

Delft University of Technology

LEOPART
A particle library for FENICS
Maljaars, Jakob M.; Richardson, Chris N.; Sime, Nathan

DOI
10.1016/j.camwa.2020.04.023
Publication date
2021
Document Version
Final published version
Published in
Computers and Mathematics with Applications

Citation (APA)
Maljaars, J. M., Richardson, C. N., & Sime, N. (2021). LEOPART: A particle library for FENICS. Computers
and Mathematics with Applications, 81, 289-315. https://doi.org/10.1016/j.camwa.2020.04.023

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.camwa.2020.04.023
https://doi.org/10.1016/j.camwa.2020.04.023

Computers and Mathematics with Applications 81 (2021) 289–315

a

1
b

c

d

(

h
0
l

Contents lists available at ScienceDirect

Computers andMathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

LEoPart: A particle library for FEniCS
Jakob M. Maljaars a,b,∗, Chris N. Richardson c, Nathan Sime d

Environmental Fluid Mechanics, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg
, 2600 GA Delft, The Netherlands
CRUX Engineering BV, Pedro de Medinalaan 3, 1086 XK Amsterdam, The Netherlands
University of Cambridge BP Institute, Madingley Road, Cambridge, CB3 0EZ, UK
Department of Terrestrial Magnetism, Carnegie Institution for Science, WA, DC, USA

a r t i c l e i n f o

Article history:
Available online 27 May 2020

Keywords:
Particle-in-cell
Finite elements
PDE-constrained optimization
Particle tracking
Open-source software
FEniCS

a b s t r a c t

This paper introduces LEoPart, an add-on for the open-source finite element software
library FEniCS to seamlessly integrate Lagrangian particle functionality with (Eulerian)
mesh-based finite element (FE) approaches. LEoPart- which is so much as to say:
‘Lagrangian–Eulerian on Particles’ - contains tools for efficient, accurate and scalable
advection of Lagrangian particles on simplicial meshes. In addition, LEoPart comes
with several projection operators for exchanging information between the scattered
particles and the mesh and vice versa. These projection operators are based on a
variational framework, which allows extension to high-order accuracy. In particular, by
implementing a dedicated PDE-constrained particle–mesh projection operator, LEoPart
provides all the tools for diffusion-free advection, while simultaneously achieving op-
timal convergence and ensuring conservation of the projected particle quantities on
the underlying mesh. A range of numerical examples that are prototypical to passive
and active tracer methods highlight the properties and the parallel performance of
the different tools in LEoPart. Lastly, future developments are identified. The source
code for LEoPart is actively maintained and available under an open-source license at
https://bitbucket.org/jakob_maljaars/leopart.
© 2020 TheAuthors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Passive and active tracer methods find applications in a versatile range of engineering areas such as geophysical flows
and environmental fluid mechanics [1–4], experimental fluid mechanics [5–7], and bio-medical applications [8,9], to name
a few. In passive tracers methods, the Lagrangian particle motion is fully determined by the carrier flow and there is no
feedback mechanism from the particles to the carrier flow. Such a feedback mechanism between the tracer particles and
the carrier fluid is, however, typical to active tracer methods, in which particles mutually interact with the carrier fluid. To
capture this interaction between the particles and the flow in numerical models, physical information carried by the tracer
particles is used to estimate one or more additional source terms in the governing flow equations. In a discrete setting,
this typically requires the reconstruction of mesh fields from the scattered particle data when the fluid flow equations are
solved using a mesh-based approach, such as finite difference (FD), finite volumes (FV), or finite elements (FE). Application
examples of active tracer methods include, among many others, the modeling of turbulent (reacting) flows [10,11], and

∗ Corresponding author at: Environmental Fluid Mechanics, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg
1, 2600 GA Delft, The Netherlands.

E-mail addresses: j.m.maljaars@tudelft.nl, maljaars@cruxbv.nl (J.M. Maljaars), chris@bpi.cam.ac.uk (C.N. Richardson), nsime@carnegiescience.edu
N. Sime).
ttps://doi.org/10.1016/j.camwa.2020.04.023
898-1221/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
icenses/by/4.0/).

https://doi.org/10.1016/j.camwa.2020.04.023
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2020.04.023&domain=pdf
https://bitbucket.org/jakob_maljaars/leopart
http://creativecommons.org/licenses/by/4.0/
mailto:j.m.maljaars@tudelft.nl
mailto:maljaars@cruxbv.nl
mailto:chris@bpi.cam.ac.uk
mailto:nsime@carnegiescience.edu
https://doi.org/10.1016/j.camwa.2020.04.023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

290 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315

m
o

L
a

t
F
t

f
c
I
h
t
i
d
i
b

a
a
a
c
a
p

2

2

w
w
i
t
b

M
T

T
c
f

antle convection problems [4,12–14]. Alternatively, the particle information can be used to solve the advective part
f physical transport phenomena, resulting in so-called particle–mesh operator splitting schemes, see, e.g., [15,16], and

the earlier work by Maljaars et al. [17–19] from which LEoPart has evolved. Eliminating artificial dissipation by using
agrangian particles for the discretization of the advection operator primarily motivates such methods, rendering the
pproach promising for simulating advection dominated flows [17,18] or free-surface flows [16,20].
In all the aforementioned methods and applications, particle-based and mesh-based discretization techniques essen-

ially become intertwined. To render such a combination of Lagrangian particle methods in conjunction with mesh-based
D, FV, or FE solvers tractable for simulating practical engineering problems, a suite of dedicated, flexible and efficient
ools is indispensable.

The open-source library LEoPart [21] which is presented in this paper provides such a toolbox by integrating particle
unctionality into the open-source FE library FEniCS [22]. LEoPart - which stands for ‘Lagrangian–Eulerian on Particles’ -
ontains utilities for efficiently and flexibly advecting and tracking a set of user-defined particles on simplicial meshes.
n addition, LEoPart contains a suite of tools for projecting scattered particle data onto the mesh and vice versa in a
igh-order accurate, efficient and physically sound manner by implementing particle–mesh projection tools developed in
he first author’s recent work [17,18]. It is particularly the latter feature which sets LEoPart apart from the particle support
n, e.g., PETSc [23] or the open-source particle library ASPECT [24,25] which is built on top of the finite element package
eal.II [26]. The resulting combination of LEoPart and FEniCS is particularly suited for application to flow problems
nvolving active or passive tracers, or to implement particle–mesh operator splitting schemes, as will be demonstrated
y various numerical examples throughout.
The paper is structured as follows. Section 2 gives some background information on the encompassing FEniCS library,

nd provides a helicopter view of LEoPart. Section 3 describes the implementation of particles, as well as the advection
nd tracking of particles in LEoPart. Section 4 details the available particle–mesh interaction strategies. Particular
ttention is paid to the PDE-constrained particle–mesh interaction in Section 4.1.3, which enables the reconstruction of
onservative mesh fields from a set of moving particles. Section 5 illustrates some example applications, meanwhile paying
ttention to the performance and scaling properties of LEoPart. Section 6 closes the paper by presenting conclusions and
roviding an outlook on future developments.

. Implementation in FEniCS

.1. A primer on FEniCS

FEniCS is a Finite Element (FE) framework, written in C++, with a Python interface. One of the major challenges of
riting an FE code is that the computation which needs most user configuration is that of the local element tensor,
hich lies at the innermost part of the assembly loop. The local element tensor describes the matrix entries on each

ndividual element, and relates to the physical equations of the system. FEniCS solves this problem by allowing the user
o write these equations in a Domain Specific Language (DSL), which is then automatically compiled to C code to be called
y the assembly loop.
In addition to simplifying the construction of the local element tensor, FEniCS makes it easier to run in parallel using

PI. Using the Python interface, running FEniCS code with MPI can be as simple as mpirun -n 32 python3 demo.py.
he mesh will be partitioned into 32 chunks, and the problem will be distributed across 32 processes for this job.
FEniCS consists of several components:

• Unified Form Language (UFL) - providing the DSL component
• FEniCS Form Compiler (FFC) - which compiles the DSL into C code
• FIAT - the finite element tabulator
• DOLFIN - the main C++/Python package, which integrates I/O, assembly and solvers

he following Python script shows how the DOLFIN interface can simplify the expression of an FE problem and
omputation of its solution. Consider the weak form of the Poisson equation defined on the unit square Ω := (0, 1)2:
ind u ∈ V subject to homogeneous Dirichlet boundary conditions, where V is the appropriate solution space, such that∫

Ω

∇u · ∇vdΩ =
∫
Ω

v sin(x)dΩ ∀ v ∈ V . (1)

Python code
from dolfin import *
mesh = UnitSquareMesh(20, 20)
V = FunctionSpace(mesh, " Lagrange " , 1)
u, v = TrialFunction(V), TestFunction(V)
a = inner(grad(u), grad(v))*dx
f = Expression(" sin(x[0]) " , degree=2)
L = f*v*dx
u = Function(V)
bc = DirichletBC(V, 0.0, " on_boundary ")
solve(a==L, u, bc)

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 291

i
l
s
c

P
a
s

p

2

m

t
a

d
b

l

t

3

p

p
s

Fig. 1. Code structure LEoPart.

Calling the solve() method runs the form compiler (FFC) and compiles the symbolic expressions into C code, which
s compiled and loaded into memory. A global matrix equation is then assembled using this generated code for the
ocal element tensor, and finally an LU solver is called to solve the resulting system of equations. Whilst this example is
imple and compact, many options exist to expand each part of the problem, for example by applying Dirichlet boundary
onditions, or assembling matrix and vector separately, and choosing more sophisticated solvers.
For larger problems, it is important to run in parallel using MPI. Mesh partitioning is performed using PT-SCOTCH or

arMETIS, and there is support for the HDF5 file format, which allows parallel access of large datasets. Third party libraries
re used throughout, wherever possible: PETSc is the linear algebra backend of choice, with a large selection of parallel
olvers available.
FEniCS is an open-source package, and is available for various platforms. The latest information can be found on the

roject website www.fenicsproject.org.

.2. LEoPart code structure

LEoPart is built on top of the FEniCS package, and adds new concepts for the advection of particles on simplicial
eshes, and the interaction between particles and the mesh. A central paradigm in the design of LEoPart is that it serves

as an add-on to FEniCS, using the existing FEniCS tool chain wherever possible. As a result, all the FEniCS functionality
remains available for the user. In particular, LEoPart is designed such that it seamlessly integrates with the mesh
partitioning in FEniCS facilitating parallelism using MPI.

To provide a fast and user friendly suite of tools, LEoPart wraps C++ code in Python using pybind1 for the
computationally demanding parts such as the particle advection and the matrix assembly. Particle pre-processing and
post-processing is done in Python. Fig. 1 provides an overview of the different core components in LEoPart.

The remainder of this paper essentially discusses the different components from Fig. 1. Particular attention is paid to
he particles class, the advection of the particles, and the tools for the interaction between the particles and the mesh via
n ℓ2-projection or a PDE-constrained projection.
As an aside, we note that LEoPart also contains a Stokes solver, implementing the H(div) conforming hybridized

iscontinuous Galerkin (HDG) formulation from Rhebergen & Wells [27,28]. Implementation details of this solver are
eyond the scope of this paper.
The source code for LEoPart as well as the examples that are shown in what follows, are hosted under an open-source

icense at https://bitbucket.org/jakob_maljaars/leopart.

3. Particle functionality

This section explains the implementation of particles in LEoPart and discusses the particle advection and particle
racking strategy on simplicial meshes.

.1. Particle initialization

The particles class forms the backbone for dealing with the Lagrangian particles in LEoPart. Operations such as
article advection and the particle–mesh projections require as input an instance of this particles class, see Fig. 1.
Each particle is assumed to have at least a spatial coordinate attached, which henceforth is denoted by xp for a single

article. Moreover, it is presumed that particles always live in a spatial domain, denotedΩ , so that the particle coordinate
et is defined as

Xt := {xp(t) ∈ Ω}
Np
p=1, (2)

1 https://github.com/pybind/pybind11.

http://www.fenicsproject.org
https://bitbucket.org/jakob_maljaars/leopart
https://github.com/pybind/pybind11

292 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315

w

M
(
a
p
i
c
f

S

ith Np the total number of particles. For notational convenience, we also make use of the index set of particles and the
index set of particles hosted by cell K , at a fixed time instant t , which are defined as

St := {p ∈ N : xp(t) ∈ Xt}, (3)

SK
t := {p ∈ N : xp(t) ∈ K , xp(t) ∈ Xt}. (4)

Whereas carrying a spatial coordinate might be sufficient for passive particle tracing, additional properties, such as
density, concentration, or momentum values, need to be attached to the particles for active particle tracing. For a scalar
and vector valued property, such particle quantities are defined as

Ψt :=
{
ψp(t) ∈ R

}Np
p=1 , (5)

Vt :=
{
vp(t) ∈ Rd}Np

p=1 , (6)

respectively, where d = 1, 2, 3 is the spatial dimension.
LEoPart provides a number of particle generators via ParticleGenerator.py to generate a set of point coordinates.

ost of the available particle generators create random point locations within a geometric object such as a rectangle
RandomRectangle), a circle (RandomCircle), and a sphere (RandomSphere). These particle generators enable gener-
ting particles on parts of the meshed domain, but have the drawback that the point coordinates are generated on one
rocessor and broadcasted to the other processors in parallel computations. This replication on MPI-ranks is circumvented
n the RandomCell class, which generates random point coordinates within the simplicial (i.e. triangular or tetrahedral)
ells of the mesh. For a tetrahedron, random barycentric coordinates within a cell are generated with the algorithm
rom [29], i.e.

Python code
def _random_bary():

Create uniform random numbers
s = np.random.random()
t = np.random.random()
u = np.random.random()

Fold space in cube into tetrahedron
if (s + t) > 1.0:

s, t = 1.0 - s, 1.0 - t
if (s + t + u) > 1.0:

if (t + u) > 1.0:
t, u = 1.0 - u, 1.0 - s - t

else:
s, u = 1.0 - t - u, s + t + u - 1.0

v = 1.0 - s - t - u
return (s, t, u, v)

Multiplying s, t, u, v by the vertex coordinates returns after summation a random point within a tetrahedral cell.
ince LEoPart inherits the domain decomposition of the mesh from DOLFIN, the RandomCell particle generator takes

advantage of the mesh sub-domains, and only creates point coordinates that are within processor boundaries.
The set of Lagrangian particles which is formed by the coordinate set Xt , and an arbitrary number and ordering of

scalar and/or vector valued particle quantities is used to instantiate the particles class in LEoPart. Upon instantiation
of this class, the hosting cell for a particle is found via a cell collision check that is available in FEniCS via Bounding-
BoxTree::compute_first_entity_collision. As soon as the initial hosting cell is known, LEoPart uses a more
efficient algorithm for tracking moving particles on the mesh, see Section 3.2.2. The coordinates of a point, together with
the optional properties, constitute a particle, which is defined in LEoPart as an array of dolfin::Points, i.e.

C++ code
// Define the particle atom as a vector of dolfin points
namespace dolfin
{
typedef std::vector<Point> particle;
}

The first element in this array is always populated by the particle position. Using a dolfin::Point for the representation
of the particle position allows to conveniently use other DOLFIN functionalities. However, this design choice also restricts
the possibilities for the definition of the particle properties. A particle can, for example, neither carry vector valued
properties for which the length exceeds three, nor can tensor properties be defined at the particles.

From the user’s perspective, instantiating the particles class on a unit square mesh from a user-defined coordinate
array, together with arrays for a scalar- and a vector-valued property is done as

https://bitbucket.org/jakob_maljaars/leopart/src/master/source/ParticleGenerator.py

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 293

v

3

s

w
t
m
c

Python code
from dolfin import UnitSquareMesh
from leopart import particles
import numpy as np

msh = UnitSquareMesh(2, 2)

Create 4 particles in 2D
xp = np.random.rand(4, 2)
psip = np.zeros(xp.shape[0])
vp = np.zeros(xp.shape)

Instantiate particles
p = particles(xp, [psi_p, v_p], msh)

For the sake of generality it is noted that the ordering and the length of the list with the particle quantities, i.e. [psi_p,
_p] in the above example is arbitrary.

.2. Particle advection

Three different particle advection schemes are currently supported by LEoPart. These advection schemes solve the
ystem of ODEs: given a vector-valued velocity field ah, solve ∀ p ∈ St

dxp
dt
= ah(xp, t) (7a)

dψp

dt
= 0, (7b)

dvp
dt
= 0, (7c)

here a particle can carry an arbitrary number of scalar- and/or vector-valued quantities that will stay constant
hroughout the particle advection. The advect_particles class solves Eq. (7) with a first-order accurate Euler forward
ethod, and the two and three stage Runge–Kutta methods are available via the advect_rk2 and the advect_rk3
lasses, respectively. The two multi-stage Runge–Kutta advection schemes inherit from the advect_particles class,
and a typical constructor for the latter reads

C++ code
// Constructor advect_particles
advect_particles(particles& P, FunctionSpace& U, Function& uhi,

const MeshFunction<std::size_t>& mesh_func);

This snippet shows that the particle advection classes require a particles instance, a velocity field specified in the
Function and its corresponding FunctionSpace, and a MeshFunction for marking the boundaries, see Section 3.3. A
complete overview of all the particle advection constructors is found in advect_particles.h.

3.2.1. Cell–particle connectivity and particle relocation
Imperative for both the particle advection, as well as the particle–mesh interactions later on, is the evaluation of mesh

fields at a potentially large number of points inside the domain. In order to do so, it must be known which cell is hosting
the particle. At a meta-level, two options are available to fit this purpose. The first option is that each particle carries
a reference to its hosting cell in the mesh. As soon as a particle crosses a cell boundary, this particle-to-cell reference
is updated. Alternatively, a cell can be considered as a bucket filled with particles. A particle is removed from the cell’s
‘particle bucket’ as soon as it escapes the cell, and added to the receiving cell’s particle bucket. Rather than a particle
keeping track of its hosting cell, the bookkeeping is done at the cell level, i.e. each cell contains a list of particles.

The latter method is used in LEoPart, as this enables efficient evaluation of a mesh-field at the particle positions and
allows to conveniently use the FEniCS mesh partitioning for storing the particle data on the different processes. Central
to the method is the cell–particle connectivity table, for which LEoPart uses

C++ code
std::vector<std::vector<particle>> _cell2part;

Related to the advection stage, that will be discussed in more detail below, this _cell2part structure can be updated
with the particles::relocate method, for which the declaration reads

C++ code
// Relocate particles with known relocation data. Each entry is {cidx, pidx, cidx_recv} using
// numeric_limits::max for cidx_recv to send to another process or crossing an open boundary
void relocate(std::vector<std::array<std::size_t, 3>>& reloc);

https://bitbucket.org/jakob_maljaars/leopart/src/master/source/cpp/advect_particles.h

294 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315

T
a

t
∆

i
a
t

a

his method is run once per advection step - or once per sub-step for the multistage advection schemes - and takes
s input a relocation array reloc of particle indices (pidx) that should be relocated from one cell (cidx) to another

(cidx_recv). For each entry in the reloc array, LEoPart either copies the particle to a particle collector if the particle
escaped through a boundary or creates and pushes a particle to the receiving cell index via

C++ code
const std::size_t& cidx = r[0];
const std::size_t& pidx = r[1];
const std::size_t& cidx_recv = r[2];

if (cidx_recv == std::numeric_limits<unsigned int>::max())
{

if (mpi_size > 1)
particle_communicator_collect(cidx, pidx);

}
else
{

particle p = _cell2part[cidx][pidx];
_cell2part[cidx_recv].push_back(p);

}

Once this relocation is done, the particles that needed relocation are erased from the old cell index via
particles::delete_particle:

C++ code
// Remove ith particle from cell c
void delete_particle(int c, int i)
{
_cell2part[c].erase(_cell2part[c].begin() + i);
}

In view of this relocation method, the following remarks are made:

• A potential improvement could be to let the cell–particle connectivity _cell2part store a list of particle indices per
cell rather than a list of particle objects, and store the particles within a process in a separate array. This obviates
the need to create and erase a particle within _cell2part when it escapes to another cell on the same process.
• The particle communication between processors via the collection step and a subsequent pushing step will be further

detailed when discussing the implementation of internal boundaries in Section 3.3.1.
• An efficient way of finding the new hosting cell cidx_recv given the current host cidx is crucial from a

performance perspective. The implementation of a fast particle tracking algorithm is discussed next.

3.2.2. Particle tracking
A challenge that is specifically related to the particle advection, is to efficiently keep track of the hosting cell for the

Lagrangian particles in the unstructured simplicial mesh. Several procedures have been developed in literature, such as
superposition of a coarse Cartesian mesh onto the unstructured mesh [30], the tetrahedral walk method [31], or methods
based on barycentric interpolation [32]. An alternative method is the convex polyhedron method [33], which assumes
that the mesh consists of convex polyhedral cells. This indeed is the case for the simplicial cells used in FEniCS. For each
facet in the mesh, the midpoint, the unit normal, and the connectivity are pre-computed. Concerning the connectivity, a
facet has two neighboring cells for facets internal to the mesh, or only one neighboring cell for exterior boundary facets
and internal facets which are located on processor boundaries. From the perspective of a mesh cell, indicated by K , the
sign of the facet unit normals is adapted so as to make sure that they are always outwardly directed.

The convex polyhedron particle tracking then proceeds as follows for a particle p, which at time t is located at xp(t)
within cell K0, see Fig. 2 for a principle sketch. Assume the particle has a velocity a

(
xp, t

)
and the time step used for

advecting the particle is ∆t (0) = ∆t , where the use of a superscript will become clear shortly. As the first step in the
particle tracking algorithm, the time to intersect the ith facet of element K0 is computed as ∆ti = bi/(a

(
xp, t

)
· nKi),

with bi the orthogonal distance between the particle and the facet with index i. Next, the minimum, yet positive, time
to intersection is computed as ∆timin = min{max (0,∆ti)}, with i the indices of the neighboring cells. If ∆timin > ∆t (k)
he particle is pushed to its new position using timestep ∆t (k), and the time step is terminated by setting ∆t (k+1) = 0. If
timin < ∆t (k), the particle p is pushed to the facet intersection x(k)p using∆timin , and the hosting cell is updated to facet imin,

.e. the facet with the index corresponding to ∆timin . Furthermore, the time step is decremented to ∆t (k+1) = ∆t (k)−∆timin ,
fter which the particle tracking continues until the time step for a particle has zero time remaining. Algorithm 1 contains
he pseudo-code for the convex polyhedron particle tracking, using an Euler method for the particle advection.

The convex polyhedron procedure comes with a number of advantages, also pointed out in [33]. First of all, it is
pplicable to arbitrary polyhedral meshes, both in two and three spatial dimensions. Even though the current stable

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 295

E

Fig. 2. Particle tracking using the convex polyhedron strategy.

release of FEniCS (2019.1.0) only supports simplicial meshes, this renders a generalization of the particle tracking scheme
to other cell shapes straightforward, on the premise that cells are convex. Secondly, by marking the facets on the boundary
of the domain, it is straightforward to detect if, when, and where a particle hits a specific boundary. This feature is useful
when dealing with external boundaries, as well as internal boundaries, with the latter resulting from the mesh partitioning
in parallel computations. Finally, the fraction of the time step spent in a certain cell is explicitly known in the convex
polyhedron method. This can facilitate the updating of the particle velocity along its trajectory [34], although it is not
further supported by the code in its present form.

Algorithm 1: Convex polyhedron particle tracking: pseudo-code for a single particle initially located in a cell K , using
uler forward for the particle advection.
k⇐ 0
∆t (k) ⇐ ∆t
x(k)p ⇐ xp(t)
Hosting cell: K
while ∆t (k) > 0 do

k⇐ k+ 1
Time to facet intersection: ∆ti = bi/(a

(
x0p, t

)
· nKi), with i the indices of the neighboring cells.

Minimum, yet positive time: ∆timin = min{max (0,∆ti)}, with i the indices of the neighboring cells
if ∆timin > ∆t (k) then

Particle remains in cell K
x(k)p ⇐ x(k−1)p + a

(
x0p, t

)
·∆t (k)

∆t (k) ⇐ 0
else

Push particle to facet
x(k)p ⇐ x(k−1)p + u

(
x0p, t

)
·∆timin

∆t (k) = ∆t (k−1) −∆timin
if Facet has two neighboring cells then

Update hosting cell index: K ⇐ Kimin
else

Apply boundary condition, see Section 3.3
end if

end if
end while
xp(t +∆t)← x(k)p

3.3. Boundary conditions at particle level

Apart from enforcing the boundary conditions on the background mesh, modifications at the particle level are also
required when a particle hits a specific boundary. This event is detected when a particle is pushed to a facet having
only one neighboring cell, see Line 20 in Algorithm 1. On the exterior boundary, the user can mark the different parts

296 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315

o
a
t
0

n
b

3

t
o
t
t
B
c

t
r

f the boundary as either being ‘‘closed’’ (integer value 1), ‘‘open’’ (integer value 2) or ‘‘periodic’’ (integer value 3) via
MeshFunction, where this mesh function is passed to the particle advection class, see, for instance, the unit tests in
est_2d_advect.py. Internal boundaries, i.e. facets that are on processor boundaries, are assigned an integer value of
by LEoPart.
When a particle crosses either an internal, a periodic or an open boundary facet during the advection, we update the

list of particle indices that needs to be relocated at the end of the time step as

C++ code
reloc.push_back({ci->index(), i, std::numeric_limits<unsigned int>::max()});

Where ci->index() the cell index of the hosting cell, i the particle index within the hosting cell, and
umeric_limits<unsigned int>::max() the receiving cell index, with this value indicating that the particle cannot
e tracked on the (partition of the) mesh.
The implementation of the different particle boundary conditions is briefly discussed below.

.3.1. Internal boundaries and particle communication
At the end of each advection substep, LEoPart tries to relocate the particles which escaped the old host by assigning

hem to a receiving cell via particles::relocate, see Section 3.2.1. Particles that crossed a facet on an internal, an open
r a periodic boundary , however, have a receiving cell index value of numeric_limits<unsigned int>::max(). In
his case, the particle is passed to the particle collector particles::particle_communicator_collect that prepares
he particle for communication between the processors by (I) finding the candidate host processor(s) via Bounding-
ox::compute_process_collisions, and (II) appending the particle to the buffer that will be communicated to the
andidate processor(s), i.e.

Algorithm 2: Particle communication I: particles::particle_communicator_collect.
if cidx_recv == numeric_limits<unsigned int>::max() then

Find candidate hosting processor(s) procs via dolfin::BoundingBox::compute_process_collisions
Push a copy of the particle to the buffer _comm_snd[procs] that will be sent to the candidate processors

end if

Once all the temporary copies of the particles that need communication are collected in _comm_snd, and after
deleting these particles from the original hosting cell via particles::delete_particle, the actual communication
takes place via particles::particle_communicator_push. This communicates the particle copies to the candidate
processor(s) via MPI_Alltoallv, and checks whether the particle can be located on the candidate processor and in
which cell via BoundingBox::compute_first_entity_collision. If so, the communicated particle is recreated in
he hosting cell on the candidate processor, if not, the other candidate processors are checked. In pseudocode, this particle
elocation/communication strategy can be summarized as

Algorithm 3: Particle communication II: particles::particle_communicator_push.
Communicate _comm_snd (Algorithm 2) to the buffer comm_rcv_vec on candidate processors via MPI_Alltoallv
for all Particles p in comm_rcv_vec do

if p collides with a cell in the candidate processor via BoundingBox::compute_first_entity_collision then
Assign particle to receiving cell on candidate processor

end if
end for

Two remarks are made in view of this collection and pushing algorithm:

• The communication of particles between processors is as yet done via MPI_Alltoallv. Although robust for
large timesteps, this global communication might be somewhat inefficient since particles in general will move to
processors that are close to the current processor. To exploit this, we will probably replace the communication by
MPI_Neighbor_alltoallv in the future. This modification has, however, moderate priority since the numerical
examples in Section 5 demonstrate that the particle advection usually represents a small fraction of run-time.
• The receiving cell index for a particle that escaped through a facet on an open boundary is also set to
numeric_limits<unsigned int>::max() and hence sent to the particle collector _comm_snd. However, no
new hosting cell is found in Algorithm 3 for such a particle, and the particle is deleted as desired by the
particles::delete_particle that is executed in between the particle_communicator_collect and the
particle_communicator_push method.

https://bitbucket.org/jakob_maljaars/leopart/src/master/unit_tests/test_2d_advect.py

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 297

t

3.3.2. Periodic boundaries
When a particle crosses a facet which is marked as a periodic boundary, it should reappear at the opposing side of

the domain. To implement this, facets on a periodic boundary, need to be matched against facets at the opposing side
of the domain. This is taken care of in the advection class when the boundary is marked as a periodic boundary via a
MeshFunction, and the coordinate-limits of the opposing boundaries are specified pairwise by the user. To illustrate
his, a bi-periodic unit square domain is marked in LEoPart, when using the forward Euler particle advection, as

Python code
from dolfin import (VectorFunctionSpace , Function, RectangleMesh ,

SubDomain , MeshFunction , Point)
from leopart import (particles , advect_particles)
import numpy as np

class Boundaries(SubDomain):
def inside(self, x, on_boundary):

return on_boundary

(xmin, ymin, xmax, ymax) = (0., 0, 1., 1.)

mesh = RectangleMesh(Point(xmin, ymin), Point(xmax, ymax), 10, 10)
V = VectorFunctionSpace(mesh, " CG " , 1)
v = Function(V)

Mark the boundary as periodic
facet_marker = MeshFunction(" size_t " , mesh, mesh.topology().dim()-1)
facet_marker.set_all(0)
boundaries = Boundaries()
boundaries.mark(facet_marker , 3)

Specify opposing boundaries , always comes in pairs
lims = np.array([[xmin, xmin, ymin, ymax], [xmax, xmax, ymin, ymax],

[xmin, xmax, ymin, ymin], [xmin, xmax, ymax, ymax]])

Locate dummy particle at (0.5, 0.5) and initialize advection class
p = particles(np.array([0.5, 0.5]), [], mesh)
ap = advect_particles(p, V, v, facet_marker , lims.flatten())

Full code examples of how periodic boundaries are applied in 2D and 3D are found in TaylorGreen_2D.py and
TaylorGreen_3D.py.

3.3.3. Open boundaries and particle insertion/deletion
At open boundaries, particles either escape or enter the domain. When a particle escapes through an open boundary

facet, it simply is deleted from the list of particles. Inflow boundaries, however, are less straightforward since new particles
are to be created. This is done via the AddDelete class, which also allows a user to keep control over the number of
particles per cell.

AddDelete takes as arguments the particle class, a lower and an upper bound for the number of particles per cell,
and a list of FEniCS functions which are to be used for initializing the particle values. If a cell is marked as almost empty,
i.e. the number of particles is lower than a preset lower bound for the number of particles per cell, the particle deficit is
complemented by creating new particles. The locations for the new particles in their hosting cell are determined using
a random number generator. To initialize the other particle quantities, two options are at the user’s convenience: the
particle value is either initialized based on a point interpolation from the underlying mesh field, or the particle value is
assigned based on rounding-off the interpolated field value to a lower or upper boundary, i.e.

ψp =

⎧⎨⎩ψmin if ψh(xp) ≤ ψmin+ψmax
2 ,

ψmax if ψh(xp) > ψmin+ψmax
2 .

(8)

This feature is particularly useful when the particles carry binary fields, such as the density in immiscible two-fluid
simulations.

The minimal example below demonstrates the LEoPart implementation using the two options for particle inser-
tion/deletion. Results are depicted in Fig. 3.

Python code
from dolfin import (UnitSquareMesh , FunctionSpace , Function, Expression ,

Point, Constant)
from leopart import (particles , RandomRectangle , AddDelete ,

assign_particle_values)

https://bitbucket.org/jakob_maljaars/leopart/src/master/tests/single_phase_ns/TaylorGreen_2D.py
https://bitbucket.org/jakob_maljaars/leopart/src/master/tests/single_phase_ns/TaylorGreen_3D.py

298 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315

t

3

t

Fig. 3. Particle insertion: initial particle–field (left), particle value assignment by interpolation (middle), binary particle value assignment (right).

msh = UnitSquareMesh(2, 2)
Psi = FunctionSpace(msh, " DG " , 1)
psi = Function(Psi)

psi_expression = Expression(" x[0] " , degree=1)
psi.assign(psi_expression)

(p_min, p_max) = (4, 8)
(psi_min, psi_max) = (0., 1.)

Initialize particles
xp = RandomRectangle(Point(0., 0.), Point(1., 1.)).generate([1, 1])
psip_smooth = assign_particle_values(xp, psi_expression)
psip_binary = assign_particle_values(xp, psi_expression)

p = particles(xp, [psip_smooth , psip_binary], msh)

Slot 2, psip_binary initialized using binary values
AD = AddDelete(p, p_min, p_max, [psi, psi], [2], [psi_min, psi_max])
Sweep over mesh to delete/insert particles
AD.do_sweep()

(xp_n, psip_smooth , psip_binary) = (p.return_property(msh, 0),
p.return_property(msh, 1),
p.return_property(msh, 2))

The AddDelete class can also be used for keeping control over the maximum number of particles per cell by specifying
he variable p_max in the above presented code. If a cell in the do_sweep method is marked to contain more particles
than prescribed, the surplus of, say, m particles is removed by deleting m particles with the shortest distance to another
particle in that cell. This procedure ensures that particles are removed evenly from the cell interior.

As a final remark: an upwind initialization of the particle value, i.e. initializing the particle value near open boundaries
based on the value at the (inflow) boundary facet, is expected to be a useful feature not yet included in LEoPart.

.3.4. Closed boundaries
When a particle hits a closed boundary during the time step, the particle is reflected by setting the particle velocity

o the reflected value, i.e.

ah
(
xp, t

)
= ah

(
xp, t

)
− 2

(
ah

(
xp, t

)
· n

)
n, (9)

in which n the outwardly directed unit normal vector to a boundary facet.

4. Particle–mesh interaction

Obtaining mesh fields from the scattered particle data and updating the particle values from a known mesh field is
essential to active tracer problems. These particle–mesh interaction steps go by various names in the literature such as:
‘gather–scatter’ steps [31,35], ‘forward interpolation - backward estimation’ [36] or ‘particle weighting’ [37].

In line with our earlier work on particle–mesh schemes [17–19], the data transfer operators are consistently coined
‘particle–mesh projection’ for the data transfer from the set of scattered particles to the mesh, whereas the opposite
route is indicated by ‘mesh–particle projection’. This convention reflects that the data transfer operators are perceived as
projections between different spaces. More precisely, information needs to be projected from a particle space onto a mesh
space and vice versa. Adopting this point of view, it readily follows that the data transfer operations are auxiliary steps,
which should not deteriorate accuracy, violate consistency, nor compromise on conservation.

To comply with these requirements, LEoPart adopts a variational approach to formulate the particle–mesh and the
mesh–particle projections. An ℓ2 objective function forms the starting point for deriving the mutual particle–mesh

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 299

a
c

4

w
s
o
d

w
p

4

w
t

i

w

i

E

interactions. For a scalar-valued mesh field ψh and a scalar-valued particle–field ψp, this objective function reads

min J :=
∑
p∈St

1
2

(
ψh(xp(t), t)− ψp(t)

)2
, (10)

where it remains to specify the minimizer, other than to say that either ψh or ψp is used to fit this purpose. The
implementation of the projection strategies which can be formulated based on Eq. (10) are further highlighted for a
scalar quantity ψ in the remainder of this section, and the projections for a vector-valued quantity follow the same path.
More specifically, Section 4.1 discusses the various particle–mesh projections available in LEoPart, and in Section 4.2 the
vailable mesh–particle projections are discussed. Throughout, the notation T := {K } is used to indicate the set of disjoint
ells K that constitutes a meshing of the domain Ω , and each cell K has a boundary ∂K .

.1. Particle–mesh projections

Common to the available particle–mesh projections in LEoPart is the minimization of the objective function Eq. (10)
ith respect to an unknown mesh field ψh given a known particle–field ψp. This requires the definition of the function
pace in which ψh is approximated. To this end, LEoPart conveniently exploits existing FEniCS tools for defining arbitrary
rder polynomial function spaces. For reasons that become clear shortly, LEoPart is tailored for projecting the particle
ata onto discontinuous function spaces at the mesh. In the scalar-valued setting these function spaces are defined by

Wh :=
{
wh ∈ L2(T), wh|K ∈ Pk(K) ∀ K ∈ T

}
, (11)

here T is the partitioning of the domain Ω into a set of cells K , and Pk(K) denotes the space spanned by Lagrange
olynomials on K , where the subscript k ≥ 0 indicates the polynomial order.

.1.1. ℓ2-Projection
With these definitions, the most elementary particle–mesh projection is found by minimizing Eq. (10) for ψh ∈ Wh,

hich results in the ℓ2-projection: given the particle values ψn
p ∈ Ψt and particle positions xp ∈ Xt , find ψh ∈ Wh such

hat ∑
p∈St

(
ψh(xp(t), t)− ψp(t)

)
wh(xp(t)) = 0 ∀ wh ∈ Wh. (12)

Given the definition for Wh in Eq. (11), ψh, wh ∈ Wh are discontinuous across cell boundaries. Hence, Eq. (12) is solved
n a cellwise fashion, i.e.∑

K

∑
p∈SK

t

(
ψh(xp(t), t)− ψp(t)

)
wh(xp(t)) = 0 ∀ wh ∈ Wh, (13)

hich only requires the inversion of small, local matrices, thus admitting an efficient, parallel implementation.
The particle–mesh projection via the ℓ2-projection is implemented in LEoPart in the l2projection class, which is

nstantiated as

C++ code
l2projection(particles& P, FunctionSpace& V, const std::size_t idx);

in which the integer index idx indicates which particle property is projected. Projection onto a discontinuous space as
in Eq. (13), is done with the project method, which on the Python side can be invoked as

Python code
FEniCS discrete function space
k = 2
Wh = FunctionSpace(msh, " DG " , k)
psi = Function(Wh)
...
LEoPart particles and l2 projection
p = particles(xp, [psi_p], msh)
lstsq_rho = l2projection(p, Wh, 1)
lstsq_rho.project(psi)

LEoPart also allows projection of particle data onto a continuous Galerkin space - which leads to a global system for
q. (12) - by means of the project_cg method

Python code
Wh_CG = FunctionSpace(msh, " CG " , k)
psi_CG = Function(Wh_CG)
...
lstsq_rho = l2projection(p, Wh_CG, 1)
lstsq_rho.project(psi_CG)

300 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315

4

h
i
c

b

s
d

4

a
c
s
r
s
t
c
a

s

i
0
m

λ
o

i
i
e
c
i
w

r
f

.1.2. Bounded ℓ2-projection
The minimization problem, Eq. (12), can be interpreted as a quadratic programming problem. This class of problems

as been thoroughly analyzed in literature, and well-known techniques exist to extend these problems with equality,
nequality, and box constraints, see e.g. [38] and references. In the context of the particle–mesh projection, imposing box
onstraints of the form

l ≤ ψh ≤ u, (14)

can be particularly useful to ensure that the mesh field is bounded by [l, u].
In LEoPart, the box-constrained ℓ2-projection is implemented via a specialization of the project method, which can

e invoked as

Python code
(lb, ub) = (0., 1.)
lstsq_rho = l2projection(p, Wh, 1)
lstsq_rho.project(psi, lb, ub)

with lb and ub the user-specified lower- and upper bound, respectively. At the backend, LEoPart uses QuadProg++2 for
olving the box-constrained optimalization problem. The bounded ℓ2-projection is only available when projecting onto
iscontinuous function spaces.

.1.3. PDE-constrained particle–mesh interaction
The motivation for introducing Lagrangian particles - particularly when used as active tracers - is to conveniently

ccommodate advection. The particle–mesh projections presented in the preceding two sections, however, do not possess
onservation properties. That is, initializing a particle quantity from an initial mesh field, advecting the particles, and
ubsequently reconstructing a mesh field from the updated particle positions with the (box-constrained) ℓ2-projection,
esults in a reconstructed mesh field with different integral properties. One way to conserve the mesh properties over the
equence of particle steps, is to keep track of the integral quantities on the mesh. This is accomplished by constraining
he objective function for the particle–mesh projection, Eq. (10), such that the reconstructed field ψh satisfies a hyperbolic
onservation law. The resulting PDE-constrained particle–mesh projection, developed in [18], possesses local (i.e. cellwise)
nd global conservation properties, and essentially involves solving the minimization problem: given ψp, find ψh ∈ Wh

min
ψh∈Wh

J =
∑
p

1
2

(
ψh(xp)− ψp

)2 (15a)

uch that:
∂ψh

∂t
+∇ · (aψh) = 0 (15b)

+ BC’s (15c)

s satisfied in a weak sense. For brevity, only periodic boundaries or boundaries with vanishing normal velocity (i.e. a ·n =
) are considered in this paper. For a more elaborate discussion on other boundary conditions in Eq. (15), reference is
ade to [18].
By casting the strong form of the constraint into a weak form by multiplying Eq. (15b) with a Lagrange multiplier field

h ∈ Th - with Th defined in Eq. (A.2) in the Appendix - and after applying integration by parts, the PDE-constrained
ptimization problem amounts to finding the stationary points of the Lagrangian functional

L(ψh, ψ̄h, λh) =
∑
p

1
2
(ψh(xp(t), t) − ψp(t))2 +

∑
K

∮
∂K

1
2
β

(
ψ̄h − ψh

)2 dΓ +∑
K

∫
K

1
2
ζ∥∇ψh∥

2dΩ

+

∫
Ω

∂ψh

∂t
λhdΩ −

∑
K

∫
K
aψh · ∇λhdΩ +

∑
K

∮
∂K

a · nψ̄hλhdΓ , (16)

n which the first term at the right-hand side is similar to the objective function in Eq. (15a). The second line in Eq. (16)
s a weak statement of the constraint equation, Eq. (15b). Furthermore, β > 0 is a small penalty parameter introduced to
stablish a coupling between ψh, and the control variable ψ̄h, where this control variable is defined on the facets of the
ell via the trace space W̄h from Eq. (A.3), analogous to the flux variable in HDG methods, see, e.g., [27,39–41]. Finally, ζ
s a parameter which penalizes gradients, where this parameter is set to zero for smooth problems, and is only invoked
hen steep gradients in the mesh solution are to be expected, see Section 5.2.
A more in-depth interpretation of Eq. (16) and analysis of the optimality system resulting after taking variations with

espect to
(
ψh, λh, ψ̄h

)
∈

(
Wh, Th, W̄h

)
, can be found in [18]. The Appendix provides a summary of the resulting variational

orms in the fully-discrete setting, yielding a 3 × 3 block system at the element level, see Eq. (17).

2 https://github.com/liuq/QuadProgpp.

https://github.com/liuq/QuadProgpp

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 301

f
i

LEoPart implements the PDE-constrained particle–mesh projection via the PDEStaticCondensation class. The weak
orms provided by FormsPDEMap.py are used to instantiate this class. Using notations similar to Eq. (17), a Python
mplementation may read

Python code
FEniCS
W = FunctionSpace(mesh, " DG " , k)
T = FunctionSpace(mesh, " DG " , 0)
Wbar = FunctionSpace(mesh, " DGT " , k)

psi_h, psi0_h = Function(W), Function(W)
lambda_h = Function(T)
psibar_h = Function(Wbar)

bc = DirichletBC(Wbar, Constant(0.), " on_boundary ")
...
LEoPart
FuncSpace_adv = { " FuncSpace_local " : W, " FuncSpace_lambda " : T, " FuncSpace_bar " : Wbar}
forms_pde = FormsPDEMap(mesh, FuncSpace_adv).forms_theta_linear(psi0_h, a_advection ,

dt, Constant(1.0))
pde_projection = PDEStaticCondensation(mesh, p,

forms_pde[" N_a "], forms_pde[" G_a "], forms_pde[" L_a "],
forms_pde[" H_a "],
forms_pde[" B_a "],
forms_pde[" Q_a "], forms_pde[" R_a "], forms_pde[" S_a "],
[bc], property_idx)

Assembly of the matrices and vectors is done via the assemble method

Python code
pde_projection.assemble()

which serves a two-fold purpose: first of all it computes the element contributions for each cell K in the 3 × 3 block
matrix⎡⎣Mp + N G(θ) L

G(θ)⊤ 0 H
L⊤ H⊤ B

⎤⎦⎡⎣ψn+1

λn+1

ψ̄
n+1

⎤⎦ =
⎡⎢⎣ χpψ

n
p

G(1− θ)⊤ψn

0

⎤⎥⎦ , (17)

where the different contributions readily follow from Eq. (A.4).
Secondly, the assemble method assembles the local contributions into a global matrix–vector system. Since ψh and

λh are local to a cell, the resulting global system of equations is expressed in terms of the flux variable ψ̄h only. That is,
the global system is assembled as follows

⋀
K

⎛⎝B−
[
L
H

]⊤ [
Mp + N G(θ)
G(θ)⊤ 0

]−1 [
L
H

]⎞⎠ ψ̄
n+1
= −

⋀
K

[
L
H

]⊤ [
Mp + N G(θ)
G⊤(θ) 0

]−1 ⎡⎣ χpψ
n
p

G(1− θ)⊤ψ∗,n

⎤⎦ , (18)

in which the wedge
⋀

denotes assembly of the cell contributions into the global matrix, where this requires the inversion
of a small saddle-point problem for each cell K independently, so that the assembly procedure is amenable to a fast parallel
implementation.

The method solve_problem

Python code
pde_projection.solve_problem(psibar_h , psi_h, solver= " none " , preconditioner= " default ")

solves the resulting global system, Eq. (18), for ψ̄
n+1

. The solver and preconditioner can be specified by the user and
defaults to the MUltifrontal Massively Parallel sparse direct Solver (MUMPS). In addition to solving the global problem,
the solve_problem method also applies the back substitution[

ψn+1

λn+1

]
=

[
Mp + N G(θ)
G⊤(θ) 0

]−1 ⎛⎝⎡⎣ χpψ
n+1
p

G(1− θ)⊤ψ∗,n

⎤⎦−
⎡⎣L

H

⎤⎦ ψ̄n+1

⎞⎠ , (19)

for obtaining the local unknowns ψn+1 and (optionally) the Lagrange multiplier unknowns λn+1.

302 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315

L

f
t
q

b

i
L

v

The sequence of steps for instantiating, assembling and solving the PDE-constrained particle mesh-projection with
EoPart can be summarized in the algorithm:

Algorithm 4: PDE-constrained projection algorithm.
Instantiate PDEStaticCondensation
Assemble with PDEStaticCondensation::assemble:

Global matrix Ag = 0
Global vector fg = 0
for all cells K in mesh do

Assemble local contributions N,G, L,H,B from Eq. (17) with dolfin::LocalAssembler
Assemble particle contributions Mp,χp with particles::get_particle_contributions
Use Eigen::inverse to compute[

Mp + N G(θ)
G⊤(θ) 0

]−1
Add local contributions to global matrix: Ag

+
= LHS(Eq. (18))

Add local contribution to global vector fg
+
= RHS(Eq. (18))

end for
Solve using PDEStaticCondensation::solve:

ψ̄
n+1
⇐ A−1g fg

for all cells in mesh do
Compute ψn+1,λn+1 by backsubstitution into Eq. (19).

end for

4.2. Mesh–particle projection

The mesh–particle projections, for updating particle properties from a given mesh field, also take the objective
unctional Eq. (10) as their starting point. Contrary to the particle–mesh projections, the particle–field is the unknown, so
hat the objective function needs minimization with respect to the particle–field ψp, for the projection of a scalar-valued
uantity. Performing the minimization results in: given ψh ∈ Wh, find ψp ∈ Ψt such that∑

p∈St

(
ψh

(
xp(t), t

)
− ψp(t)

)
δψp = 0 ∀ p ∈ St . (20)

Since this equation must hold for arbitrary variations δψ , the particularly simple result for the mesh–particle projection
ecomes

ψp(t) = ψh(xp(t), t) ∀ p ∈ St , (21)

.e. particles values are obtained via interpolation of the mesh field. Interpolating a mesh field to particles is done in
EoPart via the interpolate method in the particle class, i.e.

Python code
p = particles(xp, [psi_p], mesh)
p.interpolate(psi_h, 1)

An interpolation overwrites the particle quantities with the interpolated mesh values. However, one of the assets of
combining a high resolution particle–field with a comparatively low-resolution mesh field is that the particle–field may
provide sub-grid information to the mesh [34,42,43]. In order to take advantage of this, the particles need to have a
certain degree of independence from the mesh field. Analogous to the FLIP method [44], this is achieved by updating
the particle quantities by projecting the change in the mesh field, rather than overwriting particle quantities. For a scalar
valued quantity, this incremental update reads

ψ̇p = ψ̇h(xp) ∀ p ∈ St , (22)

in which ψ̇h ∈ Wh the time derivative of the mesh field.
A fully-discrete counterpart of Eq. (22) is implemented in LEoPart using the θ method for the time discretization:

ψn+1
p = ψn

p +∆t
(
(1− θ)ψ̇n

h

(
xnp

)
+ θψ̇n+1

h

(
xn+1p

))
∀ p ∈ St , (23)

where ∆t the time step, 0 ≤ θ ≤ 1, and ψ̇n
h ∈ Wh is defined as ψ̇n

h = (ψn
h − ψ

n−1
h)/∆t. Eq. (23) is available in LEoPart

ia the increment method in the particles class, and can be used as

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 303
Python code
Particle
p = particles(xp, [psi_p, dpsi_p_dt], msh)

Incremental update with theta method
theta = 0.5
...
step = 2
p.increment(psih_new, psih_old, [1, 2], theta, step)

Two closing remarks are made in view of this incremental update:

• For step 1, θ = 1 since ψ̇0
h is usually not defined.

• The increment from the old time level, i.e. ψ̇n
h

(
xnp

)
is stored at the particle level between consecutive time steps,

for efficiency reasons. This requires an additional slot on the particles, i.e. dpsi_p_dt. The integer array in the
increment call indicates which particle slots are used for the incremental update, i.e. p.increment(psih_new,
psih_old, [1, 2], theta, step).

5. Example applications

This section demonstrates the performance of LEoPart in terms of accuracy, conservation and computational run time
for a number of advection-dominated problems. On a per-time-step basis, the particle–mesh approach typically comprises
the following sequence of steps:

1. Lagrangian advection of the particles, as outlined in Section 3.2.
2. particle–mesh projection to project the scattered particle data onto an Eulerian mesh field using either the
ℓ2-projection, discussed in Section 4.1.1, the bound constrained ℓ2-projection from Section 4.1.2, or the PDE-
constrained projection, Section 4.1.3.

3. (optional) solve the physical problem - e.g. a diffusion or Stokes problem - at the mesh, using the reconstructed
mesh field either as a source term or as an intermediate solution to the discrete equations.

4. (optional) update the particles given the solution at the mesh, using the mesh–particle interaction tools from
Section 4.2.

Step 1 and 2 are sufficient to solve an advection problem at the particles and to test the reconstruction of mesh
fields from the moving particles. The sequence of steps 1–4 can be used for active tracer modeling or a particle–mesh
operator splitting for, e.g., the advection–diffusion equation or the incompressible Navier–Stokes equations, see also
Maljaars [17,18]. For all the examples presented below, reference is made to the corresponding computer code in the
LEoPart repository on Bitbucket.

5.1. Translation of a periodic pulse

As a straightforward, yet illustrative example, the translation of the sinusoidal profile

ψ(x, 0) = sin 2πx sin 2πy (24)

on the bi-periodic unit square is considered, in analogy to LeVeque [45]. Owing to its simplicity, this test allows to assess
the accuracy and the convergence properties of the ℓ2- and the PDE-constrained particle–mesh projection. Furthermore,
it is used to illustrate the performance of the scheme by means of a strong-scaling study. Test results can be reproduced
by running SineHump_convergence.py for the convergence study, and SineHump_hires.py for the scaling study.

In this example, the advective velocity field a = [1, 1]⊤ is used, so that at t = 1 the initial data should be recovered.
To investigate convergence, we consider a range of triangular meshes obtained by splitting a regular n × n Cartesian

mesh into 2n2 triangles. We construct 5 different meshes with n = (11, 22, 44, 88, 176), respectively. Different
polynomial orders k = 1, 2, 3 are used for the discontinuous function space Wh, Eq. (11), onto which the particle data is
projected. For the PDE-constrained projection, the polynomial order for the Lagrange multiplier space Th, Eq. (A.2), is l = 0
in all cases. Particles are seeded in a regular lattice on the mesh, such that each cell contains approximately 15 particles,
independent of the mesh resolution, see Fig. 4 as an example. An Euler scheme suffices for exact particle advection,
and the time step corresponds to a CFL-number of approximately 1. Furthermore, in the PDE-constrained particle–mesh
projection, the β-parameter is set to 1e-6, and ζ is set to 0. All computations use a direct sparse solver (SuperLU) to
solve the global system of equations. Also, note that for this advection problem, the scalar valued property ψp, attached
to each particle p, needs no updating and stays constant throughout the computation.

The accuracy of the method is assessed at t = 1, using both the ℓ2-particle–mesh projection from Section 4.1.1, and the
PDE-constrained projection from Section 4.1.3 upon refining the mesh and the time step, see Table 1. Optimal convergence
rates of order k + 1 are observed for both projections strategies, thus highlighting the accuracy of the particle–mesh
projections in conjunction with particle advection.

https://bitbucket.org/jakob_maljaars/leopart/src/master/tests/scalar_advection/SineHump_convergence.py
https://bitbucket.org/jakob_maljaars/leopart/src/master/tests/scalar_advection/SineHump_hires.py

304 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315

o

b

o
P
p

5

f

Fig. 4. Sinusoidal Pulse: particle–field (left) and the reconstructed solution at the mesh (right) using the PDE-constrained projection with polynomial
rder k = 2 and a mesh containing 968 cells.

Table 1
Translating pulse: overview of model runs with the associated L2-error ∥ψ −ψh∥, and convergence rate at time t = 1
for different polynomial orders k. For the PDE-constrained projection, the polynomial order in the Lagrange multiplier
space is l = 0 in all cases.
Projection ∆t Cells Parts. k = 1 k = 2 k = 3

Error Rate Error Rate Error Rate

ℓ2

1e−1 242 3 984 3.3e−2 – 1.7e−3 – 9.4e−5 –
5e−2 968 14 542 8.3e−3 2.0 2.1e−4 3.0 5.9e−6 4.0
2.5e−2 3 872 57 663 2.1e−3 2.0 2.7e−5 3.0 3.7e−7 4.0
1.25e−2 15 488 230 428 5.2e−4 2.0 3.3e−6 3.0 2.3e−8 4.0
6.25e−2 61 952 921 837 1.3e−4 2.0 4.1e−7 3.0 1.4e−9 4.0

PDE

1e−1 242 3 984 3.3e−2 – 1.7e−3 – 9.4e−5 –
5e−2 968 14 542 8.3e−3 2.0 2.1e−4 3.0 5.9e−6 4.0
2.5e−2 3 872 57 663 2.1e−3 2.0 2.7e−5 3.0 3.7e−7 4.0
1.25e−2 15 488 230 428 5.2e−4 2.0 3.3e−6 3.0 2.3e−8 4.0
6.25e−2 61 952 921 837 1.3e−4 2.0 4.1e−7 3.0 1.4e−9 4.0

Table 1 shows that the error levels for the ℓ2- and the PDE-constrained particle–mesh are similar. The difference
etween these projections becomes clear, however, by investigating the mass error

ϵ∆ψΩ = |

∫
Ω

(ψh(x, T)− ψh(x, 0)) dΩ|, (25)

which is plotted as a function of time for the ℓ2-projection in Fig. 5a, and for the PDE-constrained projection in Fig. 5b.
Evident from these figures is that the ℓ2-projection yields a nonzero mass error, whereas for the PDE-constrained
projection the mass error is zero to machine precision.

The trade-off between the non-conservative ℓ2-projection and the conservative PDE-constrained is elucidated by
investigating the computational times. Wallclock times for the high-resolution case - polynomial order k = 3 with
61,952 cells, 921,837 particles and 160 time steps - run on different number of Intel Xeon CPU E5-2690 v4 processors are
presented in Fig. 6. Solving the global system for the PDE-constrained projection using a direct solver is computationally
much more demanding compared to the (local) ℓ2-projection. This illustrates the need for an efficient iterative solver for
the PDE-constrained projection step.

Table 2 further investigates the scaling of the different components by summarizing the speed-up for the different tests
relative to the run on one processor. The particle advection and the assembly step - with the latter only relevant for the
PDE-constrained projection - exhibit excellent scaling properties, which is explained by the locality of these operations,
i.e. these steps are performed cellwise. This also holds true for the ℓ2-projection, which amounts to a cellwise projection
f the particle properties onto a discontinuous function space, see Section 4.1.1. Clearly, the direct sparse solver for the
DE-constrained projection does not possess optimal scaling properties, thus limiting the scalability of the constrained
rojection step.

.2. Slotted disk

Combining particle-based and mesh-based techniques appears particularly promising for applications in which sharp
low features are to be preserved. The solid body rotation of a slotted disk after Zalesak [46] is a prototypical example of

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 305
Fig. 5. Translating pulse: mass error over time for different particle–mesh projections.

Fig. 6. Translating sinusoidal hump: strong scaling study.

Table 2
Translating sinusoidal hump: speed-up of the different model parts in parallel computations benchmarked against 1
processor run.
Processors ℓ2-projection PDE-constrained

projection

1 2 4 8 16 24 1 2 4 8 16 24

Advect particles 1 2.1 4.1 8.0 15.1 22.4 1 1.9 3.7 7.7 14.8 21.9
Assembling – – – – – – 1 1.9 3.8 7.4 15.4 23.2
Solve projection 1 2.1 4.3 8.2 16.1 25.1 1 1.6 2.4 3.6 4.8 5.8

Total 1 2.1 4.2 8.1 15.6 23.8 1. 1.7 2.7 4.2 5.8 7.2

such problems, and often serves as a benchmark for interface tracking schemes, see [47,48], among many others. We now
use this test to demonstrate the various tools that LEoPart offers for tracking sharp discontinuities in material properties,
such as a density jump in immiscible multi-fluid flows.

The problem set-up is as follows. A disk with radius 0.2 - from which a slot with a width of 0.1 and depth 0.2 is cut
out - is initially centered at (x, y) = (−0.15, 0) on the domain of interest Ω := {(x, y) |x2 + y2 ≤ 0.5}. This domain is
triangulated into 14,464 cells on which 438,495 particles are seeded. The advective velocity field is given by

a = π (−y, x)⊤ . (26)

The time step is set to 0.02, so that one full rotation is performed in 100 steps. The three-stage Runge–Kutta scheme,
available via the advect_rk3 class, is used for the particle advection.

306 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315
Fig. 7. Slotted disk: particle–field (case independent) at different time instants. Plot shows every 25th particle for clarity, and color values range
between 0 (blue) and 1 (red).

Table 3
Slotted disk: overview of test cases, with k the polynomial order in the function space
Wh (Eq (A.1)) and l the polynomial order for the Lagrange multiplier space Th (Eq. (A.2))
in the PDE-constrained projection.

particle–mesh projection k l ζ

Case 1 Bounded ℓ2 1 – –
Case 2 PDE-constrained 1 0 0
Case 3 PDE-constrained 1 0 30

Table 4
Slotted Disk: runtime, area error ϵ∆ψΩ at t = 2 and minimum and maximum values for ψh for a bounded
ℓ2-projection (Case 1), or a PDE-constrained projection with ζ = 0 (Case 2) and ζ = 30 (Case 3).

Cells Particles Wallclock time (s) ϵ∆ψΩ (t = 2) ψh,min(x, t) ψh,max(x, t)

Case 1 14,464 438,495 150 1.4e−5 −2.6e−16 1.00
Case 2 14,464 438,495 182 2.0e−15 −11.2 8.04
Case 3 14,464 438,495 180 1.3e−15 −0.01 1.02

Different particle–mesh projection strategies that are available in LEoPart are investigated in this example, see
Table 3. Note that Case 2 and Case 3 only differ in terms of the ζ parameter, see Eq. (16). The computer code in
SlottedDisk_rotation_l2.py reproduces Case 1, the computer code for reproducing Case 2 and Case 3 is found in
SlottedDisk_rotation_PDE.py. The test is run using 8 Intel Xeon CPU E5-2690 v4 processors.

As for the previous example, there is no updating of the scalar valued property attached to a particle for this advection
problem. Hence, sharp features at the particle level pertain, and the particle advection part for all the different cases is
equal. Fig. 7 shows the particle–field at t = 0 (initial field), t = 1 (half rotation) and after a full rotation at t = 2.

Fig. 8 compares the reconstructed mesh fields for the three different cases at time instants t = 1 and t = 2. For the
bounded ℓ2-projection (Case 1), the discontinuity in the particle–field is captured at the mesh without under- or overshoot,
and values stay within the prescribed bounds 0 ≤ ψh ≤ 1 to machine precision, see Table 4. Another advantage of this
approach is that it is fast, and easy to implement in parallel. However, as reported in Table 4, the mass error for the
bounded ℓ2-projection is non-zero. The latter issue is overcome by using the conservative PDE-constrained particle–mesh
projection for the reconstruction of the mesh fields, Case 2 and Case 3. However, for Case 2 - in which ζ = 0 - localized
over- and undershoot is observed near the discontinuities. As argued in [18], this artifact is a resolution issue with the
mesh being too coarse to capture the sharp discontinuity at the particle level monotonically.

By setting ζ to a value of 30, i.e. approximately equal to the number of particles per cell, this issue is effectively
mitigated, see also the minimum and the maximum values for ψh over the entire computation reported in Table 4. This
table also confirms global mass conservation for Case 2 and Case 3, local conservation properties for similar examples
were demonstrated in [18,19] and not further shown here.

5.3. Lock exchange test

As an example which is geared towards practical multi-fluid applications, the lock-exchange test is considered. Driven
by gravity, a dense fluid current moves underneath a lighter fluid, where a thin vertical membrane initially separates
the two fluids. Using LEoPart, density tracking and momentum advection is done using Lagrangian particles, and the

https://bitbucket.org/jakob_maljaars/leopart/src/master/tests/scalar_advection/SlottedDisk_rotation_l2.py
https://bitbucket.org/jakob_maljaars/leopart/src/master/tests/scalar_advection/SlottedDisk_rotation_PDE.py

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 307

[
w
m
t

Fig. 8. Slotted Disk: reconstructed mesh field ψh at different time instants using a particle–mesh projection based on a bounded ℓ2-projection
(Case 1), or a PDE-constrained projection with ζ = 0 (Case 2) and ζ = 30 (Case 3).

incompressible, unsteady Stokes equations are discretized on the mesh using the hybridized discontinuous Galerkin (HDG)
method from [27,28]. The computer code for this test can be found in LockExchange.py.

For this test, the density ratio γ between the two fluids is 0.92. Furthermore, the domain of interest is Ω := [0, 30]×
−0.5, 0.5], which is triangulated into 2,000 × 80 × 2 = 320,000 regular triangular cells. Using the HDG method [28]
ith k = 1 for solving the Stokes equations, the number of dofs in the global system amounts to 1,288,322. A direct sparse
atrix solver (SuperLU) is used to solve the Stokes system. The total number of particles amounts to 9,408,000, where

his number stays constant throughout the computation. Furthermore, 800 time steps of size ∆t∗ = ∆t
√
g ′/H = 1.25e−2

are performed, in which H = 1 the channel height, and g ′ = g(1− γ) the reduced gravity with γ = 0.92 and g = 9.81.
Two different particle–mesh projection configurations are considered. In a first configuration, the local ℓ2-projections

are used to project density and momentum data from the particles to the mesh. The density projection is rendered bound
preserving by imposing box constraints on the local least squares problem. The density values attached to a particle

https://bitbucket.org/jakob_maljaars/leopart/src/master/tests/two_fluids/LockExchange.py

308 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315
Fig. 9. Lock exchange: density field at the mesh at t∗ = 10 using ℓ2 or PDE constrained particle–mesh projections.

stay constant throughout the computation, whereas the specific momentum value attached to a particle is updated using
Eq. (23) following the Stokes solve.

In the second configuration, the PDE-constrained projection is used for the projection of density and momentum data
from the particles to the mesh. This results in a global problem with 964,160 unknowns for the density projection, and
1,928,320 unknowns for the momentum projection. The global systems resulting from the PDE-constrained projections are
solved using a GMRES solver in conjunction with an algebraic multigrid preconditioner, where this solver/preconditioner
pair is used as a black-box. Furthermore, for the density projection, ζ = 20 to penalize over- and undershoot in the
reconstructed density fields. Analogous to the other configuration, the specific momentum value attached to a particle is
updated using Eq. (23).

Visually, the mesh density fields at t∗ = 10 are comparable in terms of the bulk behavior for both projections,
Fig. 9, although differences in the small scale features are observed. No further attempts are made to interpret and value
these small scale differences between the local ℓ2-projections and the PDE-constrained projections, other than to say
that the PDE-constrained approach results in mass- and momentum-conservative fields, whereas this is not so for the
ℓ2-projection, see Fig. 10.

Timings are reported in Fig. 11, using 32, 64 and 128 CPU cores on the Peta 4 supercomputing facility of the University
of Cambridge. Peta 4 contains 768 nodes, equipped with 2 Intel Xeon Skylake 6142 16-core processors each.

Results provide insight into the performance of the different parts, and indicate which parts of the scheme are critical
for obtaining higher performance. Clearly, the computational time is dominated by the global solves for the Stokes
system, and the PDE-constrained particle–mesh projections, Fig. 11a. The advantage of using iterative solvers for the
PDE-projections also becomes clear from this figure. Even though the system for the momentum projection is larger
than the system for the Stokes projection, the wallclock time for the momentum projection is considerably smaller and
appears to possess better scaling compared to the Stokes solve, see Table 5. Therefore, implementing the iterative solver
for the Stokes solver proposed in [49] is believed to be an important step for improving the performance, and is probably
indispensable for problems in three spatial dimensions. Noteworthy to mention is that the ℓ2 particle–mesh projections
exhibit excellent scaling properties, on top of their low computational footprint, see Fig. 11b and Table 5.

5.4. Rayleigh–Taylor instability benchmark

In this example, the applicability of LEoPart for simulating active particle tracing problems is demonstrated. A well-
established benchmark from the geodynamics community is used to fit this purpose, and we consider the Rayleigh–Taylor
instability community benchmark proposed by van Keken and co-workers [12]. This benchmark involves the evolution of a
geodynamic laminar flow whose initial state is a compositionally light material, situated under a considerably thicker and
denser layer. Tools from LEoPart are used to discretize the Stokes system using the HDG method, and Lagrangian particles
are used for a diffusion-free tracking of the chemical composition field. Conservative composition fields at the mesh
are reconstructed from the particle representation using the PDE-constrained projection. The reconstructed composition
field is subsequently used to compute a source term f and a composition-dependent viscosity η in the Stokes equations.
The code for this numerical experiment can be found in RayleighTaylorInstability.py, considering the following
problem description.

Let the domainΩ be the [0, L]×[0, 1] rectangle, where L = 0.9142 is the aspect ratio. ψ : Ω → [0, 1] is the continuum
representation of the chemical composition function, with values 0 and 1 corresponding to the light and dense layer. The
source term in the momentum component of Stokes’ equations is given by

f = Rbψ ĝ, (27)

where Rb = 1 is the compositional Rayleigh number and ĝ = (0,−1)⊤ is the unit vector acting in the direction of gravity.
The viscosity of the Stokes system is dependent on the chemical composition function
η = ηbottom + ψ(ηtop − ηbottom), (28)

https://bitbucket.org/jakob_maljaars/leopart/src/master/tests/two_fluids/RayleighTaylorInstability.py

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 309
Fig. 10. Lock exchange: mass- and momentum conservation error as a function of time for two different particle–mesh projection strategies.

Fig. 11. Lock exchange: strong scaling study.

310 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315

d

w
ψ

p
c
a

f
t
t
S

Table 5
Lock exchange test: speed-up of the different model parts in parallel computations,
benchmarked against 32 processors run.

PDE-projections ℓ2 projections

Processors # Processors

32 64 128 32 64 128

Particle advection 1 1.85 3.87 1 2.06 3.95
Density projection 1 1.48 1.87 1 1.75 3.75
Momentum projection 1 1.73 2.25 1 1.79 3.99
Stokes solve 1 0.93 1.17 1 0.99 1.05

Total 1 1.11 1.17 1 1.01 1.1

Fig. 12. Rayleigh–Taylor instability: the 1 280 000 particles distributed on the fine resolution mesh with n = 160 at given simulation times. The
ark and light colors represent compositionally dense ψ = 1 and light ψ = 0 regions, respectively. Cf. [12].

here ηtop and ηbottom are the viscosities of the initial heavy top and light bottom layers, respectively. The initial state of
is a small perturbation from the rest state of a light layer of depth db = 0.2,

ψ(x, t = 0) =
{
0 y < db + 0.02 cos

(
πx
L

)
,

1 otherwise.
(29)

The boundary conditions are set such that u = 0 on the bottom (y = 0) and top (y = 1) boundaries, and on the left
(x = 0) and right (x = L) boundaries, freeslip conditions are applied, i.e. u · n = 0 and t ·

(
∇u+∇u⊤

)
n = 0 where n

the outward pointing unit normal vector and t is the unit tangent vector to the boundary. Furthermore, the boundary
conditions imposed on the chemical composition function are ψ = 1 on top (y = 1) and ψ = 0 on the bottom (y = 0)
boundaries, respectively.

The domain is triangulated into 2n2 regular simplices, with n = (40, 80, 160), yielding three meshes with 3200,
12800, and 51200 cells respectively. The mesh is then displaced in order to align the cells with the initial viscosity
discontinuity described in (29). Each cell is assigned 25 particles, carrying a composition value ψp, resulting in 80 000,
320 000 and 1 280 000 particles in the meshes, respectively. This number of particles remains constant throughout the
simulation. Furthermore, the time step size is chosen based on the Courant–Friedrichs–Levy (CFL) criterion, i.e. ∆tj =
CCFLhmin/maxΩ |u(tj)| where tj is the jth time step, hmin is the minimum mesh cell diameter and CCFL > 0 is the CFL
parameter, chosen here to be CCFL = 0.5. The HDG method is used with k = 1 to solve the Stokes system. After computing
the solution approximation of the Stokes system, the particles are advected. Given ψp, the conservative PDE-constrained
rojection is used to update the composition field ψh on the mesh and thereby the source term f and the viscosity η. The
omposition function ψh is represented by the k = 1 DG-finite element space, and we choose ζ = 25 to penalize over-
nd undershoot of the reconstructed field.
The benchmark [12] considers three cases, ηtop/ηbottom ∈ {1, 10, 100}. For brevity we document the case with a 100–

old difference in the viscosity layers, namely, ηtop = 1 and ηbottom = 0.01. For comparison with [12], the distribution of
he 1 280 000 particles in the n = 160 mesh at simulation times t = 500, 1000 and 1500 are shown in Fig. 12. Noteworthy
o mention is that the particle distribution remains uniform throughout. This feature owes to HDG discretization of the
tokes system, yielding pointwise div-free velocity fields by which the particles are advected [17].

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 311

T
C

Fig. 13. The computed RMS velocity functional and mass conservation error of the Rayleigh–Taylor instability problem. Here n is the number of
cells along one axis of the mesh and np is the number of particles used in the simulation.

able 6
omputed functionals from the Rayleigh–Taylor instability simulation and comparison with other works.
Code Grid Method γ t (max urms) max urms

van Keken et al. [12] 100 × 100 Splines / marker chain 0.1024 51.12 0.01385
80 × 80 C1–element / marker chain 0.1025 51.23 0.01448

Vynnytska et al. [50] 40 × 40 Taylor–Hood / DG 0.0976 57.21 0.01140
80 × 80 Taylor–Hood / DG 0.1018 52.11 0.01444
160 × 160 Taylor–Hood / DG 0.1039 51.55 0.01458

This work 40 × 40 HDG / PDE-constrained projection 0.08707 54.81 0.01208
80 × 80 HDG / PDE-constrained projection 0.09161 50.68 0.01428
160 × 160 HDG / PDE-constrained projection 0.09677 50.80 0.01436

A quantitative comparison with literature results from [12,50] is made by investigating the root mean square (RMS)
velocity, urms, the mass conservation error, ϵ∆ψΩ , and growth rate, γ , where

urms =

√∫
Ω
u · udΩ∫
Ω
dΩ

, ϵ∆ψΩ =

⏐⏐⏐⏐∫
Ω

(ψh(x, t)− ψh(x, 0)) dΩ
⏐⏐⏐⏐ , γ =

ln (urms(t1))− ln (urms(0))
t1

, (30)

and t1 is the simulation time at the first time step. The computed quantities (30) are shown in Fig. 13, and key results are
reported in Table 6. This includes comparison to the marker chain method of [12] and the case with no artificial diffusion
in [50], showing good agreement for the growth rate γ and the RMS-velocity. On top of this, discrete conservation for
the composition field ψh can be ensured, Fig. 13b, when using the PDE-constrained particle–mesh projection provided by
LEoPart.

5.5. Rayleigh–Taylor instability – 3D

We finally demonstrate the use of LEoPart for 3D simulations. The 3D example in this section is constructed by
extruding the Rayleigh–Taylor instability benchmark from the previous section. Let the domainΩ := [0, Lx]×[0, 1]×[0, Lz]
where Lx = 0.9142 and Lz = 0.8142. The momentum source and viscosity model is as described in (27) and (28),
respectively. The initial perturbed composition field is

ψ(x, t = 0) =

{
0 y < db + 0.02 cos

(
πx
Lx

)
cos

(
πz
Lz

)
,

1 otherwise.
(31)

The boundary conditions are imposed as described in the previous section with the addition of a free slip boundary
condition enforced on the near (z = 0) and far (z = Lz) boundaries. All other parameters are as described in the previous
section. The code for this example can be found in RayleighTaylorInstability3D.py

The domain is divided into 6n3 tetrahedra where n = 20. The mesh is displaced to align with the viscosity discontinuity
in Eq. (31). Each cell is assigned 50 particles, carrying a composition value ψp, such that there is a total of 2 400
000 particles used in the simulation.

Evidently, Fig. 13a shows that high resolution meshes are mandatory for accurate results. To solve large 3D problems
efficiently we refer to an example of a preconditioner designed for the iterative solution of the HDG system [49].

https://bitbucket.org/jakob_maljaars/leopart/src/master/tests/two_fluids/RayleighTaylorInstability3D.py

312 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315

o
d

a
p
e
s
c
c

o
m

Fig. 14. 3D Rayleigh–Taylor instability: the compositionally light (ψ = 0) particles distributed on the mesh where n = 20 at given simulation times.

Fig. 15. The computed RMS velocity functional and mass conservation error of the 3D Rayleigh–Taylor instability problem. Here n = 20 is the
number of cells along one axis of the mesh and np = 2400000 is the number of particles used in the simulation.

Implementation of this preconditioned system forms a programme of future development in LEoPart. In this example
we use the direct solver MUMPS to solve the underlying linear system.

The tracer distribution of the compositionally light (ψ = 0) material is shown in Fig. 14. We see the formation of two
pposing diapirs competing for space at the top of the domain. The interface separating the two diapirs is formed by a
ownwelling of compositionally dense material (ψ = 1) from the top of the domain.
We show RMS velocity and mass conservation in Fig. 15. Here we confirm the mass conserving property of the PDE-

constrained projection of the particle composition values to the composition function. Furthermore the two competing
diapirs evolve more slowly than the single diapir exhibited in the previous section.

6. Conclusion and outlook

This paper introduced LEoPart [21], an open-source library which integrates a suite of tools for Lagrangian particle
dvection and different particle–mesh interaction strategies in FEniCS. To efficiently implement the particle advection,
articles are tracked on the simplicial mesh using the convex polyhedron method. As demonstrated in the numerical
xamples, the particle advection exhibits near optimal performance for distributed-memory parallel runs. Furthermore,
everal options are available for the projection of particle data onto mesh fields and vice versa. In particular, the PDE-
onstrained particle–mesh projection allows to track particle quantities on the mesh in an accurate, diffusion-free, and
onservative manner.
A number of application examples in two and three spatial dimensions demonstrated how LEoPart can be used to

track sharp interfaces in immiscible, multiphase flows or long time scale processes such as pertaining to geodynamics.
Yet, we believe that the particle(-mesh) functionality in LEoPart can be of practical relevance to a much wider range
f flow problems, including groundwater modeling, atmospheric modeling, and reproducing particle image velocimetry
easurements in numerical simulations. Of particular interest are applications characterized by low physical diffusion, for

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 313

o
s

i
i

L
T
x

which the presented particle–mesh tools allow to maintain sharp features at subgrid level without introducing numerical
diffusion.

LEoPart [21] will be maintained at the cited URL, and the community is invited to contribute to this project. Upcoming
developments in LEoPart include:

• Update to dolfin-x: Recent developments in FEniCS have been taking place in the dolfin-x repository, which has
diverged significantly from the original dolfin. It is planned to migrate LEoPart to the new underlying library. This
will require many changes, including basic geometry handling and assembly of forms. However, we can expect to
see some performance enhancements as a result, especially as it will be easier to assemble block diagonal matrices
and preconditioners to solve the Stokes equations iteratively.
• Iterative solvers: as demonstrated in the numerical examples, all the components exhibit excellent scaling for

distributed-memory parallel runs, except for solving the global systems which arise in the PDE-constrained pro-
jection and the incompressible Stokes equations. To improve the performance for these steps, the implementation
of scalable iterative solvers heads our wish list. The optimal preconditioner presented by [49] will serve as a starting
point for the Stokes system, whereas implementation of a GMRES-based solver is considered for the PDE-constrained
projection.
• Particle advection: at the time of writing LEoPart supports an explicit Euler, and a two- or three-stage Runge–Kutta

scheme for the particle-advection. In view of particle–mesh operator splitting applications, LEoPart will benefit from
supporting multi-step schemes as this opens the way for implementing implicit–explicit (IMEX) operator splitting
schemes [51]. Theoretically, such schemes can push particle–mesh operator splitting techniques beyond the second
order time accuracy as reported in [17,18].

CRediT authorship contribution statement

Jakob M. Maljaars: Conceptualization, Methodology, Software, Writing - original draft, Writing - review & editing,
Visualization, Supervision. Chris N. Richardson: Software, Resources, Writing - review & editing. Nathan Sime: Software,
Visualization, Writing - review & editing.

Acknowledgments

The Netherlands Organisation for Scientific Research (NWO) is acknowledged for supporting JMM through the JMBC-
EM Graduate Programme research grant. JMM further acknowledges CRUX Engineering for their time investment in the
revision stage of the manuscript. CNR is supported by EPSRC, UK Grant EP/N018877/1. NS is supported by the Carnegie
Institution for Science President’s Fellowship. NS further wishes to thank Peter E. van Keken and Cian R. Wilson for their
advice.

Appendix. PDE-constrained particle–mesh interaction

This appendix presents the discrete optimality system which is obtained by equating the variations of Eq. (16) with
respect to the three unknowns (ψh, λh, ψ̄h) ∈ (Wh, Th, W̄h) to zero, and performing a θ time integration. A detailed
derivation can be found in [18].

To set the stage, let T := {K } be the triangulation of Ω into open, non-overlapping cells K , having outward pointing
unit normal vector n on its boundary ∂K . Adjacent cells Ki and Kj (i ̸= j) share a common facet F = ∂Ki ∩ ∂Kj. The set
f all facets (including the exterior boundary facets F = ∂K ∩ ∂Ω) is denoted by F . The following scalar finite element
paces are defined on T and F:

Wh :=
{
wh ∈ L2(T), wh|K ∈ Pk(K) ∀ K ∈ T

}
, (A.1)

Th :=
{
τh ∈ L2(T), τh|K ∈ Pl(K) ∀ K ∈ T

}
, (A.2)

W̄h :=
{
w̄h ∈ L2(F), w̄h|F ∈ Pk(F) ∀ F ∈ F

}
, (A.3)

n which P(K) and P(F) denote the spaces spanned by Lagrange polynomials on K and F , respectively, and k ≥ 1 and l ≥ 0
ndicating the polynomial order. Note that Wh in Eq. (A.1) is equal to Eq. (11).

Given these function space definitions, the fully-discrete optimality system is obtained after taking variations of the
agrangian functional Eq. (16) with respect to

(
ψh, λh, ψ̄h

)
∈

(
Wh, ThW̄h

)
and using a θ-method for the time discretization.

he fully-discrete co-state equation in this optimality system reads: given the particle–field ψn
p ∈ Ψt , the particle positions

n+1
p ∈ Xt , and the intermediate field ψ∗,nh ∈ Wh, find

(
ψn+1

h , λn+1h , ψ̄n+1
h

)
∈

(
Wh, Th, W̄h

)
such that∑

p∈St

(
ψn+1

h (xn+1p)− ψn
p

)
wh(xn+1p)−

∑
K

∮
∂K
β

(
ψ̄n+1

h − ψn+1
h

)
whdΓ +

∑
K

∫
∂K
ζ∇ψn+1

h · ∇whdΩ

+

∫
wh

∆t
λn+1h dΩ − θ

∑∫
(awh) · ∇λ

n+1
h dΩ = 0 ∀ wh ∈ Wh . (A.4a)
Ω n K K

314 J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315

C

F

N
a
p
p(
R

orrespondingly, the fully-discrete counterpart of the state equation becomes:∫
Ω

ψn+1
h − ψ

∗,n
h

∆tn
τhdΩ − θ

∑
K

∫
K

(
aψn+1

h

)
· ∇τhdΩ +

∑
K

∮
∂K

a · n ψ̄n+1
h τhdΓ

= (1− θ)
∑
K

∫
K

(
aψ∗,nh

)
· ∇τhdΩ ∀ τh ∈ Th. (A.4b)

inally, the fully-discrete optimality condition reads∑
K

∮
∂K

a · n λn+1h w̄hdΓ +
∑
K

∮
∂K
β

(
ψ̄n+1

h − ψn+1
h

)
w̄hdΓ = 0 ∀ w̄h ∈ W̄h. (A.4c)

ote that the Lagrange multiplier λh and the control variable ψ̄h are conveniently chosen at time level n + 1, which is
llowed since these variables are fully-implicit, not requiring differentiation in time. Furthermore, the choice l = 0 for the
olynomial order of the Lagrange multiplier field λh bears specific advantage in that the terms involving the time-stepping
arameter θ can be dropped, i.e. for l = 0 Eq. (A.4) becomes independent of θ .
Eq. (A.4) can be casted in a 3 × 3 block system, see Eq. (17). This system of equations is solved for the three unknowns

ψn+1
h , λn+1h , ψ̄n+1

h

)
∈

(
Wh, Th, W̄h

)
via a static condensation procedure, see the discussion in Section 4.1.3.

eferences

[1] A.C. Bagtzoglou, D.E. Dougherty, A.F.B. Tompson, Application of particle methods to reliable identification of groundwater pollution sources,
Water Resour. Manag. 6 (1) (1992) 15–23, http://dx.doi.org/10.1007/BF00872184.

[2] E.J. Delhez, J.-M. Campin, A.C. Hirst, E. Deleersnijder, Toward a general theory of the age in ocean modelling, Ocean Model. 1 (1) (1999) 17–27,
http://dx.doi.org/10.1016/S1463-5003(99)00003-7.

[3] E. Deleersnijder, J.-M. Campin, E.J. Delhez, The concept of age in marine modelling: I. Theory and preliminary model results, J. Mar. Syst. 28
(3–4) (2001) 229–267, http://dx.doi.org/10.1016/S0924-7963(01)00026-4.

[4] P.J. Tackley, S.D. King, Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations, Geochem.
Geophys. Geosyst. 4 (4) (2003) http://dx.doi.org/10.1029/2001GC000214.

[5] N.T. Ouellette, H. Xu, E. Bodenschatz, A quantitative study of three-dimensional Lagrangian particle tracking algorithms, Exp. Fluids 40 (2)
(2006) 301–313, http://dx.doi.org/10.1007/s00348-005-0068-7.

[6] J. Westerweel, G.E. Elsinga, R.J. Adrian, Particle image velocimetry for complex and turbulent flows, Annu. Rev. Fluid Mech. 45 (1) (2013)
409–436, http://dx.doi.org/10.1146/annurev-fluid-120710-101204.

[7] M. Raffel, C.E. Willert, F. Scarano, C.J. Kähler, S.T. Wereley, J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Springer, 2018.
[8] E. Hathway, C. Noakes, P. Sleigh, L. Fletcher, CFD simulation of airborne pathogen transport due to human activities, Build. Environ. 46 (12)

(2011) 2500–2511, http://dx.doi.org/10.1016/J.BUILDENV.2011.06.001.
[9] D. Cohen Stuart, C. Kleijn, S. Kenjereš, An efficient and robust method for Lagrangian magnetic particle tracking in fluid flow simulations on

unstructured grids, Comput. Fluids 40 (1) (2011) 188–194, http://dx.doi.org/10.1016/J.COMPFLUID.2010.09.001.
[10] S. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (2) (1985) 119–192, http://dx.doi.org/10.1016/0360-

1285(85)90002-4.
[11] Y. Zhang, D. Haworth, A general mass consistency algorithm for hybrid particle/finite-volume PDF methods, J. Comput. Phys. 194 (1) (2004)

156–193, http://dx.doi.org/10.1016/j.jcp.2003.08.032.
[12] P.E. van Keken, S.D. King, H. Schmeling, U.R. Christensen, D. Neumeister, M.-P. Doin, A comparison of methods for the modeling of

thermochemical convection, J. Geophys. Res.: Solid Earth 102 (1997) 22, http://dx.doi.org/10.1029/97JB01353.
[13] U.R. Christensen, A.W. Hofmann, Segregation of subducted oceanic crust in the convecting mantle, J. Geophys. Res.: Solid Earth 99 (1994) 19,

http://dx.doi.org/10.1029/93JB03403.
[14] J.P. Brandenburg, P.E. van Keken, Deep storage of oceanic crust in a vigorously convecting mantle, J. Geophys. Res.: Solid Earth 112 (2007)

B06403, http://dx.doi.org/10.1029/2006JB004813.
[15] E. Edwards, R. Bridson, A high-order accurate particle-in-cell method, Internat. J. Numer. Methods Engrg. 90 (9) (2012) 1073–1088, http:

//dx.doi.org/10.1002/nme.3356.
[16] D.M. Kelly, Q. Chen, J. Zang, PICIN: a particle-in-cell solver for incompressible free surface flows with two-way fluid-solid coupling, SIAM J. Sci.

Comput. 37 (3) (2015) 403–424, http://dx.doi.org/10.1137/140976911.
[17] J.M. Maljaars, R.J. Labeur, M. Möller, A hybridized discontinuous Galerkin framework for high-order particle–mesh operator splitting of the

incompressible Navier–Stokes equations, J. Comput. Phys. 358 (2018) 150–172, http://dx.doi.org/10.1016/j.jcp.2017.12.036.
[18] J.M. Maljaars, R.J. Labeur, N. Trask, D. Sulsky, Conservative, high-order particle-mesh scheme with applications to advection-dominated flows,

Comput. Methods Appl. Mech. Engrg. 348 (2019) 443–465, http://dx.doi.org/10.1016/J.CMA.2019.01.028.
[19] J.M. Maljaars, R.J. Labeur, N. Trask, D. Sulsky, Optimization based Particle-Mesh algorithm for high-order and Conservative Scalar Transport, in:

A. Corsini, S. Perotto, H.E. van Brummelen, G. Rozza (Eds.), Numerical Methods for Flows - FEF 2017 Selected Contributions, in: Lecture Notes
in Computational Science and Engineering, Springer, 2019, http://dx.doi.org/10.1007/978-3-030-30705-9_23, Ch. 23.

[20] J. Maljaars, R.J. Labeur, M. Möller, W. Uijttewaal, Development of a hybrid particle-mesh method for simulating free-surface flows, J. Hydrodyn.
Ser. B 29 (3) (2017) 413–422, http://dx.doi.org/10.1016/S1001-6058(16)60751-5.

[21] Leopart source code, https://bitbucket.org/jakob_maljaars/leopart/.
[22] A. Logg, K.-A. Mardal, G.N. Wells, Automated Solution of Differential Equations by the Finite Element Method, Vol. 84, Springer Science &

Business Media, 2012, p. 724, http://dx.doi.org/10.1007/978-3-642-23099-8.
[23] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik,

M.G. Knepley, D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Users Manual,
Tech. Rep. ANL-95/11 - Revision 3.12, Argonne National Laboratory, 2019, URL https://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf.

[24] W. Bangerth, J. Dannberg, R. Gassmoeller, T. Heister, et al., ASPECT v2.1.0 [software], 2019, http://dx.doi.org/10.5281/zenodo.2653531.
[25] R. Gassmöller, H. Lokavarapu, E. Heien, E.G. Puckett, W. Bangerth, Flexible and scalable particle-in-cell methods with adaptive mesh refinement

for geodynamic computations, Geochem. Geophys. Geosyst. 19 (9) (2018) 3596–3604, http://dx.doi.org/10.1029/2018GC007508.

http://dx.doi.org/10.1007/BF00872184
http://dx.doi.org/10.1016/S1463-5003(99)00003-7
http://dx.doi.org/10.1016/S0924-7963(01)00026-4
http://dx.doi.org/10.1029/2001GC000214
http://dx.doi.org/10.1007/s00348-005-0068-7
http://dx.doi.org/10.1146/annurev-fluid-120710-101204
http://refhub.elsevier.com/S0898-1221(20)30170-X/sb7
http://dx.doi.org/10.1016/J.BUILDENV.2011.06.001
http://dx.doi.org/10.1016/J.COMPFLUID.2010.09.001
http://dx.doi.org/10.1016/0360-1285(85)90002-4
http://dx.doi.org/10.1016/0360-1285(85)90002-4
http://dx.doi.org/10.1016/0360-1285(85)90002-4
http://dx.doi.org/10.1016/j.jcp.2003.08.032
http://dx.doi.org/10.1029/97JB01353
http://dx.doi.org/10.1029/93JB03403
http://dx.doi.org/10.1029/2006JB004813
http://dx.doi.org/10.1002/nme.3356
http://dx.doi.org/10.1002/nme.3356
http://dx.doi.org/10.1002/nme.3356
http://dx.doi.org/10.1137/140976911
http://dx.doi.org/10.1016/j.jcp.2017.12.036
http://dx.doi.org/10.1016/J.CMA.2019.01.028
http://dx.doi.org/10.1007/978-3-030-30705-9_23
http://dx.doi.org/10.1016/S1001-6058(16)60751-5
https://bitbucket.org/jakob_maljaars/leopart/
http://dx.doi.org/10.1007/978-3-642-23099-8
https://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://dx.doi.org/10.5281/zenodo.2653531
http://dx.doi.org/10.1029/2018GC007508

J.M. Maljaars, C.N. Richardson and N. Sime / Computers and Mathematics with Applications 81 (2021) 289–315 315
[26] D. Arndt, W. Bangerth, T.C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler, R.M. Kynch, M.
Maier, J.-P. Pelteret, B. Turcksin, D. Wells, The deal.ii library, version 9.1, J. Numer. Math. (2019) http://dx.doi.org/10.1515/jnma-2019-0064.

[27] S. Rhebergen, G.N. Wells, A hybridizable discontinuous Galerkin method for the Navier–Stokes equations with pointwise divergence-free velocity
field, J. Sci. Comput. (2018) 1–18, http://dx.doi.org/10.1007/s10915-018-0671-4.

[28] S. Rhebergen, G.N. Wells, An embedded–hybridized discontinuous Galerkin finite element method for the Stokes equations, Comput. Methods
Appl. Mech. Engrg. 358 (2020) 1–18, http://dx.doi.org/10.1016/j.cma.2019.112619.

[29] C. Rocchini, P. Cignoni, Generating random points in a tetrahedron, J. Graph. Tools 5 (4) (2000) 9–12.
[30] M. Muradoglu, A.D. Kayaalp, An auxiliary grid method for computations of multiphase flows in complex geometries, J. Comput. Phys. 214 (2)

(2006) 858–877, http://dx.doi.org/10.1016/J.JCP.2005.10.024.
[31] R. Löhner, J. Ambrosiano, A vectorized particle tracer for unstructured grids, J. Comput. Phys. 91 (1) (1990) 22–31, http://dx.doi.org/10.1016/

0021-9991(90)90002-I.
[32] J. Maljaars, A hybrid particle-mesh method for simulating free surface flows, 2016, URL http://resolver.tudelft.nl/uuid:d894370d-f6df-4433-

8ee0-7692a43e857a.
[33] D. Haworth, Progress in probability density function methods for turbulent reacting flows, Prog. Energy Combust. Sci. 36 (2) (2010) 168–259,

http://dx.doi.org/10.1016/j.pecs.2009.09.003.
[34] P.P. Popov, R. McDermott, S.B. Pope, An accurate time advancement algorithm for particle tracking, J. Comput. Phys. 227 (20) (2008) 8792–8806,

http://dx.doi.org/10.1016/j.jcp.2008.06.021.
[35] Z. Chen, Z. Zong, M.B. Liu, H.T. Li, A comparative study of truly incompressible and weakly compressible SPH methods for free surface

incompressible flows, Internat. J. Numer. Methods Fluids 73 (9) (2013) 625–638.
[36] R. Garg, C. Narayanan, D. Lakehal, S. Subramaniam, Accurate numerical estimation of interphase momentum transfer in Lagrangian-Eulerian

simulations of dispersed two-phase flows, Int. J. Multiph. Flow 33 (12) (2007) 1337–1364, http://dx.doi.org/10.1016/j.ijmultiphaseflow.2007.06.
002.

[37] G. Jacobs, J. Hesthaven, High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids, J. Comput. Phys. 214 (1) (2006)
96–121, http://dx.doi.org/10.1016/j.jcp.2005.09.008.

[38] D. Goldfarb, A. Idnani, A numerically stable dual method for solving strictly convex quadratic programs, Math. Program. 27 (1) (1983) 1–33,
http://dx.doi.org/10.1007/BF02591962.

[39] R.J. Labeur, G.N. Wells, Energy stable and momentum conserving hybrid finite element method for the incompressible Navier–Stokes equations,
SIAM J. Sci. Comput. 34 (2) (2012) 889–913, http://dx.doi.org/10.1137/100818583.

[40] G.N. Wells, Analysis of an interface stabilized finite element method: The Advection-Diffusion-Reaction equation, SIAM J. Numer. Anal. 49 (1)
(2011) 87–109, http://dx.doi.org/10.1137/090775464.

[41] N. Nguyen, J. Peraire, B. Cockburn, An implicit high–order hybridizable discontinuous Galerkin method for linear convection–diffusion equations,
J. Comput. Phys. 228 (9) (2009) 3232–3254, http://dx.doi.org/10.1016/j.jcp.2009.01.030.

[42] D. Snider, An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows, J. Comput. Phys. 170 (2) (2001)
523–549, http://dx.doi.org/10.1006/jcph.2001.6747.

[43] R. McDermott, S. Pope, The parabolic edge reconstruction method (PERM) for Lagrangian particle advection, J. Comput. Phys. 227 (11) (2008)
5447–5491, http://dx.doi.org/10.1016/j.jcp.2008.01.045.

[44] J. Brackbill, H. Ruppel, FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions, J. Comput. Phys. 65
(2) (1986) 314–343, http://dx.doi.org/10.1016/0021-9991(86)90211-1.

[45] R.J. LeVeque, High-Resolution Conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal. 33 (2) (1996) 627–665,
http://dx.doi.org/10.1137/0733033.

[46] S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys. 31 (3) (1979) 335–362, http://dx.doi.org/10.
1016/0021-9991(79)90051-2.

[47] D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface capturing, J. Comput. Phys. 183 (1)
(2002) 83–116, http://dx.doi.org/10.1006/jcph.2002.7166.

[48] R. Scardovelli, S. Zaleski, Interface reconstruction with least-square fit and split eulerian-Lagrangian advection, Internat. J. Numer. Methods
Fluids 41 (3) (2003) 251–274, http://dx.doi.org/10.1002/fld.431.

[49] S. Rhebergen, G.N. Wells, Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations, J. Sci. Comput.
77 (3) (2018) 1936–1952, http://dx.doi.org/10.1007/s10915-018-0760-4.

[50] L. Vynnytska, M.E. Rognes, S.R. Clark, Benchmarking FEniCS for mantle convection simulations, Comput. Geosci. 50 (2013) 95–105, http:
//dx.doi.org/10.1016/j.cageo.2012.05.012.

[51] G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 97 (2)
(1991) 414–443, http://dx.doi.org/10.1016/0021-9991(91)90007-8.

http://dx.doi.org/10.1515/jnma-2019-0064
http://dx.doi.org/10.1007/s10915-018-0671-4
http://dx.doi.org/10.1016/j.cma.2019.112619
http://refhub.elsevier.com/S0898-1221(20)30170-X/sb29
http://dx.doi.org/10.1016/J.JCP.2005.10.024
http://dx.doi.org/10.1016/0021-9991(90)90002-I
http://dx.doi.org/10.1016/0021-9991(90)90002-I
http://dx.doi.org/10.1016/0021-9991(90)90002-I
http://resolver.tudelft.nl/uuid:d894370d-f6df-4433-8ee0-7692a43e857a
http://resolver.tudelft.nl/uuid:d894370d-f6df-4433-8ee0-7692a43e857a
http://resolver.tudelft.nl/uuid:d894370d-f6df-4433-8ee0-7692a43e857a
http://dx.doi.org/10.1016/j.pecs.2009.09.003
http://dx.doi.org/10.1016/j.jcp.2008.06.021
http://refhub.elsevier.com/S0898-1221(20)30170-X/sb35
http://refhub.elsevier.com/S0898-1221(20)30170-X/sb35
http://refhub.elsevier.com/S0898-1221(20)30170-X/sb35
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2007.06.002
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2007.06.002
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2007.06.002
http://dx.doi.org/10.1016/j.jcp.2005.09.008
http://dx.doi.org/10.1007/BF02591962
http://dx.doi.org/10.1137/100818583
http://dx.doi.org/10.1137/090775464
http://dx.doi.org/10.1016/j.jcp.2009.01.030
http://dx.doi.org/10.1006/jcph.2001.6747
http://dx.doi.org/10.1016/j.jcp.2008.01.045
http://dx.doi.org/10.1016/0021-9991(86)90211-1
http://dx.doi.org/10.1137/0733033
http://dx.doi.org/10.1016/0021-9991(79)90051-2
http://dx.doi.org/10.1016/0021-9991(79)90051-2
http://dx.doi.org/10.1016/0021-9991(79)90051-2
http://dx.doi.org/10.1006/jcph.2002.7166
http://dx.doi.org/10.1002/fld.431
http://dx.doi.org/10.1007/s10915-018-0760-4
http://dx.doi.org/10.1016/j.cageo.2012.05.012
http://dx.doi.org/10.1016/j.cageo.2012.05.012
http://dx.doi.org/10.1016/j.cageo.2012.05.012
http://dx.doi.org/10.1016/0021-9991(91)90007-8

	LEoPart: A particle library for FEniCS
	Introduction
	Implementation in FEniCS
	A primer on FEniCS
	LEoPart code structure

	Particle functionality
	Particle initialization
	Particle advection
	Cell–particle connectivity and particle relocation
	Particle tracking

	Boundary conditions at particle level
	Internal boundaries and particle communication
	Periodic boundaries
	Open boundaries and particle insertion/deletion
	Closed boundaries

	Particle–mesh interaction
	Particle–mesh projections
	2-Projection
	Bounded 2-projection
	PDE-constrained particle–mesh interaction

	Mesh–particle projection

	Example applications
	Translation of a periodic pulse
	Slotted disk
	Lock exchange test
	Rayleigh–Taylor instability benchmark
	Rayleigh–Taylor instability – 3D

	Conclusion and outlook
	CRediT authorship contribution statement
	Acknowledgments
	Appendix. PDE-constrained particle–mesh interaction
	References

