆) = ω(Φλ∆) + λ−cω(Φ∆/λ). To see why this is possible, let f(r) = ω(Φr2/2).
As explained in section 2, f is a −1 eigenfunction for the radial Fourier transform in 2c
dimensions, and conversely any such function arises for a suitable choice of ω. Let fλ(r) =
f(λ1/2r), so that f̂λ(r) = λ−cf̂(r/λ1/2) = −λ−cf(r/λ1/2), and define ωλ by ωλ(Φr2/2) =
fλ(r) − f̂λ(r) = f(λ1/2r) + λ−cf(r/λ1/2), which works because fλ − f̂λ is again a −1
eigenfunction.

This new functional satisfies ωλ(Φ0) ≥ 0 and ωλ(Φ∆) ≥ 0 whenever ∆ ≥ λ∆gap.
Furthermore, the only way ωλ(Φ∆) can vanish at a point ∆ ≥ λ∆gap is if ω(Φλ∆) =
ω(Φ∆/λ) = 0.

Now suppose ∆1 > ∆gap, and let λgap = ∆1/∆gap. Then we conclude that ω(Φ∆) = 0
whenever ∆ is in one of the intervals (λ−1

gap∆j , λgap∆j). Because limj→∞∆j+1/∆j = 1,
these intervals cover an entire half-line [R,∞) for some R > 0. However, an eigenfunction
of the Fourier transform cannot have compact support unless it vanishes identically, because
it must be an entire function if it (equivalently, its Fourier transform) has compact support.
Thus, because ω(Φ∆) does not vanish identically, we conclude that ∆1 ≤ ∆gap, as desired.

B Convergence of the spinless bootstrap

In this appendix, we examine the convergence rate of the spinless modular bootstrap as a
function of the truncation order, and in particular explain why we are confident that the
numerical calculations in sections 3 and 4 have been fully optimized.

Figure 17 shows the density bounds obtained using truncation orders N = 1, 2, 4,
. . . , 512 for dimensions d ≤ 2048, in the same format as figure 3.13 Each fixed N seems
to lead to the same limit as d → ∞, analogously to [36, section 3.2], but they closely
approximate the optimal linear programming bound over increasingly large ranges of d. In

13Technically, when d is small we plot only the smaller values of N , to avoid the failure of our numerical
method for d = 3 and N > 32, which we noted in section 2.4.
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Figure 17. Density bounds based on N = 1, 2, 4, 8, . . . , 512 (colored red through black).
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Figure 18. Minimal N such that ∆LP,N
1 (c) ≤ (1 + ε)∆LP

1 (c) for ε = 0.1, 0.01, and 0.001, together
with the least squares regression lines.

particular, doubling N more or less doubles the range of dimensions over which we obtain
a close approximation.

What figure 17 indicates is that N should be chosen proportionally to d if we wish
to obtain comparably accurate results. Figure 18 makes this assertion more precise, and
shows that the required truncation order is remarkably close to linear in d. We obtained
the limiting values ∆LP

1 (c) in figure 18 by taking N quite large, in particular more than
twice as large as needed to make the plotted values stop changing.

We do not know a formula for the slopes in figure 18. When we need to estimate the
convergence rate in high dimensions, we extrapolate from lower dimensions and then make
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1 (c) as a function of N for c = 1/2, 1, 2, 4, . . . , 256 (colored red

through black).

a conservative underestimate. What makes this procedure reliable is how close to linear
figure 18 is. By contrast, figure 19 fixes c and examines how many digits of ∆LP,N

1 (c) have
converged as a function of N . Here, the behavior is not nearly as linear, and it is more
difficult to extrapolate.

The most delicate numerical estimation in this paper occurs in obtaining the number
−0.6044 as the infinite-dimensional limit of the LP column in table 1. Table 4 gives evidence
that the values in table 1 are correctly extrapolated to infinite truncation order. Specifically,
for each dimension table 4 lists the largest truncation order N we have computed, together
with the smallest order Nk that agrees with order N to k decimal places. The numbers
in black are exact, meaning that truncation order Nk − 1 is not enough. In each such
case N is at least 2Nk, and often much larger than that; this margin of safety gives us
confidence that these values do reflect the limit as N →∞. The red numbers are obtained
by doubling the numbers above them, which seems to produce an overestimate and would
work in every other case with d > 2. Even for the red numbers, N5 < N , and therefore
we believe that our truncation orders are high enough for all the numbers in table 1 to
have stabilized.
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d N N1 N2 N3 N4 N5
1 ∞ 1 1 2 2 2
2 33 1 2 3 4 5
4 308 1 2 4 5 7
8 ∞ 2 3 5 7 9
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64 1025 5 11 18 25 33

128 780 8 20 33 46 59
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512 972 25 71 118 167 215

1024 852 48 138 232 327 422
2048 1700 93 271 458 647 836
4096 1750 183 536 916 1294 1672

Table 4. The truncation order Nk required to approximate (log2 density)/d to within 0.5 · 10−k,
so that rounding to k decimal places leads to error at most 10−k.
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