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Abstract: In this paper the dynamic behaviour of a high-rise building with complex structural system
is studied. In some cases, to optimize the building design, the horizontal stability of the building
is accomplished by the contribution of several structural components. This is the case of the JuBi
tower, the building studied in this paper. The horizontal stability of the building is accomplished
by three cores and outer walls. The cores and the walls are connected through the floors and the
foundation. The data recorded during the experimental campaign carried out in this building show a
double-peak behaviour corresponding to two closely spaced modes in the translational directions.
This is caused by the weak coupling between the structural components. To study this phenomena,
in this paper, a yet unique double-beam model is used. The parameters of the model are tuned so as
to resemble the experimental response of the building. Results of the model evidence that the weak
coupling is caused by the beams and the foundation. Also, it is shown that the two closely spaced
modes correspond both to bending shape modes.

Keywords: double-beam system; dynamic response; high-rise building

1. Introduction

High-rise buildings can be subjected to vibrations caused by wind gusts. These vibrations may
produce structural damage or lead to a drastic reduction of their fatigue life [1]. Therefore, it is an
important aim for engineers and researchers to understand the dynamic behviour of structures. In this
paper, the dynamic behaviour of a high-rise building is studied. The horizontal stability of the building
is achieved by means of three cores of different dimensions and outer walls that are coupled through
the floors and the foundation of the building. The floors are embedded to the walls and simply
supported to the columns. The outer walls and cores are founded in a common foundation.

To study the dynamic behaviour of the building, first an extensive experimental campaign was
carried out in the building. The experimental data shows a double-peak behaviour corresponding to
two closely spaced resonance frequencies in the translational directions. The double-peak behaviour is
caused by the fact that the configuration of the structural system creates a weakly coupled system. It is
therefore of a great interest to understand the behviour of the weak coupling in the building. To this
end, in this paper, a double-beam system is used as to resemble the dynamic response of the building
under study.

Generally, double-beam systems consist of two one-dimensional beams connected by uniformly
distributed discrete elements. Free vibrations of double-beam systems were studied by Seeling and
Hoppmann [2], which provided solutions for natural frequencies and mode shapes. Forced vibrations
solutions were also provided by Seeling and Hoppmann [3] under impact loading. Dublin and
Friedrich [4] found the solution of forced vibrations of two continuous beams connected by distributed
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visco-elastic elements. Rao [5] studied the free response of two elastically connected Timoshenko
beams considering the rotatory inertia. Vibrations in double-beam systems of non-identical beams
with uniform boundary conditions were studied by Chonan [6], and Hamada [7] making use of the
Laplace transform, and by Douglas and Yang [8] using the mechanical impedance format. Irie [9]
solved the steady-state response of a double-beam system with internal damping under sinusoidal
loading. Vu [10] presented solutions for double-beam system with arbitrary boundary conditions and
general loading. Later, Oniszczuk [11] presented analytical solutions for free and forced vibrations
of an undamped double-beam system with simply supported boundary conditions. More recently,
Li and Sun [12], presented a solution for free and forced response, for different loading conditions,
of non-identical beams elastically connected with arbitrary boundary conditions. All these systems are
widely used to study vibrations in many applications, however, until now, no attempt has been made
to use double-beam system to model a high-rise building.

Therefore, this paper presents a unique yet double-beam model to study structural vibrations
of a high-rise building subject to wind loading. In the model, the beams, represent the cores and
the outer walls. The beams are modelled with non-identical mass, bending stiffness and internal
damping. These are connected with uniformly distributed visco-elastic elements that mimic the
floors. At the bottom end, springs are used to represent the soil resistance in the translational and
rotational directions. The capacity of dissipating energy in the soil is taken into account by means of a
translational and rotational dashpots. To model the wind loading a spectrum for along-wind is used.

Having tuned the parameters of the model to the case study, this shows a good agreement
compared to the experimental response. The results evidence that the weak coupling takes place
mainly between the beams and the foundation of the building. The model also shows that the closely
spaced modes correspond to bending modes.

2. Full-Scale Measurements

2.1. Building Description

The JuBi tower (see Figure 1) is a 146 m office building with 39 storeys located in The Netherlands.
The building is designed with a tube-in-tube configuration, that provides the horizontal stability.
The outer tube represents the outer walls and has an irregular shape that defines the area of the
building. The inner tube is composed of three cores. The three cores have a rectangular shape, and are
asymmetrically distributed within the outer tube area. The cores and the outer walls are connected by
the simply supported concrete floors. These floors are weakly connected to the cores and outer walls,
creating a weakly coupled system.

Figure 1. The JuBi tower.
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Ambient loads such as wind gusts, act on the outer walls, and this force is transferred to the cores
through the floors and then directly to the foundation. Even though the building is surrounded by
other buildings, the foundation is not connected to adjacent buildings.

2.2. Instrumentation Strategy and Experimental Results

During an extensive measurement campaign acceleration and strain data were collected under
strong wind conditions. To perform the measurements accelerometers at the 9th, 22nd and 37th floors,
and strain gauges at the 9th floor were installed. The instrumentation strategy is shown in Figure 2.
However, for the purpose of this work solely measurements at the top height (37th story) for a period
of two hours will be used.

9th floor

22nd floor 37th floor
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5
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8

α4 3α

α
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Rosette configuration
Strain gauge

Y

Z

θx

Figure 2. The instrumentation configuration at the 9th, 22nd and 37th floors.

The 37th floor is instrumented with four accelerometers measuring in the weak, strong and
torsional directions of the building. After some data processing time traces of each accelerometer can
be obtained. Figure 3 shows the data registered by each sensor during 2 h of measurements.
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Figure 3. Acceleration response of the building at the 37th floor.
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The data plotted in Figure 3 shows that largest acceleration values are registered by sensor 5
during some events, which reveals that this can be the weak direction of the building. However,
for some time periods it is difficult to distinguish if sensor 5 or sensor 6 registered larger accelerations.
By plotting the data recorded by each sensor as shown in Figure 4, it can be observed that none of the
two sensors is perfectly aligned with the weak vibrational direction of the building.
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Figure 4. Response of accelerometer 5 versus accelerometer 6.

Given that, the power spectral density (PSD) of the velocity obtained by numerically integrating
the acceleration measurements registered by the sensors 5 to 8 shown in Figure 3 shows that each sensor
captures vibrations at all resonance frequencies, as shown in Figure 5.

0.5 1 1.5 2 2.5 3
10-12

10-10

10-8

10-6

Figure 5. Power spectral density (PSD) functions of sensors at the 37th floor.

Figure 5 shows signals at all resonant frequencies, because the sensors are not perfectly aligned
with the vibrational directions. To obtain signals solely in one vibrational direction, they need to be
manipulated making use of rigid body kinematics described by the following equation:

vB = vA + Ω× rB
A (1)
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Equation (1) defines that the velocity vB at any point B can be computed as the velocity vA at a
point A plus the angular velocity Ω times the distance between these two points rB

A. Then, by means
of Equation (1), uni-directional signals can be extracted as shown in Figure 6.

0.5 1 1.5 2 2.5 3
10-12

10-10

10-8

10-6

Figure 6. PSD functions of the shifted signals at the 37th floor.

Figure 6 shows the resonant frequency corresponding to each vibrational direction. Even though
each signal represents a vibrational direction, the signals show a double-peak behviour at each of
those (Weak-dir and Strong-dir). The resonant frequencies of the building can be obtained based on
the frequency plot shown in Figure 6, and are summarized in the following table (Table 1):

Table 1. Identified natural frequencies of the JuBi tower.

fn,1[Hz] fn,2[Hz] fn,3[Hz]

Weak-dir 0.39 0.46 1.65
Strong-dir 0.55 0.62

Torsional-dir 1.0 2.5

The frequently encountered reason for the existence of such closely spaced resonance peaks is
a somewhat undesirable closeness of the natural frequencies of different types of vibrations such as
bending and torsional, for instance. However, this is not the case, for the building under consideration.
As shown in the next sections, both observed modes are of the bending type.

3. Modelling Approach

The double-peak behaviour identified by the measurements carried out in the JuBi tower is
studied making use of a double-beam system sketched in Figure 7. In the model the outer walls
are represented by two beams with identical bending stiffness, EI1/2, and distributed mass, ρA1/2.
The three inner cores are represented by a beam with a bending stiffness, EI2, and a mass per unit
length, ρA2. Both beams have the capacity of dissipating energy by the deformation of the material,
E∗1 , and, E∗2 . The beams are connected via uniformly distributed visco-elastic elements,

(
kd + ∂

∂t cd

)
,

that model the floors that connect the outer walls to the inner cores. At the bottom end, the beams
are fixed to a rigid foundation of mass, M0, and mass moment of inertia, J0, and this is connected to a
horizontal, Kxx, and rotational, Kθθ , springs that mimic the soil resistance against the movement of
the building foundation. The soil has the capacity to dissipate energy by means of the horizontal, Cxx,



Buildings 2020, 10, 132 6 of 17

and rotational, Cθθ , dampers. The loading is modelled as a distributed force, and it is directly applied
to the outer walls of the building.

Figure 7. Model of a high-rise building with a double-beam system connected by uniformly distributed
visco-elastic elements.

A Model

Equations of motion (EoM’s) that describe small vibrations of the model sketched in Figure 7 are
written in accordance with the Euler–Bernoulli assumptions, as follows:

ρA1
∂2w1(z, t)

∂t2 + 2
(

Kd +
∂

∂t
Cd

)
(w1(z, t)− w2(z, t)) +

(
E +

∂

∂t
E∗
)

I1
∂4w1(z, t)

∂z4 = f1(z, t)

ρA2
∂2w2(z, t)

∂t2 − 2
(

Kd +
∂

∂t
Cd

)
(w1(z, t)− w2(z, t)) +

(
E +

∂

∂t
E∗
)

I2
∂4w2(z, t)

∂z4 = 0
(2)
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where f1(z, t) is the wind loading, and the two beams that mimic the outer walls are assumed to have
the same displacements and are modelled by a single beam. The following boundary conditions apply:

w1(0, t) = w2(0, t) = uxx(t)

∂w1(0, t)
∂z

=
∂w2(0, t)

∂z
= ϕθθ(t)(

E +
∂

∂t
E∗
)

I1
∂2w1(L, t)

∂z2 =

(
E +

∂

∂t
E∗
)

I2
∂2w2(L, t)

∂z2 = 0

−
(

E +
∂

∂t
E∗
)

I1
∂3w1(L, t)

∂z3 = −
(

E +
∂

∂t
E∗
)

I2
∂3w2(L, t)

∂z3 = 0(
E +

∂

∂t
E∗
)

I1
∂2w1(0, t)

∂z2 +

(
E +

∂

∂t
E∗
)

I2
∂2w2(0, t)

∂z2 =(
Kθθ + Cθθ

∂

∂t

)
ϕθθ(t) + J0

∂2 ϕθθ(t)
∂t2(

E +
∂

∂t
E∗
)

I1
∂3w1(0, t)

∂z3 +

(
E +

∂

∂t
E∗
)

I2
∂3w2(0, t)

∂z3 =

−
(

Kxx + Cxx
∂

∂t

)
uxx(t) + M0

∂2uxx(t)
∂t2

(3)

where uxx(t) and ϕθθ(t) are the horizontal and rotational displacement of the foundation respectively.
Owing to the presence of the damping operators in the boundary conditions, the method of separation
of variables is not directly applicable. Therefore, the equations of motion and the boundary conditions
are transformed to the Fourier domain. The wind force acting on the structure can be described by the
following equation:

f1(z, t) =
1
2

BρairCf
(
V(z) + v(z, t)

)2 ≈ BρairCf

(
1
2

V2
(z) + V(z)v(z, t)

)
(4)

For the purpose of this study the equation is linearised assuming that |v(z, t)| << |V(z)|.
The constants B, ρair, Cf represent the building width, the air density and the lift coefficient respectively
and v(z, t) is the fluctuating component of the wind speed. The mean wind speed, V(z), is a function
of the height and is computed assuming a logarithmic distribution as proposed in the Eurocode EN
1991-1-4, as follows:

V(z) = u∗ln
(

z
z0

)
(5)

with,

u∗ = 0.19
(

z0

z0,II

)
vref. (6)

where z0 and z0,II are parameters related to the roughness of the terrain and vref is the reference wind
speed at the location of the building.

It is assumed that the fluctuating component of the wind force, fdyn = BρairCfV(z)v(z, t), is a
process characterized by the auto-correlation function:

RF(τ, z) =
[
BρairCfV(z)

]2 v(z, t)v(z, t + τ) (7)

where the overbar is the averaging operator. The power spectral density of the fluctuating component
of the wind force is obtained applying the integral transform to the auto-correlation function, RF(τ, z):

SF(ω, z) =
∫ ∞

−∞
RF(τ)eiωτdτ =

[
BρairCfV(z)

]2 Su(ω, z) (8)
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where Su(ω, z) is the power spectral density of the fluctuating part of the wind velocity. The latter is
expressed making use of a spectrum for along-wind response described by the following equation:

Su(ω, z)ω
2πu2∗

=
6.8 fL(ω, z)

(1 + 10.2 fL(ω, z))(5/3)
(9)

where

fL(ω, z) =
1

2π

ωL(z)
V(z)

; L(z) = 300
( z

200

)0.07
. (10)

The presence of nearby structures may disturb the fluctuating part of the wind. Therefore,
to correct for this, in practice, the aerodynamic admittance, χ2, is used. In this paper, the aerodynamic
admittance is computed according to the Eurocode EN 1991-1-4. The resultant spectral density of the
wind force can then be written as:

SQ(ω, z) = χ2 [BρairCfV(z)]2 Su(ω, z) (11)

The EoM’s and boundary conditions described by Equations (2) and (3) can be transformed to the
Fourier domain as:

−ω2ρA1W̃1(z, ω) + 2S̃d
(
W̃1(z, ω)− W̃2(z, ω)

)
+ ẼIc

1W̃
′′′′
1 (z, ω) = Q̃1(z, ω)

−ω2ρA2W̃2(z, ω)− 2S̃d
(
W̃1(z, ω)− W̃2(z, ω)

)
+ ẼIc

2W̃
′′′′
2 (z, ω) = 0

(12)

and

W̃1(0, ω) = W̃2(0, ω) = Ũxx(ω)

W̃
′
(0, ω) = W̃

′
2(0, ω) = ϕ̃θθ(ω)

ẼIc
1W̃

′′
1 (L, ω) = ẼIc

2W̃
′′
2 (L, ω) = 0

−ẼIc
1W̃

′′′
1 (L, ω) = −ẼIc

2W̃
′′′
2 (L, ω) = 0

ẼIc
1W̃

′′
1 (0, ω) + ẼIc

2W̃
′′
2 (0, ω) =

S̃θθ ϕ̃θθ(ω)−ω2 J0 ϕ̃θθ(ω)

ẼIc
1W̃

′′′
1 (0, ω) + ẼIc

2W̃
′′′
2 (0, ω) =

−S̃xxũxx(ω)−ω2M0ũxx(ω)

(13)

where S̃d = Kd + iωCd, S̃xx = Kxx + iωCxx, S̃θθ = Kθθ + iωCθθ , ẼIc
1 = (1 + iωη1) EI1 and ẼIc

2 =

(1 + iωη2) EI2, and the tilde accounts for complex-valued quantities. In Equation (12), Q̃1(ω, z)
represents the linear dynamic component of the wind load, fdyn, in the frequency domain, and it is
given as:

Q̃1(z, ω) =
∫ ∞

−∞
fdyn(z, t)e−iωtdt (14)

The frequency domain wind load, Q1(z, ω), can be approximated to an exponential function of
the height z as:

Q̃1(ω, z) = Q̃0(ω) (b0 + b1 exp(−z/c)) (15)

where b0, b1, and c are fitting parameters corresponding to the logarithmic shape of the wind load that
is characterized by Equations (5) and (10). Note that Q̃0(ω) in Equation (15) is a random function, and
the power spectral density, S∗Q = Q̃1Q̃∗1 , where ∗ means the complex conjugate, is equal to SQ(ω, z)
in Equation (11). The good quality of approximation is confirmed by Figure 8.
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Figure 8. Best fit of the spectral density function of the wind force to the exponential function shown
in Equation (15) at three different heights.

Let us solve Equations (12) and (13), which govern vibrations of the building in the frequency
domain. It should be noted that the system of equations described in Equation (12), is coupled.
Therefore, the general solution to these equations can be sought for in the following form:

W̃1(z, ω) =
8

∑
n=1

C̃n(ω) exp(qnz) + Ũpart,1(z, ω) (16)

W̃2(z, ω) =
8

∑
n=1

γnC̃n(ω) exp(qnz) + Ũpart,2(z, ω) (17)

where the particular solutions, Ũpart,1(ω) and Ũpart,2(ω), in correspondence with Equation (15) can be
found as:

Ũpart,1(z, ω) = p̃0(ω) + p̃1(ω) exp(−z/c) (18)

Ũpart,2(z, ω) = p̃2(ω) + p̃3(ω) exp(−z/c) (19)

The coefficients, p̃0(ω), p̃1(ω), p̃2(ω), and p̃3(ω) are given by the following expression:

p̃0(ω) =
b0ẼI2 ẽ2

ẼI1ẼI2 ẽ1 ẽ2 − 4S̃2
d

Q̃0(ω) (20)

p̃1(ω) = − ẼI2(ẽ2c4 + 1)b1c4

−ẼI2(ẽ2c4 + 1)(ẽ1c4 + 1)ẼI1 + 4S̃2
dc8

Q̃0(ω) (21)

p̃2(ω) =
S̃db0

ẼI1ẼI2 ẽ1 ẽ2 − 4S̃2
d

Q̃0(ω) (22)

p̃3(ω) = − 2S̃db1c8

−ẼI2(ẽ2c4 + 1)(ẽ1c4 + 1)ẼI1 + 4S̃2
dc8

Q̃0(ω) (23)
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with

ẽ1 = −ρA1ω2 + 2S̃d

ẼIc
1

ẽ2 = −ρA2ω2 + 2S̃d

ẼIc
2

.
(24)

This expressions are the result of substituting Equation (15), and Equations (18) and (19), into the
EoM (Equation (12)).

Now, qn in Equations (16) and (17) can be found by substituting the general solution, Equations (16)
and (17), into the homogeneous part of Equation (12). This gives:ẽ1 + q4

n − 2S̃d
ẼIc

1

− 2S̃d
ẼIc

2
ẽ2 + q4

n

{ C̃n(ω)

γnC̃n(ω)

}
=

{
0
0

}
(25)

Equation (25) resembles the form of an eigenvalue problem, whose solution requires the
determinant of the matrix be equal to zero. The determinant of the matrix results into a polynomial
equation of order eighth. Therefore, eight solutions can be found corresponding to each of the qn terms
described in Appendix A. The terms γn can be found from Equation (25) as:

γn =
−q4

nẼIc
1 + ω2ρA1 − 2S̃d

2S̃d
. (26)

Having qn and γn, the unknown constants, C̃n(ω), can be found by substituting the general
solution described by Equations (16) and (17) into the boundary conditions (Equation (13)).
This substitution results in a set of algebraic equations that can be written in a matrix form as:

Ãũ(ω) = f̃(ω) (27)

where ũ(ω) = [C̃1(ω), C̃2(ω), ..., C̃8(ω), ũxx(ω), ϕ̃θθ(ω)]. The coefficients of the 10 by 10 matrix, Ã,
and the 10 by 1 force vector, f̃(ω), are described in Appendix A. By solving Equation (27) the unknown
vector ũ(ω) can be derived.

In order to compare the model predictions with the experimental results, the latter are presented
in the form of power spectral density (PSD) function. The displacements of the beams in the frequency
domain, thanks to the linearity of the model can be expressed as:

W̃j(z, ω) = H̃ j
ss(z, ω)Q̃0(ω) (28)

where H̃ j
ss(z, ω) are the transfer functions. The power spectral density of the frequency domain velocity

of the beams is given as:
Sj

ss(ω, z) = iωW̃j(ω, z)
(
iωW̃j(ω, z)

)∗. (29)

The subscript, j, can be either 1 or 2 depending on which beam the response is sought for. Then,

Sj
ss(ω, z) = iωH̃ j

ss(ω, z)
(

iωH̃ j
ss(ω, z)

)∗
Q̃0(ω)Q̃∗0(ω) = −ω2|H̃ j

ss(ω, z)|2SQ,0(ω). (30)

Now, the theoretically predicted PSD of the beams response Sj
ss(ω, z), can be directly compared

to its experimental counterpart shown in Figure 6.

4. Comparison of the Experimental and Modelling Results

The model described above is now used to mimic the response of the JuBi tower subject to wind.
To this end, first the parameters of the model are tuned such that the experimentally identified and
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predicted natural frequencies coincide. The stiffnesses of the soil-foundation (Kxx and Kθθ) are obtained
making use of the Dynapile software [13]. The bending stiffnesses of each beam, EI1 and EI2, and the
mass per unit length, ρA1 and ρA2, are first estimated based on the provided technical information [14].
Then, the spring stiffness, Kd, is tuned in order to find the best frequency match (see Table 2).

Table 2. Comparison of the experimentally identified and modelled natural frequencies in the
weak direction.

Natural Frequencies in the Weak Direction

Exp.Identified [rad/s] Model [rad/s]

ωn,1 2.5 2.5
ωn,2 2.9 2.9
ωn,3 10.3 10.3

Once the frequencies are matched the dissipation elements are tuned so as to obtain the best
match of the resonance peaks height.

Only the response registered by accelerometer 5, corresponding to the weak direction of the
buildings, is used for tuning. The resultant best fit is shown in Figure 9.

2 4 6 8 10 12 14
10-15

10-10

10-5

Response beam 1
Response beam 2
Measured response

Figure 9. Comparison of the modelling with the experimentally identified power spectral density.

Figure 9 shows good agreement between the model and the experimental data for the closely
spaced modes. Also, a good correspondence for the second bending mode, which is located at the
frequency of≈ 10.3 rad/s can be seen. The experimentally observed peak at the frequency of≈ 6 rad/s
corresponds to the torsional mode as shown in Figure 6. Therefore, given that the model does not take
into account bending–torsion coupling effects this mode is not captured by the model.

It should be pointed out that the beams in the model represented by Figure 7 are coupled
not only through the uniformly distributed visco-elastic elements, but also through the foundation.
To determine the influence of the coupling, the following study, of which the results are plotted in
Figures 10 and 11 is carried out.
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Figure 10. Influence in the natural frequency due to the foundation coupling.

Figure 10 shows the behaviour of the closely spaced resonant frequencies for a broad range of
rotation spring stiffness, Kθθ , values. This figure reveals that from a certain value of the stiffness,
the peaks veer away rapidly. This evidences that the coupling is mainly due to the coupling between
the beams through the foundation. Figure 11 shows the influence of the uniformly distributed springs,
Kd, on the closely spaced modes.

100 101 102 103 104 105
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Second mode

First mode

Figure 11. Influence in the natural frequency due to the spring coupling.

The change in the spring stiffness, Kd, influences the overall behaviour. However, in this case,
the closely spaced modes do not veer away from each other, but both shift along the frequency axis.

Given that, in the case of the studied building, Figures 10 and 11 show that the coupling of the
beams takes place mainly through the foundation. When the soil stiffness becomes infinite (fixed
base) the coupling through the foundation disappears and the double-peak behvaiour is no longer
present. By softening the rotational soil resistance, the coupling between the beams and the foundation
becomes stronger, and then the resonant frequencies start veering away from each other until certain
value, in which, the soil resistance is so low that first mode becomes unstable. This can be understood
in the sense that the complex-valued natural frequency contains only an imaginary part.
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It is also of interest for this study to observe to which modal shapes each of the resonant frequencies
that were obtained correspond.

Figures 12 and 13 show that the resonant frequencies of the two peaks correspond to very similar
vibrational shapes. This underlines the fact that the coupling between the beams is rather weak.
Moreover, the mode shape corresponding to the third resonant peak confirms that this frequency
corresponds to the second bending mode as can be observed in Figure 14.

146

Figure 12. Mode shape corresponding to the first vibrational mode (2.5 rad/s) obtained from the model.

146

Figure 13. Mode shape corresponding to the second vibrational mode (2.9 rad/s) obtained from the model.
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146

Figure 14. Mode shape corresponding to the third vibrational mode (10.3 rad/s) obtained from the model.

It is, therefore, shown that under certain structural complexity, to mimic the dynamic response of
a high-rise building it is necessary to take into account the weak coupling between the main structural
elements of the building. This should also include the coupling through the foundation.

5. Conclusions

In this paper, a model based on a double-beam system is used to resemble the dynamic behaviour
of a high-rise building. The horizontal stability of the studied building is achieved by means of a
complex structural system based on three inner cores and outer walls. Given the fact that the cores and
the outer walls are connected by the floors and the foundation, a double-peak behaviour corresponding
to two closely spaced modes is observed in the experimental results. This is argued to be a consequence
of a weak coupling between the core and the walls.

In order to support the above statement a double-beam model is developed (Figure 7), and its
predictions are compared to full-scale measurements. The bottom end of the model is constrained
by translational and rotational visco-elastic elements that represent the resistance and the capacity of
energy dissipation of the soil in the horizontal and rotational directions. The uniformly distributed
springs and dashpots represent the coupling between the inner cores and the outer walls. Results
of the study carried out in this paper (Figures 10 and 11) show that experimentally observed closely
spaced modes are the consequence of the weak coupling between the core and the walls through the
foundation.
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Appendix A

The coefficients of the matrix system shown in Equation (27) are described in the following equation:
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Ã =



1 0 1 0 1 0 1 0 −1 0
0 1 0 1 0 β2

β1
0 β2

β1
0 − 1

β1

γ1 0 γ3 0 γ5 0 γ7 0 −1 0
0 γ2

β1
β2

0 γ4
β1
β2

0 γ6 0 γ8 0 − 1
β2

β2
1γ1cosh(β1L)

β2
2

β2
1γ2sinh(β1L)

β2
2

− β2
1γ3cos(β1L)

β2
2

− β2
1γ4sin(β1L)

β2
2

γ5cosh(β2L) γ6sinh(β2L) −γ7cos(β2L) −γ8sin(β2L) 0 0

− β2
11γ1sinh(β1L)

β2
2

− β2
1γ2cosh(β1L)

β2
2

− β2
1γ3sin(β1L)

β2
2

β2
1γ4cos(β1L)

β2
2

−γ5sinh(β2L) −γ6cosh(β2L) −γ7sin(β2L) γ8cos(β2L) 0 0

cosh(β1L) sinh(β1L) −cos(β1L) −sin(β1L) β2
2cosh(β2L)

β2
1

β2
2sinh(β2L)

β2
1

− β2
2cos(β2L)

β2
1

− β2
2sin(β2L)

β2
1

0 0

−sinh(β1L) −cosh(β1L) −sin(β1L) cos(β1L) − β3
2sinh(β2L)

β3
1

− β3
2cosh(β2L)

β3
1

− β3
2sin(β2L)

β3
1

β2
2cos(β2L)

β3
1

0 0

β2
1(γ1ẼIc

2 + ẼIc
1) 0 −β2

1(γ3ẼIc
2 + ẼIc

1) 0 β2
22(γ5ẼIc

2 + ẼIc
1) 0 −β2

2(γ7ẼIc
2 + ẼIc

1) 0 0 ω2 J0 − S̃θθ

0 β3
1(γ2ẼIc

2 + ẼIc
1) 0 −β3

1(γ4ẼIc
2 + ẼIc

1) 0 β3
22(γ6ẼIc

2 + ẼIc
1) 0 −β3

22(γ8ẼIc
2 + ẼIc

1) −ω2M0 + S̃xx


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f̃(ω) =



−
(

b0ẼI2 ẽ2
ẼI1 ẼI2 ẽ1 ẽ2−4S̃2

d
− ẼI2(ẽ2c4+1)b1c4

−ẼI2(ẽ2c4+1)(ẽ1c4+1)ẼI1+4S̃2
dc8

)
− ẼI2(ẽ2c4+1)b1c3

(−ẼI2(ẽ2c4+1)(ẽ1c4+1)ẼI1+4S̃2
dc8)β1

−
(

2S̃db0
ẼI1 ẼI2 ẽ1 ẽ2−4S̃2

d
− 2S̃db1c8

−ẼI2(ẽ2c4+1)(ẽ1c4+1)Ẽc1+4S̃2
dc8

)
− 2S̃db1c7

(−ẼI2(ẽ2c4+1)(ẽ1c4+1)ẼI1+4S̃2
dc8)β2

2S̃db1c6exp(−L/c)
(−ẼI2(ẽ2c4+1)(ẽ1c4+1)ẼI1+4S̃2

dc8)β2
2

2S̃db1c5exp(−L/c)
(−ẼI2(ẽ2c4+1)(ẽ1c4+1)ẼI1+4S̃2

dc8)β3
2

ẼI2(ẽ2c4+1)b1c2exp(−L/c)
(−ẼI2(ẽ2c4+1)(ẽ1c4+1)ẼI1+4S̃2

dc8)β2
1

ẼI2(b2c4+1)b1cexp(−L/c)
(−ẼI2(ẽ2c4+1)(ẽ1c4+1)ẼI1+4S̃2

dc8)β3
1

−
(
− (−ẼI1 ẼI2(ẽ2c4+1)b1c2

−ẼI2(ẽ2c4+1)(ẽ1c4+1)ẼI1+4S̃2
dc8 −

2ẼI2S̃db1c6

−ẼI2(ẽ2c4+1)(ẽ1c4+1)ẼI1+4S̃2
dc8

)
−
(

ẼI1 ẼI2(ẽ2c4+1)b1c
−ẼI2(ẽ2c4+1)(ẽ1c4+1)ẼI1+4S̃2

dc8 +
2ẼI2S̃db1c5

−ẼI2(ẽ2c4+1)(ẽ1c4+1)ẼI1+4S̃2
dc8

)



Q̃(ω). (A1)

Defining β = q4
n, Equation (25) can be changed into a second order equation whose roots can be

obtained by means of the following expression:

β1,2 = − ẼIc
2(−ρA1ω2 + 2S̃d) + ẼIc

1(−ρA2ω2 + 2S̃d)±
√

∆
2ẼIc

1ẼIc
2

(A2)

with the discriminant

∆ = ẼIc2

2 (−ρA1ω2 + 2S̃d)
2 − 2ẼIc

1ẼIc
2(−ρA1ω2 + 2S̃d)(−ρA2ω2 + S̃d)+

ẼIc2

1 (−ρA2ω2 + 2S̃d)
2 + 16ẼIc

1ẼIc
2S̃2

d.
(A3)

The eight roots of Equation (25), which are also the values of constants qn, can be written as:

q1 = 4
√

β1; q2 = − 4
√

β1; q3 = 4
√

β1i; q4 = − 4
√

β1i

q5 = 4
√

β2; q6 = − 4
√

β2; q7 = 4
√

β2i; q8 = − 4
√

β2i.
(A4)
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