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A B S T R A C T   

The power system is undergoing a significant change as it adapts to the intermittency and uncertainty from 
renewable generation. Flexibility from loads such as electric vehicles (EVs) can serve as reserves to sustain the 
supply-demand balance in the grid. Some reserve markets have rules for participation that are computationally 
challenging for aggregators of such flexible loads: they are asked to bid both volume and price, and on top of this 
there is a minimum-volume requirement, a constraint currently under discussion both in the US and European 
markets. Several state-of-the-art methods to find a bidding strategy for the demand scheduling of large fleets of 
flexible loads in the day-ahead and reserve market are adapted to deal with such a shared constraint, and are 
compared based on costs, unscheduled demand, and running time. The experimental analysis shows that al
though such a shared constraint significantly affects scalability, some of the proposed adaptations can deal with 
this without much loss in quality. This comparison also shows the importance of including good uncertainty 
models for dealing with the risk of not meeting the users’ demands, and that it is possible to find an optimal 
single price per time unit for scheduling a fleet of EVs.   

1. Introduction 

1.1. Aim and motivation 

The intermittency and uncertainty of renewable energy sources 
complicate balancing supply and demand in power systems. Therefore, 
storage and flexible demand will likely play an increasingly important 
role in providing reserves for distribution and transmission grids [1]. 
These services are typically traded via electricity markets. Some mar
kets in the US [2] and Europe pose specific requirements on bids, such 
as a minimum volume and demanding the inclusion of both a price and 
a quantity in a bid simultaneously [3]. Without this requirement and 
when prices in these markets and deployment of reserves are known in 
advance, finding the minimum-cost schedule that meets all demand 
(e.g., of a fleet of electric vehicles) is relatively straightforward. 

However, under realistic market conditions, scheduling and bidding 
flexible demand is extremely challenging for two main reasons. First, 
the mentioned requirement on volume couples the schedules of all 
flexible demand, which already makes this problem NP-hard [4]. 
Second, if the deployment of reserves is uncertain, offering reserves 
implies that not all demand is guaranteed to be fulfilled. Historic data 
can be used to inform balancing between minimizing costs and meeting 

demand, but this requires a method that reasons about multiple pos
sible futures. Which algorithm to use to schedule and bid flexible de
mand under these market conditions is an important open question. 

1.2. Literature review 

To find out how to best deal with a minimum-volume constraint in 
the context of reserve markets, we survey the state of the art of algo
rithms for bidding in day-ahead and reserve markets, concentrating on 
methods that bid both price and volume and can deal with price, ac
ceptance and/or deployment uncertainty and are useable for scheduling 
the charging of a fleet of EVs. 

Market uncertainty has been represented by fuzzy sets in [5]. Bessa 
and Matos introduced an operational algorithm which uses EV charging 
flexibility to correct for forecast errors and reserves shortage resulting 
from the day-ahead optimization [6]. Stochastic optimization (SO) has 
proven to be most effective in capturing the uncertainty in energy 
markets. Sánchez-Martín et al. formulate the EV charging problem as a 
two-stage SO, where the first-stage decisions correspond to the DA and 
reserves volume commitments [7]. Their second stage represents the EV 
charge demand, the trading decisions during the intra-day markets, and 
the reserves deployment. Poisson distributions have similarly been used 
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to model the probability of reserves activation [8]. Vagropoulos et al. 
have improved the formulation of offering ancillary services [9]. 
Markov decision processes are used to model the market prices, and 
regulation signals and a stochastic dynamic approach is implemented 
in [10] to find optimal volume commitments when offering ancillary 
services. These formulations find an optimal reserves volume bid but 
not the price bid, and leave out the bid acceptance uncertainty. 

The acceptance uncertainty of reserves bids is analyzed in [11],  
[12], and [13]. Alipourand et al. used scenarios of the hourly prob
ability of being called for providing reserves to model such un
certainty [12]. A bid-acceptance probability as a function of time is 
proposed in [11]. Habibifar et al. [13] model risk aversion through the 
conditional value-at-risk (CVaR). The state-of-the-art in planning algo
rithms for other flexible loads is similar to EVs [14–17]. These for
mulations do not make (optimal) price bids and do not include a shared 
constraint, but they do show the importance of modeling the bid-ac
ceptance probability. 

Van der Linden et al. [3] show the benefit of finding the optimal 
reserves bid for both volume and price for EV scheduling through an SO 
formulation. However, their model does not scale well for EV fleets. 

There have been several contributions on algorithms that minimize 
charging costs while addressing the scalability to large EV fleets. A 
virtual power model that aggregates the energy demand from all the 
EVs improves the scalability of offline [18] and rolling-horizon algo
rithms [19]. In contrast, [20] and [21] focus on dividing and solving 
the problem for each EV independently. A primal-dual decomposition is 
used to find optimal schedules for a smart charging station in [20]. 
Rivera et al. formulate the Lagrangian function to divide the EV char
ging problem and apply the alternating direction method of multipliers 
to find a solution [21]. Iria et Soares [22] propose a cluster-based op
timization for bidding in the day-ahead market. 

From this survey we conclude that no approach explicitly considers 
a minimum-volume market constraint. Furthermore, although several 
approaches model most of the relevant aspects, no single one can di
rectly deal with the combination of bidding both price and volume in 
day-ahead and reserve markets, considers price, acceptance and de
ployment uncertainty, and is useable for scheduling the charging of a 
fleet of EVs. However, a few methods deal with most of these chal
lenges, or could be used anyway, such as simply ignoring uncertainty. 
The main open question then remains of how to adapt these methods to 
be used in the context of a minimum-bid constraint, and how they 
compare considering optimality, unscheduled demand, and scalability. 

1.3. Contributions 

This paper presents five adaptations of the four most promising 
state-of-the-art formulations to this market condition: two extensions 
based on a stochastic model [3] (including a more tight and compact 
formulation, providing better efficiency and scalability), and one of a 
probabilistic formulation of bid acceptance [11], of a divide-and-con
quer method based on Lagrangian relaxation [20,21], and of a method 
for virtual batteries [18,19]. These adaptations are experimentally 
evaluated with respect to their cost savings, risk management of not 
meeting customer demands, and scalability potential to large EV fleets. 

2. Market framework: Short-term energy and ancillary services 
markets 

Short-term energy markets usually occur from a day before the 
demand occurs (e.g., day-ahead markets) to the time of energy delivery 
(e.g., real-time or balancing markets). In combination with ancillary 
services markets, they constitute a space where flexible energy con
sumption is valorized [23]. Short-term markets are designed differently 
by all system operators, but they share objectives and essential features. 
The particular short-term market we consider in our model is a day- 
ahead (DA) market, as those joint energy-reserve markets are 

simultaneously cleared by US independent system operators (ISO), but 
the concept and general models can be adapted to be used by ag
gregators to bid to any reserve market. This is a “double-sided blind 
auction, facilitated by power exchanges” [23]. Market participants 
trade hourly and multi-hourly energy supply and demand for the next 
day. The DA energy price is determined after the market closes and 
(without presence of so-called block-bids for multiple time units) cor
responds to the intersection of the demand and supply bidding curves. 

Power system operators use a separate market to secure reserve 
energy and capacity for their real-time power system operations. These 
markets trade ancillary services, which are the instruments for fre
quency control, voltage control, system restart, and other emergency 
control actions. On this paper we concentrate on reserve markets, which 
trade frequency control products. There are three main control cate
gories, determined by the activation speed  [23]. For the EU case: the 
primary control is activated automatically within few seconds to con
stantly control the frequency by using the Frequency Containment 
Reserves (FCR); the secondary control is meant to release the activated 
FCR by using Frequency Restoration Reserves (FRR), and is mainly 
activated automatically (aFRR) within 1–15 minutes, but a part of the 
reserves can also be manually activated (mFRR); and the tertiary con
trol uses Restoration Reserves (RR) to release the activated FRR and has 
a more relaxed response requirements. Most of these type reserves are 
used in all power systems worldwide but they are named differently. 
Additionally, reserves can be a contracted or voluntary service. Con
tracts for providing reserves can be traded for a year, month, week, day 
or a couple of hours, and are a guarantee of an available resource to 
offer reliability to system operators [23], such as ERCOT, an US ISO, or 
Elia, and EU transmission system operator (TSO). 

In this paper, data from the ISO Electric Reliability Council of Texas 
(ERCOT) is used to evaluate the different algorithms. ERCOT estab
lishes its ancillary services hourly plan each morning for the next day, 
identifying the entities expected to provide such services. These parties 
must submit their bids within the DA market deadline. Once DA posi
tions and reserves schedule are posted, the parties responsible for 
providing reserves can make bilateral trades with other qualified enti
ties to secure the reserves volume [24]. Between DA and delivery time 
(adjustment period), ERCOT uses an hourly reliability unit commitment 
process to evaluate the system’s reliability [25]. Real-time operations 
are managed every five minutes, and prices are settled in 15-minute 
intervals [24]. In other markets, such as the balancing market in Bel
gium, the TSO, Elia requires also bids on 15-minute intervals. A bid 
consists of a volume and price component with a minimum volume of 
1 MW. Bids are assigned following an economic merit order [26]. 

3. Problem formulation 

For the purpose of this paper of optimization methods for bidding in 
constrained markets, we include (only) uncertainty regarding prices, 
acceptance of bids, and deployment of reserves in these markets, and 
use a simple model of the system, assuming unlimited transmission and 
distribution grid capacity. The optimization problem of an EV ag
gregator considered in this paper is to trade the charging of a fleet of 
EVs where we assume known arrival times, departure times and re
quired state-of-charge (SOC) at the time of departure in both DA and 
reserve markets. In the DA market, the aggregator submits the hourly 
demand —possibly negative in the case of vehicle-to-grid (V2G) ser
vices— and acts as a price-taker. In the reserve market, the aggregator 
decides on both the volume made available as reserve —dependent on 
the DA bid— as well as on the bid price, for up- and down-regulation. A 
reserve bid communicates the willingness of an aggregator to deviate 
from its DA schedule. Accepted reserve services are rewarded with a 
payment in proportion to the capacity offered. When the reserves are 
deployed, the imbalance price is paid for the delivered energy. A re
serve bid is accepted only when its price is below the market capacity 
clearing price. An accepted bid is deployed only when reserves are 

N. Romero, et al.   Electric Power Systems Research 191 (2021) 106868

2



needed. The imbalance prices, reserve clearing prices and reserve de
ployment are unknown and represented by a set of scenarios, each de
scribing a possible assignment to all of these unknowns. In short, the 
first-stage decisions are the energy volume to be traded in DA markets, 
and the reserve bid price and the reserve bid volume; the actual reserve 
usage is modeled by second-stage decision variables. 

Below we start from the model in [3]. With small changes, this 
formulation can be adapted to include trading at different stages of the 
intra-day market, or for settling imbalances balancing markets. Further, 
it is a building block for online optimization. 

This model is a two-stage stochastic programming model. In the first 
stage the market decisions (i.e., DA energy trade, reserve bid price and 
volume) are made. The second stage simulates the reserve bid accep
tance and resulting state of charge for different scenarios for final use of 
reserves and clearing price. The second stage constraints also check the 
feasibility for every scenario. 

Eq. (1) represents an aggregator’s objective to minimize the ex
pected charging costs for its users over all scenarios. The first term in  
(1) corresponds to the energy traded DA. The following terms represent 
costs under the different reserve market scenarios ω: 1) a penalty ψ · fiω 

for not satisfying the EV driver’s charging request; 2) payments for 
providing reserves, i.e., the volume offered as reserves ±ri t multiplied by 
the sum of the capacity price ±

t and the ratio ±
t of time they are 

deployed during program time unit (PTU) t times the energy price t
imb; 

and 3) the battery deterioration costs for V2G services, assumed to be 
linear, as κ multiplied by the volume of V2G provided. 

+

+ + + + +

+ +

+ + + +

+ +
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(1) 
The energy traded DA, p ,h

DA is constrained by the charge and discharge 
schedule for all the EVs as defined by (2). The volume offered as re
serves is constrained by the EV availability, the maximum charging or 
discharging rate, and the DA load commitment, as expressed by  
Eqs. (3)-(6). The ±ri t are second-stage decision variables that depend on 
the respective reserves volume and price bid, and its acceptance. 

=p p p h( )
i I t t h

it it h
DA

, ( ) (2)  

+p r P d i t¯ (1 ) , ,it i t i it it (3)  

+p r i t0 , ,it i t (4)  

+ +p r P d i t¯ , ,it i t i it it (5)  

p r i t0 , ,it i t (6)  

Eqs. (7) -(10) model the evolution of the EV’s SOC, eiωt. Eq. (7) 
determines that the SOC in PTU t corresponds to the sum of the charge 
from load bought in the DA or reserve markets, the SOC in the previous 
PTU, and the discharge in PTU t. 

= + +

+

+ +

+ +

e e p r r

p r r i t

( )
1 ( ) , ,

i t i t i it i t t i t t

i
it i t t i t t

, 1

(7) 

Eqs. (8)-(10) define the initial SOC, e ,i Ti
A the maximum SOC in each 

PTU, and the minimum SOC required upon departure, e ,i Ti
D respec

tively. 

=e E i,i T i
A

i
A (8)  

e E i t¯ , ,i t i (9)  

e E f i,i T i
D

ii
D (10)  

p p i t, 0 ,it it (11)  

+ +r r r r e i t, , , , 0 , ,i t i t i t i t i t (12)  

d i t{0, 1} ,it (13)  

To find an optimal reserves volume offer and DA energy purchase, 
the aggregator can solve the problem defined by (1), and subject to (2)- 
(10) and the conditions on the decision variables defined in (11)-(13). 
For compactness’ sake, (3)-(6) do not contain the first stage reserve 
commitment variables ±rit . These variables and the relations 

=± ± ±r r ui t it i t are implicitly modelled by (14)-(19). These equations fix 
±ri t to all the (remaining) charging power when called ( =±u 1i t ), or to 

zero otherwise. 

r P u p i t¯ , ,i t i i t it (14)  

+ +r p P u i t¯ (1 ) , ,i t it i i t (15)  

+ +r P u p i t¯ , ,i t i i t it (16)  

r p P u i t¯ (1 ) , ,i t it i i t (17)  

± ±r P u i t¯ , ,i t i i t (18)  

± ±r P u i t¯ , ,i t i i t (19)  

+u u i t, {0, 1} , ,i t i t (20)  

The last group of constraints that define the formulation in [3] are  
(21)-(24). They represent the system operator’s decision of accepting or 
not downward and upward reserves bids in each scenario based on the 
price offered by the aggregator. 

+b u u i t¯ (1 ) , ,it t i t t i t (21)  

+b u u i t(1 ) , ,it t t t t (22)  

++ + + + +b u u i t¯ (1 ) , ,it t i t t i t (23)  

++ + + + +b u u i t(1 ) , ,it t t t t (24)  

This formulation captures the uncertainty of the regulation situa
tion, price and volume bid decision variables, and the constraints that 
define bid acceptance. 

4. Solution methods 

This section introduces a more scalable formulation of the stochastic 
model, a deterministic model, and three heuristic and mathematical 
methods, adapted to the problem definition described above. All 
models, methods, parameters and data are available as open 
source [27]. 

4.1. Stochastic formulation – SDIR 

The first method is a more computationally efficient variant of the 
Stochastic model for DA, Imbalance and Reserves (SDIR) model 
from van der Linden et al. [3], summarized in the previous section. The 
model we present below is more tight (the relaxed solution is closer to 
the integer solution) and compact (fewer constraints) and thus com
putationally more attractive. The resulting formulation still provides 
the same solution. 

The formulation defined by (1)-(24) accounts for most of the market 
uncertainty when bidding in the reserve market but is computationally 
complex. Its complexity is mainly related to the set of binary variables 
that represent the bid acceptance in each case, ±ui t and the constraints 
to determine the bid acceptance based on price bid. In order to reduce 
the computational complexity, we replace some of the constraints. 
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We define ± t¯ ( ) as the scenario with the largest regulation price for 
the up and down regulation at the corresponding PTU, and ω  ±  (t) the 
smallest; and introduce two functions to define the predecessor or 
successor regulation price scenario for each up and down regulation 
state and PTU, independently: ±g t( , , )p corresponds to the scenario 
that precedes scenario ω in PTU t, and ±g t( , , )s to the scenario that 
succeeds ω. The full ordering is based on ±

t for each PTU. With this 
ordering it is possible to tighten the constraint formulation. The fol
lowing constraints show how this works when the EV is charging and 
offers down reserves. The other cases follow similarly. 

Eqs. (25) -(27) determine the reserve bids and reserve acceptance 
for the lowest and highest capacity price scenarios. 

+p r P d i t¯ (1 ) ,it i t i it it¯ (25)  

r P u p i t¯ ,i t i i t it¯ ¯ (26)  

r P u i t¯ ,i t i i t (27)  

u u i t t, { ( )},i t ig t t( , , ),p (28)  

r r i t t, { ( )},i t ig t t( , , ),p (29)  

With the reserve volume and acceptance set for the extremes, these 
values for the rest of the scenarios can be set with help of the pre
decessor function. Eqs. (28)-(29) describe this relation. If a bid is ac
cepted in a scenario with a cheaper reserve price, it will also be ac
cepted in a scenario with a larger reserve price. 

Unlike u ,i t the variable ri t is continuous. To force this value to be 
either 0 when =u 0,i t or all the remaining charge capacity when 

=u 1,i t Eq. (30) is needed. 

( )r r P u u i t t¯ , { ( )},i t ig t t i i t ig t t( , , ), ( , , )p p (30)  

The result of (28)-(30) is that the set of scenarios is split in two 
groups: scenarios where the reserve bid is accepted, and those where it 
is not accepted. The price bit of the reserve bid can be retrieved 
choosing a value between the two corner scenarios ω1 

and = g t( , , )s2 1 where =u 0,i t1 and =u 1,i t2 such that 
bt it t1 2 . 

Now it is possible to replace (3)-(6), (14)-(19) and (21)-(24) by 
(28*)-(30*), with the asterisk meaning that these constraints also apply 
to the up reserves and discharging cases. These changes reduce the 
number of constraints by 8|W||T||I|. We have shared this model as part 
of a benchmarking toolbox [28]. 

Aggregation and the shared constraint 
The model for each EV from the set I is identical and almost in

dependent (indexed by i ∈ I). The only relation is that the DA hourly 
energy purchase corresponds to the sum of energy purchases for dif
ferent EVs in that hour. If DA trading is planned separately for each EV 
and multiple small bids are allowed, each of the EV models can be 
solved independently, making this approach linearly scalable with the 
number of EVs. However, an EV aggregator offering reserves could have 
to comply with a minimum volume per reserves bid. 

We introduce (31)-(36) to enforce bid aggregation. The variables ±v t
count the number of different price bids. Eq. (31) and (32) enforces 

=±v 1t if at least one EV has made a bid at the regulation price asso
ciated to scenario ω in PTU t. Eq. (33) restricts the number of different 
price bids below a defined number for offering reserves during upward 
and downward regulation, independently. 

± ±
± ±v u i t,t i t¯ ¯ (31)  

± ± ± ±
±v u u i t t, { ¯ ( )},t i t ig t t( , , ),s (32)  

± ±v t¯t
(33)  

+v v t, {0, 1} ,t t (34)  

Additionally, (35) and (36) restrict reserve market bids to a 
minimum volume π. 

+± ± ±
± ± ±( )v r r tt

i I
i t i t¯ ¯ ¯ (35)  

+ +± ± ± ± ± ±
± ±( )v r r r r t t( ) ] { ¯ ( )},t

i I
i t i t ig t t ig t t( , , ) ( , , ),s s

(36)  

The new SDIR model is defined by (1), (2), (7)-(13), (20), (25*)- 
(30*), and (31)-(36). These constraints are also used to add the 
minimum-bid requirement in the other four methods presented below. 

4.2. Probabilistic formulation – DDIR 

A formulation based on a probabilistic analysis of the bid accep
tance was proposed in [11]. Here we extend the variant of their for
mulation presented in [3] with the additional minimum-bid constraint. 
The main idea is to define a bid acceptance probability for each PTU. 
This model is very similar to the formulation in (1)-(13) but with two 
important changes. First, the accepted reserve market volume bid is 
replaced by a first-stage decision variable that represents the reserves 
volume bid for all the scenarios. In the objective, the accepted volume is 
multiplied by the expected reserve market price. Additionally, the re
serves volume bid is multiplied by the probability distribution of bid 
acceptance for each PTU. Such a change is achieved by multiplying the 
volume offered as reserves in (1) and (7) by the acceptance probability. 

4.3. Lagrangian relaxation – SLR 

Previous work on large EV fleet scheduling has focused on well- 
known mathematical methods that decompose large scale pro
blems [20,21]. Similar to this line of work, we relax the minimum-bid 
constraints and iteratively find a better solution [29]. By introducing 
p ,ih

DA the energy bought in the DA market for EV i in hour h and re
formulating (2), the problem becomes divisible into +I| | 1 problems: |I| 
problems for the optimal charging scheduling of each EV, and 1 pro
blem to determine the optimal EV bids aggregation per PTU. 

4.4. Greedy method based on SDIR – SGR 

The fourth method is a simple greedy algorithm based on SDIR. Like 
SLR it requires the change to (2) such that the problem is identical and 
independent per EV. The first step solves the SDIR for each EV dis
regarding the minimum-bid requirement. In the second step, the algo
rithm aggregates the volume bid in each PTU per bidding price for all 
EVs and selects the bidding price with the largest volume per PTU. In 
the last step, the SDIR is solved constraining the bidding options to the 
price previously found. 

4.5. Virtual battery – SVB 

Similar to the solution proposed in [18] and [19], we aggregate the 
total EV fleet demand in a minimum set of demand profiles, or virtual 
batteries (VBs). A VB represents a group of EVs with the same charging 
speed (we use two VBs in the experiments). The SDIR problem can be 
transformed to integrate the concept of VBs by following four steps: 1) 
defining the VB (dis)charging capacity by multiplying the charging 
speed of every EV in the VB by the number of EVs charging at each PTU; 
2) estimating the VB maximum SOC by summing the maximum SOC of 
each EV in each PTU (this maximum is defined as the accumulated 
energy in the EV battery if charged at maximum charging speed, but 
limited to the battery’s capacity); 3) including a set of variables to 
define the SOC for each departing EV; and 4) transforming (7)-(10) to 
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account for each time an EV becomes‘ available and each time an EV 
departs. This VB formulation solves the market planning problem, and 
it provides a possible EV departing SOC, but it does not guarantee a 
feasible charging schedule per EV. The price bid resulting from the VB 
formulation is used to constrain the bidding options in the SDIR model. 

5. Analysis and comparison of solution methods 

The experiments are conducted to assess the different solution 
methods on their computational properties, average costs, and whether 
there is any unscheduled demand, which may be caused by the un
certainty in the acceptance of price bids and the activation of the of
fered reserves. The simulation experiments therefore include a com
parison of the optimal value and computation time of the SDIR 
formulation in [3] and the more scalable version that we propose; a 
comparison of the five solution methods for a simple problem and two 
more complex cases; and a scalability analysis of all the methods. A 
summary of the methods presented can be found in Table 1. 

Given the aim of comparing under representative conditions, and 
not of simulating a specific real-world place and period exactly, we used 
real-world data, relying on different easily available sources with suf
ficiently detailed data. EV sets of three sizes, 5, 50, and 500 were 
generated by randomly selecting EV charging sessions from the publicly 
available Dundee city council database [30]. The sets of 5 and 50 EVs 
include sessions starting at 16:00 and extend up to the next day. The set 
of 500 EVs starts at 14:00. Most experiments used sets of EVs with 
mixed flexibility, i.e., they include charging sessions with only a few 
hours in addition to the time required to fulfill the demand at maximum 
charging speed (tighter sessions), and sessions with several hours of 
excess (normal sessions). A set of EVs only with tighter charging ses
sions helped to quantify the computational complexity increase from 
the added flexibility. The data set used is included in the B-FELSA 
toolbox [27]. 

All the experiments were replicated for ten different market days 
generated from the Electric Reliability Council of Texas’ (ERCOT) his
torical market data from years 2016 and 2017 [31,32]. Each day is 
defined by a single scenario of DA market prices, and 52 scenarios of 
the regulation price, market capacity price and the proportion of a PTU 
when reserves are deployed. The scenarios were generated using the 
methodology from [3]. All the SO experiments used a subset of 30 of the 
52 scenarios to find the optimal solution; but for the evaluation of the 
results from all the methods, we use the complete set of market price 
data. The 30 scenarios were optimally selected from the 52 scenarios 
such that they best represent the mean and variance of the full set. 

Even though ERCOT’s market data was used for all the experiments, 
the contributions of this paper apply to other markets. With this in 
mind, we assumed that the reserves bid length is a quarter of an hour 
and not an hour as it is in the ERCOT market. Charge demand that is not 
fulfilled (unscheduled demand) is penalized by $60/MWh, the charging 
efficiency is assumed to be 90% for all EVs, the battery degradation cost 
due to discharging is $0.042/kWh, and the desired bid-acceptance 
probability in the DDIR model is 90%. The unscheduled demand pen
alty determines the risk taken by the EV aggregator; its value allows for 
solutions with unscheduled demand within margins that could be 

resolved in real-time rescheduling and trading with 99% of certainty. 
All the solution methods were coded in Java using Gurobi 7.5.2 [33] 

as MIP solver. The tests were conducted in an Intel(R) Xeon(R) CPU E5- 
1620 @ 3.70 GHz and 16 GB of RAM memory. The experiments were 
stopped after reaching 1% or 5% optimality gap (for SDIR), or after 
5 hours of running time. 

5.1. Equivalence and time efficiency comparison of the two SDIR 
formulations 

The reduced computational complexity of the SDIR formulation 
proposed in this paper is evident when comparing the average total cost 
across 52 scenarios of 10 days for one EV charging session (G2V) 
minimum-volume requirement, with maximum charging speed of 7 kW, 
initial SOC of 10 kWh, maximum SOC of 27 kWh, and arriving for 
charging at 21:15 and departing at 7:15 of the next day (see Table 2). 
Experiments were stopped after 5 hours (for the old formulation) or 
when reaching the 1% optimality gap (for the new one). Results for the 
same day using the old and new versions of the SDIR formulation are 
within $ 0.02 difference and four of the 10 day-experiments are within 
a 5% relative difference. The discrepancies in the other six results can 
be associated to the poor solution quality reached when the old for
mulation is stopped within five hours. These results confirm that both 
formulations are equivalent. The reduction in computational com
plexity is about two orders of magnitude. 

5.2. Base evaluation of the proposed solution methods 

The next set of experiments aimed to draw conclusions about the 
performance of the five solution methods without the minimum-bid 
requirement. The comparison is based on charging cost savings, cus
tomer satisfaction (unscheduled demand) and running time. For such 
evaluation, we used two different sets of 5 EV charging sessions. The 
normal EV set includes a combination of flexible and tight charging 
sessions, and the tighter set only tight sessions. The problem is con
strained to finding a solution to the DA and reserve market bidding 
strategy with only one bid per PTU for a set of EVs. Two other cases are 

Table 1 
Solution methods for the EV market planning problem.    

Method Description  

Stochastic (SDIR) Solves a stochastic MIP model defined by (1), (2), (7)-(13), (20), (25*)-(30*), and (31)-(36). Reserve acceptance is modeled by binary variables. 
Probabilistic (DDIR) Solves a MIP model similar to (1)-(13), but reserve acceptance is modeled as a parameter and reserve price bids are chosen accordingly. For the full 

model, see [3]. 
Lagrangian (SLR) Solves the SDIR model per EV by relaxing the shared constraint and iterating to a better solution. 
Greedy (SDIR-SGR) Solves SDIR per EV and based on these partial solutions fixes the price bids in the complete SDIR model. 
Virtual battery (SVB) EVs with the same charging speed are modeled as one EV. The price bids from this (possibly infeasible) solution is used to fix the price bids in the 

complete SDIR model. 

Table 2 
Computational complexity of both SDIR formulations.       

Day Total cost [$] Time [s] Gapaa - 5h  

new SDIR old SDIR new SDIR old SDIR  

1 -0.12 -0.11 10 48% 
2 0.01 0.01 11 115% 
3 0.00 -0.01 136 34% 
4 0.01 0.01 63 336% 
5 -0.14 -0.14 24 25% 
6 -0.02 -0.02 4 205% 
7 -0.06 -0.06 11 67% 
8 0.00 0.00 91 333% 
9 -0.12 -0.12 41 37% 
10 -0.11 -0.10 13 71% 

a MIP relative optimality tolerance after 5 h running time.  
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included for comparison: smart charging following deterministic DA 
prices (DA), and smart charging for all the EVs but without the single 
bid constraint (Ind. EV). For the latter, the SDIR formulation is used to 
find optimal solutions for each charging session individually. No solu
tions are reported for the normal set using the SDIR method to 1% re
lative optimal tolerance due to computational complexity. 

Figs. 1 and 2 present the average unscheduled demand as percen
tage of the total demand for two types of sets of EVs, i.e. flexible and 
tighter EVs, respectively. All stochastic methods have small percentage 
of unscheduled demand, in particular the SGR method. The schedules 
produced show that this is the result of more conservative reserve 
bidding: bidding when probability of acceptance is either high or low 
and therefore more easy to predict. 

For scenarios that are not considered in the stochastic and DDIR 
methods, violations to the battery capacity constraint (9) may occur. 
For DDIR, these violations are within 5.6% of the total capacity. For the 
stochastic methods it is within 3.4%, where SGR has the least viola
tions. 

Figs. 1 and 2 also help to visualize the trade-off between minimizing 
costs and customer satisfaction. The DDIR method offers low charging 
costs, but it has a higher risk of unscheduled demand. SDIR at 1% gap 
and individual EV scheduling (Ind. EV) are able to find a single price 
bid for all EVs without compromising the cost reduction. The visuali
zation shows that the SDIR method finds solutions at the change of 
curvature. From the perspective of the EV user and aggregator, the SDIR 
method offers the best solution quality: minimum charging costs with 
small unscheduled demand. This benefit depends on the flexibility of 
the EVs. It is not as rewarding for tighter EV charging sessions when 
compared to more flexible EV fleets, but finding an optimal solution for 
tighter EV fleets is less computationally complex. 

After conducting t-tests to compare results across methods, we can 

conclude with more than 95% confidence that the SDIR method offers a 
better total cost solution than the DDIR method. With more than 95% 
confidence we can reject the null hypothesis that the EV schedule and 
energy and reserve market participation found using the SDIR method 
is equivalent to the DA solution. This comparison is based on the total 
costs which consist of the charging costs and a penalty associated to 
unscheduled demand set to $60/MWh, as explained in [3]. 

5.3. Effect of the minimum-volume bid requirement and V2G services 

Computational complexity grows when a minimum-bid requirement 
is imposed, which can be observed by comparing Figs. 3 and 4. The 
latter shows the average total cost when scheduling a normal set of EV 
charging sessions assuming that the EVs offer only G2V services and the 
alternative, offering V2G bidirectional services. For a set of 5 EVs, the 
minimum bid requirement was set to 0.01 MW to make it reasonable for 
the problem size. These results show the financial benefit from offering 
bidirectional V2G services as well as the computational complexity of 
this problem. Since experiments were stopped after 5 hours, the results 
with more than 104 seconds in Fig. 4 correspond to problems that were 
stopped with more than 5% MIP gap. 

Most conclusions about the benefit from the SLR, SGR, and SVB 
methods that apply to the experiments without a minimum-bid also 
apply to the two sets of experiments with minimum-volume bid. Again, 
the SDIR method offers better total costs solutions than DDIR for the 
cases with a minimum-volume bid requirement and when offering V2G. 
The null hypothesis that the two methods are equivalent can therefore 
be rejected with more than 95% confidence. 

Fig. 1. Average unscheduled demand as percentage of total demand for sets of 
5 normal EVs without minimum reserves bid requirement. 

Fig. 2. Average unscheduled demand as percentage of total demand for sets of 
5 tighter EVs without minimum reserves bid requirement. 

Fig. 3. Average total cost for a set of 5 normal EVs offering only grid-to-vehicle 
(G2V) services, without minimum-volume reserves bid requirement. 

Fig. 4. Average total cost for a set of 5 normal EVs with a 10 kW minimum 
reserves bid requirement per PTU. 
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5.4. Scalability assessment 

The last set of experiments focused on comparing running time and 
solution quality for larger EV fleets. Fig. 5 compares the average run
ning time for each of the 5 solution methods considered for this work 
and for 3 EV fleet sizes, 5, 50 and 500. These experiments are only for 
G2V services, and forcing a single minimum-volume bid of 0.01, 0.1 
and 1 MW, respectively. Notice that a logarithmic scale is used for both 
axes. Three data points are missing in Fig. 5, the SDIR-5% for 50 and 
500 EVs, and the SLR for 500 EVs. These experiments took over 5 hours 
to reach solutions within the defined optimality tolerance or number of 
iterations. 

The results in Fig. 5 indicate that the computational complexity 
grows faster for all the SO methods (SDIR, SLR, SGR and SVB) than the 
probabilistic method, DDIR. The SVB method shows the best scalability 
among the SO methods. Nonetheless, there are three important re
marks. First, the SVB formulation used for these experiments depends 
on the diversity of charging speeds in the EV fleet, since the EVs with 
same charging rate are grouped together and there is a VB per speed. All 
the experiments used 2 VBs. Second, the SLR and SGR methods can 
have shorter running time if the step when a solution is found for each 
EV is computed in parallel. Last, the comparison of experiments for 50 
and 500 EVs for the SLR, SGR and SVB methods showed different so
lution quality results than for 5 EVs. SLR found the lowest total costs 
solutions among the three methods for tests with 50 EVs. On average 
SVB finds lower costs solutions than SGR but it is not possible to con
clude with high confidence that SVB finds better solutions. 

For the experiments with a fleet of 500 EVs the SVB offers 22% 
average savings compared to participating in the DA and SGR 19%. The 
DDIR method is highly scalable but solutions have the largest total costs 
and unscheduled demands among all the compared methods. 

6. Conclusion 

Stakeholders of the US and European markets are reconsidering the 
minimum-volume requirements for offering ancillary services by sto
rage units, as these impose an additional complexity to the aggregator’s 
bidding problem. We offer adaptations of the state-of-the-art algorithms 
and models to such a shared constraint, and provide a comparison 
between them to inform such debate. 

This comparison shows the importance of good uncertainty models 
for dealing with the risk of not meeting the users’ demands. The up
dated stochastic optimization formulation (SDIR) has the best solution 
quality but even the improvement of the model does not make it scale 
to large fleets. The virtual battery (SVB) method presented the best 
scalability and had very good solution quality for the 5 EVs experi
ments. The solution using SVB also offers significant economic ad
vantage to only buying energy in day-ahead (DA) markets for a 500 EV 
fleet. Nonetheless, there is margin for improving this result. The 

probabilistic method (DDIR) is the most scalable of all the methods and 
finds solutions with low charging costs, but it is not a good option for 
meeting the user demand. The experiments also showed how it is 
possible to find a single price per time unit for scheduling all the EVs 
optimally, which is a very important insight for aggregators interested 
in offering reserves. With this analysis we can conclude that although 
market constraints have a significant effect on scalability, it seems to be 
within reach to reduce computation time without much loss in quality. 
As such, computational issues by themselves cannot be the sole argu
ment for removing market conditions. 

For future work, the proposed methods could incorporate a more 
advanced model for battery degradation, for example as in [34]. 
However, as this contributes only to a small part of the costs, we do not 
expect this to affect the main conclusions. We consider it more inter
esting to design methods that scale to realistically-sized fleets and are 
simultaneously rich in the details regarding the system constraints, 
minimum-volume constraint and the price bids. This research could 
also be extended by including a formulation for the EV user uncertainty, 
or modifying it to represent other types of flexible loads. Lastly, online 
algorithms are important for close-to-real-time trading when it is pos
sible to make adjustments to forecast errors and small violations of 
offline methods. The proposed methods can be reformulated to make 
the reserves bidding decision online and we expect their relative per
formance to be consistent with the presented results, but testing this 
hypothesis is important before using this for actual trading. 

Data Availability 

Datasets and models related to this article can be found at https:// 
doi.org/10.5281/zenodo.3989096ft/B-FELSA https://github.com/ 
AlgTUDelft/B-FELSA, a benchmark for flexible electric load sche
duling algorithms [28]. 
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