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Abstract

In the absence of curative therapies, treatment of metastatic castrate-resistant prostate can-

cer (mCRPC) using currently available drugs can be improved by integrating evolutionary

principles that govern proliferation of resistant subpopulations into current treatment proto-

cols. Here we develop what is coined as an ‘evolutionary stable therapy’, within the context

of the mathematical model that has been used to inform the first adaptive therapy clinical

trial of mCRPC. The objective of this therapy is to maintain a stable polymorphic tumor het-

erogeneity of sensitive and resistant cells to therapy in order to prolong treatment efficacy

and progression free survival. Optimal control analysis shows that an increasing dose titra-

tion protocol, a very common clinical dosing process, can achieve tumor stabilization for a

wide range of potential initial tumor compositions and volumes. Furthermore, larger tumor

volumes may counter intuitively be more likely to be stabilized if sensitive cells dominate the

tumor composition at time of initial treatment, suggesting a delay of initial treatment could

prove beneficial. While it remains uncertain if metastatic disease in humans has the proper-

ties that allow it to be truly stabilized, the benefits of a dose titration protocol warrant addi-

tional pre-clinical and clinical investigations.

1 Introduction

While overall survival of early stage prostate cancer is increasing due to early detection and

improving therapy for local and regionally confined disease, the overall survival for metastatic

prostate cancer patients remains bleak [1]. This is largely due to the ability of metastatic cancer

populations to evolve resistance to all currently available therapies [2–7]. While the search

for truly curative therapies continues, there is some evidence that patient outcomes can be

improved using currently available therapies by integrating evolutionary principles that govern
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proliferation of resistant subpopulations into current treatment protocols [8–10]. Delaying or

preventing the evolution of resistance, known as ‘evolutionary’ therapies, could prolong drug

sensitivity and potentially allow for large increases in overall survival.

For instance, a type of evolutionary therapy known as adaptive therapy uses drug holidays

timed specifically to each patients’ disease dynamics in an attempt to intentionally maintain a

sufficient level of drug sensitive cells [8, 11–14]. Upon withdrawing therapy, these sensitive

cells can compete with and suppress resistant cancer cells, thus prolonging drug efficacy. Con-

tinuous or maximum tolerated dose therapies quickly eliminate the entire sensitive population

resulting in treatment failure as resistance cells can now grow unchecked. Adaptive therapy

clinical trials are underway in multiple different cancers including trials in metastatic castrate-

resistant prostate cancer (NCT02415621, NCT03511196), in melanoma—NCT03543969, and

in thyroid—NCT03630120.

The design of these adaptive therapies is rooted heavily in the use of mathematical model-

ing, more specifically evolutionary game theory (EGT) [15–17], which helps us to model situa-

tions where multiple organisms interact and where interactions with individuals of different

properties largely determine one’s chances of survival (fitness). Unlike in the classical game

theory [18, 19], individuals are not expected to be overtly rational, and their ‘strategies’ are

properties that they inherit from their predecessors. The EGT models build and test the funda-

mental understanding of the dynamical interactions underlying tumor population dynamics

[20–25]. The development and study of mathematical models like these has suggested other

possible evolutionary therapies beyond adaptive therapies, most notably the notion of long

term stabilization [26]. One of the core properties of evolutionary systems that can be studied

with EGT is the presence of an evolutionary stable strategy (ESS) [15–17], which corresponds

to the stable equilibria of the tumor dynamics [27]. If such stable equilibria in tumors exist,

reaching it using available therapies could provide a means for achieving long term stabiliza-

tion of tumors and subsequent dramatic increase in progression-free survival [28, 29].

Previous theoretical work suggests that stable polymorphic equilibria could exist within

tumor subpopulations [30, 31]. Interestingly, early preclinical in-vivo studies of adaptive ther-

apy in OVCAR xenografts treated with carboplatin, and in MDA-MB-231/luc triple-negative

and MCF7 estrogen receptor–positive (ER+) breast cancers treated with paclitaxel showed the

ability to stabilize tumor volume, though the underlying subpopulations were not explicitly

measured [32, 33]. In both of these studies, once initial tumor volume control using the maxi-

mum tolerable dose was achieved, it could be maintained with progressively smaller drug

doses, suggestive of a stable equilibria. Furthermore, polymorphic stability in heterogeneous

tumor cell populations has been shown to exist explicitly in breast cancer and neuroendocrine

pancreatic cancer in-vitro [34, 35].

If these stable equilibria exist, the clinically relevant question is how can we use currently

available drugs to arrive at these equilibria? The ‘evolutionary stable therapies’ attempt to

maintain a stable polymorphic tumor composition of cells sensitive and resistant to therapy, in

order to prolong treatment efficacy and progression free survival [36, 37]. Previous mathemat-

ical studies have developed examples of evolutionary stable therapies, by focusing only on sta-

bilization of the frequency dynamics, while generally ignoring the density dynamics [38, 39].

Stabilization of only the underlying frequency dynamics is inadequate in the case of long term

stabilization of a growing tumor where tumor cell density is paramount to patient health [40].

Here we develop an evolutionary stable therapy for the Zhang et al. mathematical model

that was used to inform the adaptive therapy clinical trial in mCRPC [8]. First, stability analysis

of the evolutionary game theoretic model of mCRPC allows for identification of basic proper-

ties of the model that are required for a stable equilibria to exist within constraints on density.

Next, to identify an evolutionary stable therapy, we frame the problem of arriving at a stable
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equilibrium as an optimal control problem [41–46]. Interestingly, previous optimal control

studies with the objective of lengthening patient overall survival identified stabilization tech-

niques as optimal treatment strategies [47, 48]. The evolutionary stable therapy identified here

with the explicit objective of reaching a stable equilibria is then translated into a clinically feasi-

ble strategy and performance is compared against simulated standard of care and adaptive

therapy treatment protocols for >200, 000 virtual patients. The clinical and psychological

implications of this new strategy are discussed.

2 Metastatic castrate-resistant prostate cancer growth model

We build upon the [8, 49], and [50] mathematical models that consider mCRPC as an evolu-

tionary game between three cancer cell types:

• T+ cells requiring exogenous androgen;

• TP cells expressing 17α-hydroxy/17,20-lyase (CYP17α) and producing testosterone; and

• T− cells that are androgen-independent.

With abiraterone therapy, the patients are also on androgen deprivation therapy that sup-

presses the production of testosterone by the body. This suppression does not directly affect TP

or T− cells, but it does mean that T+ can only exist in the presence of TP cells because the TP

cells secrete testosterone as a public good that can support the T+ cells.

2.1 Lotka-Volterra model

The system of equations describes the interactions between T+, TP, and T− cell types,

i 2 T ¼ {T+, TP, T−}. The instantaneous rate of change in the population size of each cell

type i 2 T , _xi ¼
def d xi

d t ; is given by

_xi ¼ rixi 1 �

X

j2T

aijxj

Ki

0

B
B
@

1

C
C
A ð1Þ

where the parameters ri, Ki, and αij correspond to the growth rates, carrying capacities, and

competition coefficients, respectively.

2.2 Growth rates ri
The growth rates of the three subpopulations in (1) were derived from the measured doubling

times of representative cell lines. The LNCaP cell line (ATCC@CRL-1740) is representative

of T+ cells with a measured doubling time of 60 hours. The H295R cell line (ATCC@CRL-

2128) is representative of TP cells with a doubling time of 48 hours. The PC-3 cell line

(ATCC1CRL-1435) is representative of T− cells with a doubling time of 25 hours. From these

doubling times the growth rates of the T+, TP, and T− cells would be 0.27726, 0.34657, and

0.66542, (units of per day) respectively. These cell line derived growth rates are unlikely to be

biologically feasible within a tumor environment with limited resources. We therefore scale

these growth rates to rT+ = 2.7726 � 10−3, rTP = 3.4657 � 10−3, and rT− = 6.6542 � 10−3 as in [8].

Note that the intrinsic growth rates do not influence the equilibrium frequency of the three

cell types, only the rate at which the dynamics play out.
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2.3 Carrying capacities Ki and the effect of abiraterone

In our model, the abiraterone dose Λ(t) 2 [0, 1] equals 0 if no drug is given at time t, equals to

1 if the maximum tolerated dose is applied, and scales between (0, 1) at intermediate doses.

The carrying capacity of T− cells is independent of the abiraterone dose and we set it to KT−(t)
= 10000 for all t. The actual magnitude of KT− is arbitrary. What matters is how it scales relative

to the carrying capacities of the other two cell types. The carrying capacities of TP and T+ cells

are affected by abiraterone dose. With no abiraterone given, the carrying capacity for TP cells

is 10000, the same as for T−. We assume that abiraterone directly affects the carrying capacity

of TP and reduces it linearly, to a minimum of 100 when abiraterone is administered at maxi-

mum tolerated dose, i.e. when Λ(t) = 1. Therefore, as in [50], we assume that KTP at time t is a

linear function of the dose Λ(t) as follows:

KTPðLðtÞÞ ¼ 10000 � 9900LðtÞ ð2Þ

Additionally, abiraterone affects the growth of T+ cells as the carrying capacity of the T+ cell

population derives entirely from utilizing the endogenous testosterone produced by the TP

cells. We assume that the carrying capacity of T+ is a linear function of the density of TP cells

as defined by

KTþðLðtÞÞ ¼ mðLðtÞÞ � xTPðtÞ ð3Þ

where

mðLðtÞÞ ¼ 1:5 � LðtÞ: ð4Þ

In this way, the per cell contribution of TP to KT+ referred to here as the symbiosis coefficient

μ(Λ(t)), has a maximum of 1.5 when no abiraterone is given and is lowered linearly to a mini-

mum value of 0.5 as abiraterone dose increases to the maximum tolerated dose. When Λ(t) = 0

the carrying capacity of T+ cells could be as high as 15000 if the density of TP cells was equal to

KTP = 10000. Since the maximum carrying capacity of any one type of cell type is at least

10000, we must define the maximal tolerated tumor burden (viable total tumor population

size) to be less than 10000. This ensures that a tumor burden that is untreated with abiraterone

where Λ(t) = 0 for all t will result in patient death by any one cell type. We choose a relatively

high maximal tolerated tumor burden of 9000 because we assume that clinically, patient death

does not occur until the latest moment possible, only after the human body has exhausted all

of its resources. This results in the following viability constraint:
X

i2T

xi � 9000 ð5Þ

where i 2 T ¼ fTþ;TP;T � g.

2.4 Competition coefficients αijnd their impact on system stability

The behavior of the model, including stability, depends heavily on the 3 × 3 competition

matrix that characterizes the evolutionary game between the three cancer cell types from the

set T ¼{T+, TP, T−}. Each competition coefficient represents the effect of an individual of type

j on the growth rate of type i. The competition matrix used in [8] and analyzed here is

A ¼ ðaijÞ ¼

1 0:7 0:8

0:4 1 0:6

0:5 0:9 1

0

B
B
B
@

1

C
C
C
A

ð6Þ
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Stability analysis is performed for different but constant values of Λ(�) 2 [0, 1], as we are inter-

ested in situations where tumor burden can be maintained using a fixed amount of medica-

tion. A detailed explanation of the original development of this competition matrix and

stability analysis is provided in detail in S1 in S1 File. The population densities x�Tþ , x�TP and

x�T� ; corresponding to stable equilibria for matrix (6) are shown in S2 in S1 File. While stable

equilibria for (1) exist for this competition matrix, there are no stable equilibria that corre-

spond to a total tumor volume less than the patient viability constraint (5), or even
P

i2T xi �
10000: The stable points are dominated by the resistant T− cells, out-competing the T+ and TP

cells. While some stable points exist where T+ and TP cells can contain the T− cells, it requires

so many TP cells that the patient viability constraint must be broken.

From analysis in S3 in S1 File, the coefficients α31 and α32 describing the competition effect of

T+ and TP cells on T− cells respectively, are the key parameters affecting containment of the T−

cells. Specifically, α31 and/or α32 must be greater than one. While the initial assumptions of the

model required the competition coefficients to be within [0, 1], studies co-culturing sensitive

and resistant cell lines show that competition coefficients between cancer cells may not be lim-

ited to this range. In-vitro and theoretical studies tend to suggest significant competition between

cancer cells in non small cell lung cancer and breast cancer cell lines [28, 51, 52]. For example,

results from a novel re-imagining of a Gause style experiment using two competing breast cancer

cell lines, MCF7 and MB-MDA-231, with analysis using Lotka-Volterra models suggest that the

competition coefficients between these cancer cell lines may be as high as 12.6 [34].

While the exact values of these competition coefficients in-vitro or in-vivo is currently

unknown, here we consider a formulation of the model where we increase the competition

effect of TP cells on T− cells, choosing a value of α32 = 2. This value is chosen because 1) it is

large enough to allow for stable equilibria within the patient viability constraint (5), and 2) is

small enough to not eliminate T− in the stable equilibria (which is the case for higher values of

α32, such as α32 = 5, see S3 in S1 File). With α32 = 2, the resistant T− cells are still present in the

tumor at stable equilibria, which would be expected clinically. The new matrix is shown below:

A ¼ ðaijÞ ¼

1 0:7 0:8

0:4 1 0:6

0:5 2 1

0

B
B
B
@

1

C
C
C
A

ð7Þ

For the matrix Aij = (aij) as defined in (7) the resulting stable equilibria are shown in Fig 1.

From Fig 1, for all values of Λ� 0.4041, ðx�Tþ ; x
�
TP ; x�T� Þ ¼ ð0; 0; 10000Þ is a stable equilib-

rium. There are no stable equilibria for a polymorphic TP and T− tumor nor for the monomor-

phic TP tumor. We can see that there is a bifurcation at about Λ = 0.4828: For any smaller Λ, a

stable equilibrium contains a mix of T+ and TP cells, while for Λ 2 [0.4828, 0.4877), a stable

equilibrium contains a mix of all three cell types. Regions of Λ where the total tumor burden

of the stable equilibrium is within the patient viability constraint (5) are highlighted in gray.

3 Optimal control to arrive at stable equilibria

If the system is at a stable equilibrium with a constant dose of abiraterone, like those shown

above, remaining at that dose will keep the system at that equilibrium indefinitely. However,

the clinically relevant question is: Can we arrive at this equilibrium from any viable point x(t0)

= (xT+, xTP, xT−) corresponding to an incoming patient tumor composition, using only varying

doses of abiraterone as the control? We frame the problem of arriving at an equilibrium point

as an optimal control problem to identify the dosing schedule L
�
ð�Þ ¼

def
½L
�
ðtÞ�t2½t0 ;tf � that
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minimizes the average distance between the state of the system x(t) and the equilibrium point

x� over time horizon between the initial time t0 and the final time tf:

L
�
ð�Þ ¼ argmin

Lð�Þ

Z tf

t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxTþðtÞ � x�TþÞ
2
þ ðxTPðtÞ � x�TPÞ

2
þ ðxT� ðtÞ � x�T� Þ

2

q

dt ð8Þ

with respect to the system dynamics (1), growth rates rT+ = 2.7726 � 10−3, rTP = 3.4657 � 10−3,

rT− = 6.6542 � 10−3, carrying capacities for TP and T+ given by Eqs (2) and (3), respectively,

KT− = 10000, and with A = (αij) defined by (7).

Fig 1. Population densities for stable equilibria. Population densities x�Tþ , x�TP and x�T� ; corresponding to stable equilibria for Λ 2 [0, 1] and for α32 = 2.0.

The gray highlighted regions show the stable equilibria that are within the patient viability constraint (5). The yellow highlighted points represent two

specific stable equilibria chosen for further analysis.

https://doi.org/10.1371/journal.pone.0243386.g001
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The time horizon is set to 10000 as this is well beyond the lifespan of the typical patient pre-

sented with metastatic castrate-resistant prostate cancer (> 20 simulated years under the

assigned growth rates). In this way, if the tumor volume remains below the patient viability

constraint (5) over this time interval, the patient will most likely die from some other cause.

We vary the initial tumor compositions x(t0) = (xT+(t0), xTP(t0), xT−(t0)) to explore a wide

range of possible initial conditions. 100 randomly selected tumors that satisfy the viability con-

straint (5) are explored in Fig 2.

We know from Section 2.4 that two regions of stable equilibria in terms of Λ exist. For Λ 2
[0, 0.4828), the two species T+ and TP equilibrium is the stable equilibrium. We select

(2082.76, 5206.90, 0.00), corresponding to Λ = 0.4, as x� in (8). For Λ 2 [0.4828, 0.4877), the

three-species equilibrium is a stable equilibrium. We select (863.45, 4436.73, 694.82), corre-

sponding to Λ = 0.4848, as another possible x� in (8). These two points are shown with yellow

highlights in Fig 1. While we chose these two equilibria to study specifically for (8), any equi-

librium corresponding to Λ 2 (0.2866, 0.4877) could be used as these equilibria fall within the

patient viability constraint. Alternatively, we could adopt a reach-avoid formulation instead of

selecting a specific x� in (8).

Fig 2. Initial tumor compositions for Forwards Backwards Sweep analysis. 100 randomly selected initial tumor compositions used in the Forwards

Backwards Sweep optimal control analysis. All initial total tumor volumes satisfy the patient viability constraint
P

i2T
xiðt0Þ � 9000.

https://doi.org/10.1371/journal.pone.0243386.g002
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3.1 Forward Backwards Sweep method

Here we use the Forward Backward Sweep (FBS) numerical technique to find the dosing

schedule Λ�(�) satisfying (8). The FBS method characterizes the optimal control problem using

the Hamiltonian formulation. The Hamiltonian for this problem is given below as follows:

HðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxTþðtÞ � x�TþÞ
2
þ ðxTPðtÞ � x�TPÞ

2
þ ðxT� ðtÞ � x�T� Þ

2

q

þlTþðtÞxTþðtÞrTþ 1 �
xTþðtÞ þ a12xTPðtÞ þ a13xT� ðtÞ

xTPðtÞðKTþðLðtÞÞÞ

� �

þlTPðtÞxTPðtÞrTP 1 �
a21xTþðtÞ þ xTPðtÞ þ a23xT� ðtÞ

KTþðLðtÞÞ

� �

þlT� ðtÞxT� ðtÞrT� 1 �
a31xTþðtÞ þ a32xTPðtÞ þ xT� ðtÞ

KT�

� �

ð9Þ

where λi’s are referred to as the costates or adjoint variables, given by li ¼ �
@H
@xi

. The state

equations given in (1) are subject to the initial conditions (xT+(t0), xTP(t0), xT−(t0)) shown in Fig

2 and are solved forwards in time. The costate equation must satisfy a transversality condition

λi(tf) = 0 and are solved backwards in time, from the final time towards the beginning. A full

explanation of FBS is given in [53] and in detail particularly for this system in S4 in S1 File.

The solution provided by FBS approximates the treatment strategy Λ�(�) that minimizes the

Hamiltonian (1), subject to initial conditions for state variables and final conditions for cost-

ates, which is equivalent to minimizing (8), subject to the system dynamics (1).

4 Optimizing abiraterone treatment to reach stable equilibrium

Adopting the Forward Backward Sweep method introduced in the previous section, we identi-

fied the optimized abiraterone treatment strategy for each of the 100 initial conditions (xT+(t0),

xTP(t0), xT−(t0)) shown in Fig 2. While the individual optimized treatment strategies of each of

the 100 virtual patients are shown in the S5 in S1 File, Fig 3 shows the mean optimal treatment

strategy where the objective is to reach the two-species equilibrium point (2082.76, 5206.90,

0.00), corresponding to Λ = 0.4 (left), and the three-species equilibrium (863.45, 4436.73,

694.82), corresponding to Λ = 0.4848 (right). To reach the two-species equilibrium point, the

individual treatment strategies tend towards a Λ(t0) = 0 while in some cases to reach the three-

species equilibrium point a Λ(t0)>0 is required. Interestingly, the average optimized treatment

dose to arrive at either equilibrium point is a simple dose titration scheme that begins with a

small abiraterone dose and increases slowly until the known equilibrium dose Λ = 0.4 and Λ =

0.4848, respectively, is reached.

Fig 3. Forwards Backwards Sweep optimized dosing schedules. Forward Backwards Sweep results for optimal

dosing schedule to arrive at two-species stability point (left panel) and three species stability point (right panel). The

mean of all 100 paths is shown with symmetric one standard deviation error bars (dosage values<0 are not possible).

Standard error of the mean is on the order of 10−3.

https://doi.org/10.1371/journal.pone.0243386.g003
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The state trajectory paths x(�) for each of the 100 initial tumors to the equilibrium with the

optimized treatments are shown in Fig 4. It is important to note that while all 100 initial

tumors can reach the stable equilibrium, a subset of the trajectories (13 initial tumors) result in

patient death by violating the patient viability constraint (5). These trajectories are highlighted

in red in both panels. The common characteristic of these initial tumors that cannot be stabi-

lized without first causing patient death is that the initial value of xTP is� 4.10% of the total

tumor composition (S6 in S1 File). Because both equilibria require a significant amount of TP

cells, if there are very few of them to begin with, the only way to shift the composition of the

tumor towards the equilibrium points is to allow for a very high tumor volume that, in this

model, results in patient death. Increasing or decreasing the patient viability constraint will

either rescue some of these lost patients or cause more of the patients to cross the constraint,

respectively.

5 Clinical translation of dose titration

Can a dose titration of abiraterone be successfully implemented under clinical constraints to

achieve the tumor stabilization or mCRPC? Dose titration is a very common clinical process of

incrementally increasing the dose of a medication in order to find the most beneficial dosage

and is commonly used to find the appropriate dose to manage other long-term illnesses such

as diabetes and depressive disorders [54]. Generally, little information is available to the physi-

cian and dose changes are made based on benefits and side effects of the patient in real time.

Similarly, in the case of titrating abiraterone, the physician will not know either the location or

existence of an equilibrium nor the initial tumor composition. To address this lack of informa-

tion, we analyze a variety of generalized dose titration schedules that do not require precise

initial or final conditions, but instead rely on monitoring the total tumor volume (i.e. PSA

measurement) in real time.

In all modeled titration protocols the total tumor volume VðtÞ ¼
P

i2T xiðtÞ is measured

every 100 simulated time points (just over 3 months in real time). Since the equilibrium tumor

volume V� corresponding to the equilibrium point x� that we want to reach will be unknown

in the clinic, here we test two volumes Va and Vb that can be measured clinically: 1. the incom-

ing baseline tumor volume Va ¼
P

i2T xiðt0Þ, and 2. a maximum tolerable tumor volume

defined as a volume just smaller than the volume that causes a loss in quality of life (i.e. bone

pain due to extensive metastases). In reality, this volume will vary greatly with age, demograph-

ics, general overall health, psychological comfort, and other patient-specific factors. Here, we

choose a relatively large maximum tolerable tumor volume Vb = 7000 for all patients.

Fig 4. System state trajectories under optimal dose schedules. State trajectories from each of the 100 initial tumor

compositions to the two species equilibrium point (left panel) and the three-species equilibrium point (right panel).

Paths highlighted in red breach the patient viability constraint before reaching the equilibrium point.

https://doi.org/10.1371/journal.pone.0243386.g004
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Here we allow ourselves to change the abiraterone dose in the increments of 0.1 (i.e. Λ(t) 2
{0.1, . . ., 1}), where the dose change may occur at the time of volume measurement. If the cur-

rent V(t) increases above 110% of the tumor volume we are attempting to maintain (Va or Vb),

the dose is increased by 0.1. If V(t) decreases below 90% of the tumor volume we are attempt-

ing to maintain, the dose is decreased by 0.1. If the tumor burden V(t) is within 0.9 and 1.1 of

the target volume, the dose remains unchanged (Fig 5).

While the optimal control results suggest an initial dose Λ(t0) = 0, here we run additional

simulations to compare this optimized result to the protocols suggested in [32] and [33] in in-

vivo stabilization studies where the initial dose is Λ(t0) = 1 and the dose is titrated down. We

compare all of the combinations of Va, Vb, Λ(t0) = 0 and Λ(t0) = 1 to the clinical standard of

care (maximum tolerated dose) where Λ(t) = 1 for all t 2 [t0, tf] and the adaptive therapy proto-

col used in [8]. In this way, we model six clinically feasible protocols:

1. Maximum tolerated dose

2. Adaptive therapy cutting the initial volume by 50%.

3. Stabilization at initial tumor volume Va, with Λ(t0) = 1.

4. Stabilization at initial tumor volume Va with Λ(t0) = 0.

5. Stabilization at maximum tolerated tumor volume Vb with Λ(t0) = 1.

6. Stabilization at maximum tolerated tumor volume Vb with Λ(t0) = 0.

Since clinically the initial tumor composition will be unknown, we test 10, 000 initial tumor

compositions (xT+(t0), xTP(t0), xT−(t0)), as shown in Fig 6.

6 Outcomes of clinically feasible protocols

In Fig 7, a Kaplan-Meier survival analysis is provided for the total of 60, 000 simulated patients

under the six treatment strategies.

The percentage of these simulated patients that breached the patient viability constraint (5)

and the mean and standard deviation of the time of this breach are summarized in Table 1.

Each protocol is discussed in detail below, though three main takeaways are apparent:

1. MTD results in 100% of the patients violating the viability constraint at an average of

667.38 simulated time units or roughly corresponding to just over 21 months. This falls

Fig 5. Dose adjustment schematic. Schematic description of the dose adjustment rules based on the measured total tumor volume shown here, attempting

to maintain a total tumor burden at Va, though the same rules apply to Vb.

https://doi.org/10.1371/journal.pone.0243386.g005
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within the overall survival reported from patients with and without previous treatment with

docetaxel (14.8 months and 53.3 months, respectively) [55, 56],

2. adaptive therapy can provide permanent control for only a small subset (11.39%) of initial

tumor compositions, and

3. the most successful therapy in terms of patients surviving until the end of the simulation is

titrating up from an initial dose of Λ(t0) = 0 and allowing for a large tumor volume. This

results in 65.55% of the 10, 000 initial tumor compositions simulated to not breach the

patient viability constraint.

6.1 Maximum tolerated dose dynamics

Using maximum tolerated dose (Λ(t) = 1 for all t 2 [t0, tf]) eliminates the T+ and TP cells

and the tumor composition quickly becomes dominated by T−, as shown in Fig 8. All of the

patients breach the viability constraint within a relatively short simulated time, with an average

time of 667.38 time units.

Fig 6. Initial tumor compositions for clinical feasible protocols. 10, 000 randomly selected initial tumor compositions used to analyze the clinically

feasible protocols. All total tumor volumes satisfy the patient viability constraint
X

i2T

xiðt0Þ � 9000.

https://doi.org/10.1371/journal.pone.0243386.g006
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Fig 7. Kaplan-Meier survival analysis for clinically feasible treatment strategies. 10, 000 patients were given each of the six clinically feasible treatment

strategies. In this way this shows the outcome of 60, 000 simulated patients. Patients that had not yet breached the patient viability constraint by the end of

the simulation are labeled as censored.

https://doi.org/10.1371/journal.pone.0243386.g007

Table 1. Survival statistics for clinically feasible treatment strategies.

Treatment % Patients death Mean (SD) time of death

MTD 100% 667.38(246.66)

Adaptive Therapy 88.61% 815.97(687.65)

Va, Λ(t0) = 1 90.78% 1112.62(1209.67)

Va, Λ(t0) = 0 75.80% 1412.53(1519.43)

Vb, Λ(t0) = 1 89.61% 817.07(429.51)

Vb, Λ(t0) = 0 34.45% 1108.09(918.98)

Percentage of simulated patients that breached the patient viability constraint before the end of simulation (tf =

10000) and the average time of this breach.

https://doi.org/10.1371/journal.pone.0243386.t001
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6.2 Adaptive therapy dynamics

Adaptive therapy protocols result in an average time to breaching the viability constraint of

815.97 simulated time points. This increase in survival beyond the MTD standard of care is

due to adaptive therapy delaying the competitive release of the T− population. Unfortunately,

the treatment windows where Λ(t) = 1 ratchet the population towards a tumor composed of all

T− cells and cause the state trajectories to miss the stable equilibria. An example of the ultimate

failure of the adaptive therapy is shown in Fig 9.

6.3 Dose titration dynamics

For the titration protocols, the mean successful treatment strategy of the surviving patients is

shown in Fig 10. Of note, for the treatments with an initial dose Λ(t0) = 0 (panel B and D), the

titration protocol developed in real time directly mimics the protocol identified by the optimal

protocol found by the optimal control analysis shown in (Fig 3). These results show that a sim-

ple set of titration rules with no prior knowledge of the initial tumor composition nor the exis-

tence or location of an equilibrium can be used to stabilize a population at an equilibrium

point. Interestingly, all of these surviving simulated patients under the titration protocols end

the simulation at the two-species equilibrium point where Λ = 0.4 with T+ = 2068.97 and TP =

5172.41. Since intermediate values of Λ are not available in the chosen dosage scheme, the

entire region Λ 2 [0.4828, 0.4877) where a three-species equilibrium is located, is unreachable.

While the population dynamics may pass by a three-species equilibrium point, stabilizing

Fig 8. Maximum tolerable dose state dynamics. State trajectories for 100 initial tumor compositions (left panel), used

for optimization of patients under the maximum tolerated dose protocol. All state trajectories end when the total

tumor burden violates the patient viability constraint (5). The two blue dots show the location of the two equilibria

(two- and three- species). The right panel shows the population densities of the three cell types in a representative case.

https://doi.org/10.1371/journal.pone.0243386.g008

Fig 9. Adaptive therapy state dynamics. The state trajectory (left panel) and population densities (right panel) of an

example patient under the adaptive therapy protocol. The two blue dots show the location of the two stable equilibria

(two- and three- species).

https://doi.org/10.1371/journal.pone.0243386.g009
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there is unlikely, due to the discrete values of Λ available. More gradual changes in dose will

however allow to reach the three-species equilibrium.

A specific example of dose titration with an initial dose of Λ(t0) = 0 and attempting to stabi-

lize at the previously defined maximum tolerated tumor volume of Vb = 7000 is shown in Fig

11. Interestingly, no drug was given for over 500 simulated time units. This is the time required

for the tumor volume to exceed 7700 (110% of Vb = 7000) at which point the dose keeps

increasing until the stabilizing dose of Λ = 0.4 in reached. The population dynamics show that

while T− cells are present in the initial tumor, allowing the T+ and TP cells to remain and even

increase in density prevents the competitive release of these T− cells. In this example, the

Fig 10. Titration protocols resulting in patient survival. Average titration protocols of patients that did not breach

the patient viability constraint within the simulation time. The standard error of the mean (SEM) is on the order of

10−3 for all cases, therefore here the error bars show one standard deviation. (A) Λ(t0) = 1 stabilizing at Va. (B) Λ(t0) =

0 stabilizing at Va. (C) Λ(t0) = 1 stabilizing at Vb. (D) Λ(t0) = 0 stabilizing at Vb.

https://doi.org/10.1371/journal.pone.0243386.g010

Fig 11. State dynamics of patient undergoing titration protocol. The dynamics here show an example patient under

the initial dose of Λ(t0) = 0 and attempting to stabilize at a tumor volume equal to Vb = 7000. The state trajectory in the

left panel shows the population arriving at the two-species equilibrium. The population densities and abiraterone dose

are shown in the right panel.

https://doi.org/10.1371/journal.pone.0243386.g011
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population of T+ and TP cells can then be maintained at their equilibrium using a constant

dose Λ = 0.4. An example of all six clinically feasible therapies on one simulated patient is

available in S7 in S1 File.

7 Effect of initial tumor composition on treatment outcome

The initial tumor composition has a large effect on the outcomes of the treatment protocols.

In Fig 12, we show the initial tumor compositions that survive until the end of the simulation

time for each of the protocols studied. Firstly, no patients survive to the end of simulation

under MTD (Fig 12A). More interestingly, the patients that survive using adaptive therapy all

begin within a small region of initial tumor compositions (Fig 12B). Using adaptive therapy,

the 11.39% of patients who survive have very large initial tumor volumes (>7774) and rela-

tively small T− populations (<33.6% of the initial tumor volume). This combination is

required as even short doses at Λ = 1 allow the T− opportunity to grow, as seen in Fig 9.

Fig 12. Initial tumor compositions of surviving patients. The initial tumor compositions of the patients that did not

breach the patient viability constraint within the simulation time for each of the six clinically feasible protocols. Their

two dimensional projections are available in S9 in S1 File. (A) Maximum tolerable dose. (B) Adaptive therapy. (C) Λ
(t0) = 1 stabilizing at Va. (D) Λ(t0) = 0 stabilizing at Va. (E) Λ(t0) = 1 stabilizing at Vb. (F) Λ(t0) = 0 stabilizing at Vb.

https://doi.org/10.1371/journal.pone.0243386.g012
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The patients that survive using the titration protocol attempting stabilization at initial

tumor volume Va with Λ(t0) = 1 also have large initial tumor volumes (>5400) and small pop-

ulations of T− (Fig 12C). On the other hand, the titration protocol attempting stabilization at

initial tumor volume where Λ(t0) = 0 (Fig 12D) still requires a high tumor volume to survive,

but can tolerate much higher initial densities of T− cells. For both cases, the minimum tumor

volume that could be stabilized was 5195. Again, an initial dose of Λ(t0) = 0 allows patients

with higher initial frequencies of T− cells to survive as any doses at Λ = 1 allow the T− opportu-

nity to grow, as seen in Fig 9.

Furthermore, attempting stabilization at a maximum tolerated tumor volume allows

patients with small initial tumor volumes to survive (Fig 12E and 12F). It is important to note

that allowing these patients’ tumors to grow will not decrease their quality of life. So while it is

psychologically difficult to intentionally let a small initial tumor burden grow, it could poten-

tially provide clinical benefits. With an initial dose of Λ(t0) = 1, the initial T− population must

still be small in order to avoid competitive release of the T− population at early treatment

stage, regardless of the tumor volume. By setting Λ(t0) = 0, even patients with small initial

tumor volumes and high initial frequencies of T− cells can survive to the end of the simulation.

7.1 Tumor composition at time of death for clinically feasible protocols

It is important also to understand the composition of the tumor that caused the patient to

cross the viability constraint to understand why the treatment failed. In Fig 13, the tumor com-

position at the time of crossing the patient viability constraint is presented for each treatment.

For the treatment protocols giving high doses—MTD, adaptive therapy, and Λ(t0) = 1 stabiliz-

ing at Vb—the vast majority of the patients died of tumors comprised completely of T− cells.

This makes sense as the high doses of abiraterone given throughout or early in treatment will

eliminate the T+ and TP cells, causing the competitive release of T− and eventual treatment

failure.

For the patients undergoing the treatment protocol where Λ(t0) = 1 stabilizing at Va, the

12.87% that had a tumor comprised mostly of T+ and TP at the time of treatment failure had

large initial tumor volumes, and therefore large values of Va that were>8000. In this way,

while the initial dose of abiraterone was Λ = 1, the protocol titrates down very quickly in

order to maintain the desired tumor volume. Unfortunately, this generally results in an under

treatment of the tumor and the patient crossing the viability constraint with T+ and TP cells

remaining.

Additionally, the tumor compositions at the time of treatment failure of the patients receiv-

ing initial low doses of abiraterone—Λ(t0) = 0 stabilizing at Va and Λ(t0) = 0 stabilizing at Vb—

show that 39.7% and 18.14% of the patients who crossed the viability constraint, respectively,

had high percentages of T+ and TP cells remaining. Since these cells are treatable by abirater-

one, these patients were indeed under treated by the treatment protocol.

These results show that there is an important balance between giving too much abiraterone

causing competitive release of resistant cells, and not giving enough abiraterone causing treat-

ment failure even with treatable cells remaining in the tumor.

8 Discussion

Here we developed and analyzed an ‘evolutionary stable therapy’ in mCRPC that can maintain

a stable polymorphic tumor heterogeneity of sensitive and resistant cells to abiraterone, in

order to prolong treatment efficacy and progression free survival. Surprisingly, in the majority

of simulated patients, the optimal control analysis suggests a simple increasing dose titration

protocol to achieve stabilization. While a single formulation of the competition matrix is
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presented here, three additional clinically relevant matrices were investigated resulting in the

analysis of a total of seven possible stable points. The optimal control analysis consistently sug-

gests a simple increasing dose titration protocol to achieve stabilization (see S5 in S1 File). Fur-

thermore, the outcomes of the simulated clinically feasible protocols show that increasing dose

titration protocols invariably increased progression free survival in the majority of patients

(see S8 in S1 File). This suggests that if the properties of the underlying biology allow stabiliza-

tion, regardless of the actual composition of the stable polymorphic tumor heterogeneity, an

increasing dose titration protocol may, in general, provide an appropriate dosing strategy to

achieve stabilization.

Fig 13. Tumor composition at time of viability constraint breach. Ternary plots where each red dot indicates the

tumor composition of T+, TP, and T− cells at the time a patient reached the viability constraint. (Figures made using

[57].) The top highlighted triangle in each figure encompasses the tumor compositions with>80% T− cells. Patients

with tumor compositions located in this upper triangle suffered from competitive release of the T− cells. Outside of this

upper triangle, treatable cells were still present at the time of viability constraint breach. (A) 100% of patients are

located in the top triangle: n = 10000. (B) Adaptive Therapy. 99.90% of patients are located in the top triangle:

n = 8861. (C) Λ(t0) = 1 stabilizing at Va. 87.13% of patients are located in the top triangle: n = 9088. (D) Λ(t0) = 0

stabilizing at Va. 60.30% of patients are located in the top triangle: n = 7580. (E) Λ(t0) = 1 stabilizing at Vb. 99.97% of

patients are located in the top triangle: n = 7961. (F) Λ(t0) = 0 stabilizing at Vb. 81.86% of patients are located in the top

triangle: n = 3445.

https://doi.org/10.1371/journal.pone.0243386.g013
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Dose titration is a very common protocol used with drugs like insulin, anti-depressants,

and opioids, to find the optimal dose of a medication while minimizing the adverse side effects,

physical or financial [58–60]. Most notably in oncology, a ‘ramp-up’ protocol for Venetoclax is

used in patients with chronic lymphocytic leukemia in order to limit tumor lysis syndrome

(physical toxicity) [61]. In patients with hepatocellular carcinoma a dose titration of sorafenib

is used to significantly lower overall cost (financial toxicity) while maintaining equivalent sur-

vival [62]. Interestingly, some initial studies of dose titration protocols show benefit beyond

toxicity management. For example, titration of axitinib resulted in a greater proportion of

patients with metastatic renal cell carcinoma achieving an objective response and, incredibly,

titration of regorafenib in patients with metastatic colorectal cancer actually increased median

overall survival from 5.9 months (initiating treatment at standard dose) to 9.0 months [63, 64].

Interestingly, in the case of abiraterone titration, our analysis also showed that larger tumor

volumes may counter intuitively be more likely to be stabilized if sensitive cells dominate the

tumor composition at time of initial treatment, suggesting a delay of initial treatment could

prove beneficial. This reiterates previous analysis of this model comparing intermittent abira-

terone to optimized treatments concluding that delaying treatment for as long as possible,

while increasing tumor volume, maintained a larger sensitive population and resulted in pro-

longed tumor control [50]. This result is also seen in other disciplines such as agricultural pest

management, equine parasite management, and bacterial infection management where large

sensitive populations can contain resistant populations [12, 65, 66].

If stabilization of the tumor is possible, the use of titration to reach an equilibrium of meta-

static disease could have many benefits such as prolonging progression free survival and

administering lower doses of drug leading to less cumulative drug over the length of the treat-

ment. While the goal of treating any cancer is to allow the patient to live a normal life span, a

titration protocol will also generally increase patient quality of life by limiting the toxicity

related side effects of cancer drugs. Furthermore, delaying the absolute growth of disease

within a patient could allow other physiological processes, such as vascular normalization and

the immune system, that have little effect on large rapidly growing tumors to play a greater

role in patient outcomes [33]. It is also possible that curative strategies using application of

additional drugs or immune therapies could be more effective in a stabilized tumor environ-

ment [67–74].

With any novel treatment protocol, there are potential drawbacks. Analysis here showed

that it is possible to either undertreat or overtreat patients using a titration protocol. If a patient

is already experiencing quality of life issues because of high tumor burden, beginning at low

doses in a titration protocol is not wise. For these patients, much like in the two mouse models

where the initial exponential growth required immediate intervention, it may be necessary to

use a more aggressive approach, like the decreasing dose titration protocol used in the in-vitro

mouse models or adaptive therapy. Overtreatment, on the other hand, could be mitigated

by more frequent PSA measurements in order to react more quickly to changes in tumor

response and limit the competitive release of resistant cells during therapy [75]. In reality, it is

likely that PSA alone will be insufficient to guide detailed evolutionary protocols such as the

one discussed here [76]. Additional information particularly related to the underlying tumor

composition such as DHT-PET imaging or AR-V7 expression from circulating tumor cells

could greatly improve evolutionary management in mCRPC [77–80]. An ideal implementa-

tion would be to consider using drug pumps like those used in insulin management for contin-

uous measurement and administration of cancer therapeutics [81].

The outcomes of this study are heavily dependent on the underlying mathematical model

used and its parameterization [82]. As with any evolutionary game, the competition coeffi-

cients are of particular interest [83]. Once the clinical trial that was designed using the model
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studied here is completed, parameter optimization of the competition matrix using patient

data from both the standard of care maximum tolerable dose cohort as well as the adaptive

therapy cohort can be performed. While studies are now attempting to measure these intratu-

moral competitive properties in-vitro [34], more detailed experimental work will be required

before understanding and attempting stabilization in-vivo [28].

Furthermore, this particular model studied here does not encompass the full complexity of

metastatic disease within a patient. For example, phenotypic switching, which can be implicitly

accounted for in population models like the one used here, is not modeled explicitly and could

alter the dynamics of treatment outcomes [84–87]. Furthermore, this model assumes no new

mutations resulting in novel phenotypes occur during treatment, which is likely not true. If a

new resistant phenotype emerges, this will ultimately change the dynamics of the game and

the stability properties [88]. It will require further in-vivo analysis to show that either new

mutations cannot invade the tumor population or that these mutations occur late enough that

the patient succumbs to another cause of death before treatment failure. As in other ecological

systems, it is still unknown whether stability of both the ecological and evolutionary dynamics

is feasible and robust, and will remain unknown in metastatic disease until further experiments

along this line are performed [89, 90].

The effects of the spatial structure within a heterogeneous tumor population is not explicitly

studied in this model, though have been shown to affect stabilization properties [91–94]. Inter-

estingly, [49] added a spatial structure to the model used here and showed that the interaction

neighborhood size and the effects of carrying capacity affect the stability properties. In this

way, it would be of great interest to identify ‘evolutionary stable therapies’ in other models of

prostate cancer that model treatments as death rates or reductions in growth rates, address the

importance of cell turnover, and include spatial structure [95–103].

The clinical development of an evolutionary stable therapy described here could provide

immediate and substantial benefits to both patient quantity and quality of life. A better under-

standing of the properties of disease that make evolutionary therapies superior to current

standard of care and the psychological shift required are of great interest [67, 104]. While it

remains uncertain if metastatic disease in humans has the properties that allow it to be truly

stabilized, the benefits of a dose titration protocol warrant additional pre-clinical and clinical

investigations.
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