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Evaluation of high strength steels fracture based on uniaxial 
stress-strain curves 

Haohui Xin a,b,*, Milan Veljkovic b 

a Department of Civil Engineering, School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China1 
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A R T I C L E  I N F O   
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A B S T R A C T   

Predicting the ultimate capacity of components made of high strength steel (HSS) is a numerically 
challenging task. The fracture performance of HSS from different steel grades, producers, and 
manufacturing processes (rolling, cold forming, etc.) varies greatly. It is costly to conduct a series 
of experiments for each typical HSS structural component to identify the parameters of the 
fracture model. An attempt is made to evaluate the fracture material properties based only 
on the standardized uniaxial stress-strain curve. The uncoupled fracture model was implemented 
through a user subroutine VUMAT (ABAQUS) to evaluate the ductile fracture of HSS, where a 
rate-independent non-linear isotropic J2 hardening model is used in combination with a separate 
Hosford-Coulomb fracture model. The detailed procedure to identify the material parameters 
based on only the uniaxial stress-strain curve of steel grades S700 and S960 are provided for the 
sake of illustration of possible applications. The proposed fracture model and identified param
eters are validated based on the experimental results of the HSS plate with different hole sizes in 
the middle of the dog bone specimens. Besides, a desktop study of a single K gap joint with β = 0.5 
made of square hollow sections using S700 and S960 is used to illustrate a possible application of 
the fracture model in a simplified model of the structural joint.   

1. Introduction 

The usage of high strength steel (HSS) structure is increasing because of its economical and functional advantages [1–6]. Evaluation 
of the ductile fracture of HSS components benefits the economical design. Predicting the bearing capacities of HSS components, such as 
hollow section joints for lager span truss girder, semi-grid beam-column bolted joints, etc., is very important. 

The failure of HSS is a progressive material deterioration due to the nucleation, growth, and coalescence of micro-voids [7]. The 
fracture models of steels generally consist of physically based and phenomenological models. The physically-based model assumed 
that the fracture occurs when the micro void radius or void volume fraction reaches a critical threshold value. Early physically-based 
ductile fracture prediction is developed by analyzing the evolution of cylindrical and spherical holes in a ductile matrix by McClintock 
(1968) [8] and Rice & Tracey(1969) [9]. Gurson(1977) [10] proposed a (porous) plasticity model which includes the void volume 
fraction as an internal variable. The original Gurson model is improved to consider void coalescence by Tevergaard and Needleman 
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(1984) [11,12], known as Gurson- Tevergaard-Needleman (GTN) model. The GTN model is further extended to consider anisotropy 
[13] and shear effects [14]. The phenomenological models, such as the Johnson-Cook model [15], MMC model [16], and Hosford- 
Coulomb model [17,18], assumed that fracture occurs at a point where a weighted measure of the accumulated equivalent plastic 
strain reaches a critical value. The research of Mohr&Marcadet (2015), Bai&Wierzbicki (2008 and 2004), and Lou et al (2014) [19–22] 
showed that the equivalent plastic strain at the onset of fracture is the function of the stress triaxiality and the Lode (angle) parameter. 
The constant request of reliable experimental data characterizing the effect stress status on ductile fracture is necessary to guarantee 
the accuracy of the phenomenological ductile models. The stress status is generally achieved through different initial specimen ge
ometries or by applying different load combinations. 

There is a big potential application in predicting the ductile fracture of critical components of HSS structures in the construction 
sector. However, the parameters of physically-based fracture model could not be identified conveniently [23], and the phenomeno
logical models assume to conduct a series of experiments for each typical component to identify the parameters but the ductile per
formance of HSS from different steel grade, producers, manufacturing process (cold-formed, hot rolled, etc.) varies a lot. An example of 
differences of the nominally same steel grades S700 and S960 from different producers are shown in [24]. Thus, one of the common 
issues for HSS structures is to identify the parameters of the ductile fracture model conveniently from the uniaxial stress-strain ob
tained from common coupon specimens [25–27]. 

In this paper, an attempt is made to evaluate the ductile fracture of HSS based on phenomenological fracture models only from the 
uniaxial stress-strain curve. Uncoupled fracture model was implemented using a user subroutine VUMAT (ABAQUS) to evaluate the 
ductile fracture parameters of HSS, where a rate-independent non-linear isotropic J2 hardening model is used in combination with a 
separate Hosford-Coulomb fracture model. The detailed procedure to identify the material parameters based on the uniaxial stress- 
strain curve of HSS S700 and S960 is illustrated by FEA and experimental results. The proposed fracture model and identified pa
rameters are successfully validated based on the experimental results of the HSS flat specimens with different hole sizes in the middle of 
the dog bone specimen. Fracture simulation is performed on an individual K gap joint made of square hollow sections as a case study. 

2. Ductile fracture model 

The ductile fracture model is divided into two parts in this paper, namely plasticity and ductile damage. For simplicity, a rate- 
independent non-linear isotropic J2 hardening model is used to describe the steel plasticity, and the Hosford-Coulomb model 
[17,18] is used to predict steel fracture. A user subroutine VUMAT [28] based on the commercial finite element (FE) software ABAQUS 
is implemented. 

2.1. Plasticity model formulation 

The rate-independent non-linear isotropic J2 hardening model is employed to define the steel plasticity [28]. The isotropic yield 
function is written in terms of the von Mises equivalent stress σ and the yield strength s: 

f = σ − s = 0 (1) 

The equivalent Mises stress is shown as below: 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅
3
2

SijSij

√

(2)  

where Sij is the deviatoric stress tensor: 

Sij = σij − σm (3)  

where σm is the mean stress: 

σm =
1
3
σii (4) 

The associated plastic flow rule, where the plastic strain increment and deviatoric stress tensor have the same principle direction, is 
given by: 

ε̇p
ij = λ̇

∂f
∂σij

(5)  

where λ̇ is a positive scalar factor. 

2.2. Fracture model 

Uncoupled fracture model was employed to describe the ductile fracture of metals [29], where standard plasticity models are used 
in combination with a separate fracture model. The basic assumption of the uncoupled model is that the evolution of damage does not 
affect the effective stress-strain response of HSS before a fracture occurs. The evolution of a scalar damage indicator is described 
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Fig. 1. Implementation flow chart of ductile fracture model.  
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through integration, expressed in Eq. (6). D = 0 denoted no damage, D = 1 denoted the fracture. 

D =

∫ εf
p

0

dεp

εpr
f (η, θ)

(6) 

The equivalent plastic strain [17,18] εpr
f at the onset of fracture is the function of the stress triaxiality η and the Lode angle 

parameter θ, given by: 

εpr
f (η, θ) = b(1 + c)1/n

({
1
2
[(f1 − f2)

a
+ (f2 − f3)

a
+ (f1 − f3)

a
]

}1/a

+ c(2η + f1 + f3)

)− 1/n

(7)  

Where: a is the Hosford exponent, that controls measurement of the deviatoric stress; b is the material parameter that controls the 
overall level of the fracture strains; and c is the friction coefficient in the Hosford-Coulomb model, that controls the influence of the 
normal stress; n is the transformation constant. The functions fi(i = 1, 2,3) are Lode angle parameter-dependent functions, that are 
associated with the transformation from principal stresses to Haigh-Westergaard cylindrical coordinate system [17,18], 

f1[θ] =
2
3
cos
[π
6
(1 − θ)

]
(8)  

f2[θ] =
2
3
cos
[π
6
(3 + θ)

]
(9)  

f3[θ] = −
2
3
cos
[π
6
(1 + θ)

]
(10) 

The stress triaxiality η is defined as the ratio between mean stress and von Mises stress, given by: 

η =
σm

σ (11) 

The Lode angle parameter θ is defined as [17,18]: 

θ = 1 −
2
πarccos

(
27
2

J3

σ3

)

≅ −
2σ2 − σ1 − σ3

σ1 − σ3
(12)  

Where: σi(i = 1,2, 3) is the principal stress, J3 is the third invariants of the Cauchy stress deviator, expressed as the determinant of the 
deviatoric stress tensor: 

J3 = det
(
Sij
)

(13)  

2.3. Implementation 

The ductile fracture model is implemented through user subroutine VUMAT [28] see Fig. 1. 

Fig. 2. Engineering strain vs. Engineering stress of HSS.  
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3. Identification of ductile fracture parameters 

To predict the ductile fracture of high strength steels, this paper divided the identification process into two stages: Identify the 
relationship between equivalent plastic strain and uniaxial true stress for the isotropic J2 plasticity model; ②Identify parameters of 
fracture strain under multiaxial stress states for Hosford-Coulomb fracture model. Explanation of the identification procedures is 
shown below for steel grades S700 and S960, from two different steel producers (company A and company B), see Fig. 2, obtained in 
the RUOSTE project [24]. 

3.1. Plasticity parameter identification 

It is assumed that the evolution of damage does not affect the uniaxial true stress-strain response of HSS before a fracture occurs for 
the uncoupled fracture model [23]. The first task of parameter identification is to determine the relationship between uniaxial plastic 
strain and the true stress based on engineering strain and engineering stress in Fig. 2. Division of the whole uniaxial stress-strain 
relationship of HSS, in this paper, is into three stages: elastic stage, plastic stage, and coupled plastic-damage stage. The coupled 
plastic-damage stage is further decomposed into the plastic-dominated zone and the damage-dominated zone. The elastic stage is 
controlled by the elastic strain and elastic modulus. The plastic and coupled plastic-damage stages are presented in Fig. 3. Noted that 
the necking and damage effects are not considered in Fig. 3. The relationship of the uniaxial true stress-strain is easy to obtain in the 
plastic stage. The main discussion of this section focus on calculating the relationship of uniaxial true stress-strain in the coupled 
plastic-damage stage. Noted that the calibration process is in sequential order, the effects of the damage-dominated stage and 
multiaxial ductile fracture are not considered during parameter calibration in the plastic-dominated stage, and the effects of multiaxial 
ductile fracture are not considered during parameters calibration in the damage-dominated zone. To save computational time, the 
common J2 model in ABAQUS/Standard can be used in this section to calibrate the parameters. 

Fig. 4. True stress vs. plastic strain, no necking and damage effects.  

Fig. 3. Plastic and coupled plastic-damage stages (Necking and damage effects are not considering for true stress).  

H. Xin and M. Veljkovic                                                                                                                                                                                              



Engineering Failure Analysis 120 (2021) 105025

6

The engineering strain εen - engineering stress σen relationship is converted to true stress σ -true strain ε relationship by equations 14 
and 15. The relationship of true stress σ-true strain ε is further converted to true stress σ and plastic strain εp relationship. Fig. 4 
presents the relationship between equivalent plastic strain and true stress without considering necking and damage effects. 

ε = ln(1 + εen) (14)  

σ = σen(1 + εen) (15)   

Fig. 5. Calibration of weight constant beyond the necking.  

Table 1 
List of peak stress and plastic strain at the onset of necking.  

Materials Maximum true stress σu (MPa)  Corresponding plastic strain εp
u  

S700(A)  930.90  0.105 
S700(B)  880.06  0.056 
S960(A)  1117.10  0.060 
S960(B)  1212.35  0.022  
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(1) Plastic stage 

As shown in Fig. 3, the plastic stage is defined when 0⩽εp⩽εp
u. εp

u is the corresponding plastic strain when the true stress without 
considering necking and damage effects reached to the peak. In the plastic stage, the uniaxial plastic strain and true stress are simply 
obtained from the engineering strain - engineering stress relationship, see Fig. 4. The maximum true stress without considering necking 
and damage effects σu and corresponding plastic strain εp

u in Fig. 4 are listed in Table 1 for various steel types considered.  

(2) Plastic-dominated zone of coupled plastic-damage stage 

As shown in Fig. 3, when εp
u > εp, the coupled plastic-damage stage reached. The point of maximum true stress is the onset of the 

necking, see Fig. 4. When εp
u < εp⩽εp

d− i the plasticity is dominated in the coupled plastic-damage stage. There are several alternatives to 
predict post-necking behavior, such as the Ramberg-Osgood relationship [30], a combined power-exponential law [17,18], and the 

Fig. 7. Equivalent plastic distribution of S700(A) when ε = εd− i.  

Fig. 6. True stress vs. plastic strain without considering damage (W = 0.0).  
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weighted average model [31]. The weighted function [31], as expressed in Eq.(16), is used to predict the true stress after necking. The 
weight constant W could be determined through calibration. The measured engineering stress-engineering strain relationship is 
considered as a target, the weight constant W is varied in the finite element model (presented in Fig. 5) until the calculated engineering 
stress-engineering strain relationship meets a required accuracy. 

σneck = σu

⎡

⎢
⎣W
(

1 + εp - εp
u

)
+ (1 − W)

⎛

⎜
⎝

(εp)
εp

u

(
εp

u

)εp
u

⎞

⎟
⎠

⎤

⎥
⎦ (16) 

Fig. 8. Calibration of damage parameter B of damage-dominated coupled plastic-damage stage.  

Table 2 
List of true stress and plastic strain at damage initiation.  

Materials Plastic strain at damage initiation εp
d− i  Corresponding stress σd− i  

S700(A)  0.264  1017.16 
S700(B)  0.243  955.17 
S960(A)  0.060  1117.10 
S960(B)  0.081  1247.84  
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Where: W is a weight constant, 0⩽W⩽1. 
The calibration process is suggested to start with a weight constant W = 0.5. If the calculated engineering stress is larger than the 

test results, the weight constant should be reduced in the following range: 0⩽W < 0.5. If the calculated engineering stress is smaller 
than the test results, the weight constant should be increased in the following range: 0.5 < W⩽1.0. After then, we can continue to 
calibrate the weight constant with a smaller range. 

The stop criterion for the calibration of the weight constant W for structural steels is in the following two situations: The calculated 
engineering stress is larger than test results when the constant W is 0.0, indicating that this material is less ductile. The predicated en
gineering stress agreed well with test results when εu < ε⩽εd− i but gives a relatively larger prediction when the ε > εd− i. ② The weight 
constant W, 0⩽W⩽1, make the calculated engineering stress agreed well with test results when εu < ε⩽εd− i, but gives a relatively larger 
prediction when the ε > εd− i. The calibration of the weight constant W is stopped when increasing or decreasing W will make the pre
dicted results far away from the experimental data when εu < ε⩽εd− i. It is not common for the structural steels to get a weight constant W 
as 1.0. The point ε = εd− i is defined as the onset of the damage-dominated zone of the coupled plastic-damage stage. The corresponding 
maximum plastic strain, in the finite element model, is defined as the equivalent plastic strain at the onset of the damage-dominated zone 
εp

d− i of the coupled plastic-damage stage, see Fig. 3. 
The calibration of weight constant after the necking period of S700 and S960 is shown in Fig. 5. Because steel S700 and S960 are 

less ductile, the weight constant W of both steel grades is calibrated as zero. The point ε = εd− i is marked in Fig. 5 as the damage 
initiation point. The relationship between true stress and equivalent plastic strain without considering the damage is shown in Fig. 6. 
The equivalent plastic strain at the onset of the damage-dominated zone εp

d− i is determined as the maximum equivalent plastic strain 
based on the finite element simulation when the engineering strain is reached ε = εd− i. The equivalent plastic strain distribution of 
S700(A) steels is presented in Fig. 7 as an example when ε = εd− i. The εp

d− i is calibrated as 0.2644 for S700(A) steels. The summary of 
εp

d− i and corresponding stress is listed in Table 2.  

(3) Damage-dominated zone of coupled plastic-damage stage 

When εp > εp
d− i the damage is dominated in the coupled plastic-damage stage. The true stress in the damage-dominated zone could 

be obtained through Eq.(17). The damage evolution law, expressed in Eq.(18), is adopted to determine the dependence of the damage 
scalar d on the equivalent plastic strain εp. The parameter B is also determined using the calibration method. The measured engineering 
stress-engineering strain relationship is considered as a target, the parameter B is varied in the finite element model (shown in Fig. 5) 
until the calculated engineering curves agree well with the experimental results. 

σ = (1 − d)σneck (17)  

Fig. 9. The relationship between equivalent plastic strain and true stress for J2 plasticity model.  

Table 3 
List of true stress, corresponding plastic strain, damage variable of Fig. 9 when true stress reached the peak.  

Materials True stress σf  Plastic strain εp
f  Damage variable d Damage Parameter B 

S700(A)  1017.16  0.264  0.00  0.5 
S700(B)  955.17  0.243  0.00  0.9 
S960(A)  1151.27  0.198  0.04  0.3 
S960(B)  1252.39  0.153  0.01  0.2  
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d =

⎧
⎪⎪⎨

⎪⎪⎩

0 εp < εp
d− i

1 − exp
[

− B
(

εp − εp
d− i

)]

εp⩾εp
d− i

(18)  

Where: B is model parameters of damage evolution law. 
Fig. 8 presented the calibration process of damage parameter B. The optimized value of damage parameter B is 0.5 for S700(A), 0.9 

for S700(B), 0.3 for S960(A), and 0.2 for S960(B). The relationship between equivalent plastic strain and true stress for the isotropic 
hardening J2 plasticity model is shown in Fig. 9. The maximum true stress, corresponding true strain, and corresponding damage 
variable d is listed in Table 3. 

3.2. Ductile fracture parameter identification 

The fracture parameters of the Hosford-Coulomb fracture model could be determined based on uniaxial tension (UT) fracture strain 
εp

UT, in-plane shear fracture strain (SH) εp
SH, and plane strain tension (PST) fracture strain εp

PST. It is straightforward to identify the 
parameters of the Hosford-Coulomb model based on the following three steps procedure according to [17,18]. 

➀ Determine parameter “b” from UT fracture strain [17,18]: 

b = εp
UT (19)   

➁ Determine parameter “c” from PST and SH fracture strain [17,18]: 

c =

1 −

⎛

⎝εp
PST

εp
SH

⎞

⎠

n

2̅̅
3

√

⎛

⎝εp
PST

εp
UT

⎞

⎠

n

+

⎛

⎝εp
PST

εp
SH

⎞

⎠

n

− 1

(20) 

Fig. 10. Virtual Multiaxial loading using computational homogenization.  
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(a) Uniaxial tension,  vs. true stress11
pε

(b) Pure shear,  vs. true stress12
pε

(c) Plain strain tension,  vs. true stress11
pε

Fig. 11. Relationship between stress and plastic strain under different stress status.  
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Where: the exponent n is recommended to be 0.1 according to [17,18]. 

➂ Determine the exponent “a” from solving equation 21. The parameter “a” is recommended between 1 and 2 to guarantee the 
uniqueness of the solution [17,18]. 

(
1 + 2a− 1)1/a

=
̅̅̅
3

√
(1 + c)

⎛

⎝εp
UT

εp
SH

⎞

⎠

n

(21) 

The fracture strain under uniaxial tension (UT) εp
UT , in-plane shear (SH) εp

SH, and plane strain tension (PST) εp
PST are generally 

recommended to be obtained directly from experiments [17,18]. Computational homogenization is used to generate different stress 
states by the virtual multiaxial loading, as shown in Fig. 10, to alleviate the extra requirements on the number of experiments. The 
detailed explanation of computational homogenization and periodic boundary conditions is referred to the authors’ previous publi
cation [32,33]. As shown in Fig. 11, the relationship between the equivalent true stress and plastic strain component under different 
stress status is predicted by virtual multiaxial loading. 

The computational homogenization leads to the relationship between stress and plastic strain under different stress status, the 

Fig. 12. Calibration of the rescaling parameter χ for the fracture plastic strain.  

Table 4 
Parameters of Ductile fracture model.  

Materials εp
UT  εp

SH  εp
PST  a b c χ  

S700(A)  0.2638  0.4590  0.1859  1.6208  0.2638  0.0840  3.7 
S700(B)  0.2368  0.4143  0.1577  1.5660  0.2368  0.0906  2.7 
S960(A)  0.1958  0.3428  0.1268  1.5413  0.1958  0.0936  3.9 
S960(B)  0.1553  0.2619  0.0964  1.5017  0.1552  0.0946  4.4  
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Fig. 13. Equivalent plastic strain to fracture as a function of the stress state.  

Fig. 14. 2D View of equivalent plastic strain to fracture vs. stress triaxiality.  
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fracture point is still unknown. Thus, it is proposed here that the fracture strain is a proportional rescaling of the equivalent plastic 
strain εp

peak when the true stress reaches the maximum value. The fracture strain could be expressed as χεp
peak. χ is defined as a rescaling 

parameter. The plastic strain εp
peak is extracted from Fig. 11. The ductile fracture parameters of the Hosford-Coulomb fracture model 

could be obtained based on Equations (19)–(21). The rescaling parameter χ is obtained through the calibration similar to the weight 
constant W and the damage parameter B in Section 3.1 above. The calibration process of the rescaling parameter χ is shown in Fig. 12. 
The initial assumption of the rescaling parameter χ is suggested as the ratio of the maximum equivalent plastic strain between peak 
true stress and the final fracture during calibration of damage parameter B in Fig. 8. The final parameters of the ductile model are 
summarized in Table 4, for both steel grades. 

Table 6 
Geometry of specimens (Unit: mm).  

Steel Grade Nominal Diameter of Middle Holes b t d0 e1 e2 

S700(A) 0  76.95  8.02 – – – 
8  76.12  7.86 7.79 37.86 38.26 
16  76.10  7.95 15.64 38.29 37.81 
24  76.04  7.94 23.61 38.20 37.84 
32  76.05  7.92 31.59 37.94 38.11 
40  75.78  7.93 39.50 38.07 37.71  

S960(A) 0  79.55  8.07 – – – 
8  80.03  8.08 7.79 40.17 39.86 
16  80.06  8.04 15.64 40.08 39.98 
24  80.03  8.08 23.61 40.18 39.85 
32  80.16  8.08 31.59 40.17 39.99 
40  79.72  8.03 39.50 39.95 39.77  

S700(B) 8  80.20  7.93 7.86 40.55 39.65 
16  80.11  7.91 15.85 40.36 39.75 
24  80.07  7.97 23.76 40.44 39.63 
32  80.11  7.86 31.87 40.39 39.72 
40  80.20  7.88 39.77 40.38 39.82  

S960(B) 8  80.07  7.97 7.92 40.52 39.55 
16  79.96  8.11 15.92 40.46 39.50 
24  80.11  8.04 23.41 40.47 39.64 
40  80.09  8.04 40.58 40.19 39.90  

Fig. 15. Geometry illustration (Unit:mm).  

Table 5 
Fracture strain at different stress status.  

Steel Grade εp
EBT  εp

PST  εp
UT  εp

SH  εp
UC  εp

EBC  

S700(A)  0.9033  0.4646  0.9033  1.1050  5.1749  4.7356 
S700(B)  0.5904  0.2811  0.5904  0.7077  3.9037  3.4935 
S960(A)  0.7115  0.3276  0.7115  0.8461  5.0220  4.4465 
S960(B)  0.6241  0.2733  0.6241  0.7085  4.5296  3.9336  
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The equivalent plastic strain to fracture is a function of the stress state, see Fig. 13. For plane stress conditions, the Lode angle 
parameter is a function of the stress triaxiality as shown in Eq. (13). The fracture strain of the Hosford-Coulomb model could be 
conveniently transferred to the 2D view, as shown in Fig. 14. The equivalent plastic strains to fracture exposed to uniaxial tension (UT), 
plane strain tension (PST), equi-biaxial tension (EBT), in-plane shear (SH), uniaxial compression (UC) and equi-biaxial compression 
(EBC) are listed in Table 5. 

θ = 1 -
2
π arcos

[

−
27
2

η
(

η2 −
1
3

)]

−
2
3
⩽η⩽

2
3

(13)  

4. Validation of numerical simulation 

The implemented uncoupled ductile fracture model in Section 2 and identified fracture parameters in Section 3 are validated by the 
HSS plate with different hole sizes (0, 8, 16, 24, 32, and 40 mm) reported in [24]. The detailed geometry of HSS plates with holes is 
shown in Fig. 15 and Table 6. The force-displacement curve comparisons and failure modes between FE and experiments are shown in 
Fig. 16 and Fig. 17, and in Fig. 18 respectively. A good agreement using the material models presented above is observed. The crack 
pattern from FE agreed well with test results, leading to the conclusions that the proposed modeling strategy is successfully validated. 
Noted that the calibrated parameter is not validated by shear-dominated failure mode due to a lack of experimental data. 

The comparisons in Fig. 18 is quantified based on Eq. (14) and (15) by comparing the force at the same displacement in the 
softening stage between experiments and FE. The root mean error (RME) and maximum error (EMAX) between tests and FE are 
summarized in Table 7. The average RME is around 10% and 15% for steel from producer A and B, respectively. The average EMAX is 
between 30% and 37% because the error is more sensitive to the force when the force becomes smaller. Noted that the prediction 
accuracy highly depended on the uniaxial stress-strain curves provided by the producer. The proposed strategies to predict the fracture 

Fig. 16. Comparisons between FE and experimental results of S700.  
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of HSS using the uniaxial stress-strain curve could be an alternative in engineering applications. 

RME =
1
n
∑n

i=1

⃒
⃒Ptest,i − PFE,i

⃒
⃒

Ptest,i
i = 1…n (14)  

EMAX = MAX

(
∑n

i=1

⃒
⃒Ptest,i − PFE,i

⃒
⃒

Ptest,i

)

i = 1…n (15)  

Where: Ptest,i and PFE,i is the experimental force and predicted force at the same displacement. The displacement is taken in the softening 
stage with an increment of 1 mm, from the peak force to the final fracture. 

The specimens without and with a 40 mm hole made of S700(A) and S960(A) are selected to show the progressive failure process, 
see Fig. 19 and Fig. 20. The necking in the center of the specimen leads to a triaxial stress state when the displacement is 16.5 mm and 
10.6 mm for S700(A)/0 and S960(A)/0, respectively. At this stage, the void nucleation and growth would happen. Upon further 
loading, the crack is initiated in the center of the specimen when the displacement is 17.6 mm and 10.8 mm for S700(A)/0 and S960 
(A)/0, respectively. The crack is gradually propagated when the displacement increased to 20.9 mm and 14.9 mm for S700(A)/0 and 
S960(A)/0, respectively, and a deformation band is at around 450 inclined to the longitudinal axes of the dog-bone specimen. The 
strain concentration in the deformation bands is causing the crack pattern along confined to the deformation bands, at 22.1 mm and 
14.9 mm for S700(A)/0 and S960(A)/0, respectively. 

For the specimen with a 40 mm hole in the middle, as shown in Figs. 21 and 22, the crack initiated in the inner side of the hole due 
to the stress concentration, and gradually propagated toward outside until the specimen is fractured. The crack surface of S700(a)/40 
is smooth, but the crack surface of S960(A)/40 has a stripe pattern. 

Fig. 17. Comparisons between FE and experimental results of S960.  
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(a) S700(A)/0

(b) S700(A)/8

 (c) S700(A)/16

Fig. 18. Failure mode comparisons between FE and experiments of S700(A) (SDV19: Equivalent plastic strain).  
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(d) S700(A)/24

(e) S700(A)/32

(e) S700(A)/40

Fig. 18. (continued). 
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5. Case study 

FE simulations are performed on a single K gap joint made of square cold-formed hollow sections. Solid elements C3D8 are used to 
model nominal cross-section properties of RHS and weld material. The coupon test results reported in the RUOSTE project [24] are 
assumed constant in all parts of the cross-sections and in weld material which is the major simplification of FEA. This means that no 
effects of cold forming on corners nor the effects of material change due to welding (HAZ) are modeled. Such assumptions would lead 
to the overestimation of deformation capacity and possible resistance of the joint. This fact is ignored in the case study because the 
focus is on analyzing and quantifying the effects of the damage material model and the numerical estimate of the fracture strain at a 
multiaxial loading state on the joint resistance and deformation capacity. Four material properties of two steel grades presented in 
Section 3 are used in the parametric study of the joint behavior to predict the ultimate resistance and deformation capacity of the K gap 
joints. The basic material properties are shown in Table 8. 

Prerequisites according to ratio ultimate strength/yielding strength and minimum fracture strain are defined for steel grades up to 
S700 according to EN1993-1-1 [34]. The distinction is made depending on the structural global analysis as follows: for elastic global 
analysis is that fu/fy⩾1.05 and εA⩾12%. For plastic global analysis, the prerequisites are more demanding so the following values are 
imposed fu/fy⩾1.10 and εA⩾15%. Clearly, only S700(A) could satisfy the criteria for use in joint resistance according to the global 
plastic theory. The main goal of the FE analysis is to estimate the difference in the joint resistance predicted using three levels of 
complexity for the material model:  

- Elastic-Plastic-Hardening (EPH) model. The true stress-strain relationship is based on eq. (14 and 15), see Fig. 4. The model 
provides realistic assumptions until the plastic strain, εu

p. The necking effects are not considered.  
- Elastic-Plastic-Hardening including the damage parameter (EPHD) model. The true stress-strain relationship is based on Fig. 9. The 

model provides realistic assumptions until fracture but overestimates true strains because no fracture criterion is considered.  
- Elastic-Plastic-Hardening-Damage-Fracture including calibrated multiaxial fracture strain (EPHDF) model. The true stress-strain 

relationship is the most realistic because the fracture strain limit is considered and the deletion of the elements from the finite 
element mesh is introduced in FEA. Material properties are based on parameters of the ductile fracture model shown in Table 4. 

The nominal geometrical variables of the K gap joint are shown in Fig. 23 and listed in Table 9. The cross section of chord and brace 
are both square. The length of each member is set to 5 times the members’ width, bi, to ensure that the stresses at the joint zone are not 
influenced by the boundary conditions. Both brace members are made with the same cross-section and have the same inclination, θi =

300. The parameter β representing the brace width to the chord width ratio is 0.5. The fillet weld thickness tw is calculated as the full 
strength weld depending on the brace thickness to and the yield strength of the material fy. The finite element mesh and boundary 
conditions are illustrated in Fig. 24. One end of the chord is pinned, and the other end is free. One brace member is pinned, and the 
other brace member is roller pinned to allow the translation in the axial direction. The boundary condition and the load are applied 
using the MPC constraints where the center of the member is the reference point and the chord end surface is the slave surface. 

The load-deformation curves of K gap joints made of S700(A) and S700(B) are shown in Fig. 25. The deformation is defined as the 
ratio of the relative axial displacement of the loaded brace d to the gauge length h0/sinθ. The characteristic resistance of K gap joints 
made of S700 is calculated as 607.4kN, considering material factor Cf = 0.8 based on the latest proposed new version of European 
standard, EC3 part 1-8 chapter 9 [35]. The force at 3% deformation is almost identical, 911.2 kN, for K gap joint using material 
properties S700(A)-EPH, S700(A)-EPFD, and S700(A)-EPHDF models. The characteristic resistance is 0.67 at 3% deformation for K gap 
joints using material properties S700(A). There is no influence on the joint resistance due to the relatively large engineering fracture 
strain of S700(A) (17.0%), while the deformation capacity is smaller up to 20% if the most sophisticated material model is used, see 
Fig. 25.a. 

The force at 3% deformation or the maximum force is 888.6 kN, 933.6 kN, 919.8 kN for K gap joint using material properties S700 
(B)-EPH, S700(B)-EPHD, and S700(B)-EPHDF, respectively. The characteristic resistance is 0.68, 0.65 and 0.66 of the joint resistance 
at 3% deformation using material properties S700(B)-EPH, S700(B)-EPHD, and S700(B)-EPHDF, respectively. The influence of lower 

Table 7 
Root mean error (RME) and maximum error (EMAX) between tests and FE (Unit: mm).  

Hole Size Steel Grades 

S700(A) S700(B) S960(A) S960(B) 

RME EMAX RME EMAX RME EMAX RME EMAX 

0  4.0%  15.1% – –  4.8%  8.6% – – 
8  15.0%  58.7% 4.8% 8.4%  7.6%  26.3% 18.6% 65.7% 
16  5.6%  9.0% 19.1% 34.9%  11.2%  23.3% 13.0% 20.4% 
24  10.7%  39.5% 17.7% 35.5%  11.0%  29.8% 8.0% 15.2% 
32  12.8%  28.9% 16.2% 34.1%  15.3%  47.2% – – 
40  11.9%  40.4% 19.8% 45.5%  14.7%  46.4% 23.8% 46.4% 
Average  10.0%  31.9% 15.5% 31.6%  10.7%  30.2% 15.8% 36.9%  
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(a) Displacement=16.5mm (b) Displacement =17.6mm

(c) Displacement =20.9mm (d) Displacement =22.1mm

Fig. 19. Failure Process and equivalent plastic strain distribution of S700(A)/0 (SDV19: Equivalent plastic strain).  
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(a) d=10.6mm (b) d=10.8mm

(b) d=14.9mm (b) d=16.5mm

Fig. 20. Failure Process and equivalent plastic strain distribution of S960(A)/0 (SDV19: Equivalent plastic strain).  
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(a) d=4.3mm (b) d=5.6mm

(c) d=6.9mm
(d) d=9.0mm

Fig. 21. Failure Process and equivalent plastic strain distribution of S700(A)/40(SDV19: Equivalent plastic strain).  

H. Xin and M. Veljkovic                                                                                                                                                                                              



Engineering Failure Analysis 120 (2021) 105025

23

(a) d=3.0mm (b) d=4.5mm

(c) d=5.8mm (d) d=7.2mm

Fig. 22. Failure Process and equivalent plastic strain distribution of S960(A)/40 (SDV19: Equivalent plastic strain).  

Table 8 
Steel grades used in the case study.   

fy[MPa] fu [MPa] εA[ \ % ]] fu/fy  

S700(A) 753  842.0  17.0  1.12 
S700(B) 751  830.1  11.9  1.11 
S960(A) 1018  1052.0  11.9  1.03 
S960(B) 1060  1181.3  9.17  1.11  
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fracture strain of S700(B) compare to the fracture strain of S700(A) is shown both on joint resistance up to 5% depending on the 
material model used, and on the deformation capacity up to 45% difference between the models, see Fig. 25.b. It is interesting to note 
that the maximum resistance is obtained using the EPHD material model, but not for EPH material model, which would be expected 
base on the material assumption, as it was the case for S700(A) material. 

The load-deformation relationship of K gap joints made of S960 is shown in Fig. 26. The characteristic resistance is 853.8kN using 
material factor Cf = 0.8 acc. to [35]. The force at 3% deformation is governing and the values are 1131.8kN, 1155.6kN, and 1142.7kN 
for the joint assuming material properties S960(A)-EPH, S960(A)-EPHD, and S960(A)-EPHDF, respectively. The characteristic resis
tance, which is the same as the characteristic resistance acc. to [35] is 0.75, 0.74 and 0.75 at 3% deformation for the joint using 
material properties S960(A)-EPH, S960(A)-EPHD, and S960(A)-EPHDF, respectively. The force at 3% deformation or maximum force 
is 1201.2kN, 1263.8 kN, 1240.9kN for the joint using material properties S960(B)-EPH, S960(B)-EPHD, and S960(B)-EPHDF 
respectively. The characteristic resistance is 071, 0.69 and 0.68 at 3% deformation for the joint using material properties S960(B)- 

Fig. 23. K gap joint parameters.  

    (a) mesh                                 (b) Boundary conditions

X (Local Direction)

Z (Local Direction)

Y (Local Direction)

Fig. 24. Finite element mesh and boundary conditions of the K gap joint.  

Table 9 
Joint geometry for the parametric study.  

bo to bi ti g θi e β 
(mm) (mm) (mm) (mm) (mm) (◦) (mm) (–) 

140 6.3 70 5 40 30 − 18 0.50  
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EPH, S960(B)-EPHD, and S960(B)-EPHDF respectively. 
For the steel grade, S960(B) which has significantly smaller engineering fracture strain compare to S960(A), 9.2% vs 12%, 

respectively, leading to larger differences in the force at 3% deformation, up to 5% than in case of a more ductile material. The same 
pattern of behavior in relation to the joint resistance depending on the material model used is observed in the analysis of S960 steels. 
These findings underline needs to use EPHDF model to achieve a reliable prediction of the maximum force and the deformation 
capacity. 

The failure modes of K gap joints using material properties EPH, EPHD, and EPHDF of S700(B) and S960(A), respectively are shown 
in Fig. 27 and Fig. 28. The chord face failure, due to a relatively smaller β = 0.5, is obtained when using material properties EPHDF in 
Fig. 27(c) and Fig. 28(c). For the same joints using material properties EPH in Fig. 27(a) and Fig. 28(a), the maximum equivalent 
plastic strain is redistributed to the brace due to “fake” local support ensured from chord face. For the same joints using material 
properties EPHD in Fig. 27(b) and Fig. 28(b), local buckling occurred near the brace due to “fake” local support ensured from chord 
face. The above mention finding underlines the requirement to use the EPHDF model in order to achieve a reliable failure mode. 

The crack propagation process of the joint made of S700(B) and S960(A), respectively is shown in Fig. 29. The crack initiates 
around the weld toe of the tensile brace at 4.25% and 4.35% of the relative displacement for S700(B) and S960(A), respectively. 
Thereafter, the fracture occurs near the side and back weld toe of the compressive brace when the relative displacement reached to 
6.50% and 6.00% of the relative displacement for S700(B) and S960(A), and the final fracture occurs between the compressive and 
tensile brace when the relative displacement reaches to 7.50% and 8.75% of the relative displacement for S700(B) and S960(A) 
respectively. 

The failure modes indicate an inconsistency between the position of the maximum equivalent plastic strain at the maximum force 
and the fracture position if the fracture is not considered. The local buckling of the brace appears in the case of EPH material caused by 
the “fake stiffness” of the chord face. Another interesting observation is that the most optimistic prediction is obtained for EPLHD 
material model in which elements with excessively high strains and lower resistance of elements in the chord face are not deleted from 
the chord face but providing the “fake stiffness” and the “fake resistance” of the joint. The above-mentioned observations indicate that 
the only reliable approach would be a material model based on EPHDF model. 

The aforementioned observation most probably will not be observed in the physical experiment, because of the simplification of the 
FE model used here. However, the possible scattering from the physical experiment does not influence the main motivation for the use 

 (a) S700A

(b) S700B

Fig. 25. Load-deformation relationship of hollow section joints made of S700.  
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of EPHDF model. Obviously, more research data would be needed to experimentally establish fracture properties of HAZ and filler 
material. 

6. Conclusions and future study 

One of the challenging issues of HSS used in the construction sector is how to identify the parameters of the phenomenological 
ductile fracture model. The current method is mainly based on a series of material tests with different stress status achieved through 
different initial specimen geometries or by applying different load combinations. An attempt is made to evaluate the ductile fracture of 
HSS only from the uniaxial stress-strain curve in this paper. Following conclusions could be drawn:  

(1) Uncoupled fracture model was implemented through a user subroutine VUMAT (ABAQUS) to evaluate the ductile fracture of 
HSS, where a rate-independent non-linear isotropic J2 hardening model is used in conjunction with a separate Hosford- 
Coulomb fracture model.  

(2) A detailed procedure to identify the material parameters based on only the uniaxial stress-strain curve of HSS is proposed. This 
paper divides the whole uniaxial stress-strain relationship of HSS into three stages: elastic stage, plastic stage, and coupled 
plastic-damage stage. The coupled plastic-damage stage is further decomposed into the plastic-dominated zone and the damage- 
dominated zone. The parameters are calibrated in terms of different stages. The fracture strain at multiaxial loading status is 
proposed to be a proportional rescaling of the equivalent plastic strain when the true stress reaches the top. The fracture pa
rameters are obtained by computational homogenization and a rescaling parameter. The identified parameters are successfully 
validated based on the experimental results of the HSS plate with different hole sizes in the middle. The root mean error (RME) 
by comparing the force at the same displacement in the softening stage between experiments and FE is around 10% and 15% for 
steel from producer A and B, respectively.  

(3) Ductile fracture of an individual K gap joint made of square hollow sections was simulated as a case study. The ductile behavior 
and resistance of K gap joints are better than the recommendations from European standard part 1–8-chapter 9 due to a 
relatively smaller β = 0.5. The characteristic resistance with a 0.8 material factor (Cf) is 0.67 and 0.66 FE results for K gap joints 
made of S700(A) and S700(B), and is 0.75 and 0.68 of FE results for K gap joints made of S960(A) and S960(B) respectively. All 

(a) S960(A)

(b) S960(B)

Fig. 26. Load-deformation relationship of hollow section joints made of S960.  
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(a) S700(B)-EPH

(b) S700(B)-EPHD

(c) S700(B)-EPHDF

Fig. 27. Failure mode of K gap joint made of S700(B) (SDV19: Equivalent plastic strain).  
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(b) S960 (A)-EPHD

(c) S960 (A)-EPHDF

(a) S960 (A)-EPH

Fig. 28. Failure mode of K gap joint made of S960(A) (SDV19: Equivalent plastic strain).  
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(a) S700 (B)

(b) S960 (A)

Fig. 29. Crack propagation of the K gap joint (SDV19: Equivalent plastic strain).  

H. Xin and M. Veljkovic                                                                                                                                                                                              



Engineering Failure Analysis 120 (2021) 105025

30

the K gap joints present chord face failure due to β = 0.5. The crack initiated is around the weld toe of tensile brace, after then, 
the fracture occurred near the side and back weld tone of the compressive brace, and the final fracture occurred between the 
tensile and compressive brace.  

(4) Further research is needed to improve the prediction accuracy: (i) Identification of the ductile fracture parameters based on the 
unit cell with physical meaning, such as a microvoid in the middle. (ii) The mesh size is fixed as 1 mm in this paper. The non- 
local approach is expected in the future to alleviate the mesh size effects. (iii) The simulation results are needed further vali
dated by shear-dominated fracture specimens. 
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