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S U M M A R Y
The Marchenko method retrieves the responses to virtual sources in the Earth’s subsurface
from reflection data at the surface, accounting for all orders of multiple reflections. The method
is based on two integral representations for focusing- and Green’s functions. In discretized
form, these integrals are represented by finite summations over the acquisition geometry.
Consequently, the method requires ideal geometries of regularly sampled and colocated sources
and receivers. Recently new representations were derived, which handle imperfectly sampled
data. These new representations use point spread functions (PSFs) that reconstruct results
as if they were acquired using a perfect geometry. Here, the iterative Marchenko scheme
is adapted, using these new representations, to account for imperfect sampling. This new
methodology is tested on a 2-D numerical data example. The results show clear improvement
of the proposed scheme over the standard iterative scheme. By removing the requirement for
perfect geometries, the Marchenko method can be more widely applied to field data.

Key words: Interferometry; Controlled source seismology; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Seismic surveys are generally concerned with targets in the Earth’s
subsurface. However, structures in the overburden can distort the
response of deeper targets. Ideally, all overburden structures and
their multiple reflections should entirely be removed from the data,
leaving only the response of the desired deeper targets. This can
be achieved by redatuming the reflection response measured at the
surface to a new datum plane below the overburden. The data-driven
Marchenko method allows for the placement of virtual sources
anywhere inside the subsurface, while accounting for all orders of
multiples of the overburden (Broggini et al. 2012; Slob et al. 2014;
Wapenaar et al. 2014). Thereafter, the receivers can be moved to the
same datum plane by an multidimensional deconvolution (MDD).
Thus, Marchenko redatuming effectively shifts the response from
the surface to a new datum inside the medium, and fully removes
all interactions with the shallower structures.

Although the method has been successfully applied to real data
(e.g. Ravasi et al. 2016; Staring et al. 2018), several constraints
still limit the usefulness of the method. Marchenko redatuming is
based on two integral representations. These coupled equations can
be solved by direct inversion (van der Neut et al. 2015) or by iter-
ative substitution (Thorbecke et al. 2017). In practice, the infinite
integrals are replaced by summations over the finite-acquisition ge-
ometry. This requires regularly sampled and collocated sources and
receivers in order to retrieve proper, uncontaminated responses.
On the contrary, non-perfect geometries can have a significant
effect on the Marchenko results (Peng et al. 2019; Staring &

Wapenaar 2020). Most authors, therefore, assume ideal acquisi-
tion geometries when using the Marchenko method, thus avoiding
the limitations arising from imperfect sampling. However, this re-
striction should ideally be relaxed or even removed, allowing for
broader application of the method on field data.

Peng & Vasconcelos (2019) consider the effects of different sub-
sampling and integration scenarios. Two main effects are identified.
First, when the subsampling and integration occur over the same
dimension, the focusing- and Green’s functions get distorted but
remain well sampled. Second, in the situation of subsampling and
integration over different dimensions, the focusing- and Green’s
functions are accurate for the non-zero traces but contain spatial
gaps. In the case of irregular sampling, the second effect can partly
be removed by using a sparse inversion of the Marchenko equations,
outputting well-sampled focus functions and subsampled Green’s
functions (Ravasi 2017; Haindl et al. 2018). On the other hand,
Wapenaar & van IJsseldijk (2020) introduce new representations
for focusing- and Green’s functions, that are distorted by imperfect
sampling and integration over the same dimension. Inverting these
representations involves an MDD with novel point spread functions
(PSFs) to deblur the distorted focusing- and Green’s functions.
These representations are then verified on analytically modelled
focusing functions, that have been derived from decomposed wave-
field propagators and scattering coefficients. However, in real sce-
narios these functions are unavailable and have to be derived from
the coupled Marchenko equations.

In this paper, we explore how we can integrate the new repre-
sentations for irregularly sampled data into the iterative Marchenko
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scheme. First, the theory of deblurring the Marchenko equations
with PSFs is reviewed. Next, the paper discusses the required
changes to apply PSFs in the iterative scheme. Then, we present an
altered version of the iterative scheme, that allows for imperfectly
sampled data. The performance of the newly developed scheme is
then tested on numerical examples. Although the results are promis-
ing, the stability of the scheme is uncertain and only assured for
certain subsurface models. The last part of the paper, therefore,
presents a modified scheme with greater stability, which is less
susceptible to subsurface conditions.

2 G R E E N ’ S F U N C T I O N
R E P R E S E N TAT I O N S

This section reviews briefly the theory of the Green’s function rep-
resentations that are the basis for the Marchenko method. For a
more elaborate derivation the reader is referred to Wapenaar et al.
(2014) and Slob et al. (2014). As starting point, imagine an in-
homogeneous lossless subsurface bounded by transparent acquisi-
tion surface S0. The reflection response at this surface is given by
R(xR, xS, t), with xS a dipole source, xR monopole receivers, and
t denoting the time. In this paper, we investigate how to account
for irregularly sampled sources. Via reciprocity, xR can be inter-
preted as a monopole source and xS as a dipole receiver. Hence,
the method developed in this paper can also be used to account
for irregularly sampled receivers. We define the focal depth at sur-
face SA, on which the virtual receivers are located. These virtual
receivers are used to observe the up- and downgoing Green’s func-
tions: G−(xA, xR, t) and G+(xA, xR, t), respectively. Here, xA is the
location of the virtual receivers at the focal depth. For the defi-
nition of the focusing functions, the medium is truncated below
the focal depth, resulting in a medium that is inhomogeneous be-
tween S0 and SA, and homogeneous above and below these sur-
faces. In this medium, we define a downgoing focusing function
f +
1 (xS, xA, t), which, when injected from the surface, focuses at the

focal depth SA at xA. Moreover, f −
1 (xR, xA, t) is the upgoing re-

sponse of the truncated medium as measured at the surface, known
as the upgoing focusing function. These ideas can be combined in
two integral equations, as follows (Wapenaar et al. 2014; Slob et al.
2014):

G−(xA, xR, t) + f −
1 (xR, xA, t) =

∫
S0

R(xR, xS, t) ∗ f +
1 (xS, xA, t)dxS, (1)

G+(xA, xR, t) − f +
1 (xR, xA,−t) =

−
∫
S0

R(xR, xS, t) ∗ f −
1 (xS, xA, −t)dxS . (2)

The asterisk in these equations denotes a temporal convolution.
For acoustic media, the focusing- and Green’s functions on the left-
hand side are separable in time by a windowing function. In practice,
the infinite integrals on the right-hand side are approximated by
finite sums over the available sources. For the right-hand side of
eq. (1), this yields:
∑

i

R(xR, x(i)
S , t) ∗ f +

1 (x(i)
S , xA, t) ∗ S(t), (3)

and for the right-hand side of eq. (2):

−
∑

i

R(xR, x(i)
S , t) ∗ f −

1 (x(i)
S , xA,−t) ∗ S(t), (4)

where i denotes the source position and S(t) the source signature.
When the reflection response is not well sampled, these summations
cause distortions in the responses on the left-hand side of eqs (1)
and (2).

3 P O I N T S P R E A D F U N C T I O N S

Wapenaar & van IJsseldijk (2020) introduce PSFs to correct for im-
perfect sampling. These PSFs exploit the fact that the ideal down-
going focusing function is the inverse of the transmission response.
A convolution of the focusing function with the transmission re-
sponse T should, therefore, give a bandlimited delta pulse in space
and time:

δ(x′
H,A − xH,A)δ(t) =

∫
S0

T (x′
A, xS, t) ∗ f +

1 (xS, xA, t)dxS . (5)

An alternative form with integration over the focal depth is given
by:

δ(xH,S − x′
H,S)δ(t) =

∫
SA

f +
1 (xS, xA, t) ∗ T (xA, x′

S, t)dxA. (6)

However, for imperfectly sampled data, this delta pulse gets blurred.
This blurring quantifies the imperfect sampling, as follows:

�+
1 (x′

A, xA, t) =
∑

i

T (x′
A, x(i)

S , t) ∗ f +
1 (x(i)

S , xA, t) ∗ S(t). (7)

Here, �+
1 is the downgoing PSF. Similarly, a quantity Y1 is defined

as the inverse of the time-reversed, upgoing focusing function:

δ(x′
H,A − xH,A)δ(t) =

∫
S0

Y1(x′
A, xS, t) ∗ f −

1 (xS, xA, −t)dxS, (8)

or alternatively:

δ(xH,S − x′
H,S)δ(t) =

∫
SA

f −
1 (xS, xA, −t) ∗ Y1(xA, x′

S, t)dxA, (9)

Again, the irregular sampling will result in a blurring of the delta
pulse on the left-hand side of eq. (8). The convolution to quantify
the upgoing PSF (�−

1 ) then becomes:

�−
1 (x′

A, xA, t) =
∑

i

Y1(x′
A, x(i)

S , t) ∗ f −
1 (x(i)

S , xA, −t) ∗ S(t). (10)

Once again, in the case of perfect sampling this PSF would be
equal to a bandlimited delta pulse in space and time. Note that this
inverse (Y1) is not necessarily stable, because f −

1 is a reflection
response. On the contrary, f +

1 is more stable and more likely to be
invertible (i.e. in the limiting case of a 1-D medium it is a minimum-
phase function, which is always invertible). This will be elaborated
upon in Section 8.

Next, Wapenaar & van IJsseldijk (2020) apply these newly
acquired PSFs to eqs (1) and (2), respectively. For both sides
of eq. (1) we employ the operator

∫
SA

{·} ∗ �+
1 (x′

A, xA, t)dx′
A,
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328 J. van IJsseldijk and K. Wapenaar

whereas both sides of eq. (2) require the use of the operator∫
SA

{·} ∗ �−
1 (x′

A, xA, t)dx′
A. The resulting equations can be further

simplified using eqs (6), (7), (9) and (10) to derive two new repre-
sentations for irregularly sampled data:

“G−(xA, xR, t) + “f −
1 (xR, xA, t) =

∑
i

R(xR, x(i)
S , t) ∗ f +

1 (x(i)
S , xA, t) ∗ S(t), (11)

“G+(xA, xR, t) − “f +
1 (xR, xA, −t) =

−
∑

i

R(xR, x(i)
S , t) ∗ f −

1 (x(i)
S , xA, −t) ∗ S(t), (12)

with:

“G±(xA, xR, t) =
∫
SA

G±(x′
A, xR, t) ∗ �∓

1 (x′
A, xA, t)dx′

A, (13)

and

“f ±
1 (xR, xA, ∓t) =

∫
SA

f ±
1 (xR, x′

A, ∓t) ∗ �∓
1 (x′

A, xA, t)dx′
A. (14)

Eqs (11) and (12) have two interesting features. First, the right-hand
sides are now the same as eqs (3) and (4). Second, the responses on
the left-hand sides now contain the PSFs, which apply a blurring
effect to each response. Note that the imperfectly sampled data can
now be deblurred by an MDD with the PSFs, assuming these PSFs
are known.

4 I T E R AT I V E M A RC H E N KO S C H E M E

Wapenaar & van IJsseldijk (2020) verify the representations in eqs
(11) and (12), using analytically modelled focusing functions (i.e.
both the reflection response and focusing functions on the right-
hand side of the equations are known). In practice, these focusing
functions are unknown, and have to be retrieved from the Marchenko
equations. This can be achieved iteratively or by inversion of the
Marchenko equations. Here, we aim to integrate the representations
for imperfectly sampled data with the iterative approach (Thorbecke
et al. 2017).

Fig. 1 shows the proposed iterative Marchenko scheme, which
corrects for imperfect sampling in each iteration k. The first step is
to estimate the initial downgoing focusing function ( f +

1,0). Tradition-
ally, this is approximated by the time reversal of the direct arrival
of the Green’s function. However, to ensure that the convolution of
the transmission response and downgoing focusing function gives
a delta pulse in space and time with the correct amplitudes, the
proposed scheme inverts the direct arrival in step 1:

f +
1,0(xS, xA, t) ≈ Ginv

d (xS, xA, t). (15)

In practice, this inversion is achieved by a least-squares-based in-
version in the frequency domain, where for each frequency slice
a bandlimited identity matrix (delta pulse) is divided by Gd to
find f +

1,0. Note that this approach requires a matrix with a size
equal to the number of shots multiplied with the number of fo-
cal points, and can, therefore, not be done for a single focusing
point.

The next step computes the focusing- and Green’s function by
a convolution or correlation for the odd or even iterations, respec-
tively. The odd iterations are computed according to eq. (11), where

Figure 1. Flowchart with the proposed iterative Marchenko scheme, steps
3–5 account for imperfectly sampled data. Here, f and G represent the
focusing- and Green’s functions, respectively, S is the source signature. m is
a masking operator, that kills all the traces with missing sources. k denotes
the iteration number. The arch over a symbol denotes that the response is
contaminated by the imperfect sampling, the superscript star denotes time
reversal. The inline asterisks denote convolutions or correlations, which
are then summed over the imperfectly sampled sources. Finally, θ is the
time-windowing operator.

the downgoing focusing function on the right-hand side is retrieved
from the initial condition for the first iteration or from the previ-
ous iteration for subsequent iterations. Similarly, the even iterations
use the upgoing focusing functions from the previous iteration in
the correlation with the reflection response, as shown in eq. (12).
Note, for well-sampled data, the computed focusing- and Green’s
functions in this step are free of distortions, therefore the resulting
focusing- and Green’s functions are equal to these functions in the
standard scheme:

{ “G±(xA, xR, t) ∓ “f ±
1 (xR, xA, ∓t)}k =

{G±(xA, xR, t) ∓ f ±
1 (xR, xA, ∓t)}k . (16)

In this case steps 3–5 are redundant and can be omitted, this indeed
reduces the proposed scheme to the standard iterative Marchenko
scheme.

For irregularly sampled reflection data, steps 3–5 are introduced.
The first objective is to find an estimate of the transmission re-
sponse and quantity Y1 for odd and even iterations, respectively.
Since these responses are defined as the inverse of the focus-
ing functions, they can be obtained by inversion of the following
equations:

δ(x′
H,A − xH,A)δ(t) =

∫
S0

Tk(x′
A, xS, t) ∗ f +

1,k−1(xS, xA, t)dxS, (17)
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and

δ(x′
H,A − xH,A)δ(t) =

∫
S0

Y1,k(x′
A, xS, t) ∗ f −

1,k−1(xS, xA, −t)dxS . (18)

Tk in eq. (17) denotes the estimated transmission response for each
odd iteration k, and f +

1,k−1 is the downgoing focusing function com-
puted in the former iteration k − 1. Eq. (18) computes an approx-
imation of the quantity Y1, k for each even iteration, based on the
upgoing focusing function from the preceding iteration. Note that
both the up- and downgoing focusing functions are deblurred, and
free of distortions from the imperfect sampling. The two integral
representations are, therefore, evaluated over a regular grid (i.e. as if
no sources are missing). Next, the PSFs have to be computed, using
the estimates of T and Y1 (step 4 in Fig. 1). Analogous to eq. (7), the
downgoing PSF for each odd iteration is retrieved by evaluating the
convolution of Tk and f +

1,k−1 over the irregular sampled sources. For
the even iterations, we consider the correlation of Y1, k and f −

1,k−1,
as in eq. (10). Subsequently, in step 5 the distorted focusing- and
Green’s functions, from step 2 of the scheme, are deblurred by
an MDD with the PSFs. Similar as in eq. (15), this is effectively
accomplished by a least-squares-based inversion, and once again
it is done for all focal points simultaneously. Consequently, our
scheme can not operate on individual focusing points, but rather
multiple points are considered simultaneously. This is in contrast
to the standard Marchenko scheme, which can operate on a single
focusing point. After the MDD, the resulting focusing- and Green’s
functions are reconstructed as if they were retrieved with well-
sampled data. Finally, the last step separates the focusing function
from the Green’s function using a time-windowing operator (θ in
Fig. 1). This final step is identical to that in the standard Marchenko
scheme.

Each iteration is initialized with a ‘clean’ (i.e. deblurred) focusing
function from the preceding iteration. This is required at the start
of each iteration, otherwise the errors from the irregular sampled
reflection data would accumulate. Therefore, steps 3–5 are enforced
with every iteration.

5 N U M E R I C A L E X A M P L E

The performance of the proposed scheme is tested on synthetic data.
The 2-D model for this test is shown in Fig. 2. For convenience,
the density and velocity parameters are chosen to be the same in
each layer, but this is not required for successful application of the
scheme. The observant reader will note the strong contrast in acous-
tic impedance between the top two layers of the model, at a depth of
200 m. This contrast ensures that the inversion of f −

1 for retrieving
Y1 is stable, because most of the energy gets concentrated at the
early onsets of the reflection response. Note that this constraint on
the subsurface model is significantly relaxed with a second scheme
discussed later on in this paper.

The reflection response of the medium is modelled using a
wavelet with a flat spectrum between 5 and 80 Hz. In total, 601
sources and receivers are used with an initial spacing of 10 m. For
the irregular sampling, 50 per cent of the sources are removed at
random, as can be seen in the barcode plot in Fig. 2. In practice,
these sources are killed (i.e. set to 0), as opposed to being entirely
removed from the reflection response. Next, the direct arrival of the
Green’s function between the focal depth and the Earth’s surface
is estimated in a smooth velocity model. As previously stated, the
inverse of this direct arrival is used for the initial estimate of the

Figure 2. Model used in the numerical irregular sampling experiment, and
the dashed line shows the focal level. The barcode shows the irregular
sampling, with the white spaces denoting the excluded sources.

upgoing focusing function, as opposed to the time-reversed version
that is traditionally used. The reflection response and this initial esti-
mate together are all the required inputs for the standard Marchenko
scheme. Finally, for the fourth step of our proposed scheme the
location of the sources (e.g. the barcode in Fig. 2) is required.

Fig. 3 shows the results of the numerical experiment, each col-
umn in the figure represents the results after 12 iterations using
one of the three schemes. The first column shows the results where
the standard Marchenko scheme is used with the irregularly sam-
pled reflection data. Next, the middle column shows the results of
the proposed scheme, again with irregularly sampled data. Finally,
the last column displays a reference result, that was obtained by
using the standard Marchenko scheme on reflection data without
removing any sources. The red dashed line in the figure denotes
the separation in time of the Green’s functions below, and focusing
functions above. In the case of irregular sampling in the standard
scheme (as presented in the first column), three main artifacts can
be identified. First, clear distortions of some reflectors are observed,
especially around the strong events. These distortions are most no-
ticeable of all artefacts, and obstruct later events in the downgoing
Green’s function ( “G+). The ellipses indicate some of these artefacts.
Secondly, the amplitudes of some events are incorrect or the events
are not reconstructed at all (as shown by the red arrows). For exam-
ple, the downgoing focusing function (“f +) is largely suppressed, as
well as some events in the upgoing focusing function (“f −). Lastly,
some new and undesired reflectors are appearing in the results, es-
pecially at later times (>1.2 s) many of the reflectors in the upgoing
Green’s function ( “G−) are deviating from the reference result in
the third column. Examples of such undesired reflectors are marked
with the blue arrows. All these three types of artefacts are mostly
removed by using the proposed scheme (middle column), and the
results of this scheme show much more resemblance with the ref-
erence results. This implies that the proposed scheme both deblurs
the results of irregular sampling effects, and also retrieves the am-
plitudes of the events more accurately. However, the method does
introduce some of its own artefacts; as it introduces edge effects,
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330 J. van IJsseldijk and K. Wapenaar

Figure 3. The top row shows the time-reversed downgoing focusing function ({ f +
1 }�) and downgoing Green’s function (G+), and the bottom row shows the

upgoing focusing function ( f −
1 ) and upgoing Green’s function (G−), the star superscript denotes time reversal. The dashed, red lines indicate the separation

between the focusing- and Green’s functions. The left-hand column shows the result of irregularly sampled data after 12 iterations of the standard Marchenko
scheme. The middle column shows the results when using our scheme on the same data (Fig. 1), again 12 iterations are used. Finally, the third column shows
the reference result, obtained after 12 iterations of the standard Marchenko scheme with well-sampled data. Each panel is scaled with its maximum value. The
arrows and ellipses show artefacts arising from the irregular sampling. Distortions caused by the irregular sampling are indicated with the ellipses. The red
arrows show events that deviate in amplitude or are missing altogether. Finally, the blue arrows mark erroneous reflectors.

especially at later times. These artefacts are introduced by the MDD
of poorly sampled data with the PSFs, and they are suppressed by
using directional FK-filters.

The amplitude reconstruction by the proposed scheme is further
illustrated in Fig. 4, where the middle trace of each panel from
Fig. 3 is plotted. In Fig. 4, the results of the proposed scheme in
orange quite closely match the reference results in blue, whereas the
standard scheme fails to recover the correct amplitudes in the case

of irregularly sampled reflection data (green line). This difference
in amplitudes cannot simply be negated by scaling with a constant
factor, because the error has a different magnitude at different times.

6 A M O R E S TA B L E A LT E R NAT I V E

While the previous results show clear potential, the need for a stable
inversion of f −

1 imposes a large constraint on the subsurface models
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Figure 4. Comparison of the amplitudes in the middle trace (at offset 0 m)
of each panel in Fig. 3. On the left are the time-reversed downgoing focus-
ing function ({ f +

1 }�) and downgoing Green’s function (G+). The upgoing
focusing function ( f −

1 ) and upgoing Green’s function (G−) are shown on
the right.

that are suitable for the method. This section, therefore, explores
how this unstable inversion can be avoided. In order to achieve this
eqs (1) and (2) are combined into a single equation, that retrieves the
full-wavefield Green’s functions between a focal point and surface,
defined as follows:

G(xR, xA, t) = G+(xA, xR, t) + G−(xA, xR, t). (19)

This gives a new representation for irregular sampling with the
full-wavefield Green’s function:

“G(xR, xA, t) − “f2(xA, xR, −t) =
∑

i

R(xR, x(i)
S , t) ∗ f2(xA, x(i)

S , t) ∗ S(t), (20)

with:

f2(xA, xR, t) = f +
1 (xR, xA, t) − f −

1 (xR, xA,−t). (21)

The arches over the Green’s and focusing functions in eq. (20)
denote convolution with a new PSF �2:

�2(x′
A, xA, t) =

∑
i

Y2(x′
A, x(i)

S , t) ∗ f2(xA, x(i)
S , t) ∗ S(t). (22)

Here, Y2 is the inverse of focusing function f2. Note that this
inverts a superposition of the downgoing and upgoing focus-
ing functions, thereby avoiding the independent inversion of f −

1

(see eq. 18). A detailed derivation of eqs (20)–(22) is given in
Appendix A.

Next, we integrate these full-wavefield equations into an iterative
scheme, analogous to the integration of the decomposed equations
shown before. An overview of this new iterative scheme is shown
in Fig. 5. The scheme is initialized with an estimate for the first

Figure 5. Flowchart displaying the full-wavefield Marchenko scheme,
where steps 3–5 account for imperfectly sampled data. f and G rep-
resent the focusing- and Green’s functions, respectively, and the arch
denotes contamination by the imperfect sampling. S is the source sig-
nature. m is a masking operator, that kills all the traces with missing
sources. k is the iteration number, the superscript star denotes time rever-
sal, and the inline asterisks denotes a convolution. θ is the time-windowing
operator.

focusing function, which is again equal to the inverse of the direct
arrival of the Green’s function:

f2,0(xA, xS, t) ≈ Ginv
d (xS, xA, t). (23)

This initial focusing function is convolved with the subsampled re-
flection response (step 2 in Fig. 5). Note that f2 appears on both the
right- and left-hand sides of eq. (20), thus we no longer need to dif-
ferentiate between odd and even iterations. Instead, the individual
equation iteratively finds the full-wavefield Green’s and focusing
functions. However, these functions are contaminated by the imper-
fect sampling, which needs to be deblurred using a PSF with each
iteration. The first step in finding this PSF is estimating quantity
Y2, k as follows (eq. A4):

δ(x′
H,A − xH,A)δ(t) =

∫
S0

Y2,k(x′
A, xS, t) ∗ f2,k−1(xA, xS, t)dxS . (24)

In this equation, f2, k − 1 is the deblurred version of the focusing
function from the previous iteration. The focusing functions and
its inverse are then used to approximate the PSF for the current
iteration (eq. A6):

�2,k(x′
A, xA, t) =

∑
i

Y2,k(x′
A, x(i)

S , t) ∗ f2,k−1(xA, x(i)
S , t). (25)

Subsequently, this PSF is used to deblur both the Green’s and focus-
ing functions from the step 2 of Fig. 5 (eqs A10 and A11). Finally,
− f �

2,k (the superscript � indicates time reversal) is separated from
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Figure 6. Model used in the numerical irregular sampling experiment, with
the velocities on the left and densities on the right. The dashed line shows
the focal level. The barcode shows the irregular sampling, with the white
spaces denoting the excluded sources (50 per cent).

the Green’s function using a time gate, reversed in time and multi-
plied with −1 (step 6 in Fig. 5). This updated focusing function is
then used as input for the next iteration. This process can then be
repeated until the results have sufficiently converged, meaning the
updated focusing function does not change significantly compared
to the preceding iteration.

This new scheme successfully avoids the inversion of f −
1 , and

it is therefore more stable. However, the drawback of this scheme
is that it does not return the Green’s function decomposed into an
up- and downgoing part. These decomposed functions are required
for redatuming the reflection response from the surface to the focal
depth. This issue can be circumvented, if either the downgoing or
upgoing focusing functions is available. Previously, we found that
the odd iterations in the flowchart of Fig. 1 are relatively stable,
thus this can be used to estimate f −

1,k and G− for odd iterations.
The final step is now to find an approximation for f +

1,k in the even
iterations, which can no longer use the even iterations of Fig. 1,
since these iterations introduce the unstable inverse Y1. Instead the
relation in eq. (21) is used to find the update for the downgoing
focusing function, as follows:

f +
1,k(xR, xA, t) = f2,k(xA, xR, t) + f −

1,k−1(xR, xA,−t) (26)

Note that both f −
1,k−1 as well as f2, k have already been deblurred,

thus there are no sampling artefacts in f +
1,k (e.g. no PSF correction

is required). Furthermore, eq. (15) is still valid to calculate f +
1,0 for

the initial iteration. Finally, the downgoing Green’s function can be
calculated after the last iteration using eq. (19):

G+(xA, xR, t) = G(xR, xA, t) − G−(xA, xR, t). (27)

From now on, the scheme introduced in this section and the
scheme introduced before (summarized in Fig. 1) will be referred
to as the full-wavefield scheme and the decomposed scheme, re-
spectively.

7 F U L L - WAV E F I E L D S C H E M E
N U M E R I C A L E X A M P L E

Now, the full-wavefield scheme will be tested with a numerical ex-
ample. Fig. 6 shows the new velocity and density models that are

used for this example. Contrary to the previous numerical example,
there is no requirement for a strong contrast in acoustic impedance
between the top two layers. The direct arrival of the Green’s func-
tion is calculated in a smooth version of this model. The other
parameters for modelling the reflection response remain the same,
meaning that the source wavelet has a flat spectrum, and that 601
collocated sources and receivers are placed with a 10 m separation.
For the imperfect sampling, again 50 per cent of sources are re-
moved, as depicted by the barcode plot in Fig. 6. Fig. 7 presents the
resulting Green’s and focusing functions after 10 iterations of the
full-wavefield scheme. The first panel shows the results when using
imperfectly sampled data with the standard full-wavefield scheme
(i.e. using only steps 1, 2 and 6 in Fig. 5). Next, the middle panel
shows the corrected Green’s and focusing function obtained with
the proposed full-wavefield scheme (using all steps in Fig. 5). Fi-
nally, the third panel contains the reference result that is acquired
with regularly sampled data. There are a number of interesting arte-
facts visible in the figure. First, sampling artefacts are highlighted
by the black ellipse. Furthermore, the red arrows denote events
that are not retrieved when using imperfectly sampled data. Lastly,
the blue arrow marks a reflector recovered when using the imper-
fectly sampled data, that differs from the reflectors in the corrected
and reference results. While a clear improvement can be observed
when using the new full-wavefield scheme, the PSF-corrected re-
sult still deviates considerably from the reference result. The match
between the results especially deteriorates at larger times (i.e. at
t > 2 s). To further assess the performance of this method, the de-
composed up- and downgoing wavefields will now be considered,
thus the full-wavefield Green’s function needs to be decomposed
into the up- and downgoing versions. As previously stated G− can
be iteratively acquired by using the odd iterations in Fig. 1 with
eq. (26) to update f+ for the even iterations. Subsequently, G+

can be calculated from eq. (27). Using the decomposed Green’s
functions, the redatumed reflection response at the focal level can
now be found, by means of the following relation (Wapenaar et al.
2014):

G−(xA, xR, t) =
∫
S0

R(xA, x′
A, t) ∗ G+(x′

A, xR, t)dx′
A (28)

The redatumed reflection response is acquired from this equation
with an MDD. Next, this reflection response is migrated, to get
an image of the target, free from multiples related to the over-
burden. Note that this requires a smooth version of the velocity
model below the focal depth. The results of the migration are dis-
played in Fig. 8. Panels (a) and (c) show the results using irregu-
larly sampled data of the full-wavefield scheme with and without
PSF correction, respectively. The panel in (b) holds the reference
Marchenko result obtained with regularly sampled data. Finally, (d)
shows a migration of results by the standard Marchenko scheme,
where the irregularly sampled reflection data are reconstructed be-
fore applying the scheme. In order to achieve this reconstruction,
a slight normal moveout (NMO) correction is first applied to com-
press the range of ray parameters. Next, a sparse inversion using
the Radon transform is used to restore the missing data. Lastly,
the NMO correction is undone, and the originally available sources
are combined with the reconstructed result to acquire the recon-
structed reflection response. Even though the internal multiples are
not perfectly suppressed using the PSF corrections (Fig. 8c), the re-
sult matches the reference image (Fig. 8b) significantly better than
the image without any corrections. The results with reconstructed
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Figure 7. The left-hand panel shows the result of irregularly sampled data after 10 iterations of the standard Marchenko scheme. The middle panel shows the
results when using our scheme on the same data, again 10 iterations are used. Finally, the third panel shows the reference result, obtained after 10 iterations of
the standard Marchenko scheme with well-sampled data. Each panel is scaled with its maximum value. The arrows and ellipses show artefacts arising from the
irregular sampling. Distortions caused by the irregular sampling are indicated with the ellipses. The red arrows show events that deviate in amplitude or are
missing altogether. Finally, the blue arrow marks an erroneous reflector.

reflection data (Fig. 8d) realize an even better match with the
reference.

8 D I S C U S S I O N

The results show that the proposed schemes can successfully be used
on irregularly sampled reflection data. However, there are some lim-
itations and possible improvements that will now discussed. First,
we note that the discretizations in eqs (3) and (4) should be multi-
plied with the irregular integration step �x(i)

S . However, the current
implementation with PSFs uses a regular integration step (�xS =
10m) based on the regular grid of sources and receivers. This poses
no issues for the schemes that apply the PSF correction, as they im-
plicitly correct for the irregular source distances. Nevertheless, one
could argue that the irregular scheme without PSFs should include
the irregular source distances instead of the regular distances. This
approach was also tested, but did not significantly alter the results
of the blurred images.

Second, the largest limitation when using the decomposed equa-
tions is the instability of quantity Y1, which was introduced as the
inverse of the upgoing focusing function. This was circumvented
with the introduction of a full-wavefield scheme that avoids this
inverse. However, the full-wavefield scheme appears to have de-
creased accuracy at later times, as observed when comparing the
second and third columns of Figs 3 and 7.

Another important factor is the computational cost of the method.
For every iteration, the decomposed scheme adds one convolu-
tion and two MDD steps to the standard Marchenko scheme,
which only consists of a single convolution per iteration. Further-
more, additional operations are required to decompose the results
of the full-wavefield scheme into up- and downgoing responses.
Specifically, the upgoing Green’s and focusing functions have to

be computed, according to the odd iterations of the decomposed
scheme. Therefore, the full-wavefield scheme adds a convolution
and two inversions to the computational load for each iteration of
the method, thus increasing the computational costs and time of the
method.

Alternatively to the full-wavefield scheme, the inversion of f −
1

can also be avoided by utilizing a Marchenko scheme for data that in-
clude free-surface multiples (Singh et al. 2015). This scheme would
have the same number of operations as the decomposed scheme,
and thus would come at a lower computational cost than the full-
wavefield scheme. However, including free-surface multiples can
lead to instabilities in the Marchenko series (e.g. Dukalski & de
Vos 2017; Staring et al. 2017), but these instabilities are expected
to be less troublesome than the instability of quantity Y1. Never-
theless, further research is required to assess the viability of such a
scheme.

Although, the new formulation no longer requires collocation of
the sources and receivers in the Marchenko scheme, it is impor-
tant to note that codepthening is still required. Traditionally, this is
achieved by redatuming the sources down to the receiver level after
applying surface related multiple elimination (SMRE, Verschuur
et al. 1992). However, SRME will also suffer from irregular ac-
quisition effects, so a different scheme for removing free-surface
multiples is desirable, such as estimating primaries by sparse in-
version (EPSI, van Groenestijn & Verschuur 2009), which is less
sensitive to the acquisition geometry.

While the inverse of the downgoing focusing function always ex-
ists, there is a different way to estimate the transmission response,
which does not require any explicit inversions (Vasconcelos et al.
2018). This methodology was also tested to calculate the trans-
mission response in step 3 of the proposed decomposed scheme.
While this method achieved promising results in 1.5-D media,
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Figure 8. Images of the target zone (i.e. at depths below 1100 meters). Panel (a) shows the migration of the redatumed reflection response, retrieved from
the irregularly sampled data after 10 iterations of the standard Marchenko scheme. Panel (b) displays the reference migration, obtained using the results after
10 iterations of the standard Marchenko scheme with well-sampled data. Panel (c) is the migration after 10 iterations of the newly proposed scheme on the
same data. Finally, panel (d) shows the results of reconstructing the reflection data first, and then applying 10 iterations of the standard Marchenko scheme.
Each panel is scaled with its maximum value. The arrows show overburden effects that are not completely eliminated due to the use of irregularly sampled
data.

we found that the results were unsatisfactory in the 2-D model.
Therefore, the transmission response was estimated by inversion
instead.

The new methodology is unable to account for irregular sam-
pling of both sources and receivers; the sampling can only be ir-
regular in the same dimension as the integration in eqs (1) and 2.
On the contrary, the method introduced by Haindl et al. (2018)
assumes irregular sampling in the opposite dimension. A combina-
tion of these complementary methods is, therefore, envisioned to
deal with irregular sampling in both the source and receiver dimen-
sions simultaneously. However, further research into this topic is
required.

Finally, we note that the reflection data can also be reconstructed
before applying the Marchenko method. Subsequently, this inter-
polated reflection response can be used in the standard iterative
scheme, as shown in Fig. 8. Although previous studies found that
the resulting Green’s and focusing functions contained a relatively
high level of noise (Haindl 2016), we demonstrate that careful re-
construction of the data can allow for accurate images of the target
area. Moreover, these results show less artefacts than the PSF-driven
full-wavefield Marchenko scheme. The additional pre-processing,
however, had a larger computational costs than the proposed full-
wavefield scheme (e.g. the method with reconstruction beforehand
took approximately 24 hr on a single CPU, compared to 3 hr for the
full-wavefield Marchenko scheme).

9 C O N C LU S I O N

One of the restrictions of the Marchenko method is the need for
well-sampled and collocated sources and receivers. Recent work
introduced new representations for irregularly sampled data. These
representations include PSFs that deblur distorted focusing- and
Green’s functions. Based on these representations, this paper shows
that the iterative Marchenko scheme can be adapted to handle irreg-
ularly sampled data. For this adaptation, the location of the missing
sources needs to be known, and an inverse version as opposed to the
time-reversed version of the direct arrival of the Green’s function
is required as initial estimate of both new schemes. In addition,
each iteration of the standard Marchenko scheme is extended by
three steps. First, an approximation of the transmission response or
quantity Y1 needs to be computed for the odd and even iterations,
respectively. Quantity Y1 is the inverse of the upgoing focusing
function, similar as the transmission response is the inverse of the
downgoing focusing function. Second, these approximations are ir-
regularized in accordance with the missing sources. Subsequently,
these irregular versions are used to calculate a PSF. Third, the well-
sampled focusing- and Green’s functions are reconstructed by an
MDD of the blurred original functions with these PSFs.

While the decomposed scheme shows promising initial results, it
is established that quantity Y1 is not necessarily stable. Therefore, a
second full-wavefield scheme is proposed, which does not rely on
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the unstable Y1. This is achieved by combining the two decomposed
equations into a single full-wavefield equation. This also yields a
new iterative full-wavefield scheme, which analogous to the first
decomposed scheme contains three additional steps compared to
the classical Marchenko scheme. Again, these steps resolve and
apply a PSF to correct for imperfect sampling in the retrieved re-
sponses. A numerical example shows that the full-wavefield scheme
succeeds in suppressing internal multiples in the final Marchenko
image, whereas the classical approach fails to eliminate the internal
multiples when imperfectly sampled data are used.

The newly proposed schemes alleviate the need for well-sampled
sources when using the Marchenko method. Ideally, the need for
well-sampled receivers should be removed as well. While this is
subject to ongoing research, a new scheme involving a sparse inver-
sion is envisioned. By relaxing the need for perfectly sampled data,
the Marchenko method can be more widely applied to field data.
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A P P E N D I X A : D E R I VAT I O N O F
I R R E G U L A R F U L L - WAV E F I E L D
S C H E M E

This appendix proposes new representations for irregular sam-
pling in the full-wavefield Marchenko scheme. This full-wavefield
scheme is used instead of the decomposed Marchenko equations,
to avoid the use of the unstable inverse of f −

1 . First, eqs (1)
and (2) are combined to get a single Marchenko representation
for the full-wavefield Green’s function, giving (Wapenaar et al.
2014):

G(xR, xA, t) − f2(xA, xR,−t) =
∫
S0

R(xR, xS, t) ∗ f2(xA, xS, t)dxS, (A1)

with:

f2(xA, xR, t) = f +
1 (xR, xA, t) − f −

1 (xR, xA, −t). (A2)

Similarly as with the decomposed schemes, the right-hand side
integral in eq. (A1) is approximated by finite summations over the
available sources:∑

i

R(xR, x(i)
S , t) ∗ f2(xA, x(i)

S , t) ∗ S(t). (A3)

The discretization in eq. (A3) is the source of the distortions in the
case of an imperfectly sampled reflection response.

The next objective is to find a new PSF, that will correct for
these distortions. Again, we utilize the fact that a convolution of the
focusing with its reverse produces a bandlimited delta pulse. We
define response Y2 as the inverse of f2 in eq. (A2), as follows:

δ(x′
H,A − xH,A)δ(t) =

∫
S0

Y2(x′
A, xS, t) ∗ f2(xA, xS, t)dxS . (A4)
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Alternatively, we find:

δ(xH,S − x′
H,S)δ(t) =

∫
SA

f2(xA, xS, t) ∗ Y2(xA, x′
S, t)dxA. (A5)

We note that this inverse more stable than inverse Y1 of f −
1 , because

of the presence of f +
1 in the definition of f2. Again the irregular

sampling is applied to the integral, resulting in a summation over
the irregular sources:

�2(x′
A, xA, t) =

∑
i

Y2(x′
A, x(i)

S , t) ∗ f2(xA, x(i)
S , t) ∗ S(t). (A6)

Eq. (A6) is the new PSF for the full-wavefield Marchenko rep-
resentations. This PSF is convolved with the right-hand side of
eq. (A1):∫

SA

∫
S0

R(xR, xS, t)

∗ f2(x′
A, xS, t) ∗ �2(x′

A, xA, t)dxSdx′
A. (A7)

Next, the order of integration and summation is reversed, and we
find, using eq. (A6), as well as eq. (A5), and the sifting property of
the delta function:∑

i

∫
S0

R(xR, xS, t)∗
∫
SA

f2(x′
A, xS, t) ∗ Y2(x′

A, x(i)
S , t)dx′

A

∗ f2(xA, x(i)
S , t) ∗ S(t)dxS =

∑
i

∫
S0

R(xR, xS, t) ∗ δ(xH,S − x(i)
H,S)δ(t)dxS

∗ f2(xA, x(i)
S , t) ∗ S(t) =

∑
i

R(xR, x(i)
S , t) ∗ f2(xA, x(i)

S , t) ∗ S(t). (A8)

Note that this is identical to eq. (A3). Finally,
∫
SA

{·} ∗ �2dx′
A is

applied to both sides of eq. (A1), giving:

“G(xR, xA, t) − “f2(xA, xR, −t) =
∑

i

R(xR, x(i)
S , t) ∗ f2(xA, x(i)

S , t) ∗ S(t), (A9)

with:

“G(xR, xA, t) =
∫
SA

G(xR, x′
A, t) ∗ �2(x′

A, xA, t)dx′
A, (A10)

and

“f2(xA, xR, −t) =
∫
SA

f2(x′
A, xR, −t) ∗ �2(x′

A, xA, t)dx′
A. (A11)
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