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Automatically inferring technology compatibility with an
ontology and graph rewriting rules

M. N. Roelofs and Roelof Vos

Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

ABSTRACT
In conceptual design of any engineering system, decisions are made
regarding which technologies to include and where. One of the first
stages of that process is constructing the technology compatibility
matrix (TCM), which indicates the compatibility of each pair in a tech-
nology set. Rather than constructing a TCM with expert judgment,
this study develops a method based on graph transformation rules,
allowing for a formal description of technologies. The TCM is then
automatically derived. An ontology based on the Basic Formal Ontol-
ogy is developed todescribe systems and technologies, andprovides
axioms to derive statements about these descriptions. Themethod is
demonstrated with four inference examples, showing how the infer-
ences are made. An industry case study demonstrates the method’s
ability to mimic human expert reasoning. Although the approach
is labour-intensive during setup, it enables knowledge capturing,
automated reasoning and can be extended to provide quantitative
analysis, to save time and effort.
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Nomenclature

E Edges
G Graph
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t Technology
V Vertices
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∀ For all
∃ Exists
⇒ Implies
⇔ If and only if
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¬ Negation
‖ Compatible
⊥ Incompatible
≺ Enables
Acronyms
BFO Basic Formal Ontology
CAD Computer Aided Design
FD Functional Decomposition
GUI Graphical User Interface
PSO Physics-based Simulation Ontology
TCG Technology Compatibility Graph
TCM Technology Compatibility Matrix

1. Introduction

In the conceptual design of engineering systems, it is of the utmost importance to select
those components, technologies and configurations that are most likely to achieve the
specified requirements, while minimising the risk and cost of development, manufactur-
ing and operations. Technology selection is the decision-making process that establishes a
set of technologies, called a technology portfolio, which satisfies all imposed requirements
and achieves the set goals.

So what exactly constitutes a technology? In fact, the term technology is rather broad
and has enjoyed many different definitions. Marx (1997) even emphasises the vagueness
of the term. As an example of a definition, Bush (1981) states:

‘Technology is a form of human cultural activity that applies the principles of science and
mechanics to the solutions of problems. It includes the resources, tools, processes, personnel,
and systems developed to perform tasks and create immediate particular, and personal and/or
competitive advantages in a given ecological, economic, and social context.’

Although it is a more socio-cultural definition, it expresses the things that a technol-
ogy encompasses. Furthermore, it highlights that a technology serves a purpose, i.e. has
a function or goal. A similar conclusion is obtained from the definition by Merrill (1968).
Feibleman (1961) approaches the definition of technology from a broader perspective,
including pure science, applied science, technology and engineering. Historically, applied
science and technology were quite distinct, being practised by natural philosphers and
articans, respectively. However, over the past few centuries, the two have merged to a cer-
tain extent. Mitcham and Schatzberg (2009) provides a similar review of, and distinction
between pure science, applied science, technology and engineering.

Considering the above definitions, we propose the following definition:

A technology is a materialised form of knowledge applied to a given system in order to alter
the system’s behaviour to satisfy certain requirements.

Let us further expand this definition. The materialised form of knowledge ranges from
implementing a process, incorporating a protocol, or instantiating or modifying a material
entity. Thus when the knowledge is only implicit (e.g. exists as a thought), it is not consid-
ered materialised. The system can be any system, including social, biological and physical
systems, as well as engineered systems. For the present work, only engineered systems
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Figure 1. Common practice of constructing a TCM, using only expert judgment.

are considered. The system behaviour involves all processes that the system participates
in. Finally, a technology has a purpose, as Bush (1981); Merrill (1968) concluded. Therefore,
it has to satisfy certain requirements that capture the function or goal of the technology.

Concretely, in the aircraft domain, a technology according to this definition could be a
newmaterial for the wingbox that makes the wingmore flexible and lighter, to reduce fuel
consumption. Another examplewould be software that enables the airplane to be statically
unstable by correcting for it through a controller, allowing the horizontal tailplane to be
smaller and reduce fuel burn. Finally, a technology could be an operation procedure where
the airspace is more efficiently utilised, such that airplanes can fly more direct routes and
have shorter loiter times, reducing the fleet fuel burn at airline level.

In a typical technology evaluation project, different individuals (people or companies)
contribute several technologies, which are either expressed through speech or may have
been described in writing with perhaps accompanying drawings. From these technology
descriptions, a group of experts has to first figure out which combinations of these tech-
nologies may be applied to a system of interest. Each valid combination is a technology
portfolio and has certain merits and drawbacks on the system performance. Then, each
portfolio should be quantified in terms of several quantities of interest. Based on this infor-
mation, the experts can select which portfolios to consider for further development and
implementation.

The issue is that the technologies are not formally expressed, and, therefore, each expert
may have a different interpretation of each technology. Consequently, understanding how
the technologies interact becomes difficult and requires extensive discussion with other
experts. Furthermore, only the final result of these discussions is stored in a technology
compatibility matrix (TCM). Afterwards, one cannot deduce from the TCM why certain
technologies are incompatible. The process is illustrated in Figure 1.

A second issue is that technologies are commonly representedwith impact factors (Kirby
andMavris 1999; Cartagena, Rosario, andMavris 2000; Roth et al. 2001; Utturwar et al. 2002;
Gatian andMavris 2015; Chakraborty andMavris 2017a, 2017b). These factors are provided
by the analysis software used to compute the quantities of interest and do not reflect the
technology’s intricacies. Nonetheless, Soban and Mavris (2013) argue this is a benefit too,
since no commitment tomodelling the technology has to bemade. We argue that this lack
of commitment hampers knowledge capturing and automating (parts of) the technology
evaluation and selection process. It should, therefore, be addressed.

Once the impact factors that are affected by the technology are determined and a value
is assigned to them, again, the rationale behind this is lost. The rationale behind assigning
impact factors may also differ from the rationale used to construct the TCM, because the
technologies are interpreted differently in each situation. This happens naturally in human
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reasoning; as time passes, our conceptions change, which are often not reflected back on
previous decisions.

So how to overcome such issues? As Kitamura (2006) states: ‘one of the necessities
of ontologies of artefacts for engineering design is [. . . ] the lack of explicit description
of background knowledge of modelling’. Therefore, we believe an ontology could mit-
igate the problems in the case of technology evaluation and selection. The ontology
enablesmachine interpretationof the technologies, to automate the constructionof a TCM.
Automating this task would not only improve the consistency of the technologies’ repre-
sentation but also cuts back in time spent. To illustrate, a TCM contains (n2 − n)/2 entries,
where n is the amount of technologies. Assigning each entry by hand quickly becomes a
time-intensive task (Amadori, Bäckström, and Jouannet 2017, 2018).

Naturally, efforts to develop an ontology for engineering design have been conducted.
The physical systems (PhysSys) ontology (Borst et al. 1994, 1995) comprises of three
ontologies addressing the systems layout (component ontology), the physical processes
underlying behaviour (process ontology) and the descriptive mathematical relations (Eng-
Math ontology) (Gruber and Olsen 1994; Borst, Akkermans, and Top 1997). The former
two build on top of three ontologies describing mereology, topology and systems theory.
Unfortunately, neither PhysSys nor a detailed description of its workings is available.

Other attempts focus more on qualitative physics to describe behaviour of systems. For
example, De Kleer and Brown (1984) develop a qualitative physics to describe, predict and
explain the behaviour of systems. Using causal analysis and teleological reasoning, based
on the qualitative physics, electronic circuits are analysed (De Kleer 1984). Here, function
is defined as a causal pattern between variables. Qualitative physics relates structure to
behaviour, whilst teleology relates behaviour to function. Other approaches include the
process ontology (Forbus 1984) and bond graph theory (Rosenberg and Karnopp 1983;
Karnopp, Margolis, and Rosenberg 1990). The latter is used in PhysSys to describe pro-
cesses (Borst et al. 1995). Hirtz et al. (2002) established a frequently used functional basis
to describe the functions of systems and components. The functional basis should be inter-
preted as a taxonomy and although Hirtz et al. provide descriptions of each class, these are
based on natural language and open to interpretation. A functional decomposition (FD)
describing aircraft systemarchitectureswas developed by Judt and Lawson (2015, 2016), to
consecutively enumerate system architectures and search for the best solution regarding
some quantity of interest (QoI) with a hybrid heuristic optimisation. Their FD is problem-
specific, as is the analysis method, and therefore not easily generalised. The same holds for
AirCADia (Guenov et al. 2016), which breaks down the system description into a functional
and logical domain and proceeds bymapping functions tomeans to arrive at a system syn-
thesis. Sen, Summers, and Mocko (2011, 2013b, 2013a) use function–structure graphs to
describe the behaviour of a systemenabling physics-based reasoning on it. Although effec-
tive, it appears to only be applicable to mechanical and electrical engineering domains,
while continuum mechanics seem to pose a problem to this approach. The BeCoS tool
(Castet et al. 2015; Kaderka et al. 2018) uses an ontology to describe systems semanti-
cally rigorous in terms of their behaviour. State-machines describe transitions within the
behaviour and, combined with equations, enable analysis of the system. An approach par-
ticularly aimed at capturing functional design knowledge with an ontology is presented
by Kitamura and Mizoguchi (2004). It complements the device-centric approach PhysSys,
because PhysSys has no ontology for functions from the teleological viewpoint.
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None of the abovework considers technology separately. Therefore, the process of tech-
nology evaluation, selection and infusion is not supported. The currentwork addresses this.
An ontology is developed that allows for such an explicit description of technologies. Fur-
thermore, the first issue of automatically deriving the TCM is addressed. The second issue
of assigning impact factors will be addressed in future work. The proposed ontology is
described in Section 2. This includes the upper ontology and classes, the definition and
explanation of technologies as graph transformation rules, rules to infer physical facts, as
well as the technology incompatibility and enabling relations. The case studies in Section 3
demonstrate how the ontology may be applied. The paper is concluded by a discussion in
Section 4 and reiteration of the method and findings in Section 5.

2. Methodology

The proposed method consists of three parts: an ontology to describe engineering sys-
tems, graph transformation rules to represent technologies and rules to infer dependencies
between the technologies. Theontology formalises knowledgeabout engineering systems.
That knowledgemaybe represented as a knowledgegraph. Thegraph transformation rules
then reflect parts of knowledgegraphs that aremodified as a result of a technology. By eval-
uating what a technology modifies, rules dictate whether that modification is compatible
with another. That process is illustrated in Figure 2. Compare it to Figure 1 to seewhat tasks
the support system takes over from experts. Each of these three elements is described in
the following sections.

2.1. Engineering systems ontology

The ontology is built with the Basic Formal Ontology (BFO) (Arp, Smith, and Spear 2015;
Smith 2012a, 2012b) as upper ontology. The main distinction made in BFO is between
continuants and occurrents. Continuants are entities that exist irrespective of time, while
occurrents depend on time, and only exist during some portion of it. Continuants can be
split into three distinct classes: independent continuants, specifically dependent contin-
uants and generically dependent continuants. The first are entities that exist in virtue of

Figure 2. Proposed method for constructing a TCM, using a rule-based system relying on an ontology.
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Table 1. Introduced classes and their super-
classes (either from Basic Formal Ontology (BFO)
or from the proposed ontology).

Class Superclass

Component Object (BFO)
Energy Immaterial entity (BFO)
Fluid Object (BFO)
Gas Fluid
Liquid Fluid
Plasma Fluid
Interface Continuant fiat boundary (BFO)
Signal Generically dependent continuant (BFO)
Solid Object (BFO)

nothing but themselves. The second are continuants that depend on a certain indepen-
dent continuant. As such, qualities (e.g. the mass of an object) are specifically dependent
continuants. The third class are continuants that only exist in some immaterial form until
they are concretised in a specifically dependent continuant. Examples are novels: a specific
print of a novel is a concretisation of the novel. Even though there may be multiple copies
of the same novel, there is only one such novel.

BFO furthermore defines spatial, temporal and spatiotemporal regions. Together with
sites and fiat boundaries, these allow reasoningover the topologyof space and time. Finally,
the primary class of occurrents used in thepresent ontology are processes. Processes in BFO
occupy a certain spatiotemporal region and have continuant participants, to whom they
are a change. Therefore, processes do not change themselves and do not possess qualities
(Smith 2012a).

Table 1 shows the classes that are introduced to the current ontology as subclasses of
BFO. They are loosely based on works on functional decomposition (Hirtz et al. 2002; Sen,
Summers, and Mocko 2011, 2013a, 2013b) and should therefore allow to define engineer-
ing components and how these interact. Components, fluids and solids are all BFO objects,
as they are material entities that exhibit causal unison. A signal generically depends on a
carrier and is merely the interpretation of a physical quality. Interfaces are defined to be
continuant fiat boundaries. Finally, energy is classified as an immaterial entity, because it
definitely is an independent continuant (it can neither be created nor destroyed, and is
equivalent to matter), but is not a material entity.

The interactions between components are represented using processes and various
relations between entities. These relations are shown in Table 2. The upper part of this
table shows relations from BFO that are used in the present ontology, whereas the bot-
tom part shows newly introduced relations. Table 2 lists the domain, range, reflexivity,
symmetry, transitivity and the inverse for each relation. The domain is the set of classes
that can act as subject to the relation, while the range indicates the type of object of
the relation. Reflexivity entails that an entity has a relationship to itself, i.e. x relation x.
Symmetry indicates that when x relation y⇒ y relation x. Reflexivity and symmetry also
have inverses: irreflexivity and asymmetry. These mean that the negative of that property
holds for the relation. Transitivity propagates a relation through a hierarchical structure;
i.e. x relation y ∧ y relation z⇒ x relation z. Finally, the inverse of a relation is simply its
counterpart: x relation y⇒ y inverse x.
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Table 2. Relations in present ontology, both taken from BFO (upper part) or introduced
(lower part).

Relation Domain Range R S T Inverse

has disposition independent continuant disposition
has function independent continuant function
has part • ° • part of
occupies material entity∪ process spatial region
occurs in process spatial region
part of • ° • has part
realises process realisable entity realised by
realised by realisable entity process realises
blocking disposition of disposition disposition °
inhibits process process °
inhibiting process of process process °
overlaps • •

Note: The columns R, S and T stand for Reflexive, Symmetric and Transitive, respectively. A • indicates that
relation possesses the property, while a ° indicates it possesses the inverse of that property.

The BFO relation occupies requires some elaboration.Whenm occupies r, it means that
thematerial entity (or process)m is exactly located in spatial region r. Thus, equivalently we
could state:

∀m, r : m occupies r⇒∀ r1 : spatial region(r1) ∧
r1 part of r ∧ m occupies r1 .

We took the liberty of adding processes to the domain of occupies, because BFO has two
relations for this: occupies spatial region and occupies spatiotemporal region, where
the first applies to material entities and the second to processes. A spatiotemporal region
thenprojects onto a spatial region at some time. Thus having occupies directly between a
process and a spatial region is equivalent to stating that the spatiotemporal region that the
process occupies, projects onto the same spatial region for any given time instant within
the spatiotemporal region.

The relations in the secondpart of Table 2 also require further definition and elaboration.
First, the next few rules are necessary to reason about overlapping entities. Because the
notion of overlapping is very general (e.g. sets overlap, spatial or temporal regions overlap),
it applies to anything, and no class restrictions are included in the rules.

∀ r1, r2 : r1 overlaps r2 ⇔ ∃r3 : r3 part of r1 ∧ r3 part of r2 (1)

Usually, the overlaps relationship applies to spatial regions, in which case CAD or similar
software may be used to infer it. For now, a statement is directly added to the ontology for
individuals that overlap, such that subsequent inferences can be made. Furthermore, any
spatial region that is part of another spatial region, overlaps its parent:

r1 overlaps r2 ⇐ ∀r1, r2 : spatial region(r1) ∧ spatial region(r2) ∧
r1 has part r2

(2)

Another spatial reasoning mechanism that is needed is that any process that is part of
another process occurs in the same region:

p1 occurs in r1 ⇐ ∀p1, p2, r1 : process(p1) ∧ spatial region(r1) ∧
process(p2) ∧ p2 occurs in r1 ∧ p2 has part p1

(3)
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A significant portion of domain-specific reasoning involves the interaction of processes.
Users may wish to define that a process inhibits other processes of some specific type.
This is most easily achieved by introducing a class of processes of which all individuals are
inhibiting processes of some other class of process:

∀ p1, p2 : p1 inhibiting process of p2 ⇒ Inhibiting Process(p1) ∧
Inhibited Process(p2)

(4)

The relation inhibiting process of only informs that its operands have the potential to
be inhibitory. However, the involved processes only actually inhibit each other when they
occur simultaneously in the same spatial region:

∀ p1, p2 : p1 inhibits p2 ⇔ process(p1) ∧ process(p2) ∧
p1 inhibiting process of p2 ∧
∃r1, r2 : spatial region(r1) ∧
spatial region(r2) ∧
p1 occupies r1 ∧ p2 occupies r2 ∧
r1 overlaps r2

(5)

Dispositions are realised in processes. When two dispositions are realised by inhibitory pro-
cesses, these dispositions block each other. Therefore, we borrow the idea of a blocking
disposition from Goldfain, Smith, and Cowell (2010, 2011):

∀ d1, d2 : d1 blocking disposition of d2 ⇔ disposition(d1) ∧ disposition(d2) ∧
∃p1, p2 :
process(p1) ∧ process(p2) ∧
p1 realises d1 ∧ p2 realises d2 ∧
p1 inhibits p2

(6)

Here, the relation negatively regulates is replaced with inhibits.
Finally, we introduce the notion of an interface, which is a continuant fiat boundary that

has some dispositions. An interface occupies a spatial region. Examples of interfaces are
connection points of pipes or cables, or the surface of an object.

interface(i) ≡ i ∈ continuant fiat boundary ∧
∃r : i occupies spatial region(r) ∧
∃e : i part ofmaterial entity(e) ∧
∃d : i has disposition disposition(d)

(7)

Interfaces are used to express interactions between physical (material and immaterial)
entities, through dispositions and functions defined on them.
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2.2. Technologies as graph transformations

Using an ontology to provide semantics to data, the data itself can be represented as a
graph. A graph is a tuple G = (V , E) where V are the nodes and E ∈ V × V the edges, each
of which is a tuple (s, t) where s is the source node and t the target node, in the case of
a directed edge. If the edge is undirected, there is no distinction between s and t. A type
graph defines types of nodes and edges and specifies how those nodes may be connected
by those edges. An ontology can bemapped onto such a type graph, allowing information
adhering to the ontology to be represented as a knowledge graph.

Specifying changes to graphs formally is done with graph transformations. Graph trans-
formations in the form of graph transformation rules are part of graph grammars, which
have been around since the 1970s and have seen some use in design automation and syn-
thesis (Helms, Shea, and Hoisl 2009; Irani and Rudolph 2003; Stavrev 2011). Inspired by this,
the present work uses graph transformation rules to describe the effect of technologies on
engineering systems.

A graph transformation r : (L← K → R) is a construct consisting of three graphs: the
pattern L, the gluing graph K and the replacement graph or effect graph R. The pattern L is
to bematched inside a certain graph (the system in this case), while the replacement graph
R replaces the matched instance of L, if it exists. Determining what elements to remove
or add is done through the gluing graph K, which contains the corresponding nodes and
edgesof LandR. Note thatK canalsobeemptywhen LandRhavenocommonsubstructure.
In that case, all elements in L are removed from a graph alongwith any edges connected to
the removed nodes. Then R is substituted in, but will have no connections to the rest of the
graph, resulting in a disconnected graph. If K is non-empty, the difference between L and K,
denoted by L−K, are the nodes and edgeswhich are removed by the graph transformation.
Similarly, the difference betweenR and K, i.e. R−K are the nodes and edgeswhich are added
by the graph transformation.

The conceptof graphmatching ismore formally explainedusinggraphmorphisms. LetG
be the system graph that the rule r is to be applied to. When there is a match of the pattern
L in G, there is a graph morphism m : L �→ G. A graph morphism m consists of two func-
tions fV : VL �→ VG and fE : EL �→ EG, such that sG ◦ fE = fV ◦ sL and tL ◦ fE = fV ◦ tL (Ehrig
et al. 2015). Here V denotes the vertices of a graph and E its edges. Furthermore, s is a func-
tion that retrieves the source node of an edge, and t a function that retrieves the target
node.

2.2.1. Independence
Graph transformation rules may interfere with one another when applied to the same
graph. Therefore, two types of independence between these rules are defined: parallel
independence and sequential independence (Ehrig et al. 2015). The former implies that two
transformations can be applied simultaneously. The latter implies that the transformations
can be applied in any order and produce an identical end-result.

There may be additional constraints on both these independence definitions, when
application conditions are included in the graph transformation rule, as is done by
Ehrig et al. (2015). However, for the current implementation these conditions are not
included. The notion of parallel dependence is used in Section 2.3.1 to infer incompatibility
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statements about pairs of technologies. Sequential dependence is used in Section 2.4.1 to
infer enabling relationships between technologies.

2.3. Technology incompatibility

Presently, the purpose of the ontology is to infer whether any two technologies are
incompatible with one another. We assume that if no reason is found for the pair to be
incompatible (denoted by⊥), it is compatible (denoted by ‖). Thus

t1 ‖ t2 ⇔ ¬(t1 ⊥ t2) (8)

There are three causes for incompatibility between technologies: the graph transformation
rules, physics and functionality. Each of these is treated separately in the following sections.

2.3.1. Transformation incompatibility
Technologycompatibility only requires the transformation rules tobeparallel independent.
That ensures that neither technology offsets any effect of the other. Note that transforma-
tion incompatibility only applies when the technologies are introduced to an overlapping
portion of the system graph G.

Parallel independence is checked as follows. First the maximum common (induced)
subgraph K1,2 of L1 and L2 is found as

K1,2 = argmaxm1,m2
|VK1,2 | : K1,2

m1�−→ L1, K1,2
m2�−→ L2 (9)

Two technologies are parallel independent, whenneither t1 removes something t2 uses nor
vice versa. Thatmeans that their removal graphsmay not contain any node or edge that the
pattern of the other technology requires. Conversely, if that is the case, the technologies are
concluded to be incompatible:

t1 ⊥ t2 ⇐ (L1 − K1 ∩ K1,2 �= ∅) ∨
(L2 − K2 ∩ K1,2 �= ∅)

(10)

2.3.2. Physical incompatibility
The main reasoning mechanism for incompatibility of technologies is when their simulta-
neous application would result in a physically inconsistent situation. The following rules
capture several of such inconsistent situations.

A trivial inconsistency ariseswhen twomaterial entities overlap. Thus if twomaterial enti-
ties occupy the same space, they cannot co-exist. Then any two technologies introducing
material entities that cannot co-exist are incompatible:

t1 ⊥ t2 ⇐ ∃c1, c2, r1, r2 : material entity(c1) ∈ (R− K)1 ∧
material entity(c2) ∈ (R− K)2 ∧
spatial region(r1) ∧ spatial region(r2) ∧
c1 occupies r1 ∧ c2 occupies r2 ∧
r1 overlaps r2

(11)
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Introducing a process that inhibits the process introduced by another technology leads to
incompatibility:

t1 ⊥ t2 ⇐ ∃p1, p2 : process(p1) ∈ (R− K)1 ∧
process(p2) ∈ (R− K)2 ∧
(p1 inhibits p2 ∨ p2 inhibits p1)

(12)

2.3.3. Functional incompatibility
Often, it is undesirable to have two technologies introduce the same functionality in the
same region. Therefore, one might wish to define incompatibility between such technolo-
gies. This is the case when they introduce processes that have an equivalent effect.

For this, a form of equivalence between processes has to be defined. For now, the equiv-
alence is based on the effect of the process. This is inferred when two processes realise the
same type of disposition:

p1 has equivalent effect p2 ⇐ ∀p1, p2 : process(p1) ∧ process(p2) ∧
∃d1, d2 : disposition(d1) ∧ disposition(d2) ∧
p1 realises d1 ∧ p2 realises d2 ∧
d1 ⊆ d2

(13)

According to this definition, even when a process has multiple dispositions, only one of
which is equivalentwith one fromanother process, the processes have an equivalent effect.
The equivalent effect is, therefore, only a subset of the full effect of the process. To obtain
a stronger notion of equivalence between the processes, the existential quantifier on the
dispositions should be replacedwith a universal quantifier. Depending on one’s viewpoint,
that may be the more correct way forward.

The technology incompatibility statement that when the technologies introduce pro-
cesses that have an equivalent effect, then reads:

t1 ⊥ t2 ⇐ ∃p1, p2, r1, r2 :
process(p1) ∈ (R− K)1 ∧ process(p2) ∈ (R− K)2 ∧
p1 has equivalent effect p2 ∧
spatial region(r1) ∧ spatial region(r2) ∧
p1 occupies r1 ∧ p2 occupies r2 ∧
r1 overlaps r2

(14)

Only when the processes overlap in space are they considered incompatible, because in
theory, the one technology could introduce a process on themoon and the other on Earth,
which obviously have nothing to do with one another. This rule does not capture the situ-
ation where the regions r1 and r2 are situated such that the processes have the same effect
in the same region nonetheless. This could happen, for example, when the processes are
flames on two sides of a metal plate. Clearly, they occur in distinct regions, but their effect
– heating the plate – is equivalent.
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2.4. Technology enabling

Besides incompatibility, statements regarding technologies enabling one another have to
be inferred. When technology t1 enables t2, this is written as t1 ≺ t2. Technology enabling
occurs through two mechanisms: the graph transformation rules and physics-based rules
in the ontology. Each of these rules is overruled if any incompatibility statement fires for
the pair of technologies. This means that:

t1 ≺ t2 ⇒ t1 ‖ t2 (15)

and, despite what any of the following rules might suggest:

t1 ⊥ t2 ⇒ t1 ⊀ t2 ∧ t2 ⊀ t1 (16)

2.4.1. Transformation enabling
Technology transformation rules may be sequentially dependent. In that case, the tech-
nology that sequentially depends on another is enabled by the latter. Nonetheless, they
still have to be parallel independent. There are two situations that need to be taken into
account: onewhen the transformations by themselves are sequentially dependent and one
when the transformations are sequentially dependent when applied to a system graph.

In the first case, the pattern of the enabled technology should appear in the effect of the
enabling technology, but should not be present in the latter’s pattern:

t1 ≺ t2 ⇐ L2 ⊆ R1 ∧ ¬(L2 ⊆ L1) (17)

Thus the requirements for t2 are completely resolved by the effect of t1, while those
requirements were not fulfilled before application of t1, because L2 is not a subgraph of
L1.

When applied to a system graph G, the pattern L2 does not have to be a subgraph of
R1, but rather a subgraph of G after application of t1. Similarly, L2 should not appear in G,
instead of L1:

t1 ≺ t2 ⇐ L2 � G ∧ G
t1�−→ H ∧ L2 ⊆ H (18)

These rules fire when, for example, a technology is the addition of a component to the sys-
tem, and the second technology only works for such a component. The last rule also works
when only part of a system is modified, say for example a material is changed from metal
to composite, and the other technology requires a composite material to work.

2.4.2. Physical enabling
A technology enables another when it removes an interface or process or disposition that
inhibits one that theother introduces. The converse case,whena technologyadds aprocess
or interface that another requires, has to be handled as well.

Consider the flame in a jet engine combustor. For it to work, the airflow into the com-
bustormust be relatively laminar. So a technology that laminarises the inflow of air enables
the combustion process. In other words, the enabling technology removes the turbulence
process that inhibited the flame. The second case can be illustrated by a technology that
adds a pumping process to force the fuel into the injector nozzle.
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The challenge is that when this type of enabling occurs, theremay be other aspects that
still prevent the enabled technology to be fully applicable. For example, this happenswhen
there are two processes that the technology relies on, which are both inhibited by some
existing process in the system. If another technology only resolves the inhibition of one of
these processes, the other process still prevents application of the technology in question.
Therefore, we need to check if all inhibiting aspects are resolved by the enabling technol-
ogy. Note as well that the following rules are based on the application of a technology to a
system graph.

The above description is captured in the following rule. After applying t1 : G �→ H1 and
t2 : H1 �→ H2, this rule infers physical enabling through removal of inhibiting processes or
blocking dispositions:

t1 ≺ t2 ⇐∀ disposition(d) ∈ (R− K)2 : {� disposition(dG) ∈ H1 :

dG blocking disposition of d} ∧
∀ process(p) ∈ (R− K)2 : {� process(pG) ∈ H1 : pG inhibits p} ∧

([∃ disposition(d) ∈ (R− K)2 : {∃ disposition(dG) ∈ G :

dG blocking disposition of d}] ∨
[∃ process(p) ∈ (R− K)2 : {∃ process(pG) ∈ G : pG inhibits p}])

(19)

The other mechanism by which two technologies may enable one another is when they
resolve dependencies imposed on each other’s interfaces. This is simply the case when, for
example, two electrical conductors are connected, such that a current may flow through.
(A battery alone does not produce current, nor an electromotor by itself. If the two are
connected, however, a current flows and the function of the electromotor is realised. The
battery already fulfills its function by storing chemical energy. Depending on your point
of view, it also has a function to convert chemical energy to electric energy and/or to pro-
vide it to some other device. In that case, the battery has these functions realised by the
complementing interface.)

For this mechanismwe require the notion of complementary and collective dispositions
(Goldfain, Smith, and Cowell 2010). The idea is that an object aggregate C can have a dis-
position D that is formed by the mereological1 sum of its constituent dispositions di. Thus
C =∑

ci, and ∀ci : ci has disposition di, such thatD =
∑

di. The latter sumdescribes part-
hood between dispositions, which is not clearly defined. Instead, the process aggregate
P that realises D can be described as the sum of its constituents: P =∑

pi : P realises D.
Then, for each of these constituent processes, there must exist a part of C that mani-
fests it: ∀pi(∃ci ∈ C : ci has disposition di realised by pi). This works, because parthood of
processes is a better defined concept.

To make this work in practice, inferences are required that establish how interfaces
enable one another’s functions. This can be done for two interfaces with the following rule:

I1 complements I2 ⇐ interface(I1) ∧ interface(I2) ∧
∀p0 : I2 has function f realised by p0

[(∃p2 : p0 has part p2 ∧
I2 has disposition d2 realised by p2) ∧
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∀p1 : p0 has part p1 ∧
¬(I2 has disposition d2 realised by p1)

(∃d1 : I1 has disposition d1 realised by p1)] (20)

This rule states that for each function of interface I2 it performs at least one of the sub-
processes involved in fulfilling that function. Furthermore, for each part of p0 that is not
manifested by interface I2, there should be a disposition in interface I1 that does manifest
it.

Looking back at the definition from Goldfain, Smith, and Cowell (2010), it should be
clear that p0 is the collective process P. Furthermore, the interfaces I1 and I2 are the parts ci
that manifest the sub-processes pi (as p1 and p2). This rule also works when p0 = p1 = p2,
because has part is both transitive and reflexive (see Table 2).

Now it has been established that these two interfaces form a collective that realises
the function intended by one of them, we can bring it back to technology level and infer
technology enabling:

t1 ≺ t2 ⇐ ∃ interface(I2) ∈ (R− K)2 (∃ interface(I1) ∈ (R− K)1 :

I1 complements I2)s
(21)

Thus a technology enables another when it complements one or more interfaces of the
other. To explain why this is taken as the enabling condition, rather than requiring each
interface to be complemented by the other technology, consider a pump. A pump has two
interfaces: inflow of non-pressurised fluid and outflow of pressurised fluid. A pump is only
fully enabled when both ports are connected. However, no single object would simultane-
ously satisfy both these interfaces. Therefore, only one interface has to be complemented
by an enabling technology, even though that may mean that the enabled technology
remains with unresolved interfaces.

3. Application and results

As explained in the introduction, one of the first steps in technology selection is defining a
technology compatibility matrix (TCM), which is used to prune out combinations of tech-
nologies that should not be considered together. In this section, several technologies are
modelled to showcase the inferences the presented method enables and how these can
be leveraged to automatically construct a technology compatibility graph (TCG), which is a
generalisation of the TCM.

After that, we showhowa complete TCM is generated for an industry technology set. It is
compared to the one specified by experts to investigate how well equipped the proposed
method is in mimicking expert reasoning.

3.1. Implementation

Although the method is independent of the implementation, it hinges on the presence of
two components: graph rewriting rules and a rule-based inference engine. The system is
described as a knowledge graph in any format. The technologies are represented as a triple
of graphs: the pattern, gluing and effect graph. These graphs should beparsedby thegraph
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library, which carries out the graph rewriting operation G
t�−→ H for each technology. Then

all pairs of the graphs H are fed into the inference engine, which applies the rules detailed
herein and outputs the TCG relations.

Most of themethodhas been implemented in Protégé, by including the BFO-OWLontol-
ogy and specifying SWRL rules to reflect the rules stated in Section 2. However, some rules,
e.g. Equations (19) or (20), cannot be expressed in SWRL, which is why the entire approach
was rebuilt with custom code written in C#. A small graph library is built to work on knowl-
edge graphs and perform graph matching. The input graphs that specify the systems and
technologies are supplied in a custom XML format. On top of it, a very naive reasoner is
used, which continues to execute all rules until no further inferences are made. The rules
are written in code. A GUI allows the user to open the input files and start the inference
process. The GUI also shows the resulting TCG.

3.2. Test case description

The first case study (see Sections 3.3 and 3.4) revolves around an aerodynamic surface,
such as an aircraft wing. The following technologies are considered: a vortex generator,
a plasma actuator, natural laminar flow, conformal antennas and conductive structure. All
of these, except for the conductive structure, have the function to reduce the friction drag
of the wing. The conductive structure is meant to remove the need for cables and can pro-
vide electricity distributed over a surface. In current practice, experts would now discuss
these technologies and establish a TCM by hand. That is, they draw up a matrix and fill out
each cell by discussing whether that pair of technologies is incompatible or has any other
dependency.

Instead, the proposed approach is applied here. The graph transformation rules (rep-
resenting technologies) are shown as knowledge graphs with the addition and removal
subgraphs. As such, knowledge about what a technology constitutes is captured. Then, we
show what inferences the computer algorithm would make in what order to illustrate the
approach. Rather than doing so for each pair of technologies, one of the compatibility rules
from Section 2.3 or one of the enabling rules from Section 2.4 is illustrated with one pair of
the five technologies.

The second case study (see Section 3.6) takes a set of technologies from the aviation
industry andapplies the full approach toobtain a TCM. This TCM is compared toone created
using expert judgment. Thuswe show the applicability of themethod to practical use cases
and its reasoning accuracy.

3.3. Compatibility reasoning

Two of the incompatibility rules from Section 2.3 are illustrated: inhibitory processes (see
Section 3.3.1) and functional equivalence of processes (see Section 3.3.2).

3.3.1. Physical incompatibility: inhibiting process
A body moving through air experiences friction from the air particles colliding with the
object’s surface. When the airflow around the body is laminar, the air particles move in lay-
ers that hardly interact. Therefore, the particles close to the surface move tangentially to it,
which reduces the friction drag, because less collisions occur. Conversely, when the flow is
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Figure 3. Graph transformation of conformal antenna. Grey represents the pattern, green (dashed) the
added nodes and edges, and red (dotted) the removed nodes and edges.

Figure 4. Graph transformation of laminar flow. Grey represents the pattern, green (dashed) the added
nodes and edges, and red (dotted) the removed nodes and edges.

turbulent, the air moves chaotically, with more friction as a result. The portion of air that
experiences friction from the body’s surface is called the boundary layer. Air outside the
boundary layer is usually regarded as laminar, while the boundary layer itself starts of as
laminar flow, but quickly transitions into turbulent flow.

On any aerodynamic surface, protrusions introduce turbulence, which inhibits laminar
flow. Thus when a technology introduces natural laminar flow ,2 while another introduces
turbulence, they are incompatible, according to Equation (12). When taking the pattern
from Figure 3 (i.e. the grey and red parts of the graph) and the effect of Figure 4 (i.e. the
grey and green parts of the graph), both a turbulent and laminar flow process are present.

To infer incompatibility between these two technologies, several rules are used. First,
Equation (4) is used todefine that turbulence inhibits laminar flow. Then, Equation (3) estab-
lishes that the laminar flow process in Figure 4 occurs in the boundary layer spatial region.
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Figure 5. Graph transformation of plasma actuator. Grey represents the pattern and green (dashed)
represents added nodes and edges.

This enables Equation (5) to infer that the turbulence process in Figure 3 inhibits the lam-
inar flow process. Finally, that is the information needed for Equation (12) to deduce that
the antenna is incompatible with the natural laminar flow technology.

3.3.2. Functional incompatibility: process equivalence
Although a laminar boundary layer produces less friction than a turbulent one, it is also
more prone to a process called separation. Separation is the detachment of the boundary
layer from the surface, as a result of the flow reversing direction close to the surface. This
results in a lot of additional aerodynamic drag, and, therefore, is highly undesired. Several
technologies exist that aim to turn the boundary layer turbulent in a controlled fashion,
such that it will not separate. One such technology is a plasma actuator, which exploits
ionisation of air to turn it into plasma, locally. This has the effect of creating small vortices,
making the boundary layer turbulent. Similarly, a vortex generator has the same effect, but
is simply a small vane.

A plasma actuator is modelled as shown in Figure 5. It adds the plasma actuator com-
ponent (in green) to an existing aerodynamic surface (in grey). As a second technology,
consider the vortex generator, whichwould have a similar graph, except for the disposition
and process of creating plasma, and without the electric interface.The incompatibility of
these two technologies follows directly from Equation (14). Because the technologies are
defined similarly, the fact that p1 has equivalent effect p2 follows from Equation (13).

3.4. Enabling reasoning

Again, two rules are highlighted to showcase the enabling relationship inferences the
ontology enables. First, we look at technologies that remove an inhibiting process to
enable another technology in Section 3.4.1. Second, the idea of complementing interfaces
is exemplified in Section 3.4.2.
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Figure 6. Graph transformationof conductive structure. Grey represents thepattern andgreen (dashed)
represents added nodes and edges.

3.4.1. Physical enabling: removal of inhibiting process
Consider conformal antennas (see Figure 3) and natural laminar flow (see Figure 4). A con-
formal antenna is entirely embedded in a surface, such that the surface has no protrusions.
In order to infer that the conformal antenna enables natural laminar flow, Equation (19) is
used. The second part of the rule, which states that an inhibitory process or blocking dis-
position should be present when only natural laminar flow is applied, is true, as already
examined in Section 3.3.1. After application of the conformal antenna rule, the turbulence
caused by the antenna is removed. Application of the natural laminar flow rule itself causes
the turbulence from the aerodynamic surface to disappear. Now, no process exists that
inhibits the laminar flow process, and the first half of Equation (19) is also satisfied.

3.4.2. Physical enabling: complementing interfaces
As Figure 5 shows, theplasma actuator contains an interface that has thedisposition to con-
duct electricity. However, there is no process that realises it, which prevents Equation (20)
from firing. If the conductive structure shown in Figure 6 is present, however, such a con-
duction process could be instantiated between the two interfaces introduced by each
technology. Inorder todo that, a separate rule is added to thedomainontology, that creates
a transfer process whenever two interfaces overlap that have the disposition to transmit a
certain type of entity. It reads:

∃i1, i2, d1, d2, t, id :

interface(i1) ∧ interface(i2) ∧ i1 overlaps i2 ∧
i1 has disposition d1 ∧ i2 has disposition d2 ∧
disposition(d1) ∈ ToTransmit ∧ disposition(d2) ∈ ToTransmit ∧
d1 participant type t ∧ d2 participant type t ∧
d1 interface dimension id ∧ d2 interface dimension id

⇒ ∃p0 : Transfer(p0) ∧ p0 realises d1 ∧ p0 realises d2

(22)

Conduction is such a transfer process, when the type of entity to transmit is electric energy.



JOURNAL OF ENGINEERING DESIGN 19

Figure 7. The technology compatibility graph (TCG), a generalisation of the TCM. Absence of a relation
between two technologies indicates compatibility.

With these two technologies, Equation (22) instantiates the process that Equation (20)
requires to infer that the interfaces i1 (the skin surface) and i2 (the electric interface) com-
plement each other. That, in turn, causes Equation (21) to hold true, which concludes that
a conductive structure enables the plasma actuator. Note that the inverse is also true,
because Equation (20) infers that the two interfaces are complementary in either direction.

3.5. The technology compatibility graph

Insteadof a TCM, a technology compatibility graph (TCG) is automatically constructedusing
the above approach. The TCG is shown in Figure 7 for the five technologies investigated in
this section. Note that Figure 7 omits the compatible relation, because that unnecessarily
clutters the graph. Thus, when no relation is depicted between two technologies, they are
compatible.

3.6. Full technology set TCM

To test the applicability of the method to a practical test case, a set of technologies from a
study in aircraft industry is taken andevaluatedusing theproposedmethod. Thepurposeof
this demonstration is to verify whether the diverse set of technologies thatmay be encoun-
tered in industry can be modelled using the graph transformation approach, and whether
the inference rules apply to these cases. The particular set of technologies considered here
apply to an aircraft. They are distinct from the ones shown in the previous test case. How-
ever, due to confidentiality issues, the technologies cannot be explicitly displayed, and are
replaced by generic identifiers. As Figure 8 shows, there are only few differences between
the automated method and the TCM as established by a group of experts.

A pair of experts considered each pair of technologies and established the TCM in Figure
8(a) through discussion. None of the technologies were explicitly defined, and each expert
had their own interpretation of it. The process involved some iteration, as viewpoints on
what makes technologies incompatible or enable another changed along the way.

Based on further deliberation with the same experts, graph transformation rules were
created that capture the technologies as best as possible. Because it is cumbersome to cap-
ture all details of a technology, emphasis was put on the aspects that could interfere with
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Figure 8. TCM comparison between experts and current method. A−1 denotes incompatibility, while
a 1 denotes enabling and is a directed relationship (thus, the 1 to the far right reads T8 enables T12,
whereas the 1 to the far left reads T9 enables T2). (a) TCM by experts. (b) TCM by method.

other technologies. These transformation rules, along with a system graph that was con-
structed to accommodate all the technologies, were input to the method outlined in this
paper. The resulting TCM is shown in Figure 8(b).

The first difference is the incompatibility between technologies T2 andT5, andT3 andT5.
Bothpairs are assessedas incompatibleby the currentmethod, due to an inhibitingprocess,
with Equation (12). However, the reason the experts do not agree is because of the scale of
the two processes. The inhibiting process does occur in the same region as the other pro-
cess, but ismuch smaller anddoes not have a significant effect on it. Amore comprehensive
understanding of physics by the inference engine is required to deal with such intricacies.
As long as that is not possible, it would be necessary for experts to explicitly model inap-
plicability constraints for technologies or have the ability to overrule conclusions drawn by
the inference algorithm.

The second difference is the enabling relation between T11 and T10. The inability of the
current method to detect this, is a result of a lack in modelling capabilities. Concretely, the
graph rewriting rule implementation does not allow for optional patterns to be specified,
which is required for the correct implementation of T10 that allows inference of themissing
enabling relation. An optional pattern is an alternative pattern, or extension thereof, that
allows application of the technology when present in a source graph.

4. Discussion

As set out in the introduction, technologies are usually modelled only as impact factors.
That has the advantage of being a simple approach, yielding results quickly. However, it
fails to capture knowledge of what the technologies actually are and inferences as pre-
sented herein are not possible. The present approach offers this possibility, at the expense
of additional effort to define the technologies as graph transformations. In future work, this
approach can be extended to offer simulation capabilities. For larger technology sets, this
approachmight thenbecome less labour-intensive, because analysismethods can be auto-
matically assigned to the technologies, as well as the values for the input variables. This
reduces the need for experts to identify and assign impact factors.
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For the current approach to work well, the graph transformation patterns should cor-
rectly match to the system graphs. However, when symmetries are present in either,
ambiguities result as a graph matching algorithm identifies multiple matches. Concretely,
this may happen when a node in the pattern is considered equivalent with multiple nodes
in the system graph. When less information is present, this issue becomes more preva-
lent. Therefore, equivalence determination is one of the cornerstones of this approach.
Further research has to be conducted to establish robust ways to determine equivalence
for dispositions and processes.

In addition, a designer or analyst must have a good understanding of the ontology
and how to represent systems and technologies in it. Because different individuals have
different viewpoints and conceptions, their description of identical entities may differ. Fur-
thermore, the formal language of an ontology may make it difficult to describe physical
entities and phenomena properly, especially for people with less training in its use (Ben-
jamin et al. 1996). This issue is pervasive in ontology research and application, and there
seems to be a lack of sound solutions. To alleviate this problem, ontologies should be built
up of multiple, general ontologies, such as a mereology, topology, geometry and physical
process ontology (Benjamin et al. 1996). Themodelling process should follow several steps:
defining the components, defining the processes and behaviour, and defining the mathe-
matics (Borst, Akkermans, and Top 1997). It would then be evident what to model at each
step andwhen to transition from one step to another. This process should be supported by
well-written and accessible instructions. Another option is to construct a library of systems
and processes that a designer can use, rather than defining these themselves.

There may be different ontologies suitable for describing engineering systems and the
physics surrounding them. The proposed ontology can be easily replaced by such other
ontology. Only the rules presented in this paper have to be rewritten in terms of those
ontologies, for the approach to work. In the future, for example, the PSO ontology (Cheong
and Butscher 2019) appears to be a suitable candidate (partly because it also is based on
BFO).

Regarding the presented ontology, we should emphasise that the categorisation under
BFO (see Table 1) is debatable. For example, some or all fluids may not be regarded BFO
objects, because they should be maximally causally unified. However, why would a solid
piece of material be considered an object, while a gaseous portion of material is not? An
atmosphere is a causally unified portion of gasmolecules, so could be considered anobject.
We reason this is true for any (portion of) gas, and, by extension, for any fluid. The classi-
fication of energy as an independent continuant may also excite opposition. It is indeed
common to regard energy as a dependent continuant, as it is usually described as a quan-
titative property of an object. However, due to the mass–energy equivalence, we argue
energy should be treated on an equal level as matter. Considering, for example, radiant
energy, it can either be described as the energy carried by photons, or as an electromag-
netic wave that oscillates electric and magnetic fields. The views are equivalent, according
to the wave–particle duality. This again suggests that energy andmatter should be treated
equivalently. Nonetheless, these classifications are not concrete and more work from the
community is required to assert or reject them.

Rather than having to specify everything by hand, several relations can be determined
automatically using more sophisticated software. For example, the overlaps relation can
be computed using CAD software. Furthermore, the interaction between processes could
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be determined by simulating them and observing some key qualities. Through principal
component analysis and other statistical methods, the behaviour of groups of processes
can be deduced, which then helps to establish the inhibitingprocess of relationships. This
possibility enables themethod to extend existing systems engineering practices. However,
it requires a rather detailed description of the technologies and systems; something that
may not be available in the conceptual design phase.

5. Conclusion

Anontology is developedbasedonBasic FormalOntology to describe engineering systems
and technologies affecting them. The systems can be represented as graphs onto which
the ontology ismapped. The concept of graph transformation rules is applied tomodel the
effect of technologies on a system. Rules are defined to deduce compatibility and enabling
relations between technologies from these graph transformations and the ontology. Sev-
eral applications show how different graph transformations trigger the execution of the
rules, causing an inference chain to start and conclude whether a technology is compati-
ble or incompatible with another, or enables another. An industry test case shows that the
system is capable of mimicking human expert reasoning.

The method hinges on the ability to determine equivalence between entities in the
ontology, and, especially for processes and dispositions, this equivalence definition needs
to be further defined. Nonetheless, the approach offers a means to formally describe tech-
nologies and provides knowledge capturing, which comes at the expense of modelling
effort. The extra modelling effort is offset by the ability to trace back why decisions are
made and to explicate each technology. Future work will introduce the means to simulate
the technologies for quantitative assessment.

Notes

1. Mereology is the study of parts and the wholes they form in philosophy and mathematical logic.
2. Natural laminar flow occurs when a body is shaped such that the flow around it remains laminar.
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