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A Discrete Adjoint Method for
Two-Phase Condensing Flows
Applied to the Shape
Optimization of Turbine Cascades
This paper presents a fully turbulent two-phase discrete adjoint method for metastable con-
densing flows targeted to turbomachinery applications. The method is based on a duality
preserving algorithm and implemented in the open-source CFD tool SU2. The optimization
framework is applied to the shape optimization of two canonical steam turbine cascades,
commonly referred to as White cascade and Dykas cascade. The optimization were
carried out by minimizing either the liquid volume fraction downstream of the cascade or
the total entropy generation due viscous effects and heat transfer. In the first case, the
amount of condensate turned out to be reduced by as much as 24%, but without reduction
of the generated entropy, while the opposite resulted in the second case. The outcomes
demonstrate the capability and computational efficiency of adjoint-based automated
design for the shape optimization of turbomachinery operating with phase change flow.
[DOI: 10.1115/1.4047781]
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1 Introduction
The adjoint method for aerodynamic shape optimization was first

developed by Jameson [1] and since then it has been extensively
applied to external flow design problems using either the continuous
or the discrete adjoint (DA) formulation [2–4]. Its application to tur-
bomachinery flows is relatively more recent, and its advantages in
relation to such problems are less known. One of the reasons
thereof is arguably due to the additional complexity of deriving
the adjoint equations for wall-bounded flows, in particular regard-
ing the linearization of complex boundary conditions like the non-
reflective boundary conditions. This was especially the case in early
time when most of the adjoint solvers were hand-derived. A further
reason is arguably related to the challenge of attaining sufficiently
converged solutions of the CFD simulations for turbomachinery
flows, which greatly affects the convergence of the adjoint solver
and the eventual accuracy of the calculated gradients. Adjoint-based
optimization applied to turbomachinery design is documented for
instance in Refs. [5–8].
The advent of automatic differentiation techniques based on

operator overloading [9] has opened up the possibility of efficiently
performing the differentiation of complex CFD scripts in a black-
box fashion, provided that the solver is implemented in such a
way that it allows the linearization of all the routines in a sequential
manner. If any piece of the code can be automatically differentiated,
one can focus on implementing new physical models and numerical
algorithms in the flow solver, while being able to obtain its adjoint
counterpart almost automatically.
The open-source SU2 solver [10] is becoming increasingly

popular within the CFD community because it implements a flexi-
ble, accurate, and efficient DA solver [9]. The DA solver is

automatically derived by means of advanced algorithmic differenti-
ation (AD) techniques [11]. Various applications of this new design
framework have been presented. In Ref. [9], the authors described
an application of the SU2 DA solver to external aerodynamic prob-
lems. Reference [12] documents the application of the method to the
design of aircraft wings, taking into account aeroacoustic con-
straints, while the solution of aero elastic design problems is
treated in Ref. [13]. Reference [14] illustrates the extension of the
adjoint framework to design problems involving more complex
fluid flows, namely the aerodynamic performance optimization of
organic Rankine cycle (ORC) turbine cascades. Aerodynamic
shape optimization accounting for the fully turbulent and unsteady
nature of flows is reported in Ref. [15]. The approximation of the
harmonic balance method allows in this case to keep the computa-
tional time within feasible limits.
This paper documents the extension of the SU2 design frame-

work to turbomachinery flow problems characterized by phase
change. Specifically, the focus here is on vapor flows condensing
at non-equilibrium thermodynamic conditions [16]. This type of
flows occur, among others, in the last stages of steam turbines
[17] or in centrifugal compressors operating with supercritical
carbon dioxide [18] and lead to aero-mechanical performance
degradation. For example, droplet formation is a highly irreversible
process leading to a work reduction of up to 1–2% for each stage of
large steam turbines in which condensation occurs [19]. The perfor-
mance of turbomachinery affected by fluid condensation can be
improved by re-shaping blades using automated design algorithms
in combination with high-fidelity, two-phase CFD models.
According to open literature, a limited body of research deals

with shape optimization of turbomachinery components operating
with condensing flows [20,21], arguably due to the challenges
and the computational cost associated with the two-phase flow sim-
ulations. The objective of this work is to develop and demonstrate
the capability of a computationally efficient design approach
based on the adjoint method. To this end, the adjoint-based shape
optimization method for single phase turbulent flows implemented
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in the SU2 solver has been extended to account for the occurrence
of non-equilibrium condensation using the method of moments
[22]. The method is based on a duality-preserving approach,
which guarantees that the two-phase adjoint solver inherits the
same iterative convergence behavior of the primal flow solver.
The capability and computational performance of the novel two-
phase design method are illustrated by describing the shape optimi-
zation of two exemplary steam turbine cascades.

2 Numerical Model
2.1 Flow Solver. The governing equations of the two-phase

flow are formulated by adopting the so-called Eulerian formulation.
The vapor flow is modeled with the equations of mass, momentum,
and energy conservation, while source terms are used for the cou-
pling between the two phases. The vapor equations for turbulent
flow are

∂ρv
∂t

+▽ · ρvv
( )

= Sv

∂ρvvx
∂t

+▽ · ρvvx · v
( )

+
∂P
∂x

=▽ · τx + SSA,vx + Svvx

∂ρvvy
∂t

+▽ · ρvvy · v
( )

+
∂P
∂y

=▽ · τy + SSA,vy + Svvy

∂(ρve0,v)
∂t

+▽ · ρvh0,vv
( )

=▽ · τv( ) + SSA,e + Svh0,l

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where ρv, P, e0,v and h0,v are the density, pressure total energy, and
total enthalpy of the vapor. Additionally, h0,l is the liquid total
enthalpy, vx,y are the velocity components, τ is the viscous tensor,
and SSA,vx ,vy ,e are the turbulent source terms, determined through
the Spalart–Allmaras turbulence model [23]. Finally, Sv is the
source term that represents the exchange of mass between the
liquid and the vapor phases, and it is defined as

Sv = −ρm
3ymass

R

∂R
∂t

(2)

in which ymass and R are the liquid mass fraction and the droplet
average radius, respectively, and ρm is the mixture density.
The liquid phase is described by using the method of moments

proposed by Hill [22], which essentially results in a set of conser-
vation laws for the droplet radius distribution function. The equa-
tions are cast in the following form:

∂
∂t
(ρmμ0) +▽ · (ρmμ0v) = ρmJ(R∗)

∂
∂t
(ρmμ1) +▽ · (ρmμ1v) = ρmJ(R∗)R∗ + μ0G

∂
∂t
(ρmμ2) +▽ · (ρmμ2v) = ρmJ(R∗)R2

∗ + 2μ1G

∂
∂t
(ρmμ3) +▽ · (ρmμ3v) = ρmJ(R∗)R3

∗ + 3μ2G

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where μj is the generic moment of order j. The terms J, G, and the
critical radius R∗ are reported in Appendix.
The liquid properties are retrieved by assuming mechanical equi-

librium, thus equal static pressure of the two-phases, and kinematic
equilibrium, hence no slip, between the liquid and the vapor phase.
The liquid temperature Tl is evaluated through the capillarity model
reported in Appendix.
The equations are used to simulate steady-state test-cases. Both

sets of equations are discretized using second-order spatial discreti-
zation schemes and integrated in time using first-order implicit time
integration in a segregated manner. The current two-phase flow
model is implemented in the open-source SU2 code [10].

2.2 Adjoint Solver. The set of governing equations (1) and (3)
written in compact form reads

∂U
∂t

+▽ · (Fc + Fv) = Q (4)

U =
Uflow

U2phase

Uturb

⎡
⎣

⎤
⎦, Fc =

Fc
flow

Fc
2phase
Fc
turb

⎡
⎣

⎤
⎦, Fv =

Fv
flow
0

Fv
turb

⎡
⎣

⎤
⎦, Q

Qflow

Q2phase

Qturb

⎡
⎣

⎤
⎦
(5)

where U indicates the vector containing the conservative variables
of (1) and (3) and the turbulent equations Fc and Fv represent the
convective and viscous fluxes, respectively, and Q the source
terms. For a steady-state problem, the solution of Eq. (4) at time
n+ 1, i.e. Un+1, in case an implicit integration scheme is adopted,
can be expressed as

Un+1 =Un +ΔUn =Un −P−1R(Un, X) (6)

in which R is the residual vector of the equations, X denotes the
vector of grid points of the domain, and the preconditioning
matrix P is the Jacobian of the flow and turbulent equations. Equa-
tion (6) can be reformulated in terms of fixed point iteration as

Un+1 = G(Un, X) (7)

According to the Banach fixed-point theorem [24], Eq. (6) admits a
unique converged solution U∗ if G is contractive, i.e., ‖G‖< 1.
The aerodynamic design problem can be formulated by including

in the notation the explicit dependence of the objective function J
from the vector of the design variables, resulting in

min J (α, U(α), X(α))
subject to U(α) = G(U(α), X(α))

X(α) =M(α)
(8)

whereM(α) is a differentiable function denoting the mesh deforma-
tion algorithm. The Lagrangian of the constrained optimization
problem L can be then written as

L(α, U(α), X(α), λ, μ) = J (U(α), X(α), α)

+ G(U(α), X(α)) − U(α)( )Tλ
+ M(α) − X(α)( )Tμ

(9)

where λ and μ are the Lagrangian multipliers or adjoint variables.
The differential of the lagrangian function with respect to the
vector of the design variables α yields

dL =
∂L
∂α

dα +
∂L

∂U(α)
∂U(α)
∂α

dα +
∂L

∂X(α)
∂X(α)
∂α

dα (10)

thus, omitting the explicit dependence from the independent vari-
ables, it reads

dL
dα

=
∂J
∂α

+
∂J
∂U

+
∂G
∂U

( )T

λ − λ

[ ]
∂U
∂α

+
∂J
∂X

+
∂G
∂X

( )T

λ − μ

[ ]
∂X
∂α

+
∂M
∂α

( )T

μ

(11)

from which the adjoint equations are derived as

∂J
∂U

+
∂G
∂U

( )T

λ − λ = 0 (12)

and

∂J
∂X

+
∂G
∂X

( )T

λ − μ = 0 (13)
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Similarly to the flow solver (7), (12) can be solved with a fixed-
point iteration scheme in λ, namely

λn+1 =
∂J
∂U

+
∂G
∂U

( )T

λn =N (λn, U∗, X) (14)

whereU∗ is the numerical solution of the two-phase flow equations.
SinceN is contractive, Eq. (14) will converge at the same rate as the
primal flow solver when using the same time-marching scheme. The
right hand-side of Eq. (14) is obtained by resorting to Algorithmic
Differentiation applied to the source code of the program that com-
putes J and G in black-box fashion. This is made possible at the
expense of a small runtime overhead by the use of the Jacobi
taping method implemented in the AD tool CODIPACK [25] in combi-
nation with the Expression Templates feature of C++. Equation (13)
is instead evaluated only once the adjoint solution vector has been
computed. Finally, by replacing Eqs. (12), (13) in (11), one obtains
the gradient of the objective function J with respect of the design
variables M(α) as

dL
dα

=
dJ
dα

=
∂J
∂α

+
∂MT

∂α
μ (15)

The same approach is used to calculate the gradients of any of the
constraints of the optimization problem featuring explicit depen-
dence on the design variables. A full description of the aerodynamic
design chain can be found in Refs. [9,14]. Both the two-phase flow
and adjoint solvers can be run in serial or parallel mode using a
mesh partitioning approach and an implementation of the message-
passing interface standard.

3 Thermodynamic Modeling of the Two-Phase Fluid
The thermo-physical fluid properties are computed by means of

specific fluid models, depending on the thermodynamic region,
because these algebraic equations can easily be differentiated.
The equilibrium and metastable thermodynamic properties of the
vapor phase states are computed by means of a thermodynamic
model based on an improved Peng–Robinson equation of state
(EoS) [26] directly implemented in SU2. Viscosity and thermal con-
ductivity are computed by the same library in correspondence with
the total conditions P0, T0 at the nozzle inlet and kept constant along
the expansion.
The liquid density is taken from Ref. [27], while the liquid

enthalpy is calculated by subtracting the value of the latent heat
of vaporization from the value of the saturated vapor enthalpy at
the vapor temperature Tv. The calculated properties are therefore
thermodynamically inconsistent, namely, the value of saturated
pressure and temperature calculated with the liquid model are
slightly different from the same properties if calculated with the
vapor model. However, this has no influence on the numerics and
the accuracy of the results, as demonstrated by the results shown
in Sec. 5. Finally, the surface tension is evaluated using the relations
given in Ref. [28]. All these models are implemented in SU2 to
enhance the computational efficiency of the two-phase numerical
model.

4 Objective Function for Turbomachinery Design
Problems With Condensing Flows
A comprehensive review of loss mechanisms associated with

metastable condensation in turbomachinery is provided in
Ref. [29]. The largest share of entropy generation due to non-
equilibrium condensation is due to heat transfer between the
liquid and the vapor phase and this loss is usually termed thermody-
namic wetness loss. Furthermore, the formation of tiny liquid drop-
lets generally leads to pitting and erosion of the blades
leading-edge, which eventually may affect their structural integrity,
thus, the final performance [29,30]. Stemming from these

considerations, the objective function J for the two-phase adjoint-
based optimization framework can be defined in terms of (i) mini-
mization of liquid volume fraction yvol in order to reduce the
amount of liquid condensate (ii) and minimization of entropy loss
coefficient ζ in order to mitigate all irreversible flow phenomena,
thus including those due to non-equilibrium condensation. The
way in which the two objective functions are calculated from
CFD results is described in the following.

4.1 Liquid Volume Fraction. The liquid volume fraction yvol
can be directly computed from the transport equation of the third
moment μ3 as

yvol =
4π
3
U2phase,4 =

4
3
πρmμ3 (16)

An averaged value of this quantity suited as objective function is
obtained by applying mass-flow averaging to the non-uniform yvol
distribution at the outflow boundary. Due to the order of magnitude
of U2phase,4, i.e., approximately 1 × 10−6, the calculations were run
until the residual of the last transport equation of the second phase
was at least lower than 1 × 10−10.
The quantity yvol was selected over the liquid mass fraction ymass,

defined as

ymass =
4
3
πU2phase,4

ρl
ρm

=
U2phase,4ρl

U2phase,4(ρl − ρv) + (3/4π)ρv
(17)

to avoid numerical issues related to the different order of magnitude
of the terms at the denominator of Eq. (17).

4.2 Entropy Loss Coefficient. Using first principles, for a
fixed control volume in which the condensing vapor flows
through, the entropy generation Δṡ due to loss mechanisms can
be computed as

Δs = sout − sin (18)

in which

sout = ymassoutsl,out + (1 − ymassout )sv,out (19)

sl,out are the liquid and the vapor entropy fluxes at the outlet bound-
ary of the control volume, sin is the entropy flux of the inlet flow
stream, determined starting from the inlet total conditions P0, T0
assuming single phase in thermodynamic equilibrium conditions.
ymassout is the liquid mass fraction per unit mass. The entropy loss
coefficient ζ is finally expressed as

ζ = Δs
Tout,s
1
2
v2out

(20)

where Tout,s and vout are the outlet static temperature and flow abso-
lute velocity.
In all calculations, the entropy values at inlet and outlet boundar-

ies are obtained by applying mass-flow averaging to the non-
uniform flow. The use of a coefficient lumping all dissipative
contributions coming from viscous effects, shock waves, and ther-
modynamic wetness losses is a convenient choice in turbomachin-
ery applications as loss mechanisms are seldom independent and
performance parameters eventually depend on global entropy
increase.
For either objective functions, the optimization runs were con-

ducted using the Sequential Least SQuares Programming
(SLSQP) optimizer described in Ref. [31].

5 Applications
The capability of the adjoint-based design framework is demon-

strated by performing shape optimization of two exemplary steam
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cascades made of blades that are representative of typical blade pro-
files for steam turbines. The first blades row corresponds to the
stator of the last stage of a 200 MWe steam turbine [32], while
the second one is taken from the fifth stage of an industrial steam
turbine of large power capacity and is described in Ref. [33]. The
illustration of the test cases follows the same structure. First, it is
reported the validation of the numerical model. Then, the results
of the optimization using the two objective functions are discussed.
For the sake of clarity, the two turbine cascades are referred to as the
Dykas cascade and the White cascade in the following, from the
name of the first author of the paper where the experimental

studies were published. It is assumed that both the considered low-
pressure steam turbine cascades were designed using best design
practices for condensing flows in steam turbines.

5.1 Dykas Cascade

5.1.1 Validation of the Numerical Model. The boundary condi-
tions and the simulation parameters are listed in Table 1. Simula-
tions were run using second-order numerical schemes on a mesh
comprising 30 k elements. The CFL number was set to 20 and
kept constant during the simulation.
The contour of the Mach field and liquid volume fraction is

shown in Figs. 1 and 2. The condensation onset occurs right after
the impingement of the expansion fan on the suction side. The
release of latent heat in the supersonic flow stream induces the for-
mation of a condensation shock at about x= 0.16 m, followed by a

Fig. 1 Dykas cascade: Mach number distribution within the flow
field

Fig. 2 Dykas cascade: U2phase,4 distribution within the flow field

Table 1 Dykas cascade: boundary conditions, and simulation
parameters

P0 (Pa) T0 (K) Pout (Pa) μ (Pa · s) k (W mK−1) μturb/μ I

0.89 × 105 373.15 0.39 × 105 12.252× 10−6 24.626× 10−3 100 0.05

Fig. 3 Dykas cascade: pressure distribution on the blade
surface. Comparison between simulation results and the experi-
mental data in Ref. [32].

Fig. 4 Dykas cascade: blade profile and FFD box control points
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further flow expansion up to the trailing edge. The pressure distribu-
tion along the blade surface obtained by the numerical model is
compared to that obtained experimentally in Fig. 3. It can be
observed that the largest deviations are located in correspondence
of the so-called condensation shock. However, the location of con-
densation inception, i.e., the Wilson point, is correctly predicted by
the model. Overall, the accuracy of the model is deemed adequate
for design purposes.
The adjoint solver is validated by comparing the gradient of the

objective function against the one computed by centered finite dif-
ferences (FD) with a step size of 1 × 10−3. The blade is parametrized
using an FFD (Free-Form Deformation) box constituted by 25
control points, see Fig. 4. These are the design variables of the
vector α used to define the optimization problem.
Figure 5 shows that the gradients of the entropy loss coefficient

computed by the adjoint method are well in agreement with the

correspondent FD values. Additionally, Figs. 6 and 7 depict
the convergence history of both solvers. The use of the duality-
preserving approach allows the adjoint solver to inherit the same
convergence rate of the primal solver.

Fig. 6 Dykas cascade: convergence history of the solutions
Uflow,1 and Uflow,4

Table 2 Dykas cascade: physical time and peak memory
allocated required for (i) single-phase laminar (1ph, visc),
(ii) single-phase turbulent (1ph, turb), (iii) adjoint single-phase
turbulent (Adj 1ph, turb), (iv) two-phase turbulent (2ph, turb)
and (v) adjoint two-phase turbulent (Adj 2ph, turb) simulations

1ph, visc 1ph, turb adj 1ph turb 2ph, turb
Adj 2ph,
turb

Rel. time 1 1.12 1.58 1.26 3.06
Max memory 1 1.05 3.96 1.92 5.26

Fig. 5 Dykas cascade: comparison between the entropy gener-
ation gradient calculated with the adjoint solver and the same
quantity calculated with finite differences

Fig. 7 Dykas cascade: convergence history of the solutions
U2phase,1 and U2phase,4

Fig. 8 Dykas cascade: comparison between the original profile
and the optimized profile in case the objective is theminimization
of the liquid volume fraction
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The computational cost and peak memory requirement of the
two-phase numerical model are normalized with the values of a
single phase viscous computation and summarized in Table 2. If
compared with the performance of a single-phase turbulent
model, the extra cost demanded by the two-phase model is of the
order of 20% for the flow and two times higher for the adjoint
solver, while in terms of memory requirement the increase is of
the same order of magnitude.

5.1.2 Shape Optimization. The simulated performance for the
Dykas cascade was optimized under the constraint of preserving
the baseline mass flow rate. The resulting optimization problem is
then set as follows:

minimize
α

yvol (α), ζ (α)
subject to: ṁ = ṁb

(21)

The outcomes of the optimization achieved by minimizing the
liquid volume fraction are discussed first. Figures 8 and 9 illustrate

the original and optimized blade profile and the convergence history
of the optimization, respectively. As it can be observed, the auto-
mated shape optimization allowed to reduce the liquid volume frac-
tion by about 20% in six design iterations. This is also evident from
the contour of the third moment μ3 displayed in Fig. 10.
Figure 11 shows the Mach number contour of the optimized

cascade, while Fig. 12 shows the distribution of the mass-flow aver-
aged Mach number in the streamwise direction. The latter figure is
reported in order to support insights on the physical cause of lower
liquid volume level calculated for the optimized cascade. The
reshape of the leading edge provided by the optimization entails
larger flow over-speed in the aft-part of the blade, which causes
the vapor to undergo larger excursion into the metastable region.
The net result is a delay of condensation onset which leads to a
larger number of tiny droplets to form in the region downstream

Fig. 10 Dykas cascade: U2phase,4 distribution for the optimized
profile in case the objective is the minimization of the liquid
volume fraction

Fig. 9 Dykas cascade: optimization history in case the objective
is the minimization of the liquid volume fraction

Fig. 11 Dykas cascade: Mach number distribution for the opti-
mized profile in case the objective is the minimization of the
liquid volume fraction

Fig. 12 Dykas cascade: comparison between the averaged
streamwise Mach number distribution for the original profile
and the optimized profile in case the objective is theminimization
of the liquid volume fraction
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of the blade. However, the reduction of liquid volume fraction
obtained by shaping the leading-edge comes at the expense of a
higher degree of vapor subcooling, which directly affects the fluid-
dynamic performance of the cascade, i.e., the higher the subcooling
the higher the fluid-dynamic losses. For the optimized cascade, the
thermodynamic wetness loss increases by approximately 12% with
respect to the baseline cascade when the flow reverts back to ther-
modynamic equilibrium at the outflow boundary. A further simula-
tion performed with an extended flow domain confirmed that
thermodynamic equilibrium conditions are practically met at an
axial distance lower than a typical stator-rotor clearance in axial tur-
bines. Figure 13 reports the degree of subcooling, defined as

ΔTsub = Tsat(Pv) − Tv (22)

obtained for the original and optimized profile with the extended
domain, whereas Fig. 14 displays the solution U2phase,1, given by

U2phase,1 = ρmN (23)

where N is the average number of droplets, for the original profile
and the optimized case.

From the previous findings, it can be inferred that a reduction of
liquid volume fraction does not directly yield an improvement of
cascade fluid-dynamic efficiency, which instead is attainable by
minimizing the entropy coefficient. The results of this second opti-
mization are reported in Figs. 15 and 16. The loss coefficient is
reduced by about 11%, but the liquid volume fraction turned out
to increase by about 3%. Figures 17 and 18 report the simulation
results in terms of Mach number and liquid volume fraction
contour. This result suggests that, for the problem at hand, a simul-
taneous reduction of liquid volume fraction and entropy generation
can be obtained only by concurrently minimizing both objectives.
The fluid-dynamic performance gain is found to be due to

improved aerodynamic characteristics of the blade as well as a
reduction of vapor subcooling throughout the channel, as visible
from the contour of vapor subcooling and blade pressure distribu-
tion in Figs. 19 and 20.

Fig. 14 Dykas cascade: U2phase,1 for the original profile (up) and
the optimized profile in case the objective is the minimization of
the liquid volume fraction (down)

Fig. 13 Dykas cascade: degree of subcooling ΔTsub for the sim-
ulations with the optimized profile in case the objective is the
minimization of the liquid volume fraction, comparison
between short (up) and extended domain (down)

Fig. 15 Dykas cascade: comparison between the original profile
and the optimized profile in case the objective is theminimization
of the thermodynamic losses

Fig. 16 Dykas cascade: optimization history in case the objec-
tive is the minimization of the thermodynamic losses
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5.2 White Cascade

5.2.1 Validation of the Numerical Model. The boundary condi-
tions and the simulation parameters for the second test case are
reported in Table 3. The number of mesh elements and the CFL
number were set equal to the previous case.
Figure 21 shows the comparison between the blade load

obtained from the simulations and the experimental data in
Ref. [33]. Figures 22 and 23 display the results of the two-phase
simulation. Similarly to the results obtained with the Dykas
cascade, the condensation onset is predicted with sufficient accu-
racy, while the pressure distribution on the rear suction side
shows the largest deviations as compared to the experimental
data. This is attributed to an over estimation of the amount of
latent heat released after condensation onset, which causes a more
pronounced pressure peak followed by a smoother flow expansion
before the final recompression.
Figures 24 and 25 show the FFD box used for the optimization

and the adjoint gradient validation. As for the previous case, the gra-
dients obtained by adjoint and second-order finite differences are
well in accordance.

5.2.2 Shape Optimization. The minimization of the liquid
volume fraction and entropy loss coefficient was carried out by
imposing an inequality constraint on the averaged outlet flow
angle. The optimization problem is then formulated as

minimize
α

yvol (α), ζ (α)
subject to: α > αb

(24)

Figures 26 and 27 depict the optimal profile and the convergence
history when minimizing the liquid volume fraction. The optimal
profile is characterized by a liquid volume fraction reduced by
25% with respect to the original case. The contour of Mach
number and volume fraction is reported in Figs. 28 and 29.

Fig. 18 Dykas cascade: U2phase,4 distribution for the optimized
profile in case the objective is the minimization of the thermody-
namic losses

Fig. 17 Dykas cascade: Mach number distribution for the opti-
mized profile in case the objective is the minimization of the ther-
modynamic losses

Fig. 19 Dykas cascade: comparison between the vapor sub-
cooling of the original blade (up) and that of the optimized
profile in case the objective is the minimization of the thermody-
namic losses (down)

Fig. 20 Dykas cascade: blade loading of the baseline and opti-
mized configuration in case the objective is the minimization of
the thermodynamic losses
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As opposed to the results obtained with the Dykas cascade, the
flow reaches thermodynamic equilibrium at approximately one
chord downstream of the cascade. Figure 30 shows the subcooling
ΔTsub for the optimized profile resulting from the use of (i) a short
and (ii) an extended simulation domain. The thermodynamic
wetness losses for the optimized profile calculated using an
extended flow domain are comparable to those of the original

Fig. 21 White cascade: pressure distribution on the blade
surface, comparison between the simulation results and the
experimental data in Ref. [33]

Fig. 22 White cascade: Mach number distribution within the
flow field

Table 3 White cascade: boundary conditions, and simulation
parameters

P0 (Pa) T0 (K) Pout (Pa) μ (Pa · s) k (W/m/K) μturb/μ I

0.409 × 105 354.0 0.196 × 105 11.579× 10−6 22.971× 10−3 100 0.05

Fig. 25 White cascade: comparison between the entropy gener-
ation gradient calculated with the adjoint solver and the same
quantity calculated with finite differences

Fig. 24 White cascade: blade profile and FFD box control points

Fig. 23 White cascade: U2phase,4 distribution within the flow field
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cascade. Therefore, the decrease of liquid volume fraction does not
translate in a reduction of the loss coefficient ζ2phase.
Lastly, Figs. 31 and 32 show the optimal profile obtained when

minimizing the entropy loss coefficient and the associated optimiza-
tion history. Full convergence is achieved after four iterations, and
the value of the objective function is reduced by about 12%, while
the outlet flow angle remains practically unaltered.
The contours of the Mach number and the liquid volume fraction

are instead displayed in Figs. 33 and 34. By comparison with the
same contours of the baseline geometry of Figs. 22 and 23, it can
be deduced that the optimization provides a geometry configuration
that leads to lower Mach number flows and a shift of the con-
densation onset further downstream close to the blade trailing
edge. As a consequence thereof, the flow reaches a lower degree
of subcooling with positive impact in terms of wetness loss reduc-
tion. Differently from the Dykas cascade, the averaged liquid
volume fraction also decreases by about 20%.

Fig. 27 White cascade: optimization history in case the objec-
tive is the minimization of the liquid volume fraction history

Fig. 29 White cascade: U2phase,4 for the optimized profile in case
the objective is the minimization of the liquid volume fraction

Fig. 26 White cascade: comparison between the original profile
and the optimized profile in case the objective is theminimization
of the liquid volume fraction

Fig. 30 White cascade: degree of subcooling ΔTsub. Comparison
between the simulations with the original domain (up) and the
extended domain (down) using the optimized profile in case
the objective is the minimization of the liquid volume fraction

Fig. 28 White cascade: Mach number for the optimized profile in
case the objective is the minimization of the liquid volume fraction
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Figure 35 reports the blade loading of the original and the opti-
mized configuration, while Fig. 36 displays the degree of subcool-
ing of the flow while passing through the cascade. The pressure
distribution of the optimized cascade is obtained by using the two-
phase and the single-phase model, namely, by assuming that no
condensation is triggered when expanding the flow between the
same conditions. The trends show that the pressure distribution
around the optimal blade is comparatively equivalent in the two
cases, suggesting that viscous dissipation on the blade walls is in
turn mitigated by virtue of the removal of the condensation shock
and of the velocity peak on the rear suction side. As can be observed
in Fig. 36, the minimization of the thermodynamic losses eventually
leads to a decrease of the degree of subcooling.
Ultimately, these results further corroborate the potential and the

effectiveness of shape optimization for turbomachinery flow prob-
lems characterized by phase change.

Fig. 32 White cascade: optimization history in case the objec-
tive is the minimization of the thermodynamic losses

Fig. 31 White cascade: comparison between the original profile
and the optimized profile in case the objective is theminimization
of the thermodynamic losses

Fig. 33 White cascade: Mach number distribution for the opti-
mized profile in case the objective is the minimization of the ther-
modynamic losses

Fig. 34 White cascade: U2phase,4 distribution for the optimized
profile in case the objective is the minimization of the thermody-
namic losses

Fig. 35 White cascade: comparison between the blade loading
of the baseline and that of the optimized configuration in case
the objective is the minimization of the thermodynamic losses
obtained by using both single- and two-phase simulations
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6 Conclusions
A fully turbulent adjoint-based optimization method for two-

phase condensing flow problems in turbomachinery was developed
and documented in this paper. The method was implemented in the
open-source SU2 CFD software, which was extended to simulate
metastable condensing flows by means of the method of
moments. The adjoint solver is based on a duality-preserving algo-
rithm, which enables the adjoint solver to inherit the same conver-
gence properties of the primal flow solver. The optimization
framework was then applied to the re-design of two turbine cas-
cades representative of blade profiles adopted in steam turbines of
large power capacity. The main outcomes of the study can be sum-
marized as follows:

(1) The adjoint solver is approximately two times computation-
ally more expensive than the primal two-phase flow solver,
while in terms of memory requirement the extra demand
for the adjoint solver is of the order of three times. The com-
putational performance is expected to scale similarly for
three-dimensional cases.

(2) For both cascade configurations, the adjoint-based con-
strained minimization of the liquid volume fraction led to
abating the amount of condensate by nearly 24%, but at
the expense of an increase of the entropy loss coefficient
for the Dykas cascade.

(3) The adjoint-based constrained minimization of the entropy
coefficient allowed to considerably improve the simulated
performance of both turbine cascades. In particular, the
entropy loss coefficient reduced by 11% for the Dykas
cascade and by 12% for the White cascade. The averaged
liquid volume fraction at the outlet boundary obtained with
the Dykas cascade turned out to be similar, while for the
White cascade, it decreased by 20%. These observations
suggest that the minimization of both objectives can be
assured only by taking into account both objectives
concurrently.

The development of an efficient fully turbulent adjoint optimiza-
tion framework for two-phase flows and the demonstration of its
capabilities for the re-design of steam turbine cascades paves the
way for shape optimization of a number of turbomachinery applica-
tions characterized by phase change, such as supercritical CO2

compressors, centrifugal compressors for refrigeration systems,
and rocket engine turbo-pumps.
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Nomenclature
Latin Letters

e = internal energy
h = enthalpy
k = thermal conductivity
s = entropy
t = time
v = velocity
y = liquid fraction
F = numerical flux
G = growth rate
G = generic function to calculate the system solution
I = turbulence intensity
J = nucleation rate
J = objective function
L = lagrangian function
M = function for the mesh deformation algorithm
N = droplets number
N = generic function for fixed point iteration algorithm
P = pressure
P = generic inverse matrix
Q = vector of the source terms
R = average radius
R = gas constant
R = residual vector
S = source term
T = temperature
U = vector of the conservative variables
X = vector of grid points in the domain
ṁ = mass flowrate
kb = Boltzmann constant
R∗ = critical radius

MM = molecular mass
Pr = Prandtl number

Greek Symbols

α = averaged outlet flow angle
α = vector of the design variables
γ = heat capacity ratio

ΔG = Gibbs free energy variation
Δṡ = entropy generation per unit of mass

ΔTsub = degree of subcooling
ζ = loss coefficient
λ = lagrangian multiplier
μ = viscosity
μj = generic moment of order -j
μ = lagrangian multiplier

Fig. 36 White cascade: comparison between the degree of sub-
cooling of the baseline (up) and that of the optimized configura-
tion in case the objective is the minimization of the
thermodynamic losses (down)
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ρ = density
σ = surface tension
τ = viscous tensor

Subscripts

0 = total property
2phase = term of the two-phase equations

b = baseline case
flow = term of the flow equations
in = inlet quantity
l = property of the liquid phase
m = property of the two-phase mixture

mass = mass quantity
out = outlet quantity
s = static property

SA = term related to the turbulence model SA
sat = saturation conditions
turb = term of the turbulent equations

v = property of the vapor phase
vol = volumetric quantity
x = component along the x-axis
y = component along the y-axis

Superscripts

c = convective flux
n = solution at time n
v = viscous flux

Appendix
Closure Models. The critical radius R∗ is evaluated as

R∗ =
2σ

ρlΔG
(A1)

in which σ is the surface tension, ρl is the liquid density, and ΔG is
the Gibbs free energy variation of the vapor phase.
The nucleation rate J is calculated as

J =
1

1 + θ

ρv
ρl

�������
2σ

πMM3

√
exp −

4πR2
∗σ

3kbTv

( )
(A2)

in which

θ = 2
γ − 1
γ + 1

hv − hl
RTv

hv − hl
RTv

− 0.5

( )
(A3)

σ is the surface tension, MM is the molecular mass, kb is the Boltz-
mann constant, ρv,l and hv,l are the densities and the specific enthal-
pies of the vapor and the liquid phase, respectively, γ is the heat

capacity ratio, and R is the gas constant. The growth rate G is

G =
κv Tsat(Pv) − Tv( ) 1 − (R∗/R)

( )
ρl hv − hl( ) 1.89 + R − 1.89ν(λv/Pr)

( ) (A4)

in which Pr is the Prandtl number, λv is given by

λv =
1.5μv

�����RTv
√
Pv

(A5)

κv and μv are the thermal conductivity and viscosity of the vapor
phase, respectively, and ν is defined as

ν =
RTsat(Pv)
hv − hl

0.5 −
1
4
γ + 1
γ − 1

RTsat(Pv)
hv − hl

[ ]
(A6)

The capillarity model adopted for the liquid phase temperature Tl
is [34,35]

Tl = Tsat(P) − Tsat(P) − Tv( )R∗
R

(A7)

where Tsat(P) is the saturation temperature at the vapor pressure P,
Tv is the vapor temperature, R is the droplets average radius, and R∗
is the critical radius.

Blade Profiles. Tables 4–8 report the following, respectively,

(1) The blade profile for the cascade in Ref. [33].

Table 4 Blade surface coordinates of the originalWhite cascade

Pressure side Suction side

x y x y

0.00000 0.00000 0.09741 −0.09000
0.00022 −0.00057 0.09505 −0.08400
0.00262 −0.00378 0.08889 −0.06340
0.00733 −0.00654 0.08348 −0.04735
0.01632 −0.00997 0.07751 −0.03222
0.02564 −0.01318 0.07196 −0.02075
0.03463 −0.01731 0.06324 −0.00780
0.04296 −0.02201 0.05395 0.00069
0.05128 −0.02729 0.04343 0.00619
0.05970 −0.03382 0.03201 0.00860
0.06681 −0.04070 0.02213 0.00848
0.07337 −0.04815 0.01190 0.00688
0.07893 −0.05572 0.00486 0.00482
0.08460 −0.06478 0.00255 0.00378
0.08884 −0.07372 0.00034 0.00183
0.09285 −0.08335 0.00000 0.00000
0.09410 −0.08713
0.09618 −0.09250
0.09741 −0.09401
0.09785 −0.09400
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Table 5 Blade surface coordinates of the optimized profile of the Dykas cascade

Point # x y Point # x y Point # x y

1 2.267 × 10−03 2.959 × 10−03 37 1.476 × 10−01 −6.947 × 10−02 73 4.373 × 10−03 −1.629 × 10−02
2 6.199 × 10−03 8.055 × 10−03 38 1.499 × 10−01 −7.443 × 10−02 74 1.124 × 10−03 −1.244 × 10−02
3 1.092 × 10−02 1.145 × 10−02 39 1.521 × 10−01 −7.940 × 10−02 75 1.000 × 10−07 −6.199 × 10−03
4 1.570 × 10−02 1.439 × 10−02 40 1.543 × 10−01 −8.439 × 10−02 76 1.328 × 10−03 8.031 × 10−04

5 2.054 × 10−02 1.692 × 10−02 41 1.564 × 10−01 −8.936 × 10−02 77 1.729 × 10−01 −1.429 × 10−01
6 2.544 × 10−02 1.905 × 10−02 42 1.416 × 10−01 −8.474 × 10−02 78 1.722 × 10−01 −1.409 × 10−01
7 3.039 × 10−02 2.082 × 10−02 43 1.383 × 10−01 −8.041 × 10−02 79 1.714 × 10−01 −1.389 × 10−01
8 3.539 × 10−02 2.223 × 10−02 44 1.349 × 10−01 −7.611 × 10−02 80 1.707 × 10−01 −1.370 × 10−01
9 4.043 × 10−02 2.333 × 10−02 45 1.315 × 10−01 −7.189 × 10−02 81 1.699 × 10−01 −1.350 × 10−01
10 4.552 × 10−02 2.406 × 10−02 46 1.279 × 10−01 −6.774 × 10−02 82 1.691 × 10−01 −1.330 × 10−01
11 5.066 × 10−02 2.430 × 10−02 47 1.243 × 10−01 −6.366 × 10−02 83 1.672 × 10−01 −1.286 × 10−01
12 5.583 × 10−02 2.409 × 10−02 48 1.206 × 10−01 −5.965 × 10−02 84 1.650 × 10−01 −1.238 × 10−01
13 6.101 × 10−02 2.343 × 10−02 49 1.168 × 10−01 −5.573 × 10−02 85 1.627 × 10−01 −1.191 × 10−01
14 6.617 × 10−02 2.235 × 10−02 50 1.129 × 10−01 −5.190 × 10−02 86 1.603 × 10−01 −1.144 × 10−01
15 7.128 × 10−02 2.088 × 10−02 51 1.089 × 10−01 −4.817 × 10−02 87 1.577 × 10−01 −1.098 × 10−01
16 7.631 × 10−02 1.901 × 10−02 52 1.048 × 10−01 −4.448 × 10−02 88 1.551 × 10−01 −1.052 × 10−01
17 8.125 × 10−02 1.679 × 10−02 53 1.007 × 10−01 −4.094 × 10−02 89 1.523 × 10−01 −1.006 × 10−01
18 8.606 × 10−02 1.422 × 10−02 54 9.646 × 10−02 −3.757 × 10−02 90 1.494 × 10−01 −9.610 × 10−02
19 9.074 × 10−02 1.135 × 10−02 55 9.211 × 10−02 −3.437 × 10−02 91 1.464 × 10−01 −9.161 × 10−02
20 9.529 × 10−02 8.205 × 10−03 56 8.767 × 10−02 −3.135 × 10−02 92 1.433 × 10−01 −8.717 × 10−02
21 9.969 × 10−02 4.802 × 10−03 57 8.315 × 10−02 −2.852 × 10−02 93 1.594 × 10−01 −9.646 × 10−02
22 1.039 × 10−01 1.139 × 10−03 58 7.855 × 10−02 −2.589 × 10−02 94 1.613 × 10−01 −1.013 × 10−01
23 1.080 × 10−01 −2.770 × 10−03 59 7.387 × 10−02 −2.346 × 10−02 95 1.632 × 10−01 −1.061 × 10−01
24 1.118 × 10−01 −6.910 × 10−03 60 6.912 × 10−02 −2.125 × 10−02 96 1.650 × 10−01 −1.109 × 10−01
25 1.155 × 10−01 −1.125 × 10−02 61 6.430 × 10−02 −1.925 × 10−02 97 1.667 × 10−01 −1.156 × 10−01
26 1.188 × 10−01 −1.577 × 10−02 62 5.943 × 10−02 −1.750 × 10−02 98 1.683 × 10−01 −1.203 × 10−01
27 1.219 × 10−01 −2.045 × 10−02 63 5.451 × 10−02 −1.599 × 10−02 99 1.699 × 10−01 −1.250 × 10−01
28 1.248 × 10−01 −2.524 × 10−02 64 4.954 × 10−02 −1.476 × 10−02 100 1.714 × 10−01 −1.297 × 10−01
29 1.276 × 10−01 −3.012 × 10−02 65 4.453 × 10−02 −1.382 × 10−02 101 1.726 × 10−01 −1.336 × 10−01
30 1.302 × 10−01 −3.501 × 10−02 66 3.950 × 10−02 −1.319 × 10−02 102 1.731 × 10−01 −1.355 × 10−01
31 1.329 × 10−01 −3.990 × 10−02 67 3.444 × 10−02 −1.289 × 10−02 103 1.737 × 10−01 −1.373 × 10−01
32 1.355 × 10−01 −4.480 × 10−02 68 2.936 × 10−02 −1.295 × 10−02 104 1.742 × 10−01 −1.391 × 10−01
33 1.380 × 10−01 −4.971 × 10−02 69 2.428 × 10−02 −1.339 × 10−02 105 1.747 × 10−01 −1.410 × 10−01
34 1.405 × 10−01 −5.464 × 10−02 70 1.918 × 10−02 −1.425 × 10−02 106 1.751 × 10−01 −1.428 × 10−01
35 1.429 × 10−01 −5.958 × 10−02 71 1.409 × 10−02 −1.555 × 10−02
36 1.453 × 10−01 −6.452 × 10−02 72 9.020 × 10−03 −1.703 × 10−02

Note: Cost function: liquid volume fraction.

Table 6 Blade surface coordinates of the optimized profile of the Dykas cascade

Point # x y Point # x y Point # x y

1 8.610 × 10−05 6.141 × 10−04 37 6.160 × 10−02 −1.893 × 10−02 73 1.471 × 10−01 −6.853 × 10−02
2 1.931 × 10−03 5.614 × 10−03 38 1.084 × 10−01 −8.007 × 10−03 74 1.479 × 10−01 −7.029 × 10−02
3 1.041 × 10−04 −2.373 × 10−03 39 6.591 × 10−02 −2.070 × 10−02 75 1.507 × 10−01 −1.039 × 10−01
4 8.811 × 10−03 1.053 × 10−02 40 7.124 × 10−02 −2.315 × 10−02 76 1.523 × 10−01 −1.064 × 10−01
5 1.463 × 10−02 1.278 × 10−02 41 1.106 × 10−01 −1.004 × 10−02 77 1.514 × 10−01 −7.869 × 10−02
6 5.211 × 10−03 8.827 × 10−03 42 7.751 × 10−02 −2.645 × 10−02 78 1.551 × 10−01 −1.110 × 10−01
7 1.839 × 10−02 1.405 × 10−02 43 8.112 × 10−02 −2.855 × 10−02 79 1.566 × 10−01 −1.136 × 10−01
8 2.271 × 10−02 1.534 × 10−02 44 1.151 × 10−01 −1.466 × 10−02 80 1.543 × 10−01 −8.613 × 10−02
9 2.764 × 10−02 1.659 × 10−02 45 8.817 × 10−02 −3.312 × 10−02 81 1.548 × 10−01 −8.739 × 10−02
10 2.984 × 10−02 1.708 × 10−02 46 9.114 × 10−02 −3.524 × 10−02 82 1.606 × 10−01 −1.204 × 10−01
11 3.987 × 10−02 1.872 × 10−02 47 9.357 × 10−02 −3.707 × 10−02 83 1.627 × 10−01 −1.242 × 10−01
12 3.539 × 10−02 1.810 × 10−02 48 9.550 × 10−02 −3.858 × 10−02 84 1.640 × 10−01 −1.264 × 10−01
13 4.382 × 10−02 1.910 × 10−02 49 1.195 × 10−01 −1.988 × 10−02 85 1.589 × 10−01 −9.870 × 10−02
14 4.834 × 10−03 −9.860 × 10−03 50 1.016 × 10−01 −4.375 × 10−02 86 1.660 × 10−01 −1.300 × 10−01
15 5.066 × 10−02 1.919 × 10−02 51 1.039 × 10−01 −4.583 × 10−02 87 1.605 × 10−01 −1.030 × 10−01
16 5.526 × 10−02 1.885 × 10−02 52 1.066 × 10−01 −4.843 × 10−02 88 1.615 × 10−01 −1.061 × 10−01
17 5.698 × 10−02 1.864 × 10−02 53 1.232 × 10−01 −2.491 × 10−02 89 1.690 × 10−01 −1.353 × 10−01
18 6.388 × 10−02 1.737 × 10−02 54 1.129 × 10−01 −5.463 × 10−02 90 1.692 × 10−01 −1.358 × 10−01
19 6.788 × 10−02 1.631 × 10−02 55 1.150 × 10−01 −5.690 × 10−02 91 1.695 × 10−01 −1.364 × 10−01
20 7.296 × 10−02 1.461 × 10−02 56 1.193 × 10−01 −6.153 × 10−02 92 1.708 × 10−01 −1.390 × 10−01
21 7.520 × 10−02 1.374 × 10−02 57 1.273 × 10−01 −3.109 × 10−02 93 1.709 × 10−01 −1.391 × 10−01
22 7.797 × 10−02 1.256 × 10−02 58 1.206 × 10−01 −6.296 × 10−02 94 1.713 × 10−01 −1.398 × 10−01
23 8.179 × 10−02 1.074 × 10−02 59 1.299 × 10−01 −3.548 × 10−02 95 1.722 × 10−01 −1.417 × 10−01
24 1.692 × 10−02 −1.102 × 10−02 60 1.259 × 10−01 −6.922 × 10−02 96 1.727 × 10−01 −1.430 × 10−01
25 1.975 × 10−02 −1.099 × 10−02 61 1.326 × 10−01 −3.995 × 10−02 97 1.672 × 10−01 −1.224 × 10−01
26 9.074 × 10−02 5.602 × 10−03 62 1.335 × 10−01 −4.145 × 10−02 98 1.737 × 10−01 −1.441 × 10−01
27 2.428 × 10−02 −1.109 × 10−02 63 1.311 × 10−01 −7.562 × 10−02 99 1.742 × 10−01 −1.441 × 10−01
28 2.710 × 10−02 −1.125 × 10−02 64 1.363 × 10−01 −4.656 × 10−02 100 1.709 × 10−01 −1.321 × 10−01
29 3.162 × 10−02 −1.164 × 10−02 65 1.334 × 10−01 −7.864 × 10−02 101 1.750 × 10−01 −1.436 × 10−01
30 3.500 × 10−02 −1.205 × 10−02 66 1.391 × 10−01 −5.181 × 10−02 102 1.751 × 10−01 −1.431 × 10−01
31 1.016 × 10−01 −2.156 × 10−03 67 1.383 × 10−01 −8.525 × 10−02 103 1.729 × 10−01 −1.374 × 10−01
32 1.011 × 10−01 −1.780 × 10−03 68 1.397 × 10−01 −8.730 × 10−02 104 1.734 × 10−01 −1.386 × 10−01
33 4.565 × 10−02 −1.401 × 10−02 69 1.416 × 10−01 −8.987 × 10−02 105 1.740 × 10−01 −1.400 × 10−01
34 1.025 × 10−01 −2.911 × 10−03 70 1.440 × 10−01 −9.349 × 10−02 106 1.741 × 10−01 −1.404 × 10−01
35 1.044 × 10−01 −4.448 × 10−03 71 1.443 × 10−01 −6.223 × 10−02
36 5.560 × 10−02 −1.679 × 10−02 72 1.461 × 10−01 −9.660 × 10−02

Note: Cost function: thermodynamic losses.
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Table 7 Blade surface coordinates of the optimized profile of the White cascade

Point # x y Point # x y Point # x y

1 2.80 × 10−05 −6.09 × 10−04 38 8.37 × 10−02 −7.06 × 10−02 75 7.94 × 10−02 −4.53 × 10−02
2 1.04 × 10−03 −3.03 × 10−03 39 8.51 × 10−02 −7.34 × 10−02 76 7.83 × 10−02 −4.22 × 10−02
3 3.22 × 10−03 −4.89 × 10−03 40 8.63 × 10−02 −7.62 × 10−02 77 7.72 × 10−02 −3.91 × 10−02
4 5.96 × 10−03 −5.93 × 10−03 41 8.76 × 10−02 −7.90 × 10−02 78 7.61 × 10−02 −3.58 × 10−02
5 8.73 × 10−03 −6.93 × 10−03 42 8.88 × 10−02 −8.19 × 10−02 79 7.49 × 10−02 −3.25 × 10−02
6 1.15 × 10−02 −7.89 × 10−03 43 8.99 × 10−02 −8.49 × 10−02 80 7.37 × 10−02 −2.91 × 10−02
7 1.43 × 10−02 −8.88 × 10−03 44 9.10 × 10−02 −8.79 × 10−02 81 7.24 × 10−02 −2.56 × 10−02
8 1.71 × 10−02 −9.90 × 10−03 45 9.21 × 10−02 −9.10 × 10−02 82 7.11 × 10−02 −2.22 × 10−02
9 1.98 × 10−02 −1.10 × 10−02 46 9.31 × 10−02 −9.41 × 10−02 83 6.96 × 10−02 −1.87 × 10−02
10 2.26 × 10−02 −1.21 × 10−02 47 9.36 × 10−02 −9.54 × 10−02 84 6.81 × 10−02 −1.53 × 10−02
11 2.53 × 10−02 −1.33 × 10−02 48 9.38 × 10−02 −9.61 × 10−02 85 6.65 × 10−02 −1.19 × 10−02
12 2.80 × 10−02 −1.45 × 10−02 49 9.41 × 10−02 −9.67 × 10−02 86 6.47 × 10−02 −8.69 × 10−03
13 3.07 × 10−02 −1.59 × 10−02 50 9.48 × 10−02 −9.68 × 10−02 87 6.28 × 10−02 −5.64 × 10−03
14 3.33 × 10−02 −1.72 × 10−02 51 9.53 × 10−02 −9.64 × 10−02 88 6.08 × 10−02 −2.79 × 10−03
15 3.60 × 10−02 −1.87 × 10−02 52 9.54 × 10−02 −9.58 × 10−02 89 5.87 × 10−02 −1.68 × 10−04
16 3.86 × 10−02 −2.02 × 10−02 53 9.52 × 10−02 −9.52 × 10−02 90 5.64 × 10−02 2.24 × 10−03

17 4.11 × 10−02 −2.18 × 10−02 54 9.51 × 10−02 −9.46 × 10−02 91 5.41 × 10−02 4.40 × 10−03

18 4.37 × 10−02 −2.35 × 10−02 55 9.49 × 10−02 −9.40 × 10−02 92 5.16 × 10−02 6.30 × 10−03

19 4.62 × 10−02 −2.52 × 10−02 56 9.47 × 10−02 −9.33 × 10−02 93 4.91 × 10−02 7.92 × 10−03

20 4.87 × 10−02 −2.70 × 10−02 57 9.46 × 10−02 −9.27 × 10−02 94 4.65 × 10−02 9.27 × 10−03

21 5.12 × 10−02 −2.88 × 10−02 58 9.43 × 10−02 −9.18 × 10−02 95 4.37 × 10−02 1.03 × 10−02

22 5.36 × 10−02 −3.08 × 10−02 59 9.36 × 10−02 −8.91 × 10−02 96 4.09 × 10−02 1.11 × 10−02

23 5.59 × 10−02 −3.28 × 10−02 60 9.28 × 10−02 −8.64 × 10−02 97 3.81 × 10−02 1.16 × 10−02

24 5.83 × 10−02 −3.49 × 10−02 61 9.21 × 10−02 −8.37 × 10−02 98 3.52 × 10−02 1.19 × 10−02

25 6.05 × 10−02 −3.71 × 10−02 62 9.13 × 10−02 −8.12 × 10−02 99 3.22 × 10−02 1.20 × 10−02

26 6.27 × 10−02 −3.94 × 10−02 63 9.06 × 10−02 −7.87 × 10−02 100 2.93 × 10−02 1.18 × 10−02

27 6.49 × 10−02 −4.17 × 10−02 64 8.99 × 10−02 −7.63 × 10−02 101 2.63 × 10−02 1.14 × 10−02

28 6.70 × 10−02 −4.42 × 10−02 65 8.91 × 10−02 −7.39 × 10−02 102 2.34 × 10−02 1.10 × 10−02

29 6.89 × 10−02 −4.66 × 10−02 66 8.83 × 10−02 −7.15 × 10−02 103 2.05 × 10−02 1.05 × 10−02

30 7.09 × 10−02 −4.92 × 10−02 67 8.76 × 10−02 −6.91 × 10−02 104 1.76 × 10−02 9.93 × 10−03

31 7.27 × 10−02 −5.18 × 10−02 68 8.68 × 10−02 −6.68 × 10−02 105 1.47 × 10−02 9.28 × 10−03

32 7.45 × 10−02 −5.44 × 10−02 69 8.59 × 10−02 −6.44 × 10−02 106 1.18 × 10−02 8.57 × 10−03

33 7.62 × 10−02 −5.71 × 10−02 70 8.51 × 10−02 −6.19 × 10−02 107 9.00 × 10−03 7.82 × 10−03

34 7.78 × 10−02 −5.97 × 10−02 71 8.42 × 10−02 −5.93 × 10−02 108 6.23 × 10−03 6.84 × 10−03

35 7.94 × 10−02 −6.24 × 10−02 72 8.33 × 10−02 −5.67 × 10−02 109 3.53 × 10−03 5.75 × 10−03

36 8.09 × 10−02 −6.51 × 10−02 73 8.23 × 10−02 −5.40 × 10−02 110 1.33 × 10−03 3.88 × 10−03

37 8.24 × 10−02 −6.79 × 10−02 74 8.14 × 10−02 −5.12 × 10−02 111 1.78 × 10−04 1.25 × 10−03

Note: Cost function: liquid volume fraction.

Table 8 Blade surface coordinates of the optimized profile of the White cascade

Point # x y Point # x y Point # x y

1 3.51 × 10−03 −4.78 × 10−03 38 7.47 × 10−02 −3.18 × 10−02 75 8.66 × 10−02 −7.71 × 10−02
2 1.23 × 10−03 −3.03 × 10−03 39 7.59 × 10−02 −3.52 × 10−02 76 8.54 × 10−02 −7.44 × 10−02
3 2.80 × 10−05 −3.42 × 10−04 40 7.71 × 10−02 −3.85 × 10−02 77 8.41 × 10−02 −7.18 × 10−02
4 5.61 × 10−04 2.75 × 10−03 41 7.82 × 10−02 −4.18 × 10−02 78 8.27 × 10−02 −6.91 × 10−02
5 2.18 × 10−03 5.12 × 10−03 42 7.93 × 10−02 −4.50 × 10−02 79 8.13 × 10−02 −6.64 × 10−02
6 4.69 × 10−03 6.53 × 10−03 43 8.03 × 10−02 −4.82 × 10−02 80 7.98 × 10−02 −6.37 × 10−02
7 7.44 × 10−03 7.51 × 10−03 44 8.13 × 10−02 −5.13 × 10−02 81 7.82 × 10−02 −6.11 × 10−02
8 1.02 × 10−02 8.31 × 10−03 45 8.23 × 10−02 −5.43 × 10−02 82 7.66 × 10−02 −5.84 × 10−02
9 1.31 × 10−02 8.93 × 10−03 46 8.32 × 10−02 −5.72 × 10−02 83 7.49 × 10−02 −5.57 × 10−02
10 1.60 × 10−02 9.49 × 10−03 47 8.42 × 10−02 −6.01 × 10−02 84 7.31 × 10−02 −5.31 × 10−02
11 1.88 × 10−02 9.97 × 10−03 48 8.51 × 10−02 −6.28 × 10−02 85 7.13 × 10−02 −5.04 × 10−02
12 2.18 × 10−02 1.03 × 10−02 49 8.59 × 10−02 −6.55 × 10−02 86 6.94 × 10−02 −4.79 × 10−02
13 2.47 × 10−02 1.06 × 10−02 50 8.68 × 10−02 −6.81 × 10−02 87 6.74 × 10−02 −4.54 × 10−02
14 2.76 × 10−02 1.08 × 10−02 51 8.76 × 10−02 −7.06 × 10−02 88 6.54 × 10−02 −4.29 × 10−02
15 3.05 × 10−02 1.09 × 10−02 52 8.85 × 10−02 −7.30 × 10−02 89 6.32 × 10−02 −4.05 × 10−02
16 3.35 × 10−02 1.08 × 10−02 53 8.92 × 10−02 −7.54 × 10−02 90 6.10 × 10−02 −3.82 × 10−02
17 3.64 × 10−02 1.04 × 10−02 54 9.00 × 10−02 −7.77 × 10−02 91 5.88 × 10−02 −3.60 × 10−02
18 3.93 × 10−02 9.88 × 10−03 55 9.08 × 10−02 −8.00 × 10−02 92 5.65 × 10−02 −3.38 × 10−02
19 4.21 × 10−02 9.11 × 10−03 56 9.15 × 10−02 −8.23 × 10−02 93 5.41 × 10−02 −3.17 × 10−02
20 4.49 × 10−02 8.12 × 10−03 57 9.23 × 10−02 −8.47 × 10−02 94 5.17 × 10−02 −2.98 × 10−02
21 4.76 × 10−02 6.89 × 10−03 58 9.30 × 10−02 −8.71 × 10−02 95 4.93 × 10−02 −2.78 × 10−02
22 5.02 × 10−02 5.42 × 10−03 59 9.38 × 10−02 −8.96 × 10−02 96 4.68 × 10−02 −2.60 × 10−02
23 5.27 × 10−02 3.73 × 10−03 60 9.45 × 10−02 −9.22 × 10−02 97 4.43 × 10−02 −2.42 × 10−02
24 5.51 × 10−02 1.81 × 10−03 61 9.52 × 10−02 −9.49 × 10−02 98 4.17 × 10−02 −2.25 × 10−02
25 5.74 × 10−02 −3.06 × 10−04 62 9.54 × 10−02 −9.55 × 10−02 99 3.92 × 10−02 −2.08 × 10−02
26 5.96 × 10−02 −2.63 × 10−03 63 9.54 × 10−02 −9.58 × 10−02 100 3.66 × 10−02 −1.92 × 10−02
27 6.17 × 10−02 −5.14 × 10−03 64 9.53 × 10−02 −9.62 × 10−02 101 3.39 × 10−02 −1.77 × 10−02
28 6.36 × 10−02 −7.84 × 10−03 65 9.51 × 10−02 −9.64 × 10−02 102 3.13 × 10−02 −1.63 × 10−02
29 6.55 × 10−02 −1.07 × 10−02 66 9.48 × 10−02 −9.66 × 10−02 103 2.86 × 10−02 −1.49 × 10−02
30 6.72 × 10−02 −1.38 × 10−02 67 9.45 × 10−02 −9.66 × 10−02 104 2.59 × 10−02 −1.36 × 10−02
31 6.87 × 10−02 −1.70 × 10−02 68 9.42 × 10−02 −9.65 × 10−02 105 2.32 × 10−02 −1.23 × 10−02
32 7.02 × 10−02 −2.02 × 10−02 69 9.39 × 10−02 −9.62 × 10−02 106 2.05 × 10−02 −1.11 × 10−02
33 7.16 × 10−02 −2.36 × 10−02 70 9.38 × 10−02 −9.58 × 10−02 107 1.77 × 10−02 −1.00 × 10−02
34 7.29 × 10−02 −2.69 × 10−02 71 9.12 × 10−02 −8.82 × 10−02 108 1.49 × 10−02 −8.94 × 10−03
35 9.38 × 10−02 −9.58 × 10−02 72 9.02 × 10−02 −8.53 × 10−02 109 1.21 × 10−02 −7.92 × 10−03
36 9.28 × 10−02 −9.26 × 10−02 73 8.90 × 10−02 −8.25 × 10−02 110 9.35 × 10−03 −6.92 × 10−03
37 7.35 × 10−02 −2.84 × 10−02 74 8.78 × 10−02 −7.98 × 10−02 111 6.57 × 10−03 −5.92 × 10−03

Note: Cost function: thermodynamic losses.
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(2) The optimized profile for minimum volume liquid fraction
for the cascade [32].

(3) The optimized profile for minimum losses for the cascade
[32].

(4) The optimized profile for minimum volume liquid fraction
for the cascade [33].

(5) The optimized profile for minimum losses for the cascade
[33].

All coordinates are in meters.
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