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Abstract— This article proposes an automatic high-precision
detection method for structure parameters of catenary can-
tilever devices (SPCCDs) using 3-D point cloud data. The
steps of the proposed detection method are: 1) segmenting and
recognizing the components of the catenary cantilever devices,
2) extracting the detection plane and backbone component axis
of catenary cantilever devices, and 3) detecting the SPCCD. The
effective segmentation of components is critical for structure
parameter detection. A point cloud segmentation and recogni-
tion method based on three-dimensional convolutional neural
networks (3-D CNNs) is introduced to determine the different
components of the catenary cantilever devices. Compared with
traditional unsupervised clustering procedures for point cloud
segmentation, the proposed method can improve the segmenta-
tion accuracy, does not require complex tuning procedures of
parameters, and improves robustness and stability. Additionally,
the segmentation method defines a recognition function, facili-
tating the analysis of the structural relationship between objects.
Furthermore, we proposed an improved projection random sam-
ple consensus (RANSAC) method, which can effectively divide
the detection plane of catenary cantilever devices to solve the
multicantilever device occlusion problem. With RANSAC, it is
also possible to precisely extract the backbone component axis
and enhance parameter detection accuracy. The experimental
results show that the structure angle and steady arm slope’s error
accuracy can achieve 0.1029◦ and 1.19%, respectively, which
indicates the proposed approach can precisely detect the SPCCD.

Index Terms— Catenary cantilever devices, point cloud seg-
mentation, random sample consensus (RANSAC), structure para-
meter detection, three-dimensional convolutional neural networks
(3-D CNNs).

Manuscript received October 17, 2020; revised November 27, 2020;
accepted December 7, 2020. Date of publication December 18, 2020; date
of current version January 8, 2021. This work was supported in part by the
National Natural Science Foundation of China under Grant 51977182 and
Grant U1734202. The Associate Editor coordinating the review process was
Dr. Octavian Adrian Postolache. (Corresponding author: Zhigang Liu.)

Wenqiang Liu, Zhigang Liu, Qiao Li, and Zhiwei Han are with
the School of Electrical Engineering, Southwest Jiaotong University,
Chengdu 610031, China (e-mail: liuwq_2009@126.com; liuzg_cd@126.com;
747049448@qq.com; zw.han@my.swjtu.edu.cn).

Alfredo Núñez is with the Section of Railway Engineering, Department of
Engineering Structures, Delft University of Technology, 2628 CN Delft, The
Netherlands (e-mail: a.a.nunezvicencio@tudelft.nl).

Digital Object Identifier 10.1109/TIM.2020.3045801

NOMENCLATURE

SPCCD Structure parameters of catenary
cantilever devices.

3-D CNNs Three-dimensional convolutional
neural networks.

RANSAC Random sample consensus.
PSO-GAPF Genetic particle filter algorithm based

on particle swarm optimization.
SC_LCCP Slope constrained locally convex

connected patches.
SVC Super-voxel clustering.
LCCP Locally convex connected patches.
IP_RANSAC Improved projection random sample

consensus.
3-D PointCNN Three-dimensional point

convolutional neural network.
MLP Multilayer perceptron.
FPS Farthest point sampling.
RTX Real time exchange.
GPU Graphics processing unit.
RAM Random access memory.
SSD Solid state disk.

I. INTRODUCTION

AS A support device for fixing the catenary component, the
catenary cantilever device is vital to the traction power

supply system in high-speed railway systems [1]. As shown
in Fig. 1, the contact wire is attached and fixed in the
positioning clamp of catenary cantilever devices.

When a train runs, the pantograph collects the current from
the contact wire to supply the train. To guarantee the current
collection quality and to allow vehicles to run smoothly and
safely, it is vital to monitor the stability of the catenary
cantilever device structure periodically [2], [3]. With the rapid
development of artificial intelligence technologies, advanced
vision-based noncontact detection methods for component fail-
ures [4]–[10] and structure parameters measurement [11]–[14]
of the catenary are proposed in the literature.

Detection methods using 2-D images mainly focus on
spatial structure parameters of components. For example,
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Fig. 1. Two-dimensional image of catenary cantilevers: (a) in normal catenary
regions and (b) in catenary transition regions.

Cho and Ko [11] proposed a video-based dynamic stagger
measurement of railway overhead power contact wires. The
rotation-invariant feature matching is used to detect and locate
the pantograph. According to the edge intersection point of the
contact wire and the pantograph, the stagger value is detected.
Liu et al. [12] presented a conductor height and stagger mea-
surement using laser imaging and visual tracking. First, a beam
of fan laser hits the contact wire to form a target spot. Then,
the spot is tracked with the PSO-GAPF algorithm. Lastly,
according to space coordinate transformation, the geometric
parameters are obtained. Zhan et al. [13] proposed a vision-
based detection approach for railway catenary geometry para-
meters. They used a binocular vision component composed
of two line-scan cameras to calculate the space intersection
point, and then the parameters were obtained according to
the triangulation measurement principle. Yang et al. [14]
proposed a parameter detection method for the steady arm
slope of catenary cantilever devices. First, the steady arm was
located and extracted by combining the CNN-based rough
detection and the Hough transformation-based fine detection.
The steady arm slope was then measured by calculating its
spatial coordinates using a novel monocular vision model.

The 2-D images-based methods discussed mainly focus
on the parameter detection for simple environments, such
as the geometric parameter of catenary suspension devices
and the steady arm slope parameter of catenary cantilever
devices. The detection of these parameters is not suscepti-
ble to background interference and is, in general, evaluated
under simple conditions, especially the catenary suspension
devices [11]–[14]. However, for the detection of the SPCCDs,
as shown in Fig. 1(a), the methods do not provide a high-
precision estimation, particularly, in cases with a complex
background in the transition regions, as shown in Fig. 1(b).
A possible solution to capture the devices’ spatial information
and to detect these structure parameters more precisely is to
consider 3-D depth information (as shown in Fig. 2). With the
development of driverless technology, nowadays, it is possible
to update 3-D data collection equipment and 3-D detec-
tion technology based on artificial intelligence. These data
sources make it possible to increase the level of details about
the condition of the railway infrastructure obtained during
inspection programs. The literature so far of 3-D point cloud
data for railway applications is somewhat limited [15]–[18].
Han et al. [19] used 3-D point cloud data to detect the
SPCCDs, as shown in Fig. 3. The proposed method uses
a traditional unsupervised clustering segmentation procedure.

Fig. 2. Three-dimensional point cloud of catenary cantilevers: (a) front view
and (b) oblique view.

The technique, abbreviated as SC_LCCPs, combined the
SVC [20] and the LCCPs [21] to segment the components
of catenary cantilever devices. After that, a line detection
with an RANSAC method [22] was used for the segmented
regions to calculate catenary cantilevers’ structure parameters.
The method can be further improved when considering the
following aspects.

1) The unsupervised clustering method for point cloud
segmentation SC_LCCP was considered [see Fig. 3(b)].
A significant problem of the method is that it requires
setting and adjusting manually various model parame-
ters. Complicated tuning procedures are needed, as low
robustness of the model is obtained when considering
preadjusted parameters. Besides, to calculate the struc-
ture parameters, the category of each segmented compo-
nent should be determined first. However, SC_LCCP is
an unsupervised clustering method that cannot identify
components. Therefore, they use the prior relationship of
the structure of catenary cantilever devices to determine
the component category. However, due to adjustments
of catenary cantilever devices during on-site installation
and during operations, the assumed prior relationship
would contain a degree of uncertainty, which will affect
the accuracy of the component category identification.

2) The method was evaluated considering a simple struc-
ture in typical catenary regions, as shown in Fig. 1(a).
A method designed to address challenging cases, such
as the occlusion situation shown in Fig. 1(b) that the
2-D image method can solve in the transition regions,
is still needed in the literature.

3) Lastly, the projection RANSAC straight-line detection
method was proposed to extract the backbone compo-
nent axis of catenary cantilever devices to measure the
structure parameters. As shown in Fig. 3(c), point clouds
are first projected to X–O–Y plane, and these straight
lines are detected, which ignores the spatial relationships
in the Z dimension. In Fig. 3(c), the point N’ deviates
from the detection plane, although they are still on
the same line in the projection plane. When the points
M’N’ are mapped back, it may lead that the line MN is
detected, and the result will face a slight deviation when
calculating the angle.

To solve the above problems, we proposed a novel
detection method for SPCCD using 3-D CNNs and the
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Fig. 3. Pipeline of the SPCCD detection system using the traditional SC_LCCP [19]. (a) Input point cloud. (b) Segmentation with SC_LCCP. (c) Component
extraction with RANSAC and parameter calculation.

Fig. 4. Pipeline of the proposed SPCCD detection method using 3-D CNN. (a) Input point cloud. (b) Segmentation with 3-D PointCNN. (c) Component
extraction with IP-RANSAC and parameter calculation.

RANSAC method. The proposed method is shown in Fig. 4.
The contributions of this article are summarized as follows:

1) For the component segmentation, a model based on
3-D CNNs is introduced to segment catenary cantilevers,
as shown in Fig. 4(b). Compared with the unsupervised
clustering SC_LCCP, there are two advantages: 1) an
extensive 3-D point cloud data set is used to train
a neural network, avoiding manual parameter setting
and adjustment and 2) as a supervised method, it can
accurately recognize components, and it is not dependent
on prior information about the relationship between the
elements of the catenary cantilever devices.

2) For the SPCCD calculation, we propose an improved
projection RANSAC (IP_RANSAC) method, as shown
in Fig. 4(c). First, the spatial characteristics from 3-D
point cloud data are fully used. A fast plane detection
method is proposed to divide multicantilever devices
and solve the occlusion problem in transition regions.
Then, point cloud data are projected to the detected
plane, and the backbone component axis is extracted
from the projected plane. The parameter calculation can
be directly performed from the extracted component
axis in the projected plane. This can avoid the problem
in [19] when the point cloud data are mapped back to
the original space, and it can improve the measurement
accuracy of the detected SPCCD.

This article is organized as follows. Section II introduces
the segmentation model based on 3-D CNNs. The proposed

structure parameters detection method based on RANSAC is
explained in Section III. Experimental results are analyzed
and discussed in Section IV. The conclusions of this work
are summarized in Section V.

II. CATENARY CANTILEVER SEGMENTATION

We introduce an advanced recognition and segmentation
model based on 3-D CNNs to improve the traditional methods’
segmentation accuracy. The goal is to enhance the detection
precision of SPCCD. Section II-A describes the recognition
and segmentation networks.

A. 3-D Point Convolutional Neural Networks

In the literature, CNNs are widely used to learn hier-
archical feature representations through leveraging the spa-
tially local correlation in image-pixels 2-D regular grids,
as illustrated in the upper part of Fig. 5 [23]. Extensions of
CNNs based on hierarchical architectures have been applied
to higher dimensional regular domains. However, 3-D point
cloud data are in a disordered and irregular domain, as shown
in the lower part of Fig. 5. It is not straightforward to
directly utilize the extended CNNs to extract 3-D point cloud
data features. With the rapid advances and large demands
of 3-D sensing technologies, especially from the driverless
vehicles industry, some recent feature learning developments
from 3-D point cloud data have been presented [24]–[33].
These methods have different advantages and disadvan-
tages. For example, the authors of [24]–[28] successfully
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Fig. 5. Hierarchical convolution on regular grids and point clouds.

achieved order invariance, but they lost valuable information.
In [29]–[33], these methods can apply typical CNNs through
“interpolate” or “project” features into predefined regular
domains. However, the kernels associated with each point were
individually parametrized, and they are insufficient to extract
the local structures. For these above problems, Li et al. [34]
proposed a general and straightforward framework called 3-D
PointCNN. The framework exploits the advantages of CNNs
to learn the features directly from 3-D point cloud data.
The idea of the 3-D PointCNN is that K candidate points
(p1, p2, . . . , pk) are selected from the previous layer. Then,
a K K transformation matrix (named X-transformation) is
learned through the use of the MLP, which is X = MLP
(p1, p2, . . . , pk). The matrix is used to perform the weighting
and permutation for input features. After that, the transformed
features can be processed with conventional CNNs. The entire
process is called X-Conv operator. The architecture diagram
based on the X-Conv operator is shown in Fig. 6. The X-Conv
operator is described next.

1) X-Conv Operator:
Step 1 (Point “Projected”): First, the farthest point sampling

(FPS) is utilized to reduce the number of samples F1 = {(p1,i ,
f1,i ): i = 1, 2, . . . , N1, p1,i � RDim}, each associated with a
feature { f1,i : f1,i � RC1 } and choose the representative points
F2 = {(p2,i , f2,i ): j = 1, 2, . . . , N2} from the set (p1,i)
by the FPS, which are the points that are beneficial to the
information “projection,” and now the feature dimensional of
F2 is C1, so f2,i � RC1 . Then, K nearest neighbor points P (p1,
p2, . . . , pk , p � RK×Dim) of each representative point ( p2, j)
in the previous layer are projected into the local coordinate
system centered on each representative point. Among, N
represents the number of points, and C denotes the channels,
N1 > N2 and C1 < C2

P � = P � p2, j . (1)

Step 2 (Lift Dimensional Space): The P sets of each point
in p are mapped and lifted into a C.� dimensional space
through MPL.� , and then a new feature of each representative
point (p2, j ) is obtained, f �

2, j � Rk×C�

f �
2, j = M L P�(P �). (2)

Step 3 (Concatenate Feature): Then, the features f �
2, j and

f 2, j are concatenated together, forming a new feature f 2, j ,

Fig. 6. Architecture of 3-D PointCNN based on the X-Conv operator.

and its dimensional is C2 = C� + C1

f 2, j =
�

f �
2, j , f 2, j

�
. (3)

Step 4 (Learn X-Transformation Matrix): Through the train-
ing and learning for the P sets of each point in p with an MLP,
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the K × K X-transformation matrix is obtained

X = M L P(P �). (4)

Step 5 (Weight and Permute Feature): When the transfor-
mation matrix and new features are obtained, the matrix X is
used to weight and permutate the feature f 2, j

FX = X × f 2, j . (5)

Step 6 (Feature Convolution): Lastly, the typical convolution
operator is performed for the transformed feature FX with
kernel K, and F p is the convolution output

F p = Conv(K × FX ). (6)

2) Segmentation Architecture Based on X-Conv: In Fig. 6,
the X-Conv-based 3-D PointCNN architecture is shown. First,
the original catenary point clouds are uniformly sampled
in 6144 points as the input data. Then, four X-Conv oper-
ators with different setting parameters are followed one by
one. Next, for segmentation tasks, the high-resolution point-
wise output is required, so this is realized by following the
Conv-DeConv architecture and five DeConv operators. Note
that both the Conv and DeConv are the X-Conv operators,
and the only difference is that the latter has more points but
fewer feature channels.

III. CANTILEVER STRUCTURE

PARAMETER MEASUREMENT

To accurately measure the SPCCD, a fast and high-precision
IP_RANSAC algorithm is proposed. First, the detection planes
of cantilever device structures are divided to solve the occlu-
sion problem. Next, the divided point cloud data are projected
into the detected planes to extract the component axis with
RANSAC. Lastly, SPCCD is calculated according to their
spatial relationships.

A. Dividing Detection Plane of Cantilever Device Structures

Due to the occlusion interferences of different catenary
cantilever devices in some special areas like catenary transition
regions, we first use a fast RANSAC plane detection method.
This method allows us to constraint the segmented component
regions and accurately group each complete catenary can-
tilever device. Then, differently than the standard RANSAC,
plane detection is performed by selecting three random points
in the segmented local regions instead of global regions. Next,
the steps are described:

Step 1 (Determine the First Detection Plane): First, calcu-
lating the detection plane and the distance from the point to the
plane. As shown in Fig. 7, first, randomly sample three points
P1, P2, P3 from the point cloud set. Then, using the following
equations, the detection plane and the point distance can be
calculated. Different from the global random point selection
method of the standard RANSAC [35], we randomly choose
three points from the local segmented backbone component
regions and calculate the plane parameters. As the plane is
found in the segmented results instead of the point cloud data
set, we expect a decrease in computing time and improve the

Fig. 7. Plane model detection with RANSAC.

Fig. 8. Plane detection in catenary transition regions: (a) front detection
plane and (b) back detection plane.

detection efficiency as interference with other cloud points is
avoided

��
Pn =

���
P2 P1 ×

���
P3 P1 (7)

a(x � x1) + b(y � y1) + c(z � z1) = 0 (8)

dplane =
���
P P1 •

��
Pn���

��
Pn

���
(9)

where dplane indicates the distance from the point to the
detected plane, and the vector (a, b, c) is the normal of the
plane.

Then, counting the number of inner points whose distance to
the computed plane is smaller than the given distance threshold
�dp, and iterating tdp times to find and record the best plane,
which includes most of the inner points.

Step 2 (Determine Other Detection Planes): Trim the point
clouds of the detected plane and extract the next detection
plane in the residual point clouds. Once the detected number
of interior points is less than half of the remaining points,
the plane detection process is terminated. As shown in Fig. 8,
it is an example of plane detection in catenary transition
regions.

B. Extracting Cantilever Backbone Component Axis

To calculate the SPCCD, we utilize a projection RANSAC
straight-line detection method to extract the axis of the back-
bone components. Different from the projection RANSAC
straight-line detection in [19], we project the point cloud data
into the detection plane instead of the X–Y plane shown
in Fig. 4(c), and the method can avoid the straight-line
deviation caused by the point cloud being mapped back to
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Fig. 9. Straight-line extraction with RANSAC.

the original space for the second time. The specific processes
are the following.

Step 1 (Determine the First Backbone Component Axis):
First, calculating the axis line of each segmented backbone
component and the distance from the point to the line.
As shown in Fig. 9, randomly sample two points P1, P2 from
the point clouds set, and according to the following equations,
the axis line of the segmented backbone component and the
point distance can be calculated:

��
Ln = �

���
P2 P1 (10)

x � x1

l
=

y � y1

m
=

z � z1

n
(11)

dline =

���
���
P P1 ×

��
Ln

���
���
��
Ln

���
(12)

where dline is the distance from the point to the extracted axis,
� is a scale factor of the straight line, and (l, m, n) is the
direction vector of the line.

Then, counting the number of inner points whose distance
to the extracted axis line is smaller than a given distance
threshold �dl , and iterating tdl times to find and record the
best line, which includes the most of the inner points.

Step 2 (Determine Another Component Axis): Repeat the
above steps to find the next axis lines of cantilever backbone
components until all the axis lines are detected. An example
is shown in Fig. 10.

C. Detect the SPCCD

As shown in Fig. 11, when the axis line vector (l, m, n)
of each backbone component is extracted, according to the
backbone component connection relationship, the structure
angle � and the slope S of the steady arm can be calculated
by the following equations. An example is shown in Fig. 12

� = arccos

�������
(li , mi , ni ) •

��������
(l j , m j , n j )���

�������
(li , mi , ni )

��� ×
���
��������
(l j , m j , n j )

���
(13)

S = tan(arccos

�������
(ls , ms, ns) •

�����
(1, 0, 0)���

�������
(ls , ms, ns)

��� ×
���
�����
(1, 0, 0)

���
) (14)

Fig. 10. Axis line extraction of catenary backbone components.

Fig. 11. Space angle calculation based on the spatial geometry calculation
method.

Fig. 12. SPCCDs.

where (li , mi , ni ) and (l j , m j , n j ) denote the axis vectors of
two backbone components. (ls, ms , ns) is the axis vector of
the steady arm component.

IV. ANALYSIS AND DISCUSSION OF

EXPERIMENTAL RESULTS

The performance of the proposed method is evaluated using
a catenary image data set. All the experiments are conducted
on a server with Intel (R) Xeon (R) CPU E5-2640 v4 at
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