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Transient phase fraction and dislocation density estimation from in-situ 
X-ray diffraction data with a low signal-to-noise ratio using a Bayesian 
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A B S T R A C T   

We describe the analysis of in-situ HT-XRD data of a dual phase stainless steel exposed to a complex thermal 
cycle of heating, holding and cooling. For the conditions used only low quality diffraction data could be 
collected. Peak positions, peak areas and peak broadening are modeled by the Rietveld method. The low signal-to 
noise ratio and the presence of artificial peaks due to tube tails complicate the data evaluation. In a first attempt 
the parameters are refined by a local optimization procedure (e.g. Levenberg-Marquardt). However, this pro
cedure fails by being caught in one of several local minima. Next, a Bayesian approach with a Markov Chain 
Monte Carlo (MCMC) algorithm is used as a global optimization procedure to refine the simulated Rietveld 
diffractograms. Accurate estimates of the evolution of the phase fractions and dislocation densities in martensite 
and austenite during all stages of the thermal cycle are obtained by this MCMC algorithm. While an approach 
based on multivariate second order Taylor series completely underestimates the error, the uncertainties in the 
model parameters could be estimated appropriately from histograms obtained by the MCMC method.   

1. Introduction 

The mechanical properties of polycrystalline materials strongly 
depend on their microstructure and in many cases this final micro
structure is the outcome of several solid state phase transformations 
each generating their own transient microstructure. High-temperature 
X-ray diffraction (HT-XRD) is a powerful technique to track these tran
sient microstructures as a function of time and temperature. HT-XRD 
studies have been reported for different systems such as nickel-based 
[1,2], titanium-based [3], copper-based [4], iron-based [5,6], 
aluminium-based [7] and cobalt-based alloys [8], high-entropy alloys 
[9], metallic glasses [10] and finally ceramic and nano-ceramic mate
rials [11]. All these diffraction data are characterized by peak positions 
(from which lattice parameters are derived), integral peak areas (from 
which phase fractions are derived) and peak broadening (from which 
crystallite size and dislocation densities are derived). All three param
eters are not only a function of the actual microstructure at the time of 
measurement but also of instrumental components [12]. The 

microstructural changes such as the evolution of phase fractions and 
dislocation densities are commonly obtained using the Rietveld method 
[13–16] often in combination with the double Voigt peak broadening 
model. Alternative approaches for evaluating dislocation densities from 
X-ray diffraction data are based on Williamson-Hall equation or on the 
Warren-Averbach method (see e.g. [17,18]). 

It is state of the art to optimize the Rietveld parameters for a certain 
diffractogram by a classical least-squares non-linear (local) minimizer. 
This approach is well-established and reliable results are obtained in a 
variety of different cases. However, the refinement of the Rietveld pa
rameters may fail due to trapping in false minima as it is described in 
[19] and the likelihood of failure increases as the data quality decreases. 
That is why the Rietveld refinement procedure based on local optimi
zation routines requires frequent interference by an expert during the 
refinement of each diffractogram (e.g. changing the initial parameter 
might be necessary). This complicates deriving microstructural changes 
obtained during processing of materials from in-situ measurements in 
case of limited sampling time per measurement and impedes automatic 
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evaluation of the diffractograms and finally, makes the ultimate results 
operator-expertise dependent. 

It turns out that a reliable analysis of fit parameters of non-linear 
models is frequently only possible by means of global optimization 
tools. Global optimization is e.g. realized by means of adaptive Markov 
Chain Monte Carlo (MCMC) simulation algorithms [20–22], which are 
based on the Bayes theorem. It is demonstrated in [23–25] that this 
Bayesian approach can also be successfully applied to the Rietveld 
method. It is shown in this work that by applying the Bayes theorem on 
the Rietveld analysis not only lattice constants and phase fractions but 
also dislocation densities can be deduced from diffraction data even in 
case of a low signal-to-noise-ratio. The errors of these parameters can be 
estimated by using Probability Density Functions (PDF) obtained from 
the MCMC simulations. 

2. Theory 

There are two schools of thought on how best to analyse the complex 
information hidden in diffractograms and the subsequent Rietveld 
analysis; the classical or frequentist and the Bayesian statistics. Details 
about classical statistics can e.g. be found in [26], for the Bayesian 
approach the reader is referred to the textbook of Bolstad [27] and 
MacKay [28]. In the following both approaches are briefly discussed. 

2.1. Frequentist (classical) statistics 

The frequentist statistics are based on the idea that model parameters 
are fixed but unknown constants. Thus, probability statements cannot be 
made about their values. The statistical probability is based on the 
sampling distribution, e.g. by making more than one measurement 
under nominally identical conditions. In order to determine the best 
estimate of the mentioned model parameters the least squares approach 
is frequently used to quantitatively solve such regression problems [29]. 
It is nowadays standard to derive the confidence intervals of the model 
parameters and to calculate their covariance matrix [30] by means of 
commercially, publicly available or private software tools. 

The starting point for the method of least squares is the objective 
function S, i.e. the sum of the weighted least squares (see Eq. (1)), which 
is to be minimized; 

S =
∑N

i=1
wi(yi − yci( ξ

→
) )

2 (1)  

where yi is the ith of n measuring points. The calculated quantity 
yci( ξ

→
) obtained from the model function and the weighting factor wi of 

each measuring point are further ingredients of the objective function S. 
The model parameters ξk are summarized in the vector ξ

→. 
The weighted residuals wi

(
yi − yci( ξ

→
)
)

are normally distributed 
around 0 when 

wi =
1
σ2

i
(2)  

where σi is the standard deviation at point i. 
The minimum S is the optimal solution for the least-squares problem 

with respect to the model parameters ξk. The following partial differ
ential equations vanish at the minimum [29]: 

∂S
∂ξk

= 0, k = 1...p (number of parameters) (3)  

where p < N. 
Inserting Eq. (1) in Eq. (3) yields 

− 2
∑n

i=1
wi[yi − yci( ξ

→
) ]

∂yci( ξ
→
)

∂ξk
= 0, k = 1...p (4a)  

which is equal to 

∑n

i=1
wiyci( ξ

→
)

∂yci( ξ
→
)

∂ξk
=
∑n

i=1
wiyi

∂yci( ξ
→
)

∂ξk
, k = 1...p (4b) 

Eq. (4b) can be solved directly for linear problems, whereas 
nonlinear problems are solved iteratively. A guess vector ξ

→
0 is initially 

introduced for the model parameters. The nonlinear equation yci( ξ
→
) can 

be expressed by a Taylor series expansion around this guess vector by 
considering the linear terms only: 

yci( ξ
→
) = yci(ξ0

→
) +

∑p

l=1

∂yci

(

ξ
→

0

)

∂ξl
(ξl − ξ0l) (5) 

These terms (5) are inserted in Eq. 4b, yielding 

∑n

i=1
wi

⎛

⎜
⎜
⎝yci

(

ξ
→

0

)

+
∑p

l=1

∂yci

(
ξ
→

0

)

∂ξl
(ξl − ξ0l)

⎞

⎟
⎟
⎠

∂yci( ξ
→

)

∂ξk
=

=
∑n

i=1
wiyi

∂yci

(
ξ
→

0

)

∂ξk
, k = 1...p

(6a)  

or, respectively 

∑n

i=1
wi

⎛

⎜
⎜
⎝
∑p

l=1

∂yci

(
ξ
→

0

)

∂ξl
(ξl − ξ0l)

⎞

⎟
⎟
⎠

∂yci( ξ
→

)

∂ξk
=

=
∑n

i=1
wi

(

yi − yci

(

ξ
→

0

))
∂yci

(
ξ
→

0

)

∂ξk
, k = 1...p

(6b) 

Eq. (6b) represents a linear system of equations that can be written in 
matrix form: 

A
⃡

⋅
(

ξ
→

− ξ
→

0

)

= β
→ (7)  

with Alk =
∑n

i=1
wi

∂yci

(
ξ
→

0

)

∂ξl
⋅

∂yci

(
ξ
→

0

)

∂ξk
,

l = 1...p, k = 1...p  

and βl =
∑n

i=1
wi(yi − yci( ξ

→
) )

∂yci

(

ξ
→

0

)

∂ξl
, l = 1...p 

As mentioned above, the model parameters are obtained iteratively, 
and are summarized in a vector ξ

→. It is not guaranteed that the global 
minimum of the objective function S is reached in case of non-linear 
problems, i.e. the linearization of the problem might be inappropriate. 
Different initial guess vectors ξ

→
0 can result in finding different local 

minima for non-linear problems. Local convergence is not guaranteed 
when a simple Gauss-Newton approach is used. In recent times more 
robust methods e.g. the Levenberg-Marquardt [31,32] algorithm, are 
frequently exploited, where the Gauss-Newton approach is combined 
with the method of gradient descent, but also this method does not al
ways lead to the true minimum and sometimes local minima rather than 
the global minimum are found. Hence, the global Bayesian approach has 
become increasingly popular as an alternative method for solving opti
mization problems. 

2.2. Bayesian statistics 

In contrast to the frequentist approach, the Bayesian approach is 
based on the assumption that the parameter values are uncertain and 
they are treated as random variables. Therefore, rules of probability can 
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be applied directly. Any prior knowledge of the parameter set (e.g. phase 
fractions and dislocation densities must be positive values by default) is 
considered in setting the prior probability distribution P( ξ

→
|H) for the 

complete hypothesis space H. New data D are considered in the likeli
hood function P(D| ξ

→
,H) that changes the prior distribution. The like

lihood function P(D| ξ
→
,H) is the conditional probability for a parameter 

set of the model to describe the experimental data. As a result the pos
terior probability distribution P( ξ

→
|D,H) of the model parameters fol

lows from the prior distribution by considering the Likelihood function 
P(D| ξ

→
,H) via the Bayesian theorem [27,28,33]: 

P( ξ
→
|D,H) =

P(D| ξ
→
,H)⋅P( ξ

→
|H)

P(D|H)
(8)   

The conditional probability P(D| ξ
→
,H)⋅P( ξ

→
|H) is normalized by the 

evidence P(D|H) according to Eq. (8). In this work a “flat” prior is 
introduced, i.e. the same probability is assumed for all possible 
values of the parameters. For this case, the posterior probability and 
likelihood are proportional. According to [28] Eq. (8) can be 
simplified for normalized probabilities to: 

P( ξ
→
|D,H) = P(D| ξ

→
,H) (9)   

The hypothesis space H is constant (i.e. a certain model is used 
throughout the whole calculation). Thus, the distribution P(D|H) 
(evidence) remains also constant [33]. 
The posterior distribution of the model parameters (Eq. 9) can be 
calculated numerically by e.g. using the Metropolis-Hastings algo
rithm [34,35]. This Metropolis-Hastings algorithm is a subclass of 
Markov Chain Monte Carlo (MCMC) methods, which is widely used 
for high-dimensional problems [28]. Despite the fact that an element 
of the generated sequence depends on the previous element, the 
Markov chain generates a representative random sample from the 
probability distribution. In a first step a new parameter state is 
determined from the previous distribution located close to the old 
state. In a second step, the ratio of the probabilities of a possible new 
state and the old state is determined. The new parameter set is al
ways accepted for a ratio greater than 1, meaning that the new state 
has a higher probability than the old one. For a ratio smaller than 1, 
the possible new state is accepted with a probability given by that 
ratio. Based on this ratio, the decision is made by an equally 
distributed random generator. In case that the new state is rejected, 
the old state is inherited. Based on this method it is possible to reach 
regions in the parameter space which are rather unlikely, and 
thereby it is also possible to escape from local minima. Histograms 
are plotted from the values of each parameter saved in the Markov 
chain. The frequencies in the value ranges of the parameters corre
spond to the probability distribution of these model parameters 
(ergodicity of Metropolis-Hastings algorithms). In this work the 
effective and robust DREAM (D) algorithm, based on an optimized 
MCMC method, is employed for the numerical analysis [20–22]. 

2.3. Comparison of classical and Bayesian statistics 

It is one of the goals of this paper to find the probability distribution 
P( ξ
→
| y→,H( σ→) ) of the model parameters, where the vector y→ corre

sponds to the new dataset D. The hypothesis space H contains the vector 
σ→ of the standard deviations of all measuring points. On the one hand, 
according to the formula Eq. 9, this probability distribution 
P( ξ
→
| y→,H( σ→) ) equals the probability P( y→| ξ

→
,H( σ→) ) for a flat prior 

distribution; P( ξ
→
| y→,H( σ→) ) = P( y→| ξ

→
,H( σ→) ). On the other hand, the 

probability P( y→| ξ
→
,H( σ→) ) represents the cumulative probability of the 

individual measuring points achieved by multiplying the probability of 
the parameters of each data point in the Bayesian framework [28,33]: 

P( ξ
→
| y→, σ→) =

∏n

i=1

1
̅̅̅̅̅
2π

√
σi

exp

(

−
(yi − yci( ξ

→
) )

2

2σ2
i

)

(10) 

In the framework of (Eq. 10) the correlation between neighboring 
points is assumed to be negligible. In addition, the experimental values 
are approximated by a Gaussian distribution, since for a sufficiently high 
number n of measuring points (n > 10) the Poisson distribution con
verges to a Gaussian distribution. Thus, the standard deviations σi of 
each experimental point yi are approximated by the square roots of these 
values yi [19]. In [23,24], for reasons of simplicity, the deviation be
tween measurement and simulation of each point is approximated by a 
fixed average standard deviation (same weighting factor) for all mea
surement points. A drawback of this approach is that pronounced peaks 
are overestimated. 

The Bayesian probability density distribution P( ξ
→
| y→, σ→) (Eq. 10) 

can be compared to the objective function S (Eq. 1) of the least squares 
method; 

ln(P( ξ
→
| y→, σ→) ) = −

n
2

ln(2π) −
∑n

i=1
lnσi −

1
2

S  

with

S =
∑n

i=1

(yi − yci( ξ
→

))2

σ2
i

(11)  

in case that the reciprocal variances in the probability distribution are 
set equal to the weighting factors in the classical least squares approx
imation. Thus, the minima found by the least squares method applied to 
S correspond to the maxima in the probability distribution. 

3. Experiments and their evaluation by Rietveld method 

In-situ HT-XRD experiments are performed by means of a D8 

Table 1 
Chemical composition of the martensitic stainless steel.  

Component C Si Mn Cr Mo Ni N 

Mass fraction in % 0.04 0.40 0.40 15.4 0.90 5.30 0.04  

Fig. 1. Time-Temperature curve for the in-situ heat treatment during the XRD 
measurements. 
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Advance diffractometer (Bruker, Germany) in parallel beam diffraction 
geometry using Cr-Kα radiation (Cr-Kα1 = 0.228975 nm, Cr-Kα2 =

0.229366 nm, Cr-Kαcenter= 0.229105 nm) and an attached high- 
temperature chamber HTK 1200 (Anton Paar GmbH, Austria). A 
martensitic stainless steel sample (Böhler steel grade N404 [36]) is 
investigated. The chemical composition of this steel is provided in 
Table 1. The dimensions of the cylindrical samples are specified by a 
height h = 1.2 mm and a diameter d = 14 mm. 

First, the steel sample is heated with a rate of 0.82 Ks− 1 and then fully 
austenitized at 1010 ◦C inside the high temperature chamber HTK 1200 
in an inert gas atmosphere (N2) for a dwell time of 600 s. Then, the 
sample is freely cooled with a cooling time t8/5 = 300 s to room tem
perature. After this initial heat treatment the sample is polished in order 
to remove a possible thin oxide layer with a diamond paste of 9 μm, 3 μm 
and then 1 μm. Finally, the sample is treated with an amorphous 0.02 μm 
colloidal silica suspension using the VibroMet apparatus from Buehler, 
Germany. 

Then, the sample is subjected to the tempering treatment shown in 
Fig. 1. The sample is heated from room temperature to 650 ◦C in steps of 
50 K with an effective heating rate of 3.57⋅10− 2 K s− 1 up to a tempering 
temperature of 650 ◦C, then kept there for 7⋅103s and subsequently 
cooled down with the cooling rate of 3.57⋅10− 2 K s− 1 steps of 50 K until 
room temperature is reached again. The time for recording one dif
fractogram is 700 s. The diffractograms are recorded continuously, i.e. 
during each heating step of 50 K one diffractogram is recorded, and 
another diffractogram is recorded during each intermediate holding 
step. Ten further diffractograms are recorded during tempering at 

650 ◦C. For the cooling the same procedure is applied as during heating. 
The Rietveld method using the fundamental parameter model in 

combination with the Double-Voigt approach is used to simulate dif
fractograms for specific model parameters, e.g. lattice parameters, phase 
fractions and dislocation densities [12–16]. The fitted lattice parameters 
correspond to the 2θ - angles via the Bragg equation by means of the 
Rietveld method. The phase fractions are obtained by evaluating the 
integral intensities of the simulated peaks, while taking into account the 
Lorentz-Polarisation factor, the structure factor and the multiplicity 
from multiple equivalent planes. The dislocation densities in both 
martensite and austenite are determined by the same approach as used 
in [16]. It is demonstrated in [37] that the integral breadth βstrain in the 
2θ - space and the microstrain e are related by Eq. (12): 

βstrain = 4 etanθ with e =
∆d
d

(12) 

In this work it is tacitly assumed that stresses and strains follow an 
isotropic material behavior, i.e. the anisotropy of the crystal lattice is 
neglected. 

As described in [38] the dislocation density ρi is proportional to the 
square of the microstrain ei: 

ρi = ρ0,ie
2
i (13) 

The evaluation of the proportionality factor ρ0,i of the dislocation 
density ρi of phase i in cubic systems is derived in [16]: 

Fig. 2. a) The diffractogram over the full measured 2θ range. b) Detail of the diffractogram for 2θ between 65 and 70◦. Black curve: experimental diffractogram; red 
curve: optimized diffractogram by Levenberg-Marquardt method; blue curve: residual curve, i.e. difference between simulated data and experimental data. Green 
arrow at the artificial martensite 110-peak (a = 0.28620 nm, 2θ = 68.950◦ for Kαcenter). Initial value for martensite: (a = 0.28500 nm, 2θ = 69.281◦ for Kαcenter). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. a) The diffractogram over the full measured 2θ range. b) Detail of the diffractogram for 2θ between 65 and 70◦. Black curve: experimental diffractogram; red 
curve: optimized diffractogram by the MCMC method; blue curve: residual curve, i.e. difference between simulated data and experimental data. Green arrow at the 
martensite 110-peak (a = 0.28873 nm, 2θ =68.262◦ for Kαcenter). Initial distribution for martensite: (amean = 0.28500 ± 0.000075 nm, 2θ = 69.281◦ for Kαcenter). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ρ0,i =
6(1 + vi)

(Ciai)
2⋅(1 + 2v2

i )
(14)  

with
C1=

̅̅
3

√

2 for the bcc lattice,

C2=
̅̅
2

√

2 for the fcc lattice  

based on the assumption that ρ0,i is a function of the lattice constant ai 
and Poisson’s ratio νi, only. The lattice constant ai and the microstrain ei 
are obtained from evaluating the diffractograms, and the temperature- 
dependent Poisson’s ratio νi can be found in [39]. 

Instrumental effects are considered by applying the fundamental 
parameter model [12] (which is frequently used as a part of the total 
Rietveld method) when analyzing the experimental raw data. The pa
rameters of this model are determined from diffraction measurements 
on nearly defect-free cubic LaB6 powder (standard: NIST 660a [40]). 

Two methods are used to optimize the simulated Rietveld dif
fractograms: The Levenberg-Marquardt [31,32] approach which is a 
(single shot) local optimization procedure and the global Bayesian 
approach with a Markov Chain Monte Carlo (MCMC) algorithm. Hun
dreds of linked Markov chains are created within the DREAM (D) al
gorithm used. The first hundred cycles are rejected (burn-in period) 
from each chain. The next 500 cycles from each chain are used for 
parameter extraction. The resulting model parameters and their un
certainties from the two models are compared. 

4. Results and discussion 

4.1. Refinement by Levenberg-Marquardt and Monte Carlo differential 
evolution simulation 

We like to start by showing the experimental diffractograms and the 
simulated diffractograms obtained from the optimized model parame
ters both optimization techniques, LM (see Fig. 2) and MCMC (see Fig. 3) 
for one particular state during a complex thermal protocol leading to 
many completely different transient microstructures. Experimental data 
correspond to a diffractogram recorded at the end of the isothermal heat 
treatment (temperature ϑ = 650 ◦C, time t = 25.2⋅103 s). This condition 
is selected because at this tempering temperature various microstruc
tural changes occur simultaneously. Martensite transforms to a high 
volume fraction of reverted austenite combined with a dramatic 
decrease of the dislocation density in martensite. While being complex 
structure to analyse anyway, the tube tail effect complicates the opti
mization analysis for finding the global minimum during the whole heat 
treatment (i.e. also for high volume fractions of martensite), due to an 
objective function containing many local minima. 

Diffractograms with low signal to noise levels were obtained as a 
result of the short measurement times and the measurement configu
ration used (see Fig. 2a). The average value of these signal to noise levels 
is approximated by 

̅̅̅̅
N

√
= 4.6 for an average value of N = 21 counts per 

point (see Fig. 2a). The peak height measured of only 172 counts per 
condition is well below the height recorded during conventional XRD 
experiments under more gently varying conditions where 104 to 105 

counts per point are standard. It is known that counting statistics errors 
[41] are not negligible compared to unknown systematic model errors 
[42,43] for powder diffractograms recorded with intensities of only a 
few thousand counts. This low count rate makes data analysis a complex 
and non-trivial problem. 

Let us now look in more detail at the differences obtained when 
applying both optimization methods: When using the Levenberg- 
Marquardt algorithm with an initial starting value for the martensite 
lattice parameter of a = 0.28500 nm (2θ = 69.281◦ for Kαcenter, 2θ =
69.236◦ for Kα1, for hkl = 110 and Cr Kα1) the martensite peaks in the 
optimized simulated diffractogram (red line in Fig. 2a) are trapped in 
the artificial martensite peak caused by the tube tail marked by the 
green arrow. Due to the tube tail effect the real martensite peak for 

Kαcenter at 2θ = 68.262◦, (2θ = 68.217◦ for Kα1) remains undetected. It is 
worth mentioning that Kαcenter had to be introduced as it is impossible to 
separate the Kα1, Kα2 martensite peaks at the 2θ angles investigated. The 
value of Kαcenter can be directly read from the magnified section shown 
in Fig. 2b. 

Now let us turn to the MCMC analysis. The initial lattice parameter 
distribution of martensite of each Markov chain is characterized by its 
mean value (amean = 0.28500 nm), which equals the value used in the 
LM algorithm but alllowing a standard deviation (σ = 7.5⋅10− 5 nm). The 
martensite lattice parameter of the Markov chains evolves to the correct 
martensite peak for the majority of chains within less than one hundred 
cycles. The most probable MCMC-based simulated diffractogram is 
presented in Fig. 3 (red line). A martensite lattice parameter distribution 
a = (0.28873 ± 0.00007) nm, correponding to Cr Kαcenter at 2θ =
68.262◦, (Kα1-peak at 68.217 ± 0.020)◦ for hkl = 110), is obtained by 
this MCMC-approach (green line in Fig. 3b) and is considered to be the 
true global minimum. The residuals, i.e. the differences between the 
simulated diffractograms and the experimental intensities as a function 
of 2θ are depicted as blue lines in Fig. 3a and b. The residuals for the 
MCMC-method shown in Fig. 3 are acceptable over the full 2θ-range, 
whereas the residuals presented in Fig. 2 (LM approach) strongly deviate 
for the martensite peaks (martensite lattice parameter a = 0.28620 
nm by Levenberg-Marquardt approach versus martensite lattice 
parameter a = 0.28873 nm obtained by MCMC approach). 

4.2. Determination of phase fractions 

Let us monitor the evolution of the MCMC obtained posterior prob
ability density function (PDF) of the austenite volume fraction during 
the whole heat treatment process as presented in Fig. 4. At the beginning 
of the in-situ experiment, i.e. during heating, the volume fraction fγ of 
austenite is below the detection limit (fγ ≤ 0.05 for these in-situ exper
iments). The probability density is zero everywhere, but mathematically 
goes to infinity at a phase fraction of austenite being zero. As a conse
quence the posterior PDF of the austenite volume fraction is classified as 
a Dirac delta function in the range of very small austenite phase fractions 
which continues from the starting temperature of 25 ◦C to a temperature 
of 575 ◦C (Fig. 4) where the first signs of austenite formation are 
recorded. 

Detectable fractions of reverted austenite occur during heating above 
a temperature of 575 ◦C. A wide probability distribution is obtained for 
the austenite phase fraction directly at 575 ◦C (see orange arrow in 
Fig. 4), i.e. the value for the volume fraction of austenite is highly 

Fig. 4. PDF for the austenite volume fraction fγ during the whole tempering 
process as a function of the volume fraction of austenite (orange arrow: first 
detected formation of reverted austenite) at different temperatures during 
heating, isothermal holding and cooling. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of 
this article.) 
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uncertain at this stage of the heat treatment. The PDF is shifted to higher 
values of the volume fraction of reverted austenite for increasing tem
peratures higher than 575 ◦C. The full-width-half-maximum of the PDF 
becomes smaller. The maximum volume fraction of reverted austenite 
further increases to 0.57 ± 0.05 (error is given by one standard devia
tion) during isothermal holding at 650 ◦C at the end of the isothermal 
step (i.e. the condition also presented in Figs. 2 and 3. The austenite 
fraction probability distribution at this stage of the heat treatment is 
shown in detail in Fig. 5. The volume fraction of austenite remains 
constant during cooling process until 100 ◦C is reached (Fig. 4). A partial 
retransformation to martensite occurs during cooling below 100 ◦C 
resulting in a final austenite volume phase fraction of approximately 
0.40. 

As a result of the solution according to the Levenberg-Marquardt 
optimization procedure being trapped in a local minimum, the calcu
lated phase fractions strongly deviate from their “true” values. For the 
diffractogram presented in Fig. 2 (i.e. at the end of the isothermal 
annealing step at 650 ◦C) the Levenberg-Marquardt approach suggests 
an value for the volume fraction fα’ of martensite, fα’ = 0.15 and of 
austenite fγ = 1− fα’ = 0.85. The value fα’ = 0.15 for the martensite 
fraction is underestimated by the Levenberg-Marquardt approach. The 
value obtained by the MCMC method is fα’ = 0.43 and of austenite fγ =

1− fα’ = 0.57 (see Figs. 4 and 5). 

4.3. Determination of dislocation densities in martensite and austenite 

As described in the previous section the LM-method with initial pa
rameters that do not converge to the global minimum, results in a wrong 
phase fraction and will lead to unrealistic dislocation densities in 
martensite and austenite. In the following, the low signal-to-noise ratio 
diffractograms are analyzed by the Bayesian based Markov Chain Monte 
Carlo (MCMC) algorithm. The PDF of the dislocation density of 
martensite is evaluated for the whole tempering process and plotted 
versus temperature in Fig. 6. 

During heating at temperatures below 550 ◦C the maximum value of 
the PDF of the dislocation density ρ1 of martensite is comparatively high 
(approximately 8⋅1014 m− 2). During further heating and holding at 
650 ◦C annealing effects occur which reduce the lattice defect density in 
martensite due to annihilation of dislocations. The maximum value of 
the PDF of the dislocation density ρ1 of martensite remains at a low value 
of approximately 0.4⋅1014 m− 2 during cooling, but increases below 
100 ◦C during the partial retransformation of austenite to martensite. 

In Fig. 7, the PDF of the dislocation density of martensite ρ1 is plotted 
at selected special time periods, at the beginning of the heat treatment at 
25 ◦C (gray area), at the end of the isothermal step at 650 ◦C (red area) 
and after heat treatment at 25 ◦C (blue area). The maximum of the PDF 

Fig. 5. PDF for fγ at the end of the isothermal step at 650 ◦C (same condition as 
used in Figs. 2 and 3). 

Fig. 6. PDF of the dislocation density ρ1 of martensite during the whole 
tempering process. 

Fig. 7. PDF of the dislocation density ρ1 of martensite at the start of the heat 
treatment at 25 ◦C (gray), at the end of the isothermal step at 650 ◦C (red) and 
at the end of thermal cycle at 25 ◦C (darkblue). (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 8. PDF of the austenite dislocation density ρ2 during the whole 
tempering process. 
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of the dislocation density of martensite ρ1 is 8.5⋅1014 m− 2 at 25 ◦C 
(start), 0.4⋅1014 m− 2 at the end of the isothermal step at 650 ◦C and 
2.8⋅1014 m− 2 after heat treatment at 25 ◦C. 

In addition the evolution of the dislocation density of austenite 
during this thermal treatment is presented. As demonstrated in Fig. 4, 
the austenite fraction remains below the detection limit at temperatures 
below 550 ◦C during the heating procedure. The integral breadth of the 
austenite peaks is determined with a high uncertainty during heating at 
575 ◦C and 600 ◦C, which goes along with the broad PDFs of the 
austenite dislocation density ρ2 (see Fig. 8). A strong increase in the 
dislocation density ρ2 is observed below 100 ◦C during cooling due to 
retransformation of austenite to martensite. This increase of the dislo
cation density ρ2 during cooling is a consequence of transformation 
strains that occur due to the volume mismatch of austenite and 
martensite. While metallurgically this generation of new dislocations in 
both the martensite and the austenite, is well established, the fact that it 
could be determined under the present conditions is a major step for
ward in the XRD field. 

4.4. Estimation of the error of the dislocation densities 

The dislocation densities ρ1 and ρ2 in martensite and austenite are 
calculated from the experimentally observed peak broadening angles 
(integral breadth) βstrain,1 and βstrain,2 for the martensite and austenite 
peaks via inverse modelling by introducing the microstrains e1 and e2 
(see Eq. 12). Each of the microstrains e1 and e2 are calculated as the 
convolution of a Gauss-function (microstrain eG) and a Lorentz-function 
(microstrain eL), where eG and eL are the values of the integral breadth 
for the normalized Gauss function and the normalized Lorentz-function, 
respectively. A good approximation of the microstrain e is a pseudo- 
Voigt function [14,44,45] which is a sum of appropriate Lorentz and 
Gauss components. 

e = f (eL, eG) (15) 

It is demonstrated in the following that the relative estimated error 
(uncertainty) of the microstrain σe

e and the resulting relative error of the 
dislocation densities σρ

ρ e.g. for martensite are dramatically under
estimated when using classical error propagation. To this end the sum of 
the least square residuals Σχ2 is plotted as a function of the microstrains 
eL and eG of martensite at the end of the isothermal step at 650 ◦C 
(Fig. 9). 

A multitude of local minima occur close to each other by varying the 

values of the Lorentz and Gauss components of the microstrain e. The 
presence of many local minima is shown more clearly in a vertical sec
tion of the plot in Fig. 9 at a constant microstrain eG = 0.0393⋅10− 3, i.e. 
Σχ2 versus microstrain eL is presented in Fig. 10. 

It is clear that fluctuations occur in the Σχ2 (eL)-function. For classical 
error estimation, Σχ2 is approximated by a 2nd order Taylor series at the 
global minimum of the n fit parameters ξ0

→. The partial first derivatives of 
Σχ2 with respect to the fit parameters become zero. The 2nd order Taylor 
series are of the following form, 

∑
χ2 ( ξ

→
) =

∑
χ2(ξ0

→
)+

1
2
( ξ
→

− ξ0
→
)

T H
⃡
( ξ
→

− ξ0
→
) (16)  

with Hij =

∑
χ2(ξ0
→

)

∂ξi∂ξj 
being the Hessematrix. Details concerning Eq. (14) 

can be found in [31]. 
According to Figs. 9 and 10 the range in which the Taylor series is 

applicable is severely limited due to strong fluctuations of Σχ2. Thus, the 
classical error estimation is not applicable for this analysis. It is 
demonstrated in the following that in case of the error of the microstrain 
e and the dislocation density ρ of martensite and austenite that the 
calculated values are unrealistic. The Hessematrix Hij is calculated 
numerically via the corresponding second derivatives of Σχ2. By such an 
approach according to Eq. (10), the probability P ∝ exp(− Σχ2) with p fit 
parameters is approximated by an p-dimensional Gauss function [32], 
see Eq. 17: 

P( y→| ξ
→
)∝exp

{

−

[
∑

χ2(ξ0
→
)+

1
2
( ξ
→

− ξ0
→
)

T H
⃡
( ξ
→

− ξ0
→
)

]}

(17) 

The errors of the fit-parameters and the correlation between the fit- 
parameters are determined from the inflection line (n-dimensional el
lipse) of the n-dimensional Gauss function. These values are represented 
by a symmetric covariance matrix Cij which can be calculated by 
inverting the Hesse-Matrix [31] (see Eq. 18). This means that large 
values in the 2nd derivatives correspond to small errors in the model 
parameters. 

Cij =

(
1
2

Hij

)− 1

(18) 

The principal diagonal of the covariance matrix Cij represents the 
variance of the model parameters. The covariance between two different 
fit parameters is described by the non-diagonal terms of Cij. Microstrain e 
and dislocation density ρ are not explicit model parameters in our 
model. That means that the errors of these two parameters must be 
determined by the classical error propagation using the corresponding 
terms in the covariance matrix Cij [46]. According to Eq. 15 the 

Fig. 9. The sum of the least square residuals Σχ2 as a function of the micro
strains eL and eG of martensite at the end of the isothermal step at 650 ◦C. 

Fig. 10. Σχ2 versus microstrain eL at the end of the isothermal step at 650 ◦C 
in martensite. 
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microstrain e is a function of eL and eG. The variance σe
2 of the microstrain 

e is calculated according to Eq. 19 using classical error propagation. 

σ2
e =

(
∂f (eL, eG)

∂eL

)2

⋅σ2
eL
+

(
∂f (eL, eG)

∂eG

)2

⋅σ2
eG

+ 2
(

∂f (eL, eG)

∂eL

)(
∂f (eL, eG)

∂eG

)

⋅σeL ,eG (19) 

The correlation reL, eG between eL and eG is defined according to Eq. 
20 using values of the covariance matrix Cij: 

reL ,eG :=
σeL ,eG

σeG ⋅σeL

(20) 

In this case the partial derivatives of the function e (Eq. 15) with 
respect to eL and eG are calculated in the vicinity of the minimum of Σχ2. 
The quantities corresponding to the error estimation of the microstrain 
are calculated according to Eq. 19 and are presented in Table 2. 

The estimated relative error σe1
e1 

of the microstrain e1 is 0.05. The 
corresponding relative error of the dislocation density ρ1 is 0.1 for 
martensite. The error of the dislocation density ρ is twice the microstrain 
e due to the fact that ρ is proportional to e2. The correlation. 

r1eL, eG = − 0.925 approximates almost an anti-correlation behavior 
between e1L and e1G. 

When analyzing the austenite, the relative error σe2
e2 

of the microstrain 
e2 is 0.01 and the relative error for ρ2 equals 0.02. The correlation for 
austenite r2 eL, eG= − 0.999 is even closer to complete anti-correlation 
between e2L and e2G than for martensite. 

The approximately 5% and 1% relative error of the microstrain (i.e. 
10% and 2% relative error of the dislocation density) for martensite and 
austenite seems completely unrealistic and the error estimation is not 
applicable for these measurements. An extrapolation to an error of one 
standard deviation fails completely (see also Fig. 10). 

Therefore another method is required to calculate the standard de
viation of the dislocation densities. To this end histograms obtained 
from the MCMC simulations are approximated by Gaussian distributions 
of the dislocation densities ρ1 and ρ2. Eventually, the standard de
viations σρ1 and σρ2 of the dislocation densities are calculated from 
Gaussian distributions. The errors of these quantities are estimated 
within one standard deviation σ. The error Δσρ1 for the dislocation 
density ρ1 (martensite) is determined to be ± 8% at 25 ◦C (beginning of 
the heat treatment), ± 70% at 650 ◦C (end of isothermal heat treatment) 
and ± 20% at 25 ◦C (after heat treatment). The error Δσρ2 for the 
dislocation density ρ2 (austenite) is extremely uncertain at the beginning 
of the heat treatment due to a very small volume fraction of austenite 
below the experimental detection limit. The error Δσρ2 equals Δσρ2 = ±

50% at 650 ◦C (end of isothermal heat treatment) and Δσρ2 = ± 13% at 
25 ◦C (after heat treatment). 

5. Conclusion and outlook 

A combination of the Rietveld method (including the fundamental 
parameter model with the Voigt approach) and a Markov Chain Monte 
Carlo applied Bayesian approach is presented to evaluate low signal-to- 
noise ratio diffractograms during a rapid complex solid state phase 
transformation in a stainless steel leading to phase fractions and dislo
cation densities not easily captured in conventional in-situ X-ray 
diffraction experiments. The used highly efficient Markov Chain Monte 
Carlo algorithm (DREAM) [20] works as global optimization tool and 

delivers results that are more robust than e.g. results obtained from the 
Levenberg-Marquardt algorithm. By means of this effective search al
gorithm it is possible to escape from local minima and thereby reduce 
biased results obtained from imperfect diffraction data. Such imperfect 
in-situ X-ray diffraction data of a martensitic stainless steel sample 
(characterized by a low signal to noise ratio and containing artificial 
peaks) are analyzed by this approach. The error propagation algorithm 
with 2nd order Taylor series fails totally for the estimation of the error of 
the dislocation density for the low signal to noise ratio data used here. In 
contrast, the used histograms obtained from Markov Chain Monte Carlo 
method provide reliable results and clear error estimates. It is worth 
mentioning that the trends of the phase fractions and the dislocation 
densities of the phases are found to be similar to independent, 
comparatively high quality X-ray diffraction data reported in [16]. It is 
expected that the evaluation tool presented in this work has future po
tential to be applied to robust on-line evaluation of in-situ X-ray 
diffraction data in particular for fast processes where the diffraction data 
have a low signal-to-noise ratio. 
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