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Abstract: This paper discusses the discretization methods that have been commonly employed to
solve the wave action balance equation, and that have gained a renewed interest with the widespread
use of unstructured grids for third-generation spectral wind-wave models. These methods are the
first-order upwind finite difference and first-order vertex-centered upwind finite volume schemes
for the transport of wave action in geographical space. The discussion addresses the derivation of
these schemes from a different perspective. A mathematical framework for mimetic discretizations
based on discrete calculus is utilized herein. A key feature of this algebraic approach is that the
process of exact discretization is segregated from the process of interpolation, the latter typically
involved in constitutive relations. This can help gain insight into the performance characteristics
of the discretization method. On this basis, we conclude that the upwind finite difference scheme
captures the wave action flux conservation exactly, which is a plus for wave shoaling. In addition,
we provide a justification for the intrinsic low accuracy of the vertex-centred upwind finite volume
scheme, due to the physically inaccurate but common flux constitutive relation, and we propose an
improvement to overcome this drawback. Finally, by way of a comparative demonstration, a few test
cases is introduced to establish the ability of the considered methods to capture the relevant physics
on unstructured triangular meshes.

Keywords: discrete calculus; wave action balance equation; mimetic discretization; unstructured
mesh

1. Introduction

The numerical solution of partial differential equations (PDEs) is traditionally sought
by a discretization method, such as the finite difference, finite volume, or finite element
method, aimed towards constructing a scheme that is consistent to some order of accuracy,
while maintaining the numerical stability. The way to verify that the obtained solution
is an approximation of the true one is numerical analysis, thereby to prove stability and
consistency while convergence is usually demonstrated via the Lax equivalence theorem [1].
Such mathematical concepts are relatively straightforward and generally well understood.

The inherent assumptions underlying the above approach are smoothness and differ-
entiability of the PDEs imposed by the limit process. This implies that certain topological
structures that are embedded invisibly in the PDEs may not be sufficiently represented in
the conventional discretization process. Such global structures embody geometric (mesh)
objects (points, lines, surfaces, and volumes) with which physically relevant quantities
are associated [2–4]. As a consequence, a strict control of the discretization error, as
happened with many numerical methods (e.g., high-order regularization techniques and
high-resolution TVD and WENO reconstructions for hyperbolic conservation laws), can
not guarantee that the essential physics of the underlying problem will capture properly.
This aspect becomes particularly relevant for problems with strong nonlinearities and
discontinuities.

Mimetic discretization methods have been proposed as a means to address these
problems. Over the years numerical methods have been developed that mimic some of
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the topological features of PDEs. Particularly, their accuracy and robustness have been
demonstrated in various numerical studies. A classic example is the advection operator in
the incompressible Navier–Stokes equations which is skew-symmetric. A discretization
that adequately inherits this property can preserve the discrete kinetic energy on any mesh
(see, e.g., [5–7]). This is important for direct numerical and large-eddy simulations of
turbulent flows.

Another well-known example is the staggered C-grid discretization for incompressible
flows on Cartesian grids [8,9], which was later generalized to non-orthogonal curvilin-
ear grids [10–12]. A fruitful extension to unstructured meshes is due to the covolume
method [13–15]. Additionally, over the past two decades various mimetic discretization
methods have been successfully developed for the modeling of large-scale ocean flows
(see, e.g., [16–19]).

The basic objective of the mimetic discretization method is to construct discrete
operators for the gradient, curl, and divergence, the common building blocks of PDEs, while
preserving the fundamental properties of their continuous analogs including identities
of the vector calculus and integration by parts, and consequently to provide reliable and
physically consistent solution to the PDEs. Yet, the design of mimetic methods are rather
focused on a wider context than merely coordinate-invariant differential operators, that
is, such methods aim to have discrete structures that inherit proper characteristics of
PDEs such as topology, conservation, symmetry, positivity, and maximum principle. In
addition, they rule out non-physical artefacts that can occur when using a traditional
discretization approach. Examples of such artefacts include odd-even decoupling and
long-term instabilities [20].

Due to the use of discrete analogs of the PDEs’ physical properties, discretization
errors are essentially controllable in that the numerical solution is merely influenced by the
mesh resolution and mesh quality. Indeed, the rationale is closely related to the agreement
of the numerical solution with physical measurements rather than convergence to an exact
solution of PDEs. Therefore, mimetic schemes should be both intrinsically accurate and
stable. However, the construction of these schemes is not always a straightforward task as
there are no well-defined design criteria. Hence the recognition of their robustness and
accuracy on the one hand and the wide variety of mimetic approaches on the other. These
approaches have been known under different names in the literature, such as symmetry-
preserving or structure-preserving discretizations, compatible schemes, support operator
methods, multisymplectic schemes, and discrete calculus methods (see, e.g., [21,22] and
references therein). The crucial and overarching goal of these methods, however, seems to
be to capture the physics of the system being modeled.

To facilitate a better understanding of the attractive features and benefits of mimetic
schemes, basic concepts from algebraic topology are typically invoked to reveal the un-
derlying physical structures of PDEs in the discrete sense [2,3,23–25]. These concepts
are commonly based on integral calculus. For example, there exists a close association
between the primary unknowns and the mesh objects (vertices, edges, faces, and cells).
Such a topological relation discloses a proper use of suitable scalar quantities and vector
components at specific grid locations as integral unknowns. This makes it unambiguous
to construct schemes that respect this relation and in doing so enable the capture of the
essential physics of the governing equations.

The construction also has a profound nature of distinguishing between discrete struc-
tures, viz. primal and dual meshes [3,26]. These staggered meshes are essential as a means
of identifying integral quantities by virtue of their physical meanings. For example, the
line integral of the flow velocity is defined along the edge of the primal mesh while the
mass flux is characterized as the surface integral on the dual face. Moreover, the use of a
primal-dual pair enables one to properly mimic particular theorems such as the Green’s
theorem and the divergence theorem.

However, the presence of this dual pair requires a link between a variable referred
to primal cells and a variable associated with dual cells. Usually this link is provided
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by constitutive equations, which relate various physical quantities that are restricted to
homogeneous media or specific material properties [2,27]. The constitutive relations are
typically an approximation and are treated along with the conservation laws. Although this
is not imperative for characterizing PDEs, forming such separate equations is beneficial
for the discretization of the equations that are expressed in terms of divergence, gradient,
or curl. This key ingredient is closely related to the discrete calculus approach [23,26].

Accordingly, the discrete calculus methods aim at establishing a transparent distinction
between the processes of discretization and reconstruction [2,28]. The former process is
associated with the differential operators and is carried out in an exact manner while
the reconstruction step usually consists of interpolation by means of the constitutive
relationships. The way this latter is performed is the central issue in achieving a physically
accurate numerical scheme.

Although the finite volume approach discretizes conservation laws in divergence
form directly, using disjoint control volumes to allow the flux leaving one control volume
to be equal to that entering its neighbor, standard finite volume schemes may not be
considered as mimetic [21,29]. The main reason for this is because flux constitutive forms
are often naively approximated by a simple interpolation formula, thereby providing
inexact dependencies among discrete variables to close the recurrent relation brought
by these schemes. Put differently, classic finite volume methods are ultimately built on
approximating the balance laws while mimetic methods can exactly express these laws at
the discrete level [27].

The present study discusses two discretization methods which are specifically de-
signed for use in spectral wind-wave models based on the wave action balance equation.
These methods are the upwind finite difference and upwind finite volume schemes for the
geographic propagation of the wave action flux. Such schemes naturally aim at simulat-
ing the transformation of wind and swell waves through inhomogeneous media such as
non-uniform depths and currents. The associated discretizations have been derived in the
traditional manner, namely a first order upwind finite difference method for rectilinear and
curvilinear grids, see [30–32], and for unstructured triangular meshes as proposed in [33].
Additionally, a first order vertex-centred upwind finite volume discretization for rectilinear
grids is presented in [34,35] while the extension to unstructured meshes is described in [36].
On top of that, the issue of numerical accuracy of both discretization methods has been
studied in great detail in [36].

The main goal of the current work is to address the derivation of the first order
schemes for unstructured grids outlined in [33,36] from a different perspective by applying
discrete calculus. We redevelop these schemes in a transparent way by separating the
approximation of the constitutive relation for the wave action flux from exact discretization.
The focus is to examine physical properties of the developed methods so that their numeri-
cal performance can be properly understood. In this regard, the flux constitutive relation
plays a key role in the modeling of the shoaling of swell waves in coastal seas and, as we
will show later in this paper, its approximation is of vital importance. To our knowledge,
a numerical study aimed at elucidating this specific aspect has never been reported. It is
the author’s hope that this rather unconventional approach will prove useful to the wave
modeling community, especially for the proper assessment of spectral wave models.

The rest of the paper is organized as follows. The action balance equation is described
in Section 2. In Section 3 we recall some basic notions and concepts of discrete calculus and
subsequently the discrete calculus discretizations are discussed. Section 4 briefly reports
on the numerical tests, while concluding remarks are given in Section 5.

2. The Action Balance Equation

Conservation of wave action for a slowly varying wave train of small amplitude in
time-dependent and inhomogeneous media is described by the action balance equation,
which reads [37]:

¶N
¶t

+rx � (ẋN) +rk �
�
k̇N
�

= S (1)
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with N(k, x, t) as the action density in four-dimensional phase space (k, x) = (kx, ky, x, y).
Furthermore, ẋ and k̇ are the transport velocities in geographical space x and wavenumber
space k, respectively, and are given by:

dx
dt

= rkw ,
dk
dt

= �rxw

where w = s + k � u is the absolute frequency and s is the intrinsic frequency of waves in a
frame of reference moving with the ambient current u(x, t), and is readily obtained from
the dispersion relation:

s2 = gjkj tanh(jkj d) (2)

with d(x, t) as the water depth. Finally, the term S is comprised of parameterized source and
sink terms representing losses, gains, and redistributions of wave action due to interactions
with wind, current, and bottom. In this work, we do not account for these terms as they do
not contain spatial derivatives of wave action. Details on these wave processes and their
parameterizations can be found in, e.g., [30–32].

Quantity N(k, x, t) is linked to the spectral density of the variance of the sea surface,
that is, it specifies the distribution of the variance over the wavenumber space k, at a given
location x and time t [38]. Hence, this quantity refers to a point in geographical space and
to a time instant. So the amount of wave action at a point is due to the flux of action into or
out of that point, implying local conservation. This property ensures that the divergence
terms in geographical space do not create nor destroy wave action locally so that other
contributions of the action balance, including sources and sinks, are not negatively affected.

Furthermore, the time evolution of the action density spectrum at each of the many
locations in the ocean is determined with the local action balance Equation (1), which is not
integrated over regions of finite extension. This conclusion may seem strange since the left
hand side of Equation (1) is written in the differential flux form, which suggests that it is a
result of the integration over a fixed volume element of an arbitrary size after which the
divergence theorem is applied. In reality, however, the divergence terms apply at a point
and are derived in a different way from the classical statistical mechanics [37].

Despite the fact that the action density N is not associated with a material volume it
can be related to the energy density E in the following manner [38]:

E(k, x, t) = r g N(k, x, t) (3)

with r the density of water and g the gravitational acceleration. Due to its physical meaning,
quantity E is the energy density per unit sea surface, that is, it gives the distribution of
wave energy over a finite region in geographical space. This provides a means to compute
how much wave energy enters or leaves a volume of water of an arbitrary finite size.
For instance, the total energy in the domain of interest with horizontal area A (per wave
component) is given by:

Etot =
Z

A
E(k, x, t) dx

and, assuming the case of a uniform seabed and no currents (k̇ = 0) and S = 0, its
global conservation follows by integrating Equation (1) over A, after the substitution of
Equation (3), and using the divergence theorem, which yields:

¶Etot

¶t
+
I

¶A
E ẋ � n dl = 0

with n a unit normal to the boundary of domain ¶A.

3. Discrete Calculus Discretizations

To proceed in our discussion of discretizations based on discrete calculus it is conve-
nient to lay out a suitable transport equation first. This is followed by a brief description of
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the employed grids, the discrete forms (Section 3.1), and discrete calculus (Section 3.2). A
number of discretizations is then developed for the transport equation (Sections 3.3–3.5).

The action balance Equation (1) provides a description of the time evolution of the
wave spectrum in phase space (k, x). It is a common practice in the numerical modeling
of spectral waves to discretize the transport terms in x-space and those terms in k-space
separately. For the purpose of the present study, the following transport equation in
two-dimensional space (x, y) is considered:

¶N
¶t

+rx � (v N) = 0. (4)

The implication of the physical meaning of the primary unknown N(x, y, t) on the
discretization of Equation (4) is the key to understanding the numerical behavior of the
developed methods and is investigated in the subsequent sections. Furthermore, vector
v(x, y, t) = (u, v) is the nonzero divergence velocity field with components u and v along
the x and y coordinates, respectively. Without the ambient current, it equals the wave
group velocity. The importance of the effect of irregularity of this nondivergent field is
highlighted in [36].

Equation (4) allows the significance of the numerical strategy to be appreciated while
the basics of the discretization methods are clearly explained. It should be noted that the
actual numerical solution to the action balance Equation (1) is not central to this paper.
However, interested readers may refer to papers [30–32], where they can find details with
respect to this matter.

3.1. The Primal-Dual Mesh and Discrete Forms

The mimetic framework for transport Equation (4) presented here uses the language
of algebraic topology [23]. To keep things simple and concise, we will leave the formal
definitions and notations aside and instead provide relevant notions and examples. In this
study, simplicial meshes in 2D are employed for the discretization of the domain of interest.
A computational mesh is represented as the disjoint union of cells (triangles) and is called
the primal mesh. With every primal mesh one can associate a dual mesh consisting of dual
cells (polygons). An archetypal example is the Delaunay triangulation (primal grid) and
the corresponding Voronoi diagram (dual grid).

One of the key concepts we consider is the association of the physical quantities
with various mesh objects. More precisely, within a 2D mesh, different objects can be
distinguished by geometry over which quantities are integrated. These are the vertices,
faces, and cells and the associated integral quantities are the discrete 0-forms, 1-forms, and
2-forms, respectively.

Using the discrete forms, distinctive discrete representations of scalars and vectors
can be readily described. For instance, the discretization of a vector can be defined either
on primal faces or on dual faces and its result is a discrete 1-form. It can be physically
interpreted as the line integral of the vector tangential to the primal face or as the normal
component of the vector integrated over the dual face. Scalar quantities evaluated within
the mesh cells are represented either by discrete 0-forms or by discrete 2-forms. A discrete
0-form is a point value located at the primal or dual vertices while a discrete 2-form
represents a cell average (integrated over a cell area) associated with the primal or dual
cells. It is, however, stored at the vertices of the dual grid or at the vertices of the primal
mesh, respectively. Note that all the discrete forms are a scalar function.

For a proper discretization of transport Equation (4), the intrinsic meaning of the
discrete unknowns is crucial. In view of Section 2, the action density spectrum N(x, y, t)
is represented discretely as point values, viz. discrete 0-forms. Hence, the resulting
discrete unknowns are stored at the vertices of the primal mesh while the discretization
of Equation (4) is accomplished using a vertex-centred method. This approach will be
presented in Section 3.5.
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In the perspective of a different physical implication, Equation (3) is invoked in order
to relate the energy density spectrum E(x, y, t) to the primary unknown. Since quantity
E is associated with an area, its discrete representation is a dual cell averaged quantity,
that is, a discrete 2-form. This standpoint is particularly well suited to the vertex-centred
finite volume approach. However, it requires the construction of a dual mesh, in which
each cell of the dual is associated with a vertex of the primal mesh. This will be discussed
in Section 3.3.

3.2. Discrete Calculus

The first step in deriving a mimetic discretization of the transport equation is to identify
the various operators and subsequently express these operators in a proper way by means
of discrete calculus. The differential operators, viz. divergence, gradient, and curl, are
expressed by the discrete exterior derivative operator to obtain the corresponding discrete
analogs. One of the main features of the exterior derivative is that it allows for differential
operators to be expressed in coordinate-independent form. Another characteristic is that it
is the basis for the generalized Stokes theorem and thus provides an exact discretization of
conservation properties in the resulting numerical schemes, which does not lead to the loss
of information (a topological property).

Apart from attributing conservation, the governing equations also involve (material)
constitutive relations. Such relations are required to link various (physical) quantities that
can not be physically exact because of either inhomogeneous media (e.g., non-uniform
depth and current in the context of spectral waves) or material properties, or both. In
terms of discrete calculus, they are represented by, among other things, the discrete interior
product and the discrete Hodge star operator and are typically subject to errors. The
approximation of constitutive equations is commonly associated with some interpolation
schemes requiring the use of metric (e.g., distance, area, angle).

Discrete calculus (or mimetic) methods thus provide a clear separation between
the processes of exact discretization of conservation laws and approximation that takes
place solely in the constitutive relations. Below we recall some relevant building blocks
of discrete calculus for the discretization of Equation (4). We notice that this overview
and the detailed explanation of the application of discrete calculus hereafter should be
comprehensible to wave modelers without prior knowledge. Nevertheless, the reader may
consult [23,26] for further details on (formal) definitions, notations, theorems, and relations
of discrete calculus.

The discrete calculus operators are applied to the discrete k-forms, with dimension
k = 0, 1, or 2, and transform them into different discrete forms. For instance, the action of
the exterior derivative, denoted by d, on a discrete k-form results in another discrete form
with dimension k+1, that is,

dak = bk+1.

Since the gradient of a scalar field is a vector field, this can be expressed discretely as
da0 = b1, whereas the discrete calculus representation of the divergence of a vector field,
resulting in a scalar, is specified as da1 = b2. Note that da2 = 0. The exterior derivative
operator is commonly used in the discretization of conservation laws.

The wedge product, ^, of two discrete forms is given by:

ak ^ bm = gk+m

such that k + m � n, with n as the space dimension. Depending on the dimension of the
forms the wedge product is either a scalar multiplication, a scalar product �, or a vector
product �.

The exterior derivative operator and the wedge product are topological operators
(or metric-free) and does not require any approximation. In contrast, metric dependent
operators include the interior product and the Hodge star operator. Such discrete operators
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call for an interpolation and thus involve the introduction of numerical errors. They should
therefore be used in the approximation of constitutive relations [2,27].

The interior product contracts a discrete form by the action of a discrete vector field.
Given a discrete k-form and a discrete vector field v, this discrete operator, denoted by
iv, gives:

ivak = bk�1.

Note that iva0 = 0. The interior product can be interpreted as a multiplication with
vector v and is usually related to advection.

It should be noted that a 2D vector v with its two components can not be associated
with any mesh object. Hence, a vector itself can not be expressed in terms of discrete
k-forms.

The Hodge star operator, denoted by ?, acts on a discrete k-form of a primal mesh and
results in a discrete form of dimension n�k for a dual mesh, as follows:

?ak = bn�k.

For example, in 2D (n = 2), the discrete Hodge star on a point value located at the
vertex of a primal mesh produces a cell averaged value for the dual cell that surround that
vertex. The Hodge star is usually metric-dependent.

3.3. Discretization Based on Discrete 2-Form

In this section, the vertex-centred finite volume discretization of transport Equation (4)
is treated. This method commonly relies upon the integral form of conservation laws. From
this perspective, Equation (4) is rewritten as:

¶ r g N
¶t

+rx � (v r g N) = 0 (5)

or, alternatively,
¶E
¶t

+rx � q = 0 (6a)

q = v E (6b)

E = r g N (6c)

where q is the flux of energy density E. Equation (6a) typifies a topological equation
(metric-free) and Equation (6b,c) are the additional relations (metric or local dependent) to
obtain a closed set of equations. Since E is a scalar associated with an area in geographical
space, Equation (6a) serves as the basis for an integral formulation.

With the aim of discretization, a 2D computational grid is defined first. In this paper,
we restrict ourselves to unstructured triangular meshes, see Figure 1a.

c

(a) An example of triangular mesh.

S
c

fc d

c

(b) Voronoi dual mesh.

Figure 1. Definitions of the employed computational mesh. Some notation is introduced and clarified in the text.



Fluids 2021, 6, 52 8 of 19

Both the action density field N and the transport velocity field v are discretized at
the vertices of the mesh. They are denoted by Nc and vc, respectively, with c an index
enumerating primal vertices. Once the primal mesh has been defined, a dual mesh must be
chosen. Herein, we employ the Delaunay mesh and its dual, the Voronoi tessellation. This
is shown in Figure 1b where index c enumerates dual cells. Note that such primal and dual
meshes are mutually orthogonal.

We are now in a position to derive a topology-preserving discretization of Equation (6a)
using discrete forms. Since action densities are essentially point values, they are referred
to as discrete 0-forms, denoted by n0. Furthermore, we introduce the discrete 2-form
representing the cell integrated energy density as follows:

e2 =
Z

Sc
EdS

where the integral is over dual cell c (cf. Figure 1b). Lastly, the integral of flux q over dual
face fc is given by:

t1 =
Z

fc
q � ndl

with n the outward pointing normal vector to the dual face. This integral quantity is
designated as the discrete 1-form and is naturally thought of as the vector component that
is normal to the faces of the dual cell.

The exact discretization of Equation (6a) is then given by:

de2

dt
+ dt1 = 0 (7)

with the discrete exterior derivative, d, acting on the discrete 1-form and yielding a dis-
crete 2-form, which is effectively a divergence of the flux. This operator behaves in all
respects like its continuous counterpart implying no loss of physical information during
the discretization process.

For each dual cell there is exactly one discrete equation while currently the discrete
unknowns are the cell integrated energy density e2 and the face integrated flux t1. The
system of discrete equations becomes closed once these discrete unknowns are related to
the primary unknowns Nc at each vertex with the help of the constitutive equations.

First, a discrete relationship between the area integral of energy density in the dual
cells and the action density at the primal vertices must be established. Using Equation (6c)
and assuming the density of water r (discrete 2-form) is constant, a first order approxima-
tion yields: Z

Sc
EdS =

Z
Sc

r g NdS � r g jScjNc (8)

with jScj the size of dual cell c. This numerical approximation is not critical as r is usually
constant. (If r varies in space then it is located at the circumcentre of primal cells and is
piecewise uniform within each cell.) In terms of discrete forms, such an approximation is
performed by the discrete Hodge star operator that transfers a primal value to a dual value,
as follows:

e2 = ?n0.

Within the framework of discrete calculus [23], the transformation of flux constitutive
Equation (6b) into discrete forms is the following:

t1 = ive2 = iv ? n0

implying that the discrete interior product of the discrete 2-form and vector field v generates
a discrete 1-form. Yet, we will show that most of the numerical errors enter the finite volume
method due to this particular reconstruction.
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To link t1 the dual mesh to n0 the primal mesh we first consider the discrete 1-form of
the velocity vector v on the primal mesh. Referring to Figure 1b, this vector is integrated
along the edge (or face when viewed in 2D) connecting two vertices c and d, as follows:

s1 =
Z d

c
v � dl.

Subsequently, this tangential velocity 1-form is used to achieve the primal discrete
1-form s1 ^ n0 with the wedge product specifying the multiplication of a vector with a
scalar. Since this result is tangential to the primal edge it can be used to approximate the
dual wave action flux 1-form t1 as:

t1 = ?
�

s1 ^ n0
�

.

We now elaborate on the obtained discrete formulations to construct the vertex-
centered upwind finite volume scheme. In this regard, the discrete forms are considered as
piecewise constant over their own mesh objects. Furthermore, for all elaborations below
refer to Figure 1b.

First, the line integral of velocity along edge cd is calculated by means of the standard
trapezoidal rule, as follows:

Vcd =
Z d

c
v � dl � 1

2
(vc + vd) � tcd lcd (9)

with tcd as the unit tangent vector in the direction of edge cd and lcd is the edge length.
The tangential velocity 1-form Vcd is then used to determine the upwind value of wave
action with respect to the intersection of the primal edge and the dual face. Accordingly,
the discrete form s1 ^ n0 is evaluated as Vcd Nc if Vcd > 0, otherwise its value is Vcd Nd.

Next, to obtain an approximation for the discrete 1-form t1 on dual face fc, a discrete
Hodge star operator is applied. Since the primal edge is perpendicular to the dual face it is
calculated as the ratio between the length of the dual face, denoted by j fcj, and the length
of the primal edge lcd, multiplied by r g. (Recall that if space varying densities are located
in dual vertices then an average of two endpoints of the dual face is taken.) Let Ff denote
the discrete counterpart of the face integrated wave action flux t1 on dual face f . Then on
dual face fc it becomes:

Ffc =

8><>:
r g j fc j

lcd
Vcd Nc , if Vcd > 0

r g j fc j
lcd

Vcd Nd , if Vcd < 0
(10)

This is the simplest first order upwind approximation, which is adequate for the
purpose of this study. This type of flux approximation is one of the most commonly used
practices in the finite volume framework by which the distinct variables on dual faces
are interpolated between nodal values [29]. The associated structured grid variant for the
action balance equation has been proposed in, e.g., [34,35]. It should be noted that the
treated approximation becomes less accurate when the mesh orthogonality is violated.
Extension to non-orthogonal meshes requires a more involved interpolation.

Substitution of approximate constitutive Equations (8) and (10) into topological
Equation (7) provides a semidiscrete equation for the wave action density at each vertex c:

dr g Nc

dt
+

1
jScjåf

Ff = 0 (11)
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with the sum taken over all the faces f of the dual cell. The resulting discrete equation is
consistent with transport Equation (5). This scheme for unstructured meshes is the same as
the first order vertex-centered upwind finite volume scheme described in [36].

Finally, the first order implicit Euler method is adopted for time discretization, since
the action balance equation is known to be rather stiff [39]. Moreover, this method is
suitable for steady-state simulations.

In this work we will show that the obtained flux scheme (10) is suboptimal in the
sense that the shoaling of the waves near shore is only modeled approximately. This is the
key contribution of the current paper. The next section will further elaborate on this.

3.4. Mimetic Flux Approximation

Like many of the material constitutive laws the flux constitutive relation (6b) is local
in the sense that the medium is not uniform throughout the space. The bathymetry and, in
turn, the wave group velocity can change rapidly, especially in the shallow water regime.
Along with the coarse meshes, variations in quantities v and N tend to be far stronger
than changes in the wave action flux vN across the dual cells. The application of flux
approximation (10) then becomes problematic due to separate treatment of these variables.

In the present study, the approximate Riemann solver of Roe [40] is selected for
its ability to preserve flux across discontinuities due to the abrupt transitions in bed
topography. Referring to Figure 1b, let discrete 1-form g1 be the integration of the wave
action flux along edge cd:

g1 =
Z d

c
v N � dl.

Consequently,
t1 = ?g1.

The approximation of tangential flux 1-form involves the computation of the Roe flux
Fcd, as follows:

Fcd =

8<:
Fc = vc � tcd lcd Nc , if scd > 0

Fd = vd � tcd lcd Nd , if scd < 0

with scd the characteristic speed and is computed from evaluating the flux Jacobian,
such that:

Fd � Fc = scd (Nd � Nc).

Finally, the discrete Hodge star turns the discrete 1-form g1 on primal edge cd into the
discrete 1-form t1 on dual face fc, as follows:

Ffc =

8><>:
r g j fc j

lcd
Fc , if scd > 0

r g j fc j
lcd

Fd , if scd < 0
(12)

This flux approximation can capture exactly a steady discontinuity at the dual cell
faces, and can thus be regarded as mimetic. We will show in Section 4 that this leads to
a physically consistent wave action transport in case of shoaling, which is another major
contribution of this paper.

3.5. Discretization Based on Discrete 0-Form

Since the wave action density N(x, t) is naturally referred to as the points in geographi-
cal space, it is principally not a conserved quantity. Instead, transport Equation (4) is rewrit-
ten in a conservation form such that a physically suitable conserved quantity can be identi-
fied. To this end, we consider a three-dimensional space-time domain (x, t) = (x, y, t) and
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designaterx,t as a space-time divergence operator, that is, (¶/¶x, ¶/¶y, ¶/¶t). Equation (4)
is then recast as:

rx,t � j = 0 (13)

where j = (vN, N) = (uN, vN, N) is the three-dimensional flux and is thus the primary
unknown. So Equation (13) describes the local conservation of this flux in space-time;
vector field j is solenoidal. Its immediate physical implication is wave shoaling: The net
flux of action along its wave ray is conserved [41].

We proceed with the discretization. We first consider a space-time slab mesh consisting
of three-dimensional triangular prisms, see Figure 2a.

x

t

n+1

nt

t

(a) A space-time slab cell.
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h

e

e(2)
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e(2)

1

e
(1)

(b) A triangular cell.

Figure 2. Local computational cell. Definitions of quantities and notations are provided in the text.

The bottom and top of each prism are the triangular cells at time levels tn and tn+1,
respectively. Furthermore, the prism has three rectangular lateral faces. The discretization
of Equation (13) is associated with each of these prisms acting as control volumes. In terms
of discrete forms it is then given by:

dm2 = 0 (14)

where discrete 2-form m2 is the integrated wave action flux on the prism surface, that is,
m2 =

R
j � n dS with n the outward-pointing normal to surface (note that dimension n = 3).

This is a topological equation that produces an exact discrete 3-form from the prism surface
discrete 2-form values; the summation of all the face values on the prism is zero.

Equation (14) is discrete but not closed. Approximations must be invoked to relate
the surface integrals to the nodal values of wave action. This is largely an interpolation
issue which actually dictates the numerical accuracy. Although many low and high order
schemes can be constructed we briefly discuss an approach similar to the one proposed
in [33]. In this approach all the necessary interpolations occur within a triangular prism,
resulting in a low order method with a compact stencil. In addition, no dual meshes are
involved and the method does not require grids to be of a Delaunay type. It should be
noted that similar schemes for structured grids are presented in [30–32].

Let us consider a triangular cell 4123 as depicted in Figure 2b for the purpose of
actual implementation. Depending on the time integration, this 2D cell corresponds to
either the bottom face or the top face of the prism, or in between those faces. The discrete
solution at vertices 1, 2, and 3 are denoted by N1, N2, and N3, respectively. The aim is
to find an update of wave action in vertex 1. Let an incident wave ray pass through this
vertex. If an action flux moves along this ray within the cell from an upstream location
to the considered vertex positioned downstream, then the state in vertex 1 is determined
solely by the state in the upwind vertices 2 and 3 on the opposite edge.

First, a coordinate mapping x(xxx) from the computational domain to the physical do-
main is applied. Here x = (x1, x2, x3) = (x, h, t) are local coordinates and x = (x1, x2, x3) =
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(x, y, t) are space-time coordinates. The covariant base vectors a(a) in three dimensions are
calculated in vertex 1 as follows:

a(1) = x1 � x2 , a(2) = x1 � x3 , a(3) = (0, 0, Dt)>

with xi = (x1
i , x2

i , 0)> = (xi, yi, 0)> the position vector of vertex i (the third coordinate is
irrelevant and is thus set at zero) and Dt = tn+1 � tn as the time step. Note that the local
mapping is chosen such that Dxa = 1 for a = 1, 2, and 3. Since the contravariant base
vectors a(a) are orthogonal to the covariant base vectors, they are found to be:

a(1) =
1
p

g
(Dt a2

(2),�Dt a1
(2), 0)> , a(2) =

1
p

g
(�Dt a2

(1), Dt a1
(1), 0)> , a(3) = (0, 0,

1
Dt

)>

where
p

g is the Jacobian of the mapping and is expressed by:

p
g = Dt

�
a1

(1)a2
(2) � a2

(1)a1
(2)

�
representing the volume of the prism under consideration.

Next, exact discretization of Equation (13) is obtained by integration over the triangular
prism, in the following way:

Z
prism

1
p

g
¶
p

ga(a) � j
¶xa

dV =
Z

prism

¶Ja

¶xa
dx1dx2dx3 = 0 (15)

where summation convention is applied to Greek indices and,

Ja =
p

ga(a) � j

is the wave action flux component normal to the surface of constant xa. It should be noted
that geometrical quantity

p
ga(a) is continuous at cell face xa = constant. See [10–12]

for details.
To complete the discretization, we choose the implicit Euler scheme for the temporal

discretization, as time accuracy is not critical to arriving at the steady-state solution. Fur-
thermore, referring to Figure 2b, the two-dimensional covariant and contravariant base
vectors, e(a) and e(a), respectively, are computed according to:

e(1) = x1 � x2 , e(2) = x1 � x3

with xi = (xi, yi) the position vector of vertex i, and,

e(1) =
1
D

(e2
(2),�e1

(2))
> , e(2) =

1
D

(�e2
(1), e1

(1))
> , D = e1

(1)e2
(2) � e2

(1)e1
(2).

Lastly, the intersection point of the wave ray with velocity v through vertex 1 and the
opposite edge 23 of triangle 4123 is located if v � e(1) > 0 and v � e(2) > 0. Under these
conditions and using one-sided differences, discretization (15) is approximated as follows:h

J1 ��1
2 +J2 ��1

3

in+1
+
h

J3 ��n+1
n

i
1

=�
uN

��1
2 Dt e2

(2) � vN
��1
2 Dt e1

(2) � uN
��1
3 Dt e2

(1) + vN
��1
3 Dt e1

(1)

�n+1
+ D

�
Nn+1

1 � Nn
1

�
= 0

where Nn and Nn+1 are the wave action at time levels tn and tn+1, respectively. This
equation is rewritten as:

Nn+1
1 � Nn

1
Dt

+ (v N)n+1
1 � e(1) � (v N)n+1

2 � e(1) + (v N)n+1
1 � e(2) � (v N)n+1

3 � e(2) = 0 (16)
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and is similar to the first order upwind finite difference scheme as presented in,
e.g., [32,33,36].

4. Results

In the next two sections, the following numerical schemes are examined for steady-
state swell propagation in the nearshore without ambient currents.

• FDM-flux: the flux-conservative upwind finite difference scheme (16);
• FVM-trad: the vertex-centered upwind finite volume scheme (11) with the traditional

flux approximation (10);
• FVM-Roe: the vertex-centered upwind finite volume scheme (11) with Roe’s flux

approximation (12).

In [36], the first two schemes are subjected to a convergence test in order to evaluate
their spatial accuracy. Scheme FDM-flux shows a higher accuracy over scheme FVM-
trad while the latter exhibits a loss of spatial accuracy when the propagation velocity in
geographical space is not smooth. This is usually due to jumps in the (sometimes poorly
resolved) bathymetry.

The numerical simulations to be presented to employ realistic bathymetric changes.
The actual wave processes are wave shoaling and depth-induced refraction and govern
the distribution of the variance density F(k, q, x) = s jkjN(kx, ky, x) with kx = k cos q,
ky = k sin q and q the direction of swell propagation [38]. However, since a single swell
component is treated, the variance density F(q, x) is computed instead. The governing
equation is given by:

¶F
¶t

+rx � (ẋF) +
¶q̇F
¶q

= 0 (17)

with q̇ the rate of change of the wave direction q along a wave ray due to refraction. The
propagation velocity reads ẋ = (cg cos q, cg sin q) while the group velocity cg = ¶s/¶k is
calculated using Equation (2).

The refraction term is approximated with a sufficient directional resolution such that
the associated error is significantly smaller than the spatial discretization and interpolation
errors. In this respect, the directional space is a closed circular domain q 2 [0, 2p) while
it is divided into sectors with a constant size of Dq = 1

4
o
, and is the same in all vertices.

Further details can be found in [39].
Finally, time stepping is repeated until a stationary solution is obtained. The time

derivative performs as a false transient with Dt the pseudo time step and n the iteration
counter. This pseudo time step controls the rate of convergence of the iteration process and
has proven to be very helpful, especially in solving stiff equations [39].

4.1. Submerged Shoals in Shallow Water

We investigate the performance of the three discussed methods in the presence of two
submerged shoals in shallow water, as shown in Figure 3.

This synthetic test case has also been verified in [36]. The test domain spans 10 km � 10 km
and contains two crescent-shaped shoals, the largest spanning 2 km and the smallest about
1 km. The bathymetric depth is 20 m but slopes upward to 1.5 m at the top of the largest
shoal and upward to 3.5 m at the top of the smallest shoal. The unstructured mesh consists
of 1504 triangles with the grid size varying in between 100 and 400 m, providing an econom-
ical representation of the bathymetric features. At the south boundary, a monochromatic,
long-crested swell wave is imposed with a height of 1 m, a period of 15 s, and a direction
pointing northward.
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Figure 3. A part of the square domain with bathymetry (in m) of the submerged shoals case as
interpolated to the unstructured triangular mesh.

Before evaluating the schemes in the test case involving both shoaling and refraction,
they are evaluated first in a case in which waves shoal over the sloping beds. This test
case was set up with the objective to inspect energy flux conservation. In this context,
Equation (17) with q̇ = 0 is considered as a ray equation for wave packets propagating
along parallel wave rays by which the net flux of energy is constant. By virtue of this
physical principle, the (dimensionless) shoaling coefficient proportional to

p
F(x) can

be tested [38].
Figures 4–6 depict the shoaling coefficients throughout the domain.

Figure 4. Spatial distribution of shoaling coefficient obtained with scheme FDM-flux.

Method FDM-flux displays correctly the spatial distribution of the shoaling coefficient
across the shoals as it changes locally with the water depth (compare Figure 4 to Figure 3).

Figure 5. Spatial distribution of shoaling coefficient obtained with scheme FVM-trad.

In contrast, the result of scheme FVM-trad is clearly non-physical as displayed
in Figure 5. The spatial distribution of wave energy throughout the domain is erroneous,
owing to Equation (9) while the velocity field is irregular. However, the solution improves
substantially when the mimetic flux approximation of Roe, that is, Equation (12), is selected
which leads to correct wave shoaling over rising bottoms around the shoals (cf. Figure 6).
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Figure 6. Spatial distribution of shoaling coefficient obtained with scheme FVM-Roe.

Note that both schemes FDM-flux and FVM-Roe yield identical results.
The next simulations are the ones with depth refraction included. In this regard, we

consider the total variance of the surface elevation across the domain,Z 2p

0
F(x, q)dq

and the mean wave direction,

arctan

 R 2p
0 sin q F(x, q)dqR 2p
0 cos q F(x, q)dq

!
.

The results obtained with the FDM-flux method is depicted in Figure 7.

1 

3 

5 

7 

9 

11

13

Figure 7. Spatial distribution of total variance (in m2) and vector plot of mean wave direction
obtained with scheme FDM-flux.

The refracted waves at shallower depths are clearly evidenced. There is a convergence
of energy when the swell approaches the shoal and a divergence of energy when it leaves
the shoal. This is consistent with the Snel’s law [38]. Accordingly, the wave energy increases
on top of the shoal.

Figure 8 shows the results produced by the FVM-trad scheme. Wave turning is greatly
exaggerated at the large shoal.

1 

3 

5 

7 

9 

11

13

Figure 8. Spatial distribution of total variance (in m2) and vector plot of mean wave direction
obtained with scheme FVM-trad.



Fluids 2021, 6, 52 16 of 19

This non-physical response is caused by the lack of flux conservation in geographical
space. This negatively affects wave shoaling, and in turn, it inevitably impacts the refrac-
tion (cf. Equation (17)). Yet, when scheme FVM-Roe is employed, this erratic behavior
disappears and the solution is qualitatively similar to that of FDM-flux, see Figure 9.

1 
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5 

7 

9 

11

13

Figure 9. Spatial distribution of total variance (in m2) and vector plot of mean wave direction
obtained with scheme FVM-Roe.

4.2. The Haringvliet Bay Case

The Haringvliet is a branch of the Rhine estuary in the south-west of the Nether-
lands. The shallow bay that penetrates into the shoreline is somewhat protected from the
North Sea by a shallow shoal called the Hinderplaat where steep bathymetric gradients are
present. The depth variations are the main cause of the shoaling and turning of the swells
approaching the submerged shoal. In this context, the aim of the present test is to illustrate
the comparative performance of the three discussed schemes in terms of conservation
properties. In order to demonstrate errors due to a lack of flux conservation that have a
significant effect on the swell height, wave processes of generation, redistribution, and
dissipation are ignored for this test case.

We employ a triangular (Delaunay) mesh where the size of the cells is proportional to
the water depth, see Figure 10.

Figure 10. Bathymetry (m) of the Haringvliet Bay case projected on the triangular mesh.

The minimum size of the cells is to be found in the area around the Hinderplaat.
The mesh spacings are sufficient to resolve the refraction process in this region. There are
approximately 6000 cells in total. An incoming swell propagating in the direction to the east
is specified at the west boundary with a height of 0.4 m and a period of 15 s. In addition, the
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mean water level is raised by 0.6 m so that the deactivation of the depth-induced breaking
is justified [38].

Figure 11 depicts the computed spatial distribution of increased wave heights, with re-
spect to the incident swell around the shoal obtained from the numerical schemes (panels b–d).
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Figure 11. Spatial distribution of (a) water depth (m) around the shoal Hinderplaat and wave height
(m) obtained with scheme (b) FDM-flux, (c) FVM-trad, and (d) FVM-Roe.

The water depth in the same area is also provided for a proper interpretation (panel a).
It can be observed that the largest waves correlate strongly with the shallowest depths of
the bay. Furthermore, the figure reveals that the result of scheme FVM-trad (Figure 11c)
clearly differs from the other schemes (Figure 11b,d) while the solution of scheme FVM-
Roe is very similar to the solution of scheme FDM-flux. Yet, the results obtained from
the two last mentioned mimetic schemes are expected to be more in line with the physics.
On that same note, the lack of energy flux conservation of the traditional finite volume
scheme underestimates the amount of wave energy fairly. This deficit has been previously
observed in the former test case and is expected to limit physical accuracy.

5. Conclusions

In this work, a discrete calculus approach to develop physically consistent discretiza-
tions for the action balance equation was presented. The key was to make a clear separation
between the exact discretization of differential operators and the approximation of constitu-
tive relations. In doing so, the discretization methods as outlined in [36] were reconstructed
in an effort to point out the presence or the lack of wave action flux conservation. The pref-
erence of the upwind finite difference scheme compared with the vertex-centred upwind
finite volume scheme in physical accuracy was plainly demonstrated. As the latter scheme
suffered from a lack of flux conservation, an improved flux approximation was proposed,
based on Roe’s numerical flux scheme which preserves the wave action flux exactly at the
discrete level.
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The numerical examples herein illustrated that the treated low order mimetic schemes
guaranteed the state of zero divergence of wave action flux field to be satisfied up to
machine accuracy. Their mimetic nature stands out in the ability to exactly simulate the
shoaling of the swell propagating over variable depth, and consequently the interplay
between refraction and shoaling.

The above conclusions are specific to the transformation of swell waves over seafloor
topography. Indeed, the local changes of the swell under depth-limited conditions require
a greater degree of numerical accuracy, while the level of prediction accuracy of the wind-
sea spectrum commonly relies on the semi-empirical nature of the theory describing the
physical processes involved (e.g., generation by wind, dissipation due to white capping),
given that the bathymetric features and wind forcing were accurately resolved. At any
rate, the numerical performances of the studied methods in this paper clearly demonstrate
the need for a physically consistent discretization to enhance the correctness of the numer-
ical solution to the action balance equation. Such a discretization should therefore be a
prerequisite for a proper assessment of spectral wave models.
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