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A New Adaptive-Robust Design for Time Delay
Control under State-dependent Stability Condition

Spandan Roy, Member, IEEE, Jinoh Lee, Senior Member, IEEE, and Simone Baldi, Senior Member, IEEE

Abstract—This paper proposes a new adaptive-robust for-
mulation for time-delay control (TDC) under a less restrictive
stability condition. TDC relies on estimating the unknown system
dynamics via the artificial introduction of a time delay, often
referred to as time-delay estimation (TDE). In conventional TDC,
the estimation error, called TDE error, is taken to be upper-
bounded by a constant under the assumption of small time delay
and, most importantly, of a priori bounded states. We highlight
the issues of such conventional methodology via an unstable
counterexample. Consequently, a new less restrictive structure for
the upper bound of the TDE error is formulated, which has an
explicit dependency on system states and is valid for any chosen
time delay. This insight leads to a new TDC design, namely time-
delayed adaptive-robust control (TDARC). The effectiveness of
TDARC is substantiated via a multiple-degrees-of-freedom robot.

Index Terms—Adaptive-robust control, Euler-Lagrange sys-
tems, state-dependent uncertainty, time-delay control.

I. INTRODUCTION

THE erstwhile time-delay control (TDC) was conceptu-
alized in parallel by [1], [2] and [3] as an alternate

control scheme that requires neither structural knowledge of
the system like conventional adaptive control nor bound of the
uncertainties like conventional robust control. TDC is based on
the time-delay estimation (TDE) method, wherein a delay is
artificially (i.e., intentionally) introduced to estimate unknown
system dynamics using the state/input data collected at the
immediate previous time instant [1]–[3].

The simplicity and effectiveness of TDC in practical sce-
narios have led to its applications in various domains in the
past two and half decades, such as unmanned vehicles [4]–[7],
shape memory alloys [8], [9], different types of actuators [10],
[11], manipulators [12]–[14], humanoids [15], [16], fuel-cell
systems [17], and synchronous motors [18]. It has been shown
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that TDC can provide better performance over PID control
[5], [10] or over a class of adaptive sliding mode control [4].
However, the unattended estimation error stemming from the
estimation process in TDC, commonly termed as the TDE
error, causes detrimental effect to the performance of TDC.
To counteract this problem, a few notable works have been
reported in literature such as internal model [19], ideal velocity
feedback [13], [20], gradient estimator [21], conventional
sliding mode control [7], [22] and the recently developed
adaptive switching gain control [6], [23], [24].

An important condition for any TDC-based method is the
boundedness of the TDE error. All the existing TDC designs
[4]–[24] are built in continuous-time domain upon the bound-
edness condition derived in [1]–[3]. However, this condition
is found to be conservative based on the following grounds:

• It is derived assuming small sampling interval (acting as
the artificially introduced time delay), which is not always
possible.

• During the derivation procedures, a function which ex-
plicitly depends on system states, is considered to be up-
per bounded by a constant; such restrictive consideration
imposes the states to be bounded a priori.

These fundamental issues of the conventional TDC [1]–[24]
form the core motivation and two major contributions of this
paper. First, as compared to existing structures [1]–[24], a
generalized structure of the TDE error is formulated which can
handle possibly non-small delays and has explicit dependence
on the system states (no a priori bounded states are required).
Second, unlike conventional TDC designs [1]–[24], the state-
dependent structure cannot guarantee stability leaving the TDE
error uncompensated. Therefore, a novel TDC framework,
christened as time-delayed adaptive-robust control (TDARC),
is formulated to compensate for the TDE error without any
prior knowledge of the uncertain system dynamics.

The rest of the paper is organized as follows: In Section II,
the design issues of a conventional TDC are clarified. Sec-
tion III details the proposed TDARC with stability analysis
in Section IV. Section V presents comparative performance
evaluations of TDARC. Section VI concludes the work.

The following notations are used in the paper: (•)L denotes
that (•)(t) is delayed by L, i.e., (•)(t−L); λmin(•), λmax(•),
|| • ||, | • | denote minimum and maximum eigenvalue, 2-norm
and absolute value of • respectively; I denotes Identity matrix.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works. 
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II. TIME-DELAY CONTROL: FORMULATION AND ISSUES

The purpose of this section is to briefly discuss the basic
ideas of the TDC and outline the motivations behind this work.

Let us base the discussion on the following class of Euler-
Lagrange (EL) systems, widely adopted in TDC [1]–[24]

M(q)q̈ + H(q, q̇) = τ , (1)

where q ∈ Rn is the system state, τ ∈ Rn is the generalized
control input, M(q) ∈ Rn×n is the mass/inertia matrix and
H(q, q̇) ∈ Rn is the combination of other system dynamics
terms (including unmodelled dynamics and disturbances).

The following property holds for EL systems and is ex-
ploited later in Section III-A for stability analysis.
Property [25]: The matrix M(q) is uniformly positive definite
for all q, i.e., ∃ψ1, ψ2 ∈ R+ such that

ψ1I ≤M(q) ≤ ψ2I⇒ (1/ψ2)I ≤M−1(q) ≤ (1/ψ1)I (2)

Introducing a constant diagonal matrix M̄, one can obtain

M̄q̈ + N(q, q̇, q̈) = τ , (3)
with N(q, q̇, q̈) = [M(q)− M̄]q̈ + H(q, q̇). (4)

Let us decompose the control input τ as

τ = M̄u0 + N̂(q, q̇, q̈), (5)

where u0 is the auxiliary control input, and N̂ is the estimated
value of N to be designed. TDC was originally proposed in
[1]–[3] with the main aim to reduce the modelling effort of
(1) by approximating N̂ using the past input and state data as

N̂(q, q̇, q̈) ∼=N(qL, q̇L, q̈L) = τL − M̄q̈L, (6)

where L > 0 is a small time delay.

Remark 1. System (1) is originally delay-free. The delay L is
artificially introduced to estimate the unknown dynamics term
N as in (6). This estimation is conventionally called time-delay
estimation (TDE). Hence, the terms TDE and TDC are not to
be associated with the process of estimating any time-delay.

The control objective is to track a desired trajectory qd(t),
designed such that qd, q̇d, q̈d ∈ L∞. Defining the tracking
error as e(t) = qd(t)−q(t), the auxiliary control input u0 in
(13) is designed as

u0 = q̈d + KDė + KPe, (7)

where KP ,KD ∈ Rn×n are two positive definite matrices.
Substituting (5) in (3), following error dynamics is obtained:

ë = −KDėL −KPeL + σ, (8)

where σ = M̄−1(N − N̂) represents the estimation error
stemming from (6). In the following, variable dependency will
be omitted whenever obvious.
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Fig. 1. Tracking error with the conventional TDC for system (12).

A. A priori conditions in conventional TDC

After some mathematical arrangements, as detailed in [1]–
[4], the structure of σ is evaluated as

σ = EσL + Φ1 −EΦ2, (9)

where Φ1 , M−1{(ML−M)q̈L+NL−N}, Φ2 , (u0)L−
u0, and E , (I−M−1(q)M̄). Assuming L is selected small
enough so that the discretization error can be neglected, and
assuming that |Φ1i| < ρ1, |Φ2i| < ρ2, i = 1, · · · , n, the
conventional TDC ([1]–[4]) derives the following upper bound
of σ in the discrete-time domain:

lim
k→∞

||σ(k)|| ≤ n(ρ1 + λmax(E(k))ρ2)

1− λmax(E(k))
(10)

where M̄ is selected such that the following condition holds:

|λmax(E(k))| < 1. (11)

Remark 2. Two sources of conservativeness involved in the
conventional upper bound structure (9)-(10) are listed:

1. The condition (10) is derived based on the assumption
that the sampling interval L is small enough to ignore
the discretization error. Handling the case in which the
discretization error cannot be ignored is open.

2. Assuming the upper bounds of Φ1,Φ2 in (9) to be
constant is restrictive in nature due to their explicit
dependence on the system states, i.e., it imposes the states
to be bounded a priori [26].

B. An Unstable Counterexample

To illustrate the consequences of Remark 2, we consider an
academic example

mq̈ + bq̇2|q|+ kq = τ, (12)

which is required to follow qd = sin(3t). Let us apply TDC
(5)-(7) with m = 2 + 0.5 sin(t),m = 2, k = 10, q(0) = 0.1
under five different parametric scenarios of KD,KP , L and
b as shown in Fig. 1. For all scenarios, (11) is satisfied. For
system (12), we have via (4), (7) and (9) state-dependent Φ1 =
(m − m)(q̈L − q̈) + b((q̇2|q|)L − q̇2|q|) + k(qL − q), Φ2 =
(q̈dL− q̈d) +KD(ėL− ė) +KP (eL− e) , which clearly cannot
be bounded a priori. The state responses for L = 0.001 in
scenarios (i), (ii) and (iii) reveal stability only for sufficiently
large KP ,KD. Even for large KP ,KD, one can still find a
sufficiently large L as in scenario (iv) or a sufficiently large b
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as in scenario (v) for which instability reappears. Therefore,
the situation is the following: the conventional TDC requires
Φ1 and Φ2 to be bounded a priori; however, when Φ1 and Φ2

are state-dependent, such a priori boundedness is lost, allowing
us to find many instability examples.

Noting that state-dependent uncertainty naturally occurs in
many mechatronic systems (cf. [26], [27]), in the following we
will formulate a novel TDC framework without any a priori
boundedness assumption.

III. TIME-DELAYED ADAPTIVE-ROBUST FRAMEWORK

The control input τ of the proposed TDARC is designed to
have a similar structure like (5) with modified u as

u = u0 + ∆u, (13)

where u0 as in (7) and ∆u being the adaptive-robust control
part of TDARC designed as

∆u(t) = αc sig(s, ε), (14)

where s = BTPξ, ξ =
[
eT ėT

]T
and P > 0 is the solu-

tion of the Lyapunov equation ATP + PA = −Q for some

Q > 0, where A =

[
0 I
−KP −KD

]
, B =

[
0
I

]
; α ∈ R+ is a

user-defined scalar; c ∈ R+ is the overall switching gain which
provides robustness against the TDE error (the structure of c
will be defined in subsection III-B); and sig(s, ε) is a sigmoid
function defined as sig(s, ε) , s/

√
||s||2 + ε. Here, ε is a

small positive scalar used to avoid chattering. Substituting (5)
and (7)-(14) into (1) gives the following error dynamics:

ë = −KDė−KPe + σ −∆u (15)

⇒ ξ̇ = Aξ + B(σ −∆u). (16)

Positive definiteness of KP and KD guarantees that A is Hur-
witz. Finally, combining (5), (6), (13)-(14), TDARC becomes

τ = τL − M̄q̈L︸ ︷︷ ︸
TDE part

+ M̄(q̈d + KDė + KPe)︸ ︷︷ ︸
Desired dynamics injection part

+ αM̄csig(s, ε).︸ ︷︷ ︸
Adaptive-robust control part

(17)

The rationale behind the introduction of the adaptive-robust
term is detailed in subsection III-B.

A. New upper bound structure of σ

A new structure on ||σ|| is here formulated. From (4) and
(15), the following two relations can be achieved:

N̂ = NL = [M(qL)− M̄]q̈L + HL, (18)
σ = q̈− u. (19)

Using (18), the control input τ in (5) can be rewritten as

τ = M̄u + [M(qL)− M̄]q̈L + HL. (20)

Multiplying both sides of (19) with M and using (1) and (20)
we have

Mσ = τ −H−Mu,

= M̄u + [M(qL)− M̄]q̈L + HL −H−Mu. (21)

Defining K , [KP KD] and using (15) we have

q̈L = q̈dL − ëL = q̈dL + KξL − σL + ∆uL. (22)

Substituting (22) into (21), and after re-arrangement yields

σ = M−1M̄(∆u−∆uL)︸ ︷︷ ︸
χ1

+ M−1(ML∆uL −M∆u)︸ ︷︷ ︸
χ2

+ M−1{M̄q̈d − (M−ML + M̄)q̈dL + HL −H}︸ ︷︷ ︸
χ3

+ M−1(ML − M̄)KξL︸ ︷︷ ︸
χ4

−M−1(ML − M̄)σL︸ ︷︷ ︸
χ5

+ (M−1M̄− I)Kξ︸ ︷︷ ︸
χ6

. (23)

Both M and M−1 are bounded from system property (2). Any
function ψ delayed by time L can be represented as

ψL = ψ(t)−
∫ 0

−L

d

dθ
ψ(t+ θ)dθ. (24)

Integration of any continuous function or of any function with
finite number of discontinuities (e.g., Coulumb friction) over a
finite interval (here −L to 0) is always finite [28]. Therefore,
considering ∆u as in (14) and using (24), the following
conditions hold for unknown constants δi, i = 1, · · · , 5:

||χ1|| = ||M−1M̄

∫ 0

−L

d

dθ
∆u(t+ θ)dθ|| ≤ δ1 (25)

||χ2|| = ||−M−1
∫ 0

−L

d

dθ
M(t+ θ)∆u(t+ θ)dθ|| ≤ δ2 (26)

||χ3|| = ||M−1{M̄q̈d − (M−ML + M̄)q̈dL

−
∫ 0

−L

d

dθ
H(t+ θ)dθ}|| ≤ δ3 (27)

||χ4|| = ||M−1
∫ 0

−L

d

dθ
(M(t+ θ)− M̄)Kξ(t+ θ)dθ||

+ (M−1M̄− I)Kξ|| ≤ ||EK||||ξ||+ δ4 (28)

||χ5|| = ||Eσ + M−1
∫ 0

−L

d

dθ
{(M(t+ θ)− M̄)σ(t+ θ)}dθ||

≤ ||E||||σ||+ δ5

||χ6|| = ||(M−1M̄− I)Kξ|| ≤ ||EK||||ξ||. (29)

Here M and H are explicitly represented in time for ease of
notation. Then, considering that the condition ||E|| = ||I −
M−1(q)M̄|| < 1 holds, the upper bound of σ is formulated
using (25)-(29) from (23) as

‖σ‖ ≤ β0 + β1‖ξ‖, (30)

where β0 =

∑5
i=1 δi

1− ‖E‖
, β1 =

2‖EK‖
1− ‖E‖

. (31)

Remark 3. Let us highlight how the proposed upper bound
structure of the TDE error σ in (30) addresses the conservative
aspects of (10) mentioned in Remark 2.

1. In view of (24) and the argument below it, (30) is derived
independently of the discretization error. Further, choice
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of (how big or small) L only affects the value of β0, β1
and not the structure (30).

2. It can be noted from (30) that the upper bound of
||σ|| preserves the explicit dependency on system states
through ξ. Thus, any prior restriction on the system states
caused by the constant bound in (10) is eliminated.

Remark 4. An alternative state-dependent bound for σ was
proposed in [29] consisting of seven parameters and using
some knowledge of the various terms involved in H as in (1).
In the following, we want to develop an adaptive controller
exploiting the simpler two-parameter structure (30) without
any a priori knowledge about such parameters. This direction
is still unexplored to the best of the authors’ knowledge.

Selection of the parameters β0 and β1: Note that the
two positive gains β0 and β1 are unknown, as ‖E‖ =
‖I −M−1(q)M̄‖ is unknown, being M and H subject to
uncertainty. One possibility is to design β0 and β1 in a robust
control framework by utilizing an upper bound of ||E|| < 1.
However, such worst-case design may lead to unnecessary
high gain. Therefore, the adaptive-robust term in (17)) is
appropriately designed to avoid any knowledge of β0 and β1.

B. Design of the Adaptive-Robust Law

The switching gain c in (14) is formulated based on the
structure of ||σ|| as

c = β̂0 + β̂1||ξ||, (32)

where β̂0, β̂1 are the estimates of β0, β1 ∈ R+, respectively.
The gains are evaluated as follows:

˙̂
βj =

{
γj‖ξ‖j‖s‖, if any β̂j ≤ βj or sT ṡ > 0

−γj‖ξ‖j‖s‖, if sT ṡ ≤ 0 and all β̂j > β
j

, (33)

with β̂j(0) ≥ β
j
, where β

j
∈ R+ j = 0, 1 are user-defined

scalars. Using the first condition of (33) and the fact β̂j(0) ≥
β
j
, it can be inferred that β̂j(t) ≥ β

j
∀t ≥ 0 ∀j = 0, 1. This

condition is exploited later during the stability analysis.

IV. CLOSED-LOOP SYSTEM STABILITY

The stability analysis of TDARC is carried out utilizing the
following Lyapunov function candidate:

V̄ = V + (β̂0 − β∗0)2/(2γ0) + (β̂1 − β∗1)2/(2γ1), (34)

where V (ξ) = (1/2)ξTPξ and β∗j ≥ βj(t) > 0 is a constant.
For the ease of analysis, we define a region such that

α
||s||2√
||s||2 + ε

≥ ||s|| ⇒ ||s|| ≥
√

ε

α2 − 1
, ϕ. (35)

The condition (35) implies that one needs to select α > 1,
which is always possible since α is a user-defined scalar. The
closed-loop system stability is stated in the following theorem:

Theorem 1. The system (1) employing TDARC with the
controller (17), (33) is Uniformly Ultimately Bounded (UUB).

Proof. Exploring the various combinations of ∆u, the gains
β̂j , j = 0, 1 in (14), (33) and the condition (35), the stability of
the overall system is analyzed for the following four possible
cases using the common Lypaunov function (34):

Case (i): ||s|| ≥ ϕ and{any β̂j ≤ βj or sT ṡ > 0}
Using the Lyapunov equation ATP + PA = −Q, the time
derivative of (34) yields

˙̄V ≤ −(1/2)ξTQξ + sT {−αc(s/
√
||s||2 + ε) + σ}

+ ((β̂0 − β∗0)/γ0)
˙̂
β0 + ((β̂1 − β∗1)/γ1)

˙̂
β1

≤ −(1/2)ξTQξ − c||s||+ (β∗0 + β∗1 ||ξ||)||s||
+ (β̂0 − β∗0)||s||+ (β̂1 − β∗1)||ξ||||s||

≤ −(1/2)λmin(Q)||ξ||2 ≤ 0, (36)

as α > 1. From (36) it can be inferred that V̄ (t) ∈ L∞
implying ξ(t), β̂j(t) ∈ L∞ ⇒ σ(t),∆u ∈ L∞ for Case (i).

Case (ii): ||s|| ≥ ϕ and {sT ṡ ≤ 0 and all β̂j > β
j
}

For this case, the time derivative of (34) yields

˙̄V ≤ −(1/2)ξTQξ − c||s||+ (β∗0 + β∗1 ||ξ||)||s||
− (β̂0 − β∗0)||s|| − (β̂1 − β∗1)||ξ||||s||

≤ −(1/2)λmin(Q)||ξ||2 + 2(β∗0 + β∗1 ||ξ||)||s||. (37)

In this case we have sT ṡ ≤ 0 which implies ||s||, ||ξ|| ∈
L∞ (cf. the relation s = BTPξ). Thus, ∃ς ∈ R+ such that
2(β∗0 + β∗1 ||ξ||)||s|| ≤ ς . Further, considering a scalar z as
0 < z < (1/2)λmin(Q) one has

˙̄V ≤ −{(1/2)λmin(Q)− z}||ξ||2 − z||ξ||2 + ς. (38)

The gains β̂1, β̂2 ∈ L∞ in Case (i) and decrease in Case (ii).
This implies ∃$ ∈ R+ such that

∑1
j=0 (β̂j − β∗j )2/γj ≤ $.

Therefore, the definition of V̄ in (34) yields

V̄ ≤ λmax(P)||ξ||2 +$. (39)

Using the relation (39), (38) can be written as

˙̄V ≤ −υV̄ − z||ξ||2 + ς + υ$, (40)

where υ , ( 1
2λmin(Q)− z)/λmax(P). Hence, ˙̄V < 0 would

be achieved when ||ξ|| ≥
√

(ς + υ$)/z.
Case (iii): ||s|| < ϕ and{any β̂j ≤ βj or sT ṡ > 0}

The fact ||s|| < ε implies that ∃ε̄ ∈ R+ such that ||ξ|| ≤ ε̄
from the relation s = BTPξ. Using (14) we have

˙̄V ≤ −(1/2)ξTQξ + sT {−αc(s/
√
||s||2 + ε) + σ}

+ ((β̂0 − β∗0)/γ0)
˙̂
β0 + ((β̂1 − β∗1)/γ1)

˙̂
β1

≤ −(1/2)λmin(Q)||ξ||2 + (β̂0 + β̂1||ξ||)||s||. (41)

Unlike Case (i), proving boundedness of β̂j in Case (iii)
demands that β̂js start decreasing in a finite time, i.e., sT ṡ ≤ 0
should occur (from the second law of (33)) in a finite time. For
this, we need to investigate only the evaluation of V , where
gains only increase implying β̂j > β

j
. The condition sT ṡ > 0

in Case (iii) implies ||s|| is increasing; thus ∃δ ∈ R+ such
that ||s|| ≥ δ. Further, using ||s|| ≤ ||BTP||||ξ|| we have

δ ≤ ||s|| ≤ ||BTP||||ξ|| ⇒ ||ξ|| ≥ δ/||BTP||. (42)
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Then, using (42), the adaptive law (33) yields

˙̂
β0 ≥ γ0δ, ˙̂

β1 ≥ (γ1δ
2)/||BTP||. (43)

Using (33) and the fact ||s|| < ϕ for Case (iii), the time
derivative of V (ξ) = (1/2)ξTPξ for Case (iii) yields

V̇ ≤ −(1/2)λmin(Q)||ξ||2 + sT {−αc(s/
√
||s||2 + ε) + σ}

≤ −(λmin(Q)/λmax(P))V + (β∗0 + β∗1 ||ξ||)||s||
− α(β̂0 + β̂1‖ξ‖)(δ||s||/

√
ϕ2 + ε). (44)

If ||ξ|| decreases, then it would also ensure that ||s|| decreases
(i.e., sT ṡ < 0) as s = BTPξ. Consequently, β̂0, β̂1 start de-
creasing following (33) and hence they would remain bounded
individually. This feature can be realized if V̇ < − λmin(Q)

λmax(P)V
is established. Such condition can be achieved from (44) when

αβ̂0(δ/%) ≥ β∗0 , αβ̂1(δ/%) ≥ β∗1 , (45)

where % ,
√
ϕ2 + ε. Since (43) defines the minimum rates of

increments, (45) is satisfied within finite times T1, T2 where

T1 ≤ (%β∗0)/(αγ0δ
2), T2 ≤ (%β∗1 ||BTP||)/(αγ1δ3). (46)

Therefore, the exponential decrease of ||ξ|| and subsequent
boundedness of β̂j and β̂1 is achieved within a finite time
T = max{T1 T2}. In addition, ||s|| < ϕ in Case (iii) implies
||ξ|| ∈ L∞ and consequently (β̂0 + β̂1||ξ||)||s|| ≤ $1, where
$1 ∈ R+. Using these results and the procedure in (40), the
relation (41) can be written as

˙̄V ≤ −υV̄ − z||ξ||2 +$1. (47)

Hence, ˙̄V < 0 would be established when ||ξ|| ≥
√
$1/z.

Case (iv): ||s|| < ϕ and {sT ṡ ≤ 0 and all β̂j > β
j
}

Similarly, for this case

˙̄V ≤ −(1/2)ξTQξ + sT {−αc(s/
√
||s||2 + ε) + σ}

− ((β̂0 − β∗0)/γ0)
˙̂
β0 − ((β̂1 − β∗1)/γ1)

˙̂
β1

≤ −(1/2)λmin(Q)||ξ||2 + 2(β∗0 + β∗1 ||ξ||)||s||. (48)

This case can be analyzed exactly like Case (ii).
The stability results from Cases (i)-(iv) reveal that the

closed-loop system is UUB.

Remark 5. Some recently proposed adaptive-robust TDC
designs, namely [16], [23], [24], rely on the upper bound
structure (10). Albeit conservativeness of (10), there is a
crucial difference between an adaptive-robust design relying
on (10) and one relying on (30): in the first case, one can
leave the TDE error unattended (i.e., ∆u = 0) and claim
boundedness of the error dynamics; in the second case, this
is impossible due to the explicit presence of ||ξ|| in the upper
bound structure of ||σ||. Such a fundamental difference leads
to a completely different and more challenging design and
stability analysis which, to the best of the authors’ knowledge,
has been missing in the existing literature.

Selection of Various Design Parameters: As (1) is a
second-order dynamics, the gains KP ,KD are usually se-
lected as KP = ω2

nI and KD = 2ζωnI, where ωn and ζ are
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Fig. 2. Tracking performance of TDARC and ARTDC [24] for system (12).

the desired natural frequency and damping ratio, respectively,
for the unperturbed (or nominal) error dynamics [13], [19],
[20]. The scalar γj > 0 is designed to tune the rate of change
in β̂j in (33), which is to be selected as per applications.

V. VERIFICATION OF THE PROPOSED TDARC
To judge its effectiveness, the proposed TDARC scheme is

compared with adaptive-robust TDC of [24] (called ARTDC
henceforth), having adaptive law for switching gain c (cf. (14))

ċ =

{
γ0||s||, if c ≤ β

0
or (||s|| − ||sL||) > 0

−γ0||s||, if (||s|| − ||sL||) ≤ 0
. (49)

A. Simulation Results and Analysis

We apply the proposed TDARC and ARTDC [24] to (12) to
check whether they can successfully track the desired trajec-
tory while conventional TDC failed. The following parameters
are selected for parity: γ0 = γ1 = 20, ε = 0.1, α = 1,
β̂0(0) = β̂1(0) = c(0) = 0.01, β

0
= β

1
= 0.0001. Fig. 2

reveals that ARTDC [24] cannot stabilize the system even with
large KP = KD = 200, whereas, with the same L, TDARC
succeeds with much lower KP = KD = 4. This confirms
the importance of the proposed state-dependent structure as
in (30). Further, Fig. 2 shows that TDARC is robust against
large values of L and b, whereas conventional TDC has shown
instability (scenarios (iv) and (v) in Fig. 1).

B. Experimental Results and Analysis

In this subsection, performance of the proposed TDARC
is verified experimentally against conventional TDC [2] and
ARTDC [24] on a biped robot setup, named cCub [30] (Fig. 3).
The robot weighs 18.3 kg, and is 0.676 m tall from feet to hip
roll joint axes. Each leg of cCub has six degrees-of-freedom
(DoFs). For experimental purposes, the robot is treated as a
manipulator with dynamics as in (1), where the three pitch
joints (in the sagittal plane) hip (q1), knee (q2) and ankle
joints (q3) are controlled while other joints are kept fixed
at zero angles. Thus, six joints are operated simultaneously
for both legs. Each joint is torque-controlled by an embedded
micro-controller. The realtime control system is implemented
in Simulink Real-TimeTM which communicates with the robot
through Ethernet connection with a sampling rate of 1 kHz,
i.e., L = 0.001 is set in the controllers.
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Fig. 3. The experimental setup of the cCub robot: the hard realtime control
system with sampling time L=1 ms and the schematic diagram.

0 1 2 3 4 5 6 7 8 9 10 11

time (sec)

-30

-20

-10

0

10

20

30
Fast desired trajectory (degree)

0 1 2 3 4 5 6 7 8 9 10 11
-30

-20

-10

0

10

20

30
Slow desired trajectory (degree)

qd
1

qd
2

qd
3

Fig. 4. Desired trajectories for the three pitch joints.

To properly judge the performance of the proposed con-
troller, two experimental scenarios, S1 and S2, are considered
in following subsections. For both S1 and S2, the control
design parameters are: M̄ = 0.037I (kgm2), KP = 144I,
KD = 24I, Q = I, ε = 5 × 10−5, α = 4, γj = 1, β

j
= 0,

β̂j(0) = 0, j = 0, 1. For parity in the comparison, same values
of M̄, KP ,KD and α, γ0, β0

are selected for the conventional
TDC (5)-(7) and ARTDC (49).

Due to symmetry in the mechanical structure of cCub robot,
we only present the results for the right leg to avoid repetition.

1) Description of Scenario S1: In this scenario we test the
capability of TDC [2], ARTDC [24] and the proposed TDARC
to adapt to changes in the desired trajectory. To this purpose,
two periodic desired trajectories having different speeds are
selected as in Fig. 4. For simplicity, no external disturbances
are considered in this scenario by keeping the robot hung in
the air, that is, no ground contact was made.

Results and Discussion for S1: The tracking performance
of TDC, ARTDC and TDARC are demonstrated in Fig. 5a -
5b, while the control input and evolution of various switching
gains for TDARC and ARTDC are depicted in Figs. 6a-6b
and in Figs. 7a-7b for the slower and fast desired trajectories,
respectively. The controllers’ performances are collected in
Table I in terms of root mean squared (RMS) error, maximum
absolute error (MAE) and RMS τ .

Table I reveals that TDARC provides minimum perfor-
mance improvements of 53.7% (resp. 62.2%) and 34.3% (resp.
16.7%) in RMSE and of 28.5% (resp. 33.7%) and 21.2%
(resp. 24.1%) in MAE for the slower (resp. fast) trajectory
as compared to TDC and ARTDC respectively across all the
joints. Remarkably, this is achieved with less control effort
compared to ARTDC. These results clearly demonstrate the
importance/effectiveness of the proposed TDARC scheme over
the conventional TDC and ARTDC [24].
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Fig. 5. Performance comparison between TDC, ARTDC [24] and TDARC.
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Fig. 6. Control input comparison between TDC, ARTDC [24] and TDARC.

2) Description of Scenario S2: This scenario extensively
verifies the robustness property of TDARC in the presence
of dynamic external disturbances, while following the slower
desired trajectory shown in Fig. 4. This scenario is designed as
a combination of five phases (cf. Fig. 8), elaborated as follows:
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Fig. 7. Evolution of various switching gains for TDARC and ARTDC [24].

TABLE I
PERFORMANCE COMPARISON FOR SCENARIO S1

RMS error (degree)

Joints Slower Trajectory Fast Trajectory
TDC ARTDC TDARC TDC ARTDC TDARC

q1 0.067 0.053 0.031 0.167 0.080 0.063
q2 0.062 0.035 0.023 0.119 0.051 0.039
q3 0.075 0.043 0.022 0.126 0.056 0.047

MAE (degree)
q1 0.172 0.156 0.123 0.295 0.234 0.153
q2 0.196 0.144 0.113 0.246 0.190 0.136
q3 0.217 0.133 0.102 0.261 0.228 0.173

RMS τ (Nm)
q1 5.351 5.488 5.281 7.291 7.773 7.634
q2 3.697 4.014 3.955 5.316 5.365 5.103
q3 4.325 4.437 4.348 5.778 5.781 5.578

(i) In Phase 1 (t=0-20s), the robot was kept hung in the air.
(ii) In Phase 2 (t=20-36s), the robot was placed on the

ground at approximately t=20s while it was still following
the desired trajectory (now a squat like motion on the
ground). In this phase, the ground reaction force is
exerted on the robot and gets propagated throughout its
body, acting as a highly nonlinear external disturbance.

(iii) In Phase 3 (t=36-50s), an additional payload of 3.3kg
(18% of cCub’s weight) was suddenly added on the pelvis
of the robot at approximately t=36s and kept during this
entire phase, while the robot was performing the squat
motion. Therefore, in Phase 3, two different disturbances
namely, ground reaction forces and the additional payload
are applied simultaneously.

(iv) During Phase 4 (t=50-67s), the payload was quickly re-
moved at approximately t=50s leading to radical changes

TABLE II
TRACKING PERFORMANCE OF TDARC FOR S2

RMS error (degree)
Joints Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
q1 0.029 0.043 0.037 0.042 0.031
q2 0.021 0.032 0.034 0.033 0.021
q3 0.027 0.035 0.029 0.032 0.026

MAE (degree)
q1 0.117 0.139 0.108 0.141 0.122
q2 0.116 0.129 0.124 0.134 0.085
q3 0.141 0.134 0.122 0.106 0.115

RMS τ (Nm)
q1 5.178 4.503 5.211 4.574 5.266
q2 3.988 4.605 4.284 4.474 4.003
q3 4.416 4.041 5.032 4.229 4.200

of the disturbance. Hence, ground reaction force was the
only source of external disturbance for this phase.

(v) Lastly, in Phase 5 (after t=67s), the robot was again
pulled away from the ground and thereby, the ground
reaction force was suddenly eliminated around t=67s.

Results and Discussion for S2: The tracking performance
of TDARC for this scenario is demonstrated via Figs. 9, 10
and Table II: these results reveal that the performance of
TDARC is uniform throughout this scenario, i.e., tracking
results of Phases 1 and 5, and Phases 2 and 4 are almost similar
under the same nature of disturbances. Interestingly, upon
comparing Tables I and II, it can be observed that for the same
desired trajectory, TDARC under influences of considerable
disturbances (Phases 2, 3 and 4 in S2) still outperforms TDC
and ARTDC without any external disturbances (i.e. in S1).

VI. CONCLUSION

In this paper, various conservative aspects of the conven-
tional TDC was analytically proved and mitigated. Specifi-
cally, a new state-dependent upper bound structure for the
TDE error was introduced avoiding any a priori bounded
assumption of TDE error. The proposed structure highlighted
the need for a new design philosophy, as the closed-loop
system stability cannot be ensured unless the TDE error is
dealt. Consequently, a new adaptive-robust design, TDARC,
was formulated to compensate for the TDE error. Extensive
simulations and experiments verified the effectiveness of the
proposed TDARC compared to conventional TDC schemes.
A future work would be to explore higher order sliding mode
[31], [32] to avoid boundary layer.
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