
 
 

Delft University of Technology

Timetable Recovery After Disturbances in Metro Operations
An Exact and Efficient Solution
Gkiotsalitis, Konstantinos; Cats, Oded

DOI
10.1109/TITS.2020.3041151
Publication date
2020
Document Version
Final published version
Published in
IEEE Transactions on Intelligent Transportation Systems

Citation (APA)
Gkiotsalitis, K., & Cats, O. (2020). Timetable Recovery After Disturbances in Metro Operations: An Exact
and Efficient Solution. IEEE Transactions on Intelligent Transportation Systems, 23(5), 4075-4085.
https://doi.org/10.1109/TITS.2020.3041151

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TITS.2020.3041151
https://doi.org/10.1109/TITS.2020.3041151


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Timetable Recovery After Disturbances in Metro
Operations: An Exact and Efficient Solution

Konstantinos Gkiotsalitis , Member, IEEE, and Oded Cats , Member, IEEE

Abstract— This study proposes an exact model for timetable
recovery after disturbances in the context of high-frequency
public transport services. The objective of our model is the
minimization of the deviation between the actual headway and the
respective planned value. The resulting mathematical program
for the rescheduling problem is nonlinear and non-smooth; thus,
it cannot be solved to optimality. To rectify this, we reformulate
the model using slack variables. The reformulated model can be
solved to global optimality in real-time with quadratic program-
ming. We apply the model to real data from the red metro line in
Washington D.C. in a series of experiments. In our experiments,
we investigate how many upstream trips should be rescheduled
to respond to a service disturbance. Our findings demonstrate
an improvement potential of service regularity of up to 30% if
we reschedule the five upstream trips of a disturbed train.

Index Terms— Timetabling, high-frequency services,
disturbance management, metro recovery, regularity-based
services.

I. INTRODUCTION

THE planning process of metro services consists of a
sequence of stages: strategic (determination of stops and

routes), tactical (frequency settings, timetable design, crew and
vehicle schedules), and operational (timetable rescheduling,
holding, short-turning/stop-skipping) [1]–[3]. Due to the dis-
crepancy between planning and operations, a plan made at the
tactical stage might need to be modified at the operational
stage. This is often performed so as to maintain a regular
service in order to mitigate the impacts of travel or dwell time
disturbances (see [4], [5]). A failure to re-plan the timetable
after a disturbance is likely to lead to increased passenger
waiting times and schedule sliding [6].

Given that metro lines operate in dense urban areas, they
typically operate under regularity-based schemes that aim at
maintaining the planned headway between successive trips [7].
To achieve this, timetables are developed while considering
their robustness to travel time variations. Notwithstanding,
these timetable are subject to frequent rescheduling in an
attempt to adapt to operational disturbances [8]. The real-time
rescheduling of services is considered in the context of dis-
turbance management and differs from disruption manage-
ment. The latter deals with large incidents (e.g., station or
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track closures) which involve service cancellations [9]–[11].
Disturbances are typically addressed by applying local
timetable amendments, while disruptions require more
involved control measures, such as the cancellation of trips,
re-routing, or short-turnings [12], [13].

In this study, we focus on the problem of disturbance
management and propose a model that can efficiently react to
disturbances and re-plan the dispatching times of trips in real-
time, where the dispatching time of a trip is the time it departs
the first station of the line. Unlike past works that resort
into manual control, rule-based approaches or heuristics to
re-plan a timetable in the event of disturbances, we introduce
in this work an easy-to-solve mathematical program that can
be solved to global optimality in real-time. This facilitates the
disturbance management process and improves the regularity
of high-frequency metro lines.

The remainder of this study is structured as follows: in
section II we discuss the relevant literature and position
the contribution of our work. In section III, we formulate
our problem and introduce the objectives and constraints of
our main mathematical model. Thereafter, the mathematical
model is presented in section IV and is reformulated to
ensure its feasibility after relaxing its soft constraints. This
mathematical model is non-smooth and its objective function
is not differentiable at every point of its domain - prohibiting
the application of an exact solution method. To rectify this,
in section V we propose a model reformulation with the
introduction of slack variables. The reformulated program is
proven to have a globally optimal solution and can be easily
solved with exact optimization methods. Next, in section VI,
the application of our approach to the red metro line in
Washington D.C. is presented, demonstrating that we can
achieve a significant benefit if we reschedule the dispatching
times of up to 5 upstream trips of a train that exhibit a
disturbance. Finally, we provide in section VII concluding
remarks and discuss future research directions.

II. RELATED STUDIES

In this study, we focus on disturbance management. Since
extensive disruptions and disruption management are not the
primary focus of our work, we refer the interested reader
to the comprehensive literature study of [14] on disruption
management. We also refer to the works of [15] and [16]
who devised methods for reliable disruption length estimation.
Such estimations can then be used as part of a mixed integer
linear programming (MILP) for making real-time decisions
on skipping/adding stops or performing short-turnings when a
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disruption occurs [7] or devising contingency plans by making
alterations to the original timetable [17].

The aim of this study is to produce an efficient model
that can react to disturbances and re-set the dispatching times
of trips in real-time. Solutions to this problem commonly
adopt local rescheduling to adjust the timetable, see [18]–[20].
D’Ariano et al. [18] aimed at improving the punctuality
of trains by routing and sequencing trains in an iterative
manner - first, an optimal train sequencing was produced
for the given train routes, and thereafter this solution was
improved by locally rerouting some trains. Their solution
method was based on local search and Branch and Bound
(B&B) given the discrete nature of their mathematical prob-
lem. This work was extended in [19] by incorporating effective
rescheduling algorithms and local rerouting strategies in a
Tabu search scheme. Corman et al. [19] alternated between
a fast heuristic and a truncated B&B algorithm for computing
train schedules. Their train schedules were computed within
a short computation time, but their solution method did not
guarantee the convergence to a globally optimal solution.
Pellegrini et al. [21] aimed at minimizing delays after an unex-
pected disturbance perturbs the operations by searching for the
best train routing and scheduling. The proposed model was a
mixed integer linear program, representing the infrastructure
with fine granularity. Solving the model of [21] to global
optimality is not feasible in real-time for most of the cases,
and the reported computational costs were typically beyond
one and a half minute, even with the use of heuristics.

Most relevant to the problem addressed in this study, [22]
focuses solely on the timetable re-setting after a disturbance.
In [22], the rescheduling problem was not solved to global
optimality. Instead, a greedy heuristic was introduced to ensure
that a (hopefully) good-enough solution is obtained within a
short time (i.e. within 30 seconds). To this end, [22] introduced
a heuristic solution method without formulating the timetable
rescheduling problem as a mathematical program.

Apart from the works on disturbance management for rail
operations, several works have addressed this problem in
the context of bus operations that operate in mixed-traffic
environments, e.g. [23] or [24] who developed a library of
operational tactics to avoid bunching. Bus operators apply
dynamic control strategies such as stop-skipping [25]–[28],
holding for single-line reliability and cross-line transfer syn-
chronization [29]–[33], or rescheduling [34], [35] in the event
of disturbances. A combination of holding and speed changing
is also common, as presented in the work of [36] which
focused on autonomous vehicles. Nevertheless, rescheduling
typically resorts to rule-based techniques or meta-heuristics
to obtain a solution in real-time given the computational
complexity of the problem [37].

As evident from the above review of the literature, since
most works on disturbance management formulate complex
mixed-integer programs (MIPs) that cannot be solved to global
optimality, they resort to heuristic solution methods to solve
the respective MIPs. To fill this research gap, in this study we
propose a novel quadratic programming formulation for the
local timetable re-setting problem in the case of disturbance(s).
Our proposed mathematical program is proved to be convex

Fig. 1. Illustration of loop-formed metro line.

and can re-compute a timetable each time a disturbance occurs.
It can also provide a fast solution even at large problem
instances due to its quadratic formulation. The contributions
of our work to the state-of-the-art are:

• a regularity-based mathematical program for service
rescheduling to mitigate the impacts of disturbances that
can be solved in real-time;

• a problem-specific formulation and a solution approach
that guarantees convergence towards a globally optimal
solution;

• the investigation of how many trips need to be resched-
uled after a disturbance occurs with the use of real data
from a metro operator.

III. PROBLEM DEFINITION

A. Trip Re-Indexing After a Disturbance

We consider a metro line that serves a set of ordered stations
S = 〈1, 2, . . . , s′, . . . , |S|〉 with 1 being the dispatching station
and s′ the turn-back station (see Fig.1). Note that we consider
here the case of a double-track corridor where train traffic
for the two directions can be assumed independent. The
ordered set of daily trips operating in this line is N. When
the operation of trip m ∈ N is disturbed, the set of its
subsequent trips (henceforth referred to as upstream trips) is
Nm = {m+1, m+2, . . .} with Nm ⊂ N. To alleviate the effects
of the disturbance, the dispatching times of all trips j ∈ Nm are
re-set by performing a headway-based optimization process as
described in the following.

The choice of the length of set Nm has significant practical
implications. For instance, if Nm = {m + 1, m + 2, . . .}
contains all remaining daily trips, the computation cost of
re-setting their dispatching times increases due to the increased
number of decision variables. In addition to the increase in
computation costs, modifying the dispatching times of trips
that are expected to be dispatched in the far future might be
proved unnecessary if further disturbances occur in the near
future and there is a need to re-optimize. For this reason,
the sensitivity of the solution performance to the number of
rescheduled upstream trips, Nm , is investigated in our case
study (this is presented in section VI).

Let us re-index set Nm = {m + 1, m + 2, . . .} into Nm =
{0, 1, . . . , n} where trip 0 has already been dispatched and
exhibits a disturbance (e.g., unexpected travel time), and n is
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the last trip in Nm . Thus, trips 0 and n+1 are the “boundaries"
of our re-timing problem because their dispatching times can-
not be modified since: (i) trip 0 has already been dispatched,
and (ii) trip n + 1 does not belong to the set of upstream trips
that need to be re-timed.

Let δ j ∈ R+ denote the originally planned dispatching time
of each trip j ∈ {1, 2, . . . , n} (the time reported at the planned
timetable). Then, δ1 < δ2 < . . . < δ j < . . . < δn . The
decision variable is an n-valued vector x = {x1, x2, . . . , xn}
which expresses the dispatching time offset for each trip j ∈
Nm , where x ∈ R

n . Thus, the adjusted dispatching times of
trips {1, 2, . . . , n} are {δ1 + x1, δ2 + x2, . . . , δn + xn}.

Before introducing the vehicle motion law that governs the
movement of trains, we list the main assumptions used in the
formulation of our mathematical model:

1) Dwell times at stations are fixed. This can be due to neg-
ligible observed variations in dwell times or in case this
is dictated by the operational policy, for instance if the
doors close automatically when the allotted dwell time
elapsed due to the control principles of an automated
passenger door system (see [38]).

2) Service supply is determined at the frequency set-
tings stage and ensures that the passenger demand
can be accommodated even at the maximum load
point [39]–[42]. That is, dispatching time changes will
not lead to overcrowding because the pre-planned
service supply includes sufficient margins.

B. Vehicle Trajectories
With assumptions 1-2, we can outline a set of rules

governing the vehicle movements. For this, we briefly intro-
duce the notation in Table I.

The expected arrival time a j,s of a trip j ∈ {1, 2, . . . , n} at
station s ∈ {2, 3, . . . , |S|} is

a j,s := (δ j + x j ) +
s−1∑
φ=1

τ j,φ +
s−1∑
φ=2

k j,φ (1)

where δ j is the planned dispatching time, x j the dispatching
offset, τ j,φ the travel time from station φ to φ + 1 and
k j,φ the dwell time at station φ. In addition,

∑s−1
φ=1 τ j,φ is

the total travel time from the first station until station s
and

∑s−1
φ=2 k j,φ is the accumulated dwell times from stations

2, 3, . . . , s −1. Note that the dwell times are aggregated start-
ing from station 2 because the departure time from station 1 is
δ j + x j .

From Eq.(1), the arrival time of each trip j ∈ Nm at each
station s varies according to the decision variable values of
x j . Therefore, Eq.(1) can be succinctly written as:

a j,s := x j + c j,s, ∀ j ∈ Nm , ∀s ∈ {2, 3, . . . , |S|} (2)

where

c j,s := δ j +
s−1∑
φ=1

τ j,φ +
s−1∑
φ=2

k j,φ, ∀ j ∈ Nm ,

∀s ∈ {2, 3, . . . , |S|} (3)

The inter-arrival time headway h j,s of two successive trips
j − 1 and j ∈ Nm \ {1} at the time of their arrival at

TABLE I

NOMENCLATURE

station s ∈ S \ {1} is

h j,s := a j,s − a j−1,s = (x j + c j,s) − (x j−1 − c j−1,s),

∀ j ∈ {2, 3, . . . , n}, ∀s ∈ {2, 3, . . . , |S|} (4)

C. Boundary Condition

Note that the arrival times ā0,s of trip 0 at stations s ∈
{2, . . . , |S|} are not affected by the decision variables since
trip 0 has already been dispatched. Incorporating this initial
condition, the time headway between trip 1 and its preceding
one, 0, is:

h1,s := x j + c j,s − ā0,s, ∀ s ∈ {2, 3, . . . , |S|} (5)

Authorized licensed use limited to: TU Delft Library. Downloaded on January 06,2021 at 07:23:20 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Thus, Eq.(5) links the time headway between trip 1 and
0 with the dispatching time offset of trip 1, x1.

D. Constraints

Firstly, a constraint is imposed by the latest possible dis-
patching time of a trip. While some works compute the vehicle
and crew schedules together with the departure times of trips
[43], most works treat them separately (see [22]). Therefore,
it is not practical to delay the dispatching time of a trip
further than a certain threshold because that would lead to the
sliding of the schedule with possible ramifications for vehicle
and crew schedules. If β j is the pre-planned latest possible
dispatching time set by operators based on the additional costs
associated with the sliding of the timetable (e.g. overtime labor
costs, contractual tender commitments), then

δ j + x j ≤ β j , ∀ j ∈ Nm (6)

At this point, we should note that this constraint cannot
be always satisfied. Namely, in cases of external disruptions
there might be no x j that can guarantee the adherence to the
pre-planned dispatching threshold β j . We therefore choose
to specify Eq.(6) as a soft constraint that we aim to satisfy
whenever possible and it will be later replaced by a penalty
term.

Secondly, agencies have specific requirements on the
minimum and maximum allowable dispatching headway,
hmin , hmax , to ensure a minimum level of service [44]. This
constraint can be expressed as:
hmin ≤ (δ j +x j ) − (δ j−1+x j−1) ≤ hmax ∀ j ∈ {2, 3, . . . , n}

(7)

and, in the boundary case where j = 1,

hmin ≤ (δ j + x j ) − δ̄0 ≤ hmax (8)

where δ̄0 is the realized dispatching time of trip 0.
In case that the vehicle capacity at the turn-back station s′

is limited, one can impose a pre-defined minimum headway
h′

min that should be maintained among all vehicles that arrive
at the turn-back station in order to comply with its capacity
limitations. This results in the following set of constraints:

a j,s ′ − a j−1,s ′ ≥ h′
min , ∀ j ∈ Nm (9)

Lastly, to ensure the circulation of vehicles, each trip j
should depart after time π j - where π j is the time by which the
vehicle and driver assigned to perform trip j have completed
their previous trip and are ready to start trip j . The vehicle
circulation constraint is modeled as:

δ j + x j ≥ π j ∀ j ∈ {1, 2, . . . , n} (10)

This constraint ensures that a vehicle is available to operate
the respective trip.

E. Objective Function of Our Model

In high-frequency services, each one of the trips
{1, 2, . . . , n} has a target headway h∗

j,s in relation to its leading
train at any station s ∈ {2, . . . , |S| − 1} [45]. The target
headway is determined at the tactical planning stage and
should be maintained during the daily operations [46].

When striving to maintain the target (ideal) headway,
the objective is to minimize the inter-arrival headway variabil-
ity around the target values because this results in a reduc-
tion of passenger waiting times in high-frequency services
(see [47]). To achieve that, the optimal dispatching offset
x = {x1, x2, . . . , xn} should be the solution of:

min
h

|S|−1∑
s=2

n∑
j=1

(
h j,s − h∗

j,s

)2
(11)

which expresses the discrepancy of the inter-arrival headways
in relation to their target values measured as the sum of
squared errors.

Eq.(11) can be equivalently expressed as:
min

x
f (x)

:=
|S|−1∑
s=2

(
(x1 + c1,s) − ā0,s − h∗

1,s

)2

+
|S|−1∑
s=2

n∑
j=2

(
(x j + c j,s) − (x j−1 + c j−1,s) − h∗

j,s

)2
(12)

IV. MATHEMATICAL PROGRAM

Combining the expected trajectories of future trips and
the objective function yields our continuous mathematical
program:
(Q) : min

x

|S|−1∑
s=2

(
(x1 + c1,s) − ā0,s − h∗

1,s

)2

+
|S|−1∑
s=2

n∑
j=2

(
(x j +c j,s)−(x j−1+c j−1,s)−h∗

j,s

)2

s.t. hmin ≤ (δ j +x j )−(δ j−1+x j−1), ∀ j ∈ {2, . . . , n}
(δ j +x j )−(δ j−1+x j−1) ≤ hmax , ∀ j ∈ {2, . . . , n}
hmin ≤ (δ1 + x1) − δ̄0

(δ1 + x1) − δ̄0 ≤ hmax

a j,s ′ − a j−1,s ′ ≥ h′
min , ∀ j ∈ {1, 2, . . . , n}

(δ j + x j ) ≤ β j , ∀ j ∈ {1, 2, . . . , n}
(δ j + x j ) ≥ π j , ∀ j ∈ {1, 2, . . . , n}

c j,s = δ j +
s−1∑
φ=1

τ j,φ +
s−1∑
φ=2

k j,φ, ∀ j ∈ Nm ,

∀s ∈ S \ {1}
x j ∈ R, ∀ j ∈ {1, 2, . . . , n} (13)

At this point we would like to note that our model (Q)
can be amended to modify the departure times of buses
from any station by considering vehicle holding. In vehicle
holding models, this is achieved by considering an additional
decision variable x̃ j,s that determines the holding time of any
trip j at any station s ∈ {2, . . . , |S| − 1} that should be
added to the respective dwell time k j,s . This holding time
should be always positive, xi, j ∈ R+, and can only delay the
completion of a trip that might result in schedule sliding and
the delayed dispatching of future trips. In addition, specific
attention should be given to maintain a safety distance among
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trains when implementing holding by imposing a constraint
to ensure a minimum required headway among all trips at all
stations.

A. Infeasibility and Soft Constraints

Program (Q) can be succinctly written as:
(Q) : min

x
f (x)

s.t. x ∈ F := {x | x satisfy Eqs.(6)-(10), (12)} (14)

where F is the feasible set. Note that the inequality constraints
of Eqs.(6)-(8) cannot be always satisfied at the same time
and some of them should be prioritized at the expense of
others. Indeed, program (Q) might not have a feasible solution
for some values of the inequality constraints of Eqs.(6)-(8)
yielding an empty feasibility set F (refer to Lemma A.1 in the
Appendix). To rectify this, we relax the inequality constraints
of schedule sliding presented in Eq.(6). With this relaxation,
they become soft constraints that may be violated under certain
circumstances. As soft constraints, they are treated as penalty
terms and they are added to the objective function (see [48]).
In this way, program (Q) that, under certain circumstances,
has no feasible solution is transformed to program (Q̄).

This approach ensures that the constraints of Eq.(6) are sat-
isfied when possible, or violated as little as possible when there
is otherwise no feasible solution. Their relative importance is
weighted by introducing a very large number M ∈ R≥0 which
ensures that the satisfaction of the schedule sliding constraints
is prioritized:

(Q̄) : min
x

f (x) +
∑
j∈Nm

M max(δ j + x j − β j , 0)

s.t. x ∈ F := {x | x satisfy Eqs.(7)-(10), (12)} (15)

The penalty term M max(δ j + x j − β j , 0) ensures that the
soft constraint δ j + x j ≤ β j is prioritized over f (x). Indeed,
if δ j + x j ≤ β j for some x j , then x j does not add any penalty
to the objective function since M max(δ j + x j − β j , 0) = 0.
In reverse, when δ j + x j > β j for some x j , then the penalty
term penalizes the objective function by a very large number
M max(δ j + x j − β j ) and directs the solution search towards
another solution that reduces the value of M max(δ j + x j −
β j , 0).

B. Properties of the Mathematical Program

Program (Q̄) is a nonlinear programming (NLP) problem.
Additionally, our new objective is a non-smooth function
because of the non-smooth term

∑
j∈Nm

M max(δ j + x j −β j , 0);

hence, the objective function of Q̄ is not differentiable at every
point of its domain. This results in a non-linear, non-convex
function that cannot be solved to global optimality with
exact optimization methods. As a remedy, we propose a
reformulation to cast the problem as an easier-to-solve
quadratic program.

V. REFORMULATION TO A QUADRATIC PROGRAM

AND EXACT SOLUTION

The “max" term of
∑

j∈Nm

M max(δ j + x j −β j , 0) makes the

objective function of program Q̄ non-smooth. As a remedy,

we convert the “max" penalty into a new set of slack variables
ν j , j ∈ Nm that, due to their bounds and the direction of
optimization, will take the value

∑
j∈Nm

M max(δ j + x j −β j , 0)

at the solution. The reformulated program is:
(Q̃) : min

x,ν
f (x) +

∑
j∈Nm

Mν j

s.t. x ∈ F := {x | x satisfy Eqs.(7)-(10), (12)}
ν j ≥ 0, ∀ j ∈ Nm

ν j ≥ δ j + x j − β j , ∀ j ∈ Nm (16)

which is reduced to a quadratic program (QP). As shown in
Theorem 1, program (Q̃) is strictly convex and can be easily
solved to global optimality since any locally optimal solution
returned by a quadratic programming solver is also a globally
optimal one.

Theorem 1: A local optimum of program (Q̃) is also a
globally optimal solution

Proof: A local minimizer of Q̃ is the global minimizer of
Q̃ if the objective function is strictly convex and the feasible
region is a convex set. The feasible region is defined by linear
(in)equalities (affine functions) and is a polyhedron. Thus, it is
also a convex set. Further, we prove that the objective function
f (x) + ∑

j∈Nm
Mν j is strictly convex with respect to x, ν.

Let f̃ (x, ν) := f (x)+ ∑
j∈Nm

Mν j . Then, the Hessian matrix

of f̃ (x, ν) is a matrix H ∈ R
2n×2n with elements:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2 f̃ (x,ν)

∂x2
1

∂2 f̃ (x,ν)
∂x1∂x2

. . . ∂2 f̃ (x,ν)
∂x1∂xn

∂2 f̃ (x,ν)
∂x1∂ν1

. . . ∂2 f̃ (x,ν)
∂x1∂νn

∂2 f̃ (x,ν)
∂x2∂x1

∂2 f̃ (x,ν)

∂x2
2

. . . ∂2 f̃ (x,ν)
∂x2∂xn

∂2 f̃ (x,ν)
∂x2∂ν1

. . . ∂2 f̃ (x,ν)
∂x2∂νn

...
...

...
...

...
. . .

...

∂2 f̃ (x,ν)
∂xn∂x1

∂2 f̃ (x,ν)
∂xn∂x2

. . . ∂2 f̃ (x,ν)
∂x2

n

∂2 f̃ (x,ν)
∂xn∂ν1

. . . ∂2 f̃ (x,ν)
∂xn∂νn

∂2 f̃ (x,ν)
∂ν1∂x1

∂2 f̃ (x,ν)
∂ν1∂x2

. . . ∂2 f̃ (x,ν)
∂ν1∂xn

∂2 f̃ (x,ν)

∂ν2
1

. . . ∂2 f̃ (x,ν)
∂ν1∂νn

...
...

...
...

...
. . .

...

∂2 f̃ (x,ν)
∂νn∂x1

∂2 f̃ (x,ν)
∂νn∂x2

. . . ∂2 f̃ (x,ν)
∂νn∂xn

∂2 f̃ (x,ν)
∂νn∂ν1

. . . ∂2 f̃ (x,ν)
∂ν2

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

The gradient of f̃ (x, ν) is an R
2n vector:

∇ f̃ (x, ν) =
( |S|−1∑

s=2

(4x1 − 2x2 + ρ1),

|S|−1∑
s=2

(4x2 − 2x1 − 2x3 + ρ2),

. . . ,

|S|−1∑
s=2

(4xn−1 − 2xn−1 − 2xn + ρn−1),

|S|−1∑
s=2

(2xn − 2xn−1 + ρn), 1, . . . , 1︸ ︷︷ ︸
n

)
(18)

where ρ1, ρ2, . . . , ρn are parameter values consisting of travel
times, dwell times and target headway which do not vary with
x or ν.
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Fig. 2. Toy metro line.

To simplify the notation, let us set ζ := |S|− 2 with ζ > 0.
This yields the Hessian:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4ζ −2ζ 0 . . . 0 0 . . . 0
−2ζ 4ζ −2ζ . . . 0 0 . . . 0

...
...

...
...

...
...

. . .
...

0 0 0 . . . 2ζ 0 . . . 0
0 0 0 . . . 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 . . . 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

f̃ (x, ν) is strictly convex if the Hessian matrix is positive
definite. That is, zᵀHz > 0 for any non-zero vector z ∈ R

2n\0.
zᵀHz yields:

zᵀHz = [
z1 z2 . . . zn−1 zn

]
H

⎡
⎢⎢⎢⎢⎢⎣

z1
z2
...

zn−1
zn

⎤
⎥⎥⎥⎥⎥⎦

= ζ
(
4z2

1 − 2z1z2 − 2z1z2 + 4z2
2 − 2z2z3 − . . .

− 2zn−2zn−1+4z2
n−1−2zn−1zn −2zn−1zn +2z2

n

)
= ζ

(
4z2

1 − 4z1z2 + 4z2
2 − 4z2z3 + 4z2

3 − . . .

+ 4z2
n−2 − 4zn−2zn−1 + 4z2

n−1 − 4zn−1zn + 2z2
n

)
= ζ

(
2z2

1 + (z1
√

2 − z2
√

2)2 + (z2
√

2 − z3
√

2)2 + . . .

+ (zn−2
√

2 − zn−1
√

2)2 + (zn−1
√

2 − zn
√

2)2
)

Hence, zᵀHz > 0 for any z ∈ R
2n \ 0 and thus f̃ (x, ν)

is strictly convex. This proves that a local optimum of the
reformulated program (Q̃) is also its unique global minimizer.

VI. NUMERICAL EXPERIMENTS

A. Demonstration for a Toy Network

To demonstrate the application of our mathematical pro-
gram (Q̃) for timetable recovery, we introduce a small-scale
idealized scenario using a toy network. Trip 0 has already
been dispatched at time d̄0 = 0 sec and has exhibited a travel
time disturbance. Its arrival times at the four stops included
in our toy network are a0,2 = 900 sec and a0,3 = 1600 sec.
Note that we only report the arrival times at the second and
the third station because the service regularity in f (x) is not
measured at the first and last stations (Fig.2).

To proceed with the timetable recovery, we allow to modify
the dispatching times of its three following trips (namely 1,
2 and 3). The originally planned dispatching times of trips 1,
2 and 3 are: δ1 = 600 sec, δ2 = 1200 sec and δ3 = 1800 sec.

TABLE II

ITERATIONS UNTIL CONVERGENCE AND COMPUTATIONAL COST OF
OBTAINING THE OPTIMAL DISPATCHING TIMES WITH GUROBI

The expected inter-station travel times of trips 1, 2 and 3 are:
(τ1,1, τ1,2, τ1,3) = (900, 720, 800) sec

(τ2,1, τ2,2, τ2,3) = (920, 700, 800) sec

(τ3,1, τ3,2, τ3,3) = (880, 640, 800) sec

The target headway is 10 minutes, thus h∗
j,s = 600 sec,

∀ j ∈ {1, 2, 3}, ∀s ∈ {2, 3}. In addition, the minimum and
maximum dispatching headways are (hmin , hmax) = (300 sec,
900 sec) and, given that Fig.2 does not include turnbacks,
h′

min = 0. The dwell times at metro stations are set to k j,s =
30 sec ∀ j ∈ {1, 2, 3},∀s ∈ {2, 3}. Due to vehicle circulation
constraints, the earliest possible dispatching times of trips
1,2,3 are (π1, π2, π3) = (600 sec, 1220 sec, 1820 sec) in order
to ensure vehicle availability. Finally, to avoid schedule sliding,
the latest dispatching times of our trips are (β1, β2, β3) =
(660, 1260, 1860) sec.

Our mathematical model (Q̃) is programmed in Python
3.7 and the experimental tests are performed in a
general-purpose computer with Intel Core i7-455 7700HQ
CPU @ 2.80GHz and 16 GB RAM. To solve our model to
global optimality, we use Gurobi. To facilitate the reproduction
of our methodology, our source code is publicly released
at [49] and can be applied to other case studies. Starting
from an initial solution guess, Gurobi converged to a globally
optimal solution within 10 iterations in this demonstration
(see Table II).

The globally optimal solution is:
x∗ = {x1 = 2.5, x2 = 20, x3 = 60} sec

ν∗ = {ν1 = 0, ν2 = 0, ν3 = 0} sec

and the resulting vehicle trajectories when applying this
rescheduling solution are presented in Fig.3. Note that the
rescheduled operations result in even headways at the locations
of the metro stations which are close to the target headway
of 600 sec.

In Fig.4 we show how this solution improves the squared
headway deviations at stations 2 and 3 in relation to the target
value. Fig.4 indicates a potential improvement of up to 47%
in terms of service regularity compared to the do-nothing case
where rescheduling is not applied.

The average excessive passenger waiting time improvement
considering random passenger arrivals at stations given the
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Fig. 3. Train trajectories before and after rescheduling.

Fig. 4. Squared deviation between the actual and target headway at stations
2 and 3 when our rescheduling solution is applied and in its absence (do-
nothing case).

Fig. 5. Excessive passenger waiting times at stations 2 and 3 when our
rescheduling solution is applied and in its absence (do-nothing case).

high service frequency is provided in Fig.5. Fig.5 shows the
difference between the actual waiting time of passengers and
the planned passenger waiting time of h∗

j,s/2 = 300 sec.
As shown in Fig.5, the excessive passenger waiting time
improvement is 20% at station 3.

We finally note that if we would not have considered
the schedule sliding constraints (that is, β j = +∞,∀ j ∈
{1, 2, 3}), the globally optimal solution would have been:

x∗ = {x1 = 2.5, x2 = 20, x3 = 90} sec

ν∗ = {ν1 = 0, ν2 = 0, ν3 = 0} sec

with a solution performance of 6.28E+03. Hence, if we had
additional resources (i.e., reserve trains) to perform the next
trips when our dispatching time adjustments result in delays,
service regularity would have been further improved by 22.3%.

TABLE III

SOLUTION PERFORMANCE AND COMPUTATIONAL COSTS WHEN SOLVING

PROBLEM (Q) AND ITS REFORMULATED VERSION (Q̃)

Finally, to demonstrate how our mathematical model han-
dles the case where schedule sliding cannot be avoided,
let us consider the same scenario with (β1, β2, β3) =
(600, 1200, 1800) sec. Obviously, for such values of β j the
schedule will slide because the earliest possible dispatching
times of trips to ensure vehicle circulation are (π1, π2, π3) =
(600, 1220, 1820) sec. Hence, our program returns a glob-
ally optimal solution that slides the schedule as little as
possible:

x∗ = {x1 = 0, x2 = 20, x3 = 20} sec

ν∗ = {ν1 = 0, ν2 = 20, ν3 = 20} sec

with a performance of 4.02E+06. Note that the schedule
sliding is indicated by the positive values of ν2, ν3 which
are always equal to zero when a feasible solution for (Q)
exists. Because of its infeasibility, program (Q) cannot be
always solved with an exact optimization solver. Therefore,
we employ a heuristic to find an approximate solution of pro-
gram (Q) and we report the performances when solving pro-
grams (Q) and (Q̃) for the aforementioned case in Table III.
Note that program (Q) is solved with the heuristic differential
evolution method described in [50] because it cannot be solved
by an exact solver.

B. Case Study and Sensitivity Analysis

We apply our model to the case study of the red metro
line in Washington D.C. The red line is a rapid transit line
of the Washington Metro system, consisting of 27 stations
in Montgomery County, Maryland, and Washington, D.C.,
in the United States. It is a primary line through downtown
Washington and forms a long, narrow “U"-shaped, capped
by its terminal stations at Shady Grove and Glenmont. Its
configuration is presented in Fig.6.

Our data covers the period from 11 March 2018 to
29 March 2018 and includes the arrival time and departure
time from each station along with the dwell time at stations,
i.e. elapsed time between door opening and closing times.
The dwell time exhibits a slight variation from the median
as presented in Fig.7. Fig.7 presents the observed dwell times
from the 11th until the 29th of March, 2018 using the Tukey
boxplot convention [51]. The upper and lower boundaries of
the boxes indicate the upper and lower quartiles (i.e. 75th and
25th percentiles denoted as Q3 and Q1, respectively). The
black lines vertical to the boxes (whiskers) show the maximum
and minimal values that are not outliers. The whiskers are
determined by plotting the lowest datum still within 1.5 of the
interquartile range (IQR) Q3-Q1 of the lower quartile, and the
highest datum still within 1.5 IQR.
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Fig. 6. “U"-shaped Red metro line in Washington Metro.

Fig. 7. Tukey boxplot of observed dwell times at all stations from
11/3/2018 until 29/3/2018.

TABLE IV

TARGET HEADWAYS AT DIFFERENT DAYS OF THE WEEK AND

PEAK/OFF-PEAK HOURS

From Fig.7 one can note that the median dwell time at
all stations is 18 s and the inter-quartile ranging between the
25th and the 75th percentile is only 6 sec. The coefficient of
variation (CV) of the dwell time is 0.22. Therefore, the red
metro line is deemed suitable for the application of our model
because of its relatively stable dwell times, which do not vary
significantly for all stations and trips included in the dataset.

The target headway of the red metro line at each station
varies for peak and off-peak periods and for weekdays and
weekends. Table IV summarizes the expected headway which
the operator strives to deliver in a regular fashion.

In our experiments, we focus on the PM rush hours of one
weekday where the target headway at the metro stations is

Fig. 8. Actual trajectories of trains operating from 3pm until 7pm on the
11th of March, 2018.

set to 4 minutes. To investigate the improvement potential of
our method, we compare the current regularity of services,
extracted from the train movement observations, and the
regularity when using our dispatching time modifications. Our
day of interest is the 11 March 2018, and our time period of
interest is 3pm-7pm.

In addition, we perform a sensitivity analysis with regard
to the number of trips considered, Nm , i.e. the effect of
the number of trips that we are allowed to modify their
dispatching times after a disturbance occurred. On one hand,
a limited number of dispatching time modifications is likely
to be sufficient to smooth the operations after a disturbance.
On the other hand, if we are allowed to modify the dispatching
time of a single trip only (i.e., the trip that follows the train
that is subject to a disturbance), the potential impact on the
service regularity might be very limited. In our experiments,
we use realistic travel times and dwell times as extracted
from the operational data (see actual trajectories in Fig.8). Our
assumption is that if we modify the dispatching time of a trip,
its travel times between stations remain unchanged because
trains do not operate in mixed traffic.

In our experiments, all trips that operate from 3pm until
7pm depart according to their actual departure times. Those
dispatching times may be modified by our model to improve
the service regularity. We examine the performance of our
method when varying the number of rescheduled trips after
a disturbance from a single trip (Nm = {1}) up to 12 trips
(Nm = {1, 2, . . . , 12}). That is to say, we perform 12 different
experiments to investigate the importance of considering fewer
or more “upstream" trips when re-setting the dispatching times
after a disturbance occurs. The results of this analysis are
presented in Fig.9.

From Fig.9 one can note that if after every disturbance we
modify the dispatching time of the following trip only (Nm =
1), the improvement in service regularity compared to the
actual operations (do-nothing case) is ≈ 10.5%. If we modify
the dispatching times of more upstream trips, Nm , our perfor-
mance improvement in terms of regularity is monotonically
increasing. If we re-set the dispatching times of 5 upstream
trips, Nm = {1, 2, 3, 4, 5}, the potential benefit rises to ≈ 30%.
After that, further regularity improvements are marginal.
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Fig. 9. Improvement of the service regularity expressed by f (x) between
3pm and 7pm on the 11th of March when applying our model after each
disturbance to upstream trips Nm , ranging from 1 to 12.

Fig. 10. Dispatching time changes after the reschedulings and resulting train
trajectories for trains operating from 3pm until 7pm.

The updated trajectories after applying the reschedulings
in the time period 3pm-7pm are presented in Fig.10. Fig.10
indicates also the performed dispatching time changes for
every trip compared to the planned dispatching times indicated
in Fig.8.

C. Comparison With State-of-the-Art Disturbance
Management Methods

In the previous sub-section we observed that we can
improve significantly the regularity of metro services when
rescheduling the 5 trips proceeding a disturbed train. In this
sub-section, we compare the performance of our model when
rescheduling a set of Nm = {1, 2, 3, 4, 5} trips after each
disturbance against the performance of the most closely related
method described in [22]. Similar to the approach adopted
in this study, Krasemann [22] also re-set the dispatching
times of trips following each disturbance, without allowing for
additional extra vehicles or re-routing. Unlike the method we
propose in this study, Krasemann [22] did not provide a model
for solving the rescheduling problem to global optimality.
Instead, she introduced a heuristic solution method with-
out formulating the rescheduling problem as a mathematical
program.

TABLE V

IMPROVEMENT IN SERVICE REGULARITY EXPRESSED BY f (x) BETWEEN
3PM AND 7PM WHEN APPLYING DIFFERENT DISRUPTION MANAGE-

MENT METHODS

Similarly to our work, [22] defines a disturbance as the
situation where the established timetable has become invalid
because one train (or several) is deviating from its schedule
(e.g. due to a signal malfunction that increases the travel
time of a disturbed train at a particular section). Krasemann
[22] extended the model formulation of [52] which divides
a railway line into line sections and station sections. Line
sections are discretized further into blocks, where each block
can by occupied by no more than one vehicle at a time.
Occupying a block is considered an event, and the trajectory
of a train j is a sequence of consecutive events (e.g., an event
list K j ).

In [22], consecutive trains are required to be always
separated by a minimum headway of 3 minutes. Then, a greedy
algorithm iteratively searches for the best train events to
execute next and builds up a tree of consecutive active or
terminated events (tree nodes). The phases of the greedy
algorithm in [22] are:

• Phase 1: activate the events that already started when a
disturbance occurred;

• Phase 2: perform a depth-first search to quickly find a
feasible solution by building up a first complete branch
of the tree;

• Phase 3: improve the existing solution by backtracking to
potential nodes.

The greedy algorithm of [22] can treat cases where multiple
tracks connect two stations of a line. However, in the case
study of our metro line this is not needed because there
is only one track available for traversing from one station
to another station. To compare the disturbance management
method of [22] with our proposed approach, we apply them
to the operated trips in our case study from 3pm until 7pm
on the 11th of March, 2018. Each time a disturbance occurs,
the dispatching times of the following trips are re-computed by
employing the two aforementioned approaches and the results
are summarized in Table V.

From Table V one can note that the greedy algorithm of
[22] improves the service regularity by ∼20% compared to the
actual (as-is) performance where no rescheduling is applied.
Our rescheduling approach improves further the service regu-
larity to ∼30%. This additional improvement can be explained
because our mathematical program converges to a globally
optimal solution - unlike the greedy heuristic of [22]. This
reaffirms the observation of [22] who noted that the greedy
algorithm finds very fast a first feasible solution, but it is
not always effective in branching and finding an improved
solution.
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VII. CONCLUDING REMARKS

In this study, we proposed a timetable recovery model that
modifies the dispatching times of the subsequent trips after
a disturbance (e.g. an unexpected increase in trip’s travel
time). In pursuit of a model that can be solved exactly yet
be applied in real-time, we studied the rescheduling problem
and introduced a quadratic model reformulation with penalty
terms. This reformulated model was then proved to be solved
to global optimality.

With this new model, we investigated how many trips, Nm ,
should we consider for modifying their dispatching times after
a disturbance occurs. This is instrumental in the understanding
of the practical use of the model because it might not be
prudent to reschedule the dispatching times of all remaining
daily trips each time a disturbance occurs. This investigation
was performed for a case study using actual data from the red
metro line in Washington D.C. Results from our experiments
based on train movement data indicate that one can consider
the dispatching time modification of up to 5 upstream trips to
smoothen the headway of a metro line after a disturbance.
The optimal number of trips to be subject to dispatching
adjustments is arguably dependent on service headway and the
severity of the initial disturbance. Additionally, we showed that
our model can provide better results compared to a state-of-
the-art heuristic algorithm because it converges to a globally
optimal solution.

The proposed method has the following main limitations
which can be potentially addressed in future research:

• it is suitable for mitigating the effects of mild disturbances
to service regularity by modifying the dispatching times
of upstream trips. In the case of severe disruptions, metro
operators should consider more substantial changes in
the planned service provision including potentially trip
cancellation, short-turning and inserting reserve vehicles.

• it is designed for optimizing regularity which is adequate
in the context of services that operate in high-frequencies
(more than 5 trips per hour). In the case of low fre-
quencies, the objective function of our problem should
be revised to reflect punctuality-oriented metrics;

• it is suitable in the context where the dwell times at
stations are relatively stable and do not vary signifi-
cantly as a function of passenger demand. This makes
our approach particularly suitable for automated public
transport systems where the time allotted for doors’
opening/closing is fixed.

In future research, some of the assumptions made in this
study can be relaxed. In particular, the formulation may be
extended to account for flow-dependent dwell times. Such
an extension will make the method applicable also for bus
services. In addition, more control measures, such as stop-
skipping, speed control and train holding at intermediate
stations, can be considered in future research to improve
further the recovery of services after a disturbance.
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APPENDIX

Lemma A.1: For β1 < hmin + δ̄0, F = ∅.
Proof: Let assume that for β1 < hmin + δ̄0, F �= ∅. Then,

¬ ∃ x0 | (x0, a, h) satisfy Eq.(6)-(8). To satisfy constraint
Eq.(8), hmin ≤ δ1 + x0

1 − δ̄0 ⇒ δ1 + x0
1 ≥ hmin + δ̄0.

In addition, to satisfy constraint Eq.(6), δ1+x0
1 ≤ β1. Thus, β1

should be greater than or equal to hmin + δ̄0 and we reached
a contradiction. This proves that F can be an empty set if the
inequality constraints of Eq.(6)-(8) are binding (i.e., must be
satisfied in all cases).
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