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Abstract
Resilience-informed water quality management embraces the growing environmental challenges and 

provides greater accuracy by unpacking the systems’ characteristics in response to failure conditions in 

order to identify more effective opportunities for intervention. Assessing the resilience of water quality 

requires complex analysis of influential parameters which can be challenging, time consuming and 

costly to compute. It may also require building detailed conceptual and/or physically process-based 

models that are difficult to build, calibrate and validate. This study utilises Artificial Neural Network 

(ANN) to develop a novel application to predict water quality resilience to simplify resilience 

evaluation. The Fuzzy Analytic Hierarchy Process method is used to rank water basins based on their 

level of resilience and to identify the ones that demand prompt restoration strategies. The commonly 

used ‘magnitude * duration of being in failure state’ quantification method has been used to formulate 

and evaluate resilience. A 17-years long water quality dataset from the 22 water basins in the State of 

São Paulo, Brazil, was used to train and test the ANN model. The overall agreement between the 

measured and simulated WQI resilience values is satisfactory and hence, can be used by planners and 

decision makers for improved water management. Moreover, comparative analyses show similarities 

and differences between the ‘level of criticalities’ reported in each zone by Environment Agency of the 

state of São Paulo (CETESB) and by the resilience model in this study. 

Keywords: Artificial neural network, Analytic hierarchy process, Fuzzy logic, Triangular fuzzy 
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1 Introduction 
Historically, environmental status of water resources in an area is assessed against pre-defined water quality 

(WQ) standards. For this purpose, spatial and temporal changes (e.g. monthly or annually) of WQ 

parameters (or WQ indexes) are collected and used to identify and assess WQ characteristics due to natural 

and man-made influences (Chounlamany et al., 2017) or for life cycle assessment of geomorphological 

dynamics (Tooth, 2018). In line with this, risk-based approaches are also commonly used to tackle the 

sparsity of WQ data and the limitations of statistical methods to reconstruct the time-series for WQ analysis 

(Maier et al., 2001; Hart et al., 2003; Mondal and Wasimi, 2007; Sarang et al., 2008; Asefa et al., 2014; 

Hoque et al., 2013, 2016). However, in practice, there are limitations to traditional WQ assessment methods 

and approaches used due to first, a high degree of uncertainty in emerging threats; second, time blindness 

of risk measures used; third, complexity of their consequences (Park et al., 2012; Sweetapple et al., 2018). 

Some latest studies have proposed resilience as a complementary measure to risk for a more robust decision-

making in WQ management (Sweetapple et al., 2018). These studies focus on the promotion of key drivers, 

attributes and role players’ adaptive capacities to cope with changing conditions rather than the use of 

control-based risk management (van Den Hoek et al., 2011; Hoque et al., 2012; Mallya et al., 2018). 

Conventional WQ management relies on the ability to project future change in order to design restoration 

strategies to well-known and defined problems (Pahl‐Wostl et al. 2011). Therefore, the assessment methods 

used, tend to overlook the collective interaction of magnitude, frequency, and duration of failing periods as 

long as the overall performance (e.g., annual average) can fairly satisfy the desired standards. This approach 

can potentially become more difficult to maintain under highly variable future with numerous 

interconnected stressors leading to failure incidents (Zimmerman et al. 2008; Butler et al., 2016). 

Resilience-informed water quality management embraces the growing environmental challenges and 

provides greater accuracy by unpacking the systems’ characteristics in response to failure conditions in 

order to identify more effective opportunities for intervention.  

Drawing on the above discussion, resilience-informed WQ assessment requires WQ data and information 

that are generally expensive and time-consuming to collect, particularly for large-scale and complex 

catchments (Cumming, 2011; Rowny and Stewart, 2012; Zeng et al., 2013; Li et al., 2014). Building 
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surrogate models and/or methods proved to be effective methods in water quality (WQ) management to 

evaluate and demonstrate the relationship between different components in a system - particularly the effect 

of different interventions. Historically, Machine Learning (ML) techniques such as Artificial Neural 

Network (ANN) have been widely used for prediction and forecasting in water quality studies (Mitrović et 

al., 2019; Ahmed et al., 2019; Zhu and Heddam, 2020; Antanasijević et al., 2020), especially in WQ 

predictions (Palani et al., 2008; Singh et al., 2009; Khalil et al., 2011; Khan and See, 2016; Seo et al., 2016) 

and also in WQ indexes predictions (Gazzaz et al., 2015; Elshemy and Meon, 2017). In addition, there are 

many advantages of using ANNs for prediction purposes such as: eliminating the need for a priori 

knowledge of the underlying process and the existing complex relationships of the system elements (Kalin 

et al., 2010; Sarkar and Pandey, 2015). ANNs are often combined with other AI-based and/or evolutionary 

techniques to improve quality and accuracy of predictions in various applications for analysis and decision-

making (Chau, 2006; Kuo et al., 2006; Zhang and Lai, 2011; Chen and Liu, 2015; Chen et al., 2015; 

Mahmoudi et al., 2016; Noori et al., 2020). Moreover, there are several studies based on multiple linear 

regression methods combined with AI methods to develop WQ models (Ji et al., 2017; Slaughter et al., 

2017; Tomas et al., 2017; Wu et al., 2018; Antanasijević et al., 2020; Rajaee et al., 2020).  

In recent years, advancement and innovations have been made in relation to resilience-informed disasters 

management (such as flood resilience) but very limited studies are available in the context of WQ 

management, partly due to non-acute and less visible impacts and consequences. To the date of this paper, 

WQ resilience has been quantified and analysed in a few studies using adaptive cycle algorithm (Li et al., 

2016), functionality loss metrics and evolutionary algorithm-based optimisation (Zhang et al., 2020) and 

remained functionality metrics (Hoque et al., 2012; Sweetapple et al., 2018). These studies rely on case 

studies’ data sets/archives and physical models to evaluate resilience and validate the results which are 

quite challenging. Having a resilience predictive model, in conjunction with the existing evaluation 

methods, can support WQ resilience management by reducing the reliance on physical data/model for 

evaluation and validation purposes and additionally, it can support future planning for resilience by making 

predictions. To data of this paper such model is yet to be studied and this is the gap that this study aims to 

tap in. Hence, the key novelty of this research embeds in development of a new model to predict WQI 

https://link.springer.com/article/10.1007/s00521-019-04079-y#auth-1
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resilience. It should be noted that this paper will not introduce any new machine learning method or 

algorithms, rather, it utilises the commonly used algorithms and methods in a new application (i.e., 

resilience-informed WQ assessment).  

In general, three stages can be defined for resilience-informed WQ management at a catchment level: 1. 

modelling, assessing, evaluating resilience of the catchment; 2. prioritising the areas (e.g. (sub)-catchments) 

needing restorative intervention on the basis of their resilience level; and 3. determining the appropriate 

intervention to those most at risk. This paper focuses on the first stage and how it can inform prioritisation 

process in the second stage.  

In this study, the resilience prediction model is set up for the case study of São Paulo city in Brazil to 

identify vulnerable contaminated areas (so-called critical zones or sub-catchments). Prediction of resilience 

(spatially/temporally) provides a tool for resilience planning by capturing the trend of resilience fluctuations 

(e.g., on an annual basis) in order to characterize, design and evaluate adaptation strategies. This predictive 

model can potentially assist key stakeholders and decision-makers in CETESB in their annual planning for 

environmental improvement. 

In this paper, the study methodology is explained in Section 3 with the discussion of measuring water 

quality resilience and ANN structure. In this section, the Fuzzy Analytic Hierarchy Process (FAHP) 

conceptual model with the mathematical representation of that is also explained. In Section 4, we have 

discussed the procedure of identifying the critical zones based on the developed model. The results and 

associated discussions based on the outcomes have been described in Section 5. The study limitations have 

been also critically evaluated in this section. The conclusions with the future direction have been drawn in 

the last section.  

2 Material and methods 
The methodology section is twofold: the first part describes the development of WQ resilience evaluation 

framework (i.e. stage 1 mentioned above); and the second part focuses on the integration of the ANN model 

as a surrogate for calculating WQ values (i.e. stage 2 mentioned above). 
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The first stage (Section 2.4) explores the feasibility of integrating historical data and conventional machine 

learning techniques (ANNs) to develop a novel resilience predictive model for WQ without the need of 

costly physical models. In the second stage (Section 2.5), the widely studied Analytical Hierarchy Process 

(AHP) (Saaty, 1982; Saaty, 1977) is adopted for the prioritisation process adopting a fuzzy approach due 

to its simplicity and effectiveness in this kind of problem (Kahraman et al., 2004; Moktadir et al., 2017). 

This predictive model can assist key stakeholders and decision-makers in two possible ways; first, in 

creating effective long-term actions to promote regional water resources resilience; second, in developing 

strategies that focus on desirable priorities such as environmental compliance, social equity or economic 

prosperity. The predictive model is particularly useful to overcome the challenges of costly and time-

consuming manual data collection. In addition to being costly, manual data collection has its own challenges 

such as significant accessibility and safety issues particularly in the case study used. Also, data quality is 

critical in improving model accuracy and reducing uncertainty; and it can significantly be affected by the 

lack of automated monitoring systems. It should be noted that this is a feasibility study and not a 

comprehensive evaluation of the approach. 

2.1 Case study 

Surface water resources in the state of São Paulo (SP) in Brazil have been used as a case study in this 

research.  SP is located southeast of Brazil with a state area of 248,000 km2 and is the most populous state 

in Brazil (IBGE, 2014). It is divided into 22 Hydrographic Units of Water Resources Management 

(UGRHI) (Instituto Socioambiental, 2009) with three river basin districts and seven distinct 

climates. Surface water and groundwater resources together account for about 80% and 20% of water 

supply in SP, respectively. It has benefited from rapid economic and urban growth over recent decades 

which has come at the cost of compromising the quality of local water resources. This reduction in WQ has 

occurred for various reasons, mainly water management conflicts and the absence of clear long-term 

sustainable development plans for both urban areas and wastewater infrastructure. Environment Agency of 

the state of São Paulo (CETESB) operates 425 manual and 44 automatic freshwater quality monitoring 

stations (in total: 469 stations) and the number of collected WQ samples could vary from one season to 

https://en.wikipedia.org/wiki/Southeast_Region,_Brazil
https://en.wikipedia.org/wiki/List_of_Brazilian_states_by_population
https://en.wikipedia.org/wiki/River_basin
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another in each station depending on climatic conditions. These data are used by CETESB for WQ 

management in the state of SP.  

2.2 Water quality data 
Decision makers in CETESB and the imposed environmental and social concerns of unsustainable 

developments in the state of SP have created the need for a great deal of information to be collected in 

response to public policies and the monitoring of their effects. To aid this data collection and analysis, 

CETESB has developed water quality indexes (WQI) that process increasing quantities of information, in 

a systematic and accessible way for decision makers. The main advantages of the indexes are the ease of 

communication with the lay public, the status greater than the isolated variables and the fact that it 

represents an average of several variables in a single number by combining different units of measure into 

a single unit (CETESB-Appendix C, 2017). 

This study will focus on the impairment of surface WQ due to organic substances (mainly arisen from the 

lack of sufficient and efficient sewage collection and treatment systems) and in relation to aquatic life. 

Therefore, Table 1 in Supplementary Information (SI) outlines CETESB’s three relevant WQIs (IQA, IET, 

and IVA) for decision-making on WQ policies and in line with the focus of this paper.  

This study uses the average monthly values of CETESB’s WQI (shown in Table 2 in SI) from 2000-2017 

(in total 17 years of data) (CETESB, 2000-2017) to develop the predictive WQ resilience model, which 

provides a consistent and long-term data set ideal for ANN calibration and validation. As the data published 

by CETESB from 2010 onwards were more comprehensive, it was necessary to use data sets from latter 

years i.e. the first 16 years in this study, to develop a more accurate predictive model. The 2017 data set 

was then used for prediction validation purpose. The data used are publicly available in CETESB’s annual 

reports and published after rigorous evaluations in terms of quality and accuracy. The data sets are of high 

quality, resolution, coverage and are used for policy and decision-making, on environmental matters in the 

region; therefore, no significant data pre-processing was needed (further details can be found in section 2 

in SI). The water quality data used in this study are collected by CETESB from 469 automatic and manual 

monitoring stations across the State of São Paulo and WQIs are evaluated. These stations are spatially wide-

spread, well-representing the whole study area. The quality of the monitoring stations is continuously 
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monitored and improved by CETESB. The data collected represent temporal changes in wet and dry 

seasons. The collection sites cover the surface water resources such as rivers, streams, lakes, branches, and 

places of transposition to reservoirs.  WQI time series are used to calculate the annual resilience values that 

are used for ranking of the zones using a fuzzy algorithm which will be discussed in section 2.5 in the paper. 

In addition to that, to evaluate resilience in terms of locally-defined acceptable levels of WQ, CETESB has 

introduced service thresholds and descriptive classification ranges for WQIs as shown in Table 2 in SI 

(CETESB, 2017). The greater IQA value indicates a better quality of surface water resources while this is 

opposite for IET and IVA (the lower, the better). These thresholds are used throughout the study for 

resilience evaluation. It should be noted that in this study the lower limits of the ‘average quality class’ in 

Table 2 in SI (i.e., 36 for IQA, 3.4 for IVA and 52 for IET), are used as the standard threshold (i.e. P0 in 

Eq.(2) in SI) for each WQI. This is in line with CETESB’s approach to ‘average quality’ as an acceptable 

threshold. 

2.3 Water quality resilience formulation  
In this study, WQ resilience is defined as the capacity of a surface water resource system to cope with, and 

recover from contamination in order to maintain the required level of service and comply with predefined 

WQ standards to protect people and the environment.  

It is important to make a distinction between the emerging concept of resilience and the commonly used 

assimilative capacity in WQ assessment. Traditionally, assimilative capacity utilises process-based 

modelling to build a relationship between WQ and quantity to assess whether a waterbody can meet pre-

determined criteria for its ecological function and designated use. In other words, assimilative capacity 

tends to be reliability-driven (i.e. ‘Fail-Safe’ approach) aiming to avoid/prevent failures. On the other hand, 

resilience embraces assimilative capacity to improve its resistance capacity (one of the characteristics of 

resilience), but it also takes a ‘Safe-Fail’ approach in order to maximise its adaptation capacity to tackle 

emerging challenges (and their uncertainties) and to minimise adverse impacts (Butler et al., 2016). Further 

information about some potential differences between traditional environmental assessment method and 

resilience-based assessment methods have been provided in section 1 in the enclosed SI. 
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Several metrics/measures have been developed and introduced in literature to quantify resilience for 

different contexts in different water systems (Hashimoto et al., 1982; Fowler et al., 2003; Matrosov et al., 

2012; Jung, 2013; Paton et al., 2014; Butler et al., 2016). This study inspired by the ‘volume-based 

resilience metrics’ method, introduced in the study by Roach et al. (2018), and formulated by Hasan et al. 

(2019) and McClymont et al. (2020), to encapsulate a suitable resilience-based performance metric for WQ 

evaluation. Details about formulation of WQR can be found in section 3 in SI. Additionally, details have 

been provided on data preparation and pre-processing in section 2 in SI.  

2.4 Stage 1 - predictive water quality resilience model  
As mentioned above, Stage 1 focuses on development of the predictive WQ resilience model and its output 

can be the resilience value predicted in a zone (or a station in a zone) in the study area. The predictive WQ 

resilience model integrates the WQ resilience evaluation method (section 2.3) and the ANN. This model 

can be used to assess water resource adaptive capacity in order to identify the most vulnerable/critical 

contaminated UGRHIs (so-called zones in this paper) without the need for a great deal of costly data 

collection and time-consuming system modelling. Additionally, it can enable water and environment 

sectors to map the spatial and temporal dynamics of resilience fluctuations across the study area and time 

(Hasan et al., 2019), without direct characterisation of the influential factors (e.g., land use pattern, 

hydrological parameters, etc.). The proposed predictive model can be utilised to make predictions of future 

WQ resilience and therefore, enables proactive resilience planning. The key advantage of the predictive 

model is that it can be integrated into complex process-based models, for example as a surrogate to assess 

WQ resilience in ungauged catchments or for a fast resilience evaluation to enhance resilience-informed 

land-water system planning. It should be noted that resilience thresholds (how much resilience is needed, 

feasible, good enough, acceptable, low, high, etc.) have been recognised as playing a key role in resilience 

planning strategies and to the best of the authors’ knowledge, these thresholds are yet to be developed due 

to the complexity and challenges involved. The predictive model can assist and facilitate in the development 

of these resilience thresholds. 
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2.4.1 ANN structure 
ANN and its algorithms have played a crucial role in predicting, modelling and classifying WQ parameters. 

The predictive model developed in this study is a multilayer perceptron neural network (MLPNN). This 

ANN model is formed in three layers: input layer that contains WQI values in a zone (IQA or IET or IVA), 

hidden layers and output layer having the dependent variable (i.e. the predicted resilience value associated 

with each WQI in a zone). It should be noted that, in this study, separated networks for each WQI have 

been produced (i.e. three separated networks). This reflects CETESB’ approach to distinct remedial 

planning for surface water protection as defined in Table 1 in SI.  

A log-sigmoid function widely used as a transform function to update weights and biases in the hidden 

layer and a linear transfer function for the output layer. All these layers contain a number of interconnected 

neurons (i.e., processing units). The optimal number of neurons in the hidden layer is proceeded by trial 

and error using the backpropagation (BP) algorithm and the mean square error (MSE). In this study, the 

best network training results were achieved with 11, 10 and 13 neurons in the hidden layer for IQA, IET 

and IVA datasets, respectively. 

Fig.1a demonstrates the overall architecture of the predictive model in this study with WQI as the input 

neuron (IQA or IET or IVA) and its associated resilience value predicted, in output layer. Fig.1b 

demonstrates the network architecture in ‘training phase’. In training phase, the input layer has 22 input 

neurons representing annual WQI (i.e., IQA or IET or IVA) in each of 22 UGRHIs (or zones) and their 

associated resilience values (using Eq. (3) in section 3 in SI). Hence, the total number of input neurons adds 

up to 44 for each WQI in this phase. Table 1 summarises the details of the network in training phase and 

also illustrates the number of epochs, gradient and Mu values for each input dataset in training phase and 

also illustrates the number of epochs, gradient and Mu values for each input dataset. 
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Fig. 1- ANN predictive model; a) Architecture of the predictive network and b) Predictive network 
architecture in the 'training phase'. 

Table 1 - Structure of the predictive model in ‘training phase’ for each WQI. 

Input 
datasets 

Total 
number 
of input  
neurons 

Hidden  
neurons 

Transfer 
functions 
for 
Hidden 
layers 

Output 
dataset 

Total 
number 
of 
output  
neurons 

Transfer 
function 
for 
output 
layer 

Epochs Gradient Mu 

[IQA, RIQA] 44 11 
Log-
Sigmoid 

RIQA 1 
Linear 

60 9.6178 0.1 
[IET, RIET] 44 10 RIET 1 22 0.1977 0.01 
[IVA, RIVA] 44 13 RIVA 1 30 0.0025 0.0001 

 
In this study, a feed-forward back propagation ANN (i.e., ANN trained using the Levenberg-Marquardt 

(LM) method), which has been widely used in developing predictive models for water systems (Sarkar and 

Pandey, 2015), is set to approximate WQ resilience. For this purpose, LM algorithm is used in the curve 

fitting process, Bayesian Regularization (BR) algorithm is used for nonlinear regression conversions during 

training process, and Scaled Conjugate Gradient (SCG) algorithm is used for batch learning method while 

computing the errors. These are commonly well-performed ANN algorithms in a wide range of applications 

(including WQ evaluations) (Xiang et al., 2006; Palani et al., 2008; Singh et al., 2009; Najah et al., 2013; 

Sarkar and Pandey, 2015; Seo et al., 2016). 

The BR back propagation method is used for its accurate predictions in training (Alvisi and Franchini, 2011; 

Ha and Stenstrom, 2003; Malekmohammadi, et al., 2009). A batch mode of training is applied to enter the 

inputs to the network before the weights to be updated utilising SCG algorithm. The network training is 

finished when the specified number of epochs or training accuracy is achieved. The number of epochs 

represents the time needed for training of the network. If the training time is shorter, the network 
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architecture is more efficient. Similarly, the fewer number of weights indicate that the net will better 

generalize to validation, test, and new data with the same statistical attributes.  

Given the ANN structure, each input dataset (Table 1) was randomly distributed into a 70% set for training, 

15% set for validation and 15% set for testing, using the 469 WQ monitoring stations collected data across 

the 22 zones in São Paulo state. 

It should be noted that authors are aware of further studies that could be conducted to identify the most 

suitable ANN algorithms and functions in a more systematic way. However, this is a feasibility study 

aiming to explore the possibility of developing a reliable model for resilience prediction in a water system 

application.                                   

2.5 Stage 2 - predictive model application: to identify the critical zones 
Stage 2 embraces CETESB’s approach in prioritisation of zones most in need for interventions. This could 

be easily implemented by evaluating the resilience of each zone. However, due to the existing conflicting 

interactions among the three WQIs, identification and prioritisation of critical zones can be quite 

challenging. Hence, this study has developed a multi-criteria ranking method by integrating predicted 

resilience in each zone (i.e. the outcomes of the Stage 1) and Fuzzy Logic to overcome the abovementioned 

challenge. In line with this, FAHP method has been utilised in this study for its proven robustness and 

flexibility in resolving multi-criteria decision-making problems. It should be noted that, there are several 

approaches available in AHP methods such as weighted linear optimisation approach, ABC clustering 

approaches (Lolli et al., 2014) and triangular fuzzy number (TFN). In the context of this application and 

using TFN, there are several approaches that have been explored such as distance-based trapezoidal fuzzy 

number, graded mean integration representation and pairwise comparison matrix (Zhang and Ma, 2014). 

The step-by-step process is illustrated in Fig.6 in SI. 

2.5.1 Step 1: set the geometric fuzzy  

In this step, a fuzzy algorithm is used to measure the importance of each WQI for each monitoring station 

based on its overall resilience value (from Stage 1) over the time period of study. Fuzzy analysis has been 

used in this study because of its inherent ability and flexibility in solving multi-criteria decision-making 
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problems with embedded vagueness and uncertainties. Fuzzy linguistic labels are particularly great assets 

in the methodology to represent significant intensity in the context of resilience levels/thresholds.  

TFN has been utilised in this study because of its proven simplicity and suitability to scale the ‘significance 

intensity’ (i.e. importance) of each WQI (in each station) based on its evaluated resilience value; and the 

multi-criteria system required (IET, IQA, IVA) to create the perception of different alternatives according 

to the criterion (wang et al., 2016). It should be noted that TFN is used in this study based on the pairwise 

comparison matrix. The TFN scales shown for each WQI in Table 2, have been widely used for group 

assessment and approximation (Dagdeviren and Yüksel, 2008; Wang et al., 2008). A set of membership 

functions have been defined and used by the triplet (l, m, n), as shown in section 4, Eq. (6) and Fig. 3 in SI, 

in relation to the required fuzzy algorithm.  

In this study, l, m and n are the representatives for the upper, middle and lower values in a fuzzy AHP, 

adopted from TFN by Kahraman et al. (2004). A knowledge contrivance is created by utilising AHP (Saaty, 

1977), which is a technique to solve multi-criteria-based complex systems. To facilitate the decision-

making process in this study, linguistic variables (e.g. high quality, poor quality, etc.) (Zadeh, 1975) are 

created and scaled to categorise resilience as presented in Table 2 (high resilience, low resilience, etc). 

  Table 2 – ‘Significance intensity’ of WQI by AHP and TFN (Kahraman et al., 2004). 

IQA Resilience IVA/IET Resilience 
Significance intensity 

FAHP 
Scale (λ)   

TFN Scale 
(l, m, n) Significance intensity  FAHP  

Scale (σ)  
TFN Scale   
(l, m, n) 

Very low resilience  
(very poor WQ)  1 (0.1,0.2,0.3) Very high resilience  

(very high WQ) 6 (0.9, 1.0,1.0) 

Low resilience (poor 
WQ)  2 (0.3,0.4,0.5) High resilience (high WQ) 5 (0.8,0.9,1.0) 

Average resilience 
(average WQ)  3 (0.5,0.6,0.7) Good resilience (good WQ) 4 (0.7,0.8,0.9) 

Good resilience (good 
WQ) 4 (0.7,0.8,0.9) Average resilience (average 

WQ) 3 (0.4,0.5,0.6) 

High resilience (high 
WQ) 5 (0.9,1.0,1.0) Low resilience (poor WQ) 2 (0.0,0.1,0.2) 

   Very low resilience (very poor 
WQ) 1 (0.0,0.1,0.2) 

In this study, the ‘criticality’ (of the zones) is set using TFN and scaled between 0 (resilient) and 1 (critical). 

2.5.2 Step 2: set the global index of monitoring stations 

In this step, a fuzzy-based global index is developed to measure the overall importance of each zone. The 

global index will be used to identify the critical zones based on their overall resilience value. Eq.(1) 

calculates the aforementioned global index using FAHP and TFN scales shown in Table 3.  
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𝛿𝛿𝑘𝑘𝑧𝑧 = 𝜆𝜆𝑗𝑗 × 𝜎𝜎𝑗𝑗              (1) 

where, 𝛿𝛿𝑘𝑘𝑧𝑧 denotes the fuzzy global index associated to a zone (z=1,..,22); λ and σ are the significance 

intensity of each monitoring station in a zone (Table 3); and k denotes the number of monitoring stations in 

a zone. 

2.5.3 Step 3: set the fuzzy weight of each WQI  

In this step, the weight of each WQI is determined by fuzzy mean using TFN scale (in Table 3), indicating 

the ‘significance intensity (importance)’ of that WQI, in its zone (as shown in Eq. (2)): 

𝑤𝑤𝑧𝑧 = � 𝑙𝑙𝑖𝑖
∑ 𝑙𝑙𝑖𝑖𝑘𝑘
𝑖𝑖=1

, 𝑚𝑚𝑖𝑖
∑ 𝑚𝑚𝑖𝑖
𝑘𝑘
𝑖𝑖=1

, 𝑛𝑛𝑖𝑖
∑ 𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=1

�           (2) 

where, 𝑤𝑤 denotes the fuzzy mean; l, m and n are the membership functions (as shown in Table 2); k 

represents the number of stations in a zone; and z represents the zone number. 𝑤𝑤𝑧𝑧 is then used to evaluate 

the total weight of each WQI, across the 22 zones, by combining the entire upper and lower values and 

dividing them by the sum of the α-cut values as shown in Eq. (3). 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 = �
𝛼𝛼�𝑊𝑊𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�

∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

,
𝛼𝛼�𝑊𝑊𝑍𝑍𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙

�

∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

 �       𝑧𝑧 = 1, … , 22        (3) 

where, Widx denotes the fuzzy weight of each WQI; 𝛼𝛼 denotes the cut values in the crisp values; z presents 

the number of zones; 𝑊𝑊𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 and 𝑊𝑊𝑍𝑍𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙

 are the upper and lower bounds of the 𝛼𝛼-cut values, respectively, 

using the weighting average method (Kim and Park, 1990; Klir and Yuan, 1995). It should be noted that 

the factors belonging to the IQA have five 𝛼𝛼-cut values and IET have IVA, six cut values.  

2.5.4 Step 4: defuzzify the total weight of each WQI 

In this step, Widx is defuzzified using Eq.(4). This process interprets membership degrees into a specific 

decision.  

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 = �𝛾𝛾 �𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖(𝑙𝑙𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)� × (1 − 𝛾𝛾) �𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖(𝑙𝑙𝑧𝑧𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙)�� ;  𝛾𝛾 ∈ [0,1]𝑊𝑊𝑖𝑖𝑖𝑖 = �𝛾𝛾 �𝛼𝛼(𝑙𝑙𝑖𝑖𝑖𝑖)
∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

� × (1 − 𝛾𝛾) �𝛼𝛼(𝑙𝑙𝑖𝑖𝑙𝑙)
∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

�� ;  𝛾𝛾 ∈ [0,1] (4) 

where, 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 denotes the total weight of each WQI in a zone; 𝛾𝛾 represents optimism index (i.e. reflects 

risk-taking attitude of decision makers); z presents the number of zones. 

2.5.5 Step 5: fine-tune the parameters  

In this step, the ANN parameters are fine-tuned until the minimum errors are obtained. The root mean 

square error (RMSE) method is used to calculate the errors. 
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2.5.6 Step 6: identify and rank the critical zones  

Generally, the critical zones are determined using 𝛿𝛿𝑘𝑘 and 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 as shown in Eq. (3). To identify the most 

critical zones, initially all zones are ranked based on their 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 (for each WQI). The higher 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇values 

represent more criticality (lower resilience) and the lower ones represent less criticality (higher resilience).  

The ranking process follows the ‘stack principle’ in a standard data structure for a given list. In other words, 

the ‘stack’ contains the most critical zones. For example, if the stack contains a lower 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 for IQA (i.e. 

less critical) in one zone and a higher 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 for IQA in the next one (i.e. more critical), then the stack pops 

that zone and pushes the new one. In this study, it includes the highest values for IET and IVA and the 

lowest values for IQA in a monitoring station (see Eq. (5)). Eq. (5) illustrates the critical monitoring stations 

based on the combined WQI importance. This study only considers a zone with more than two critical 

stations for each WQI. Drawing on these, each monitoring station can be expressed by Eq. (3):  

𝐶𝐶𝐶𝐶𝑖𝑖𝑘𝑘 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: ∑ [�𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇|𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧|,∑ 𝛿𝛿𝑖𝑖𝑘𝑘𝑧𝑧
𝑖𝑖=1 �& �𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇|𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧|,∑ 𝛿𝛿𝑖𝑖𝑘𝑘𝑧𝑧

𝑖𝑖=1 �] + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: �𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇|𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧|,∑ 𝛿𝛿𝑖𝑖𝑘𝑘𝑧𝑧
𝑖𝑖=1 �𝑛𝑛

𝑖𝑖=1     (5) 

where, 𝐶𝐶𝐶𝐶𝑖𝑖𝑘𝑘 denotes the identified critical monitoring stations in each zone (based on combined WQI); n 

denotes the number of monitoring stations (it varies for each WQI); z and k present the number of zones 

and monitoring stations in that zone, respectively; 𝛿𝛿 denotes the global index value. 

Drawing on Eq. (5), Eq. (6) is finally used to identify the most critical zones in the case study area using 

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇 and 𝐶𝐶𝐶𝐶𝑖𝑖𝑘𝑘. 

𝑍𝑍 = [𝐶𝐶𝐶𝐶𝑧𝑧 ]; ∀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑙𝑙𝑛𝑛𝑠𝑠 𝑊𝑊𝑖𝑖𝑖𝑖 = �𝛾𝛾 �𝛼𝛼(𝑙𝑙𝑖𝑖𝑖𝑖)
∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

� × (1 − 𝛾𝛾) �𝛼𝛼(𝑙𝑙𝑖𝑖𝑙𝑙)
∑ 𝛼𝛼𝑖𝑖𝑧𝑧
𝑖𝑖=1

�� ;  𝛾𝛾 ∈ [0,1]       (6) 

where, Z denotes the critical zones across the case study area (i.e. 22 zones); 𝐶𝐶𝐶𝐶𝑧𝑧 is the number of critical 

stations in each zone.  

3 Results and discussion 
In this study, the network training stops as soon as any of the following conditions occur: (i) model 

performance in validation dataset decreases abruptly in successive iterations; (ii) the maximum number of 

epochs of 100 is reached.  

Fig.2 depicts the overall performance of the neural network based on the training, validation and testing 

dataset for IQA and IET and IVA. In this figure, the best validation performance occurred at epoch 54, 16 
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and 24 for IQA, IET and IVA, respectively, showing Mean Squared Error (MSE) trend during the learning 

procedure. The decreasing trend of the validation set confirms that there is no over-fitting in the model. 

IQA IET 

  
IVA 

 
Fig. 2 - ANN performance. 

Fig.3 demonstrates the scatter plots of the calculated WQI resilience values using Eq.(2) in SI and their 

corresponding ANN-based resilience prediction model. The observations demonstrate that there is a 

reasonable approximation by the ANN model across the spectrum of the evaluated WQI resilience values. 

Therefore, the overall agreement between the measured and simulated WQI resilience values (R values for 

IQA: 0.98814; IET: 0.99228; and IVA: 0.9999) are satisfactory. Similarly, a set of error histograms using 

student’s T-test have been presented in Fig.4 in SI. Further details about the test can be found in the study 

by Hasan (2020).   
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IQA IET IVA 

   
Fig. 3 - ANN model validation results. 

Fig. 4 illustrates the MSE and R values of different algorithms for IQA, IET and IVA resilience predictions. 

It is noticeable in Fig. 4 that LM has performed better than BR and SCG for IQA and IET training. However, 

BR has performed significantly better with the testing dataset in the ANN model. Moreover, in all cases, 

SCG has shown the weakest performance. A possible reason is the poor convergence due to the adjustments 

of the weights and eigenvalues.  

 
Fig. 4 - Performance evaluation of the utilised algorithms. 

Table 3 shows the RMSE for the IQA, IET and IVA resilience, where it measures the differences between 

the resilience values predicted by the developed ANN-based resilience prediction model and the calculated 

WQI resilience values using Eq.(2) in SI. In other words, it shows the goodness-of-fit of generalization of 

the model. For the IET and IVA resilience, the BR performs significantly better compared to the LM and 

SCG in training, validation and testing purposes. Similarly, SCG performs poorest in all three WQIs. As a 

result, the SCG is not a suitable choice for predicting WQ resilience due to its poor accuracy in training, 
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validation and testing phases. In terms of accuracy, the BR is preferable than LM for IET and IVA 

resilience. However, the average RMSE is slightly better for LM in the dataset of IQA. 

Table 3 - Average RMSE values of the applied algorithms. 

Algorithm RMSE for IQA RMSE for IET RMSE for IVA 
LM 0.651 0.722 0.031 
BR 0.670 0.076 0.011 
SCG 4.635 3.479 0.227 

Fig. 5 maps the identified critical (so-called vulnerable) zones utilising the predictive ANN-based resilience 

model and the FAHP method results for the case study area over the collective study period. The zones 

have been characterised descriptively by colour codes, varying from dark to light colours (most critical to 

least critical OR low resilience to high resilience). The observations illustrate that the Zones 5, 6, 7 and 9 

have the lowest level of water resources resilience and therefore, in critical condition in São Paulo state. 

These zones are the most populated zones with rapid urban creeps and unsustainable developments leading 

to deteriorated WQ in the absence of sufficient and efficient wastewater collection and treatment 

infrastructures. However, prioritisation for intervention in critical Zones 5, 6, 7 and 9, where resources are 

limited, is required and according to the resilience-driven predictive model, Zone 5 has the most priority 

and Zone 7, the least.  

 
Fig. 5 –Mapped critical zones. 

 
It is important to investigate the ranking of critical zones using the resilience–driven ranking method 

proposed in this study with CETESB’s traditional approach in order to gain a better understanding of 

paradigm shift in WQ assessment. Details of these investigation can be found in section 6 and Fig. 5 in SI. 
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3.1 Limitations 
This is a feasibility study to investigate the potential and suitability of using machine learning methods for 

resilience predictions in water engineering applications. Machine learning methods, and particularly 

artificial neural networks, have been commonly and successfully used in water systems management. On 

the other hand, resilience is a fast-growing concept proved to be an effective approach in preparing 

engineering systems to tackle and cope with emerging challenges. Authors believe that the integration of 

machine learning techniques to predict water quality resilience can provide an opportunity for more 

effective adoption of resilience to tackle the emerging challenges. This study is currently at its early stages 

and will be furthered in future studies. One potential improvement in horizon will be using more effective 

machine learning methods such as deep learning or deep reinforcement learning. 

4 Conclusions 
Planning water resources and related systems that are resilient in terms of delivering water of sufficient 

quality despite potential contamination that may occur in the catchment requires complex and integrated 

physical models that are challenging to build, characterize, and calibrate/validate. Moreover, these models 

rely on datasets that are costly and time consuming to collect. This study has focused on the application of 

a machine learning method (i.e. Artificial Neural Network), to develop a predictive model to evaluate 

resilience using readily available local data. This predictive model can support the key stakeholders and 

decision makers for targeted investments to improve resilience. The key advantage of the predictive model 

is that it can be integrated into complex process-based models to enhance resilience-informed land-water 

system planning. The predictive model can assist and facilitate in the development of the resilience 

thresholds. 

This study has inspired by a ‘volume-based resilience metrics’ method for water quality resilience 

evaluation. It has also utilised a fuzzy-based algorithm to measure the criticality of water quality parameters 

with conflicting interactions. Additionally, the Fuzzy Analytical Hierarchy Process was used to develop a 

multi-criteria rating method to identify and rank the critical areas based on predicted resilience values.  

The model was applied to and tested, using real data, for a case study in São Paulo state in Brazil. The 

results are satisfactory and demonstrate that the predictive model can make accurate predictions of 
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resilience. In this model, Bayesian Regularization algorithm offered better performance as compared to the 

Levenberg-Marquardt and Scaled Conjugate Gradient in making water quality resilience predictions and 

Scaled Conjugate Gradient showed the poorest performance. Additionally, the results indicated the low 

resilience identified in 45% of the 22 zones mainly located on the east and south east of the São Paulo state. 

These zones are the most populated zones with rapid unsustainable developments and climate change-

induced risks leading to the deterioration of water resources quality in the absence of sufficient and efficient 

wastewater collection and treatment infrastructures.  

The São Paulo state’s environment agency (CETESB) publishes an annual report on the conditions of water 

resources quality across the whole region. There is a desire to incorporate ‘resilience mapping’ into this 

annual report for more effective resilience-informed planning. This can create an opportunity for adoption 

of the developed predictive model to assist decision makers’ in CETESB in the future. Additionally, the 

integration of different machine learning techniques (e.g. deep reinforcement learning, recurrent neural 

network, convolutional neural network, etc.) with resilience-based methods could be further explored in 

order to create new techniques/methods for more effective adoption of ‘resilience’ in complex systems (e.g. 

integration of the resilience predictive model with physical models). Moreover, this study can potentially 

support reactive and planned maintenance for water supply. It also shows a direction for the researchers to 

implement the proposed model in various water reservoirs to measure water quality resilience, which may 

help to reduce the efforts of manual data collection. Therefore, the successful implementation of various 

machine learning algorithms in predicting water quality resilience is a new paradigm and can enrich the 

implementation of Artificial Intelligence and machine learning technologies to study the hydroinformatics 

and hydrodynamics arena. Furthermore, this model can be promoted and expanded by integration of real-

time data monitoring systems for a more dynamic resilience prediction system.  
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Supplementary Information3 
 

1. Traditional water assessment VS resilience-informed water assessment 
In traditional assessment of WQ, commonly, annual (or monthly or even daily) average values are used 

to assess environmental status of the area against pre-defined environmental/ecological standards. This 

is the approach that CETESB takes in its reports to assess the WQ status of its UGRHIs on an annual 

basis. This approach is simple, commonly used and can give reasonable assessment of the catchment 

environmental status. However, considering the growing challenges and their uncertainties, leading to 

water contamination incidents (e.g., more severe/frequent/prolonged), it is important to adopt an 

approach that can provide greater accuracy in terms of the system behaviour, the failure characteristics, 

and eventually the effective interventions needed. The traditional WQ assessment approaches tend to 

not be making a clear distinction between the characteristics of failing periods as long as the annual 

average can fairly satisfy the standards.  

To further clarify this, Fig.1 in SI demonstrates three conceptual Figures (i.e., Fig.1a, Fig.1b and Fig.1c) 

that illustrate three different performance indicator (PI) time series of a given system with the same 

average values of PI in T (e.g., PI is the WQI in this study). From the conventional point of view, overall 

performance is acceptable as long as the annual average can meet the standard. However, having the 

resilience lens on, we need to unpack each time series and analyse its characteristics. The first time 

series (Fig.1a) represents small but quite frequent failures in the system indicating a system that fails 

easily but has good recoverability and resistance capacities in place, while the second one (Fig.1b) 

shows a system that does not fail frequently but clearly has low recoverability capacity in place although 

the failure is small; and the third one (Fig.1c) presents a system that fails rarely (e.g., once in T) and 

recovers quickly but the failure magnitude is considerable showing a low resistance capacity in the 

system. If these observations are put into the context of seven characteristics of resilience identified in 

100ResilientCities (100RC, 2016), it is clear that the resilience-driven approach characterises the 

performance of a system much more precisely and hence, can lead to more appropriate and effective 

intervention strategies. 

 

 

 

   

                                                
3 DOI: https://doi.org/10.1016/j.scitotenv.2020.144459 

https://doi.org/10.1016/j.scitotenv.2020.144459
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(a) (b) (c) 
 

Fig. 1 – Conceptual system performance curve, (a) small and frequent failures; (b) less frequent with 
prolonged and small failures; (c) less frequent with large, short failures 

 

2. Data collection and pre-processing 
This study uses the data collected by CETESB’s from the WQ monitoring network across the region and 

are publicly available in CETESB’s annual reports. These data sets are published after rigorous review and 

pre-processing works. Therefore, data sets are of high quality, resolution, coverage and accuracy, and no 

significant data pre-processing (as traditionally needed in raw data pre-processing) was needed in this study. 

However, some of the primary steps taken to prepare the data sets for the ANN model in this study, as 

follows:  

a. Gathering data from CETESB (e.g. raw data in pdf and then converted into csv and json formats 

by using Python and pandas library (Python Data Analysis Library, 2018); 

b. Cleaning data (e.g. to check the completeness and accuracy by using python and pandas library); 

c. Identifying missing data (e.g., using dropna and filllna functions in pandas library); 

d. Measuring data quality (e.g., validity, consistency, uniformity by manually random check as well 

as using pydqc (Chakki, 2018)). 

 

3. Additional formulations on water quality resilience 
 

In light of the discussion in section 2.3 in the manuscript, the resulting loss of system functionality (i.e., 

water contamination) is estimated using the concept of ‘concentration severity’ as Eq.(1) (see also Fig. 2): 

𝐶𝐶𝑀𝑀𝑆𝑆𝑖𝑖 =
𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇𝑖𝑖
𝑊𝑊𝑊𝑊𝑇𝑇𝑇𝑇𝑖𝑖

           (1) 

where, i: index denoting WQ parameter analysed (1: IQA, 2: IVA, 3: IET); Sevi: water contamination 

severity based on the ‘magnitude × duration’ concept for WQI i; 𝑊𝑊𝐼𝐼𝑇𝑇𝑇𝑇𝑖𝑖: cumulative breach of WQI i’s 

standard threshold (in Table 1 in the manuscript) as detailed in Eq.(2); 𝑊𝑊𝐼𝐼𝑇𝑇𝑇𝑇𝑖𝑖: total WQI i’s standard 

threshold compliance over the study time period T; 

𝑊𝑊𝐼𝐼𝑇𝑇𝑇𝑇𝑖𝑖 = ∑ (𝑊𝑊𝐼𝐼𝑓𝑓𝑗𝑗 × 𝑡𝑡𝑓𝑓𝑗𝑗)
𝑛𝑛
𝑗𝑗=1          (2) 

where, i: index denoting WQ parameter analysed (1: IQA, 2: IVA, 3: IET); Po: WQ standard threshold (so-

called performance threshold) as defined for each WQI in Table 1 in the manuscript and shown in Fig.2 

here; j: index denoting each P0 breach number in the study time period T for WQI i; n: total number of P0 

breaches in the study time period T for WQI i;  𝑊𝑊𝐼𝐼𝑓𝑓𝑗𝑗 :  magnitude of the WQI i in the jth breach of P0 in the 

study time period, i.e. magnitude of the water contamination; 𝑡𝑡𝑓𝑓𝑗𝑗: duration of the jth breach of P0 in the study 

time period T for WQI i, i.e. duration of time where WQI i has a value below or above the performance 

threshold P0 (see Table 1 here).  
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Fig. 2 - Schematic of the resilience evaluation curve  

In this study, the ‘remaining system functionality’ (positive connotation of resilience) is used to quantify 

resilience (Fig. 2) and is calculated as Eq.(3): 

𝑅𝑅𝑖𝑖 = 1 − 𝐶𝐶𝑀𝑀𝑆𝑆𝑖𝑖            (3) 
where, Ri: resilience of a water resource system to water contamination; Sevi: water contamination severity 

for WQI i; i: index denoting water quality parameter analysed.  

𝑊𝑊𝐼𝐼𝑓𝑓𝑗𝑗 = 𝑃𝑃0 −𝑊𝑊𝐼𝐼𝑗𝑗𝑡𝑡           (4) 

where, 𝑊𝑊𝐼𝐼𝑓𝑓𝑗𝑗 :  magnitude of the WQI i in the jth breach of P0 in the study time period T; Po: WQ standard 

threshold (so-called performance threshold) as defined for each WQI in Table 1 and shown in Fig.1 in the 

manuscript; 𝑊𝑊𝐼𝐼𝑗𝑗𝑡𝑡: value of WQI, in time t in jth breach of P0 in the study time period T. 

In this study, resilience is scaled between 0 and 1 using the most used scaling method of Min-Max (Eq.(5) 

-Hasan et al., 2019) for each WQI. It should be noted that the resilience normalisation is relative to the 

given time frame and also the maximum and minimum values of WQIs within that time frame. 

 Ri
n = (Ri − Rmin)

(Rmax − Rmin)�         (5) 

where, 𝑅𝑅𝑖𝑖𝑛𝑛: the normalised resilience value; Ri is the actual resilience value; Rmin and Rmax: the minimum 

and maximum values for each WQI within the given time frame, respectively; i: index denoting water 

quality parameter analysed. 

4. Triangular Fuzzy Number 

 

U(x)={(𝑀𝑀 − 𝑙𝑙)/ (𝑀𝑀 − 𝑙𝑙), 𝑙𝑙 ≤ 𝑀𝑀 ≤ 𝑀𝑀 (𝑀𝑀 − 𝑀𝑀)/(𝑀𝑀 −𝑀𝑀),
𝑀𝑀 ≤ 𝑀𝑀 ≤ 𝑀𝑀 0,𝑜𝑜𝑡𝑡ℎ𝑀𝑀𝑒𝑒𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀                         (6) 

Fig. 3 - Distribution of triangular fuzzy number (Qiaoxiu, 2014) 
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where, l denotes the smallest likely value; m denotes the most probable value; and’ n denotes the largest 

possible value of any fuzzy event. In other words, m is the most probable value of the fuzzy number U(x), 

l and n are the lower and upper bounds, respectively. 

 

 

 

 

 

 

 

 

 

 

 

5. Error Histograms  

Fig.4 shows target values and predicted values after training a feedforward neural network. The following 

diagrams indicate how predicted values are differing from the target values. Hence, the illustration reflects 

that the dataset fits well in the trained model. Further details about the test can be found in a study by Hasan 

(2020). 

 

a b 
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Fig.4 – Demonstration of the error histograms for (a) IET, (b) IQA and (c) IVA 

 
 
 
6. Critical zones 

Fig.5 demonstrates the collective percentage of WQ monitoring stations in poor and very poor conditions 

only (see Table 1 in the manuscript), in each zone reported in CETESB’s 2017 annual report (CETESB, 

2017). CETESB’s 2017 data set is chosen as the benchmark year representing the latest condition of the 

surface WQ (at the time of this project) - that is used by CETESB to plan for interventions - to make cross-

comparisons between the rankings of critical zones demonstrated in Fig.6 in the manuscript with CETESB’s 

observations in Fig.  5 here. Overall, these comparative analyses aim to validate the suitability of the method 

proposed for resilience prediction purposes.  

 
Fig.5 – Percentage of CETESB’s WQ monitoring stations (categorised for each WQI), in poor and very 

poor conditions (see Table 1 in the manuscript) in 22 Zones in 2017  

CETESB has reported the poorest IVA condition (based on the max number of stations in critical 

conditions) in the Zones 6, 10 and 13 which implies a low resilience level leading to aquatic habitat 

degradation. Also, IET has been reported very high in Zones 5, 6, 7, 10 and 12 indicating high levels of 

eutrophication mainly due to the trophic climate with high population density adversely affecting surface 
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water resources in these zones. IQA, overall, has demonstrated a better condition in comparison to IVA and 

IET but Zones 5 and 6, were still classified in poor condition.  

Drawing on the above observations, overall, the critical zones identified by the resilience-driven predictive 

model shows similarities with CETESB’s results in the annual report. This can give a level of confidence 

that the model is capable of making reasonable predictions of resilience that relates with CETESB’s field 

observations. However, comparisons also show differences between the ‘level of criticalities’ reported in 

each zone by CETESB and in this study. This potentially can lead to different zonal prioritisation for 

interventions. For example, Zone 6 in Fig.5 can be flagged up by CETESB as the most critical zone due to 

its very high percentage of stations in poor and/or very poor conditions (the conventional approach), while, 

the resilience model identifies Zone 5 as the least resilient zone. This can be arisen from the fact that 

adaptive capacities of the system over time (e.g. seasonal self-purification capacity), embraced by resilience 

approach, is overlooked if decisions are only made based on CETESB’s collected data. Another example 

would be Zone 9 that although its gains a lower priority according to CETEBS’s observations in comparison 

to other critical zones but it is the third most critical zone according to the resilience model results. This 

happened due to prolonged periods of being in poor condition (although in small number of stations) leading 

to exacerbation of WQ resilience in this zone.  

These observations further demonstrate the importance of resilience approach in water management by 

which the behaviour of the system is studied over time and in a holistic way. Failure in the incorporation 

of this approach can potentially lead to overestimation and/or underestimation of critical zones. So, the 

predictive model developed in this study can be characterised as one of the new tools enabling resilience-

informed water management and assisting decision-makers with more effectiveness intervention planning. 
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Tables & Figures 
Table 1 - CETESB’s WQI (CETESB- Appendix C, 2017) 

WQI Description 
IQA  ● IQA indicates the introduction of sanitary effluents and domestic sewage into the water 

body, providing an overview of the quality of surface water. 
● Variables: Temperature, pH, Dissolved Oxygen (DO), Biochemical Oxygen Demand 

(BOD), E-Coli, Nitrogen (N), Phosphorus (P), Total Suspended Solid (TSS). 
IVA  ● IVA is used to assess the quality of water for the protection of aquatic life. 

● Variables: DO, pH, Toxicity, toxic substances and degree of trophia. 
IET  ● IET evaluates WQ for nutrient enrichment and its effect related to the growth of Algae.  

● Variables:  Chlorophyll, P. 
 

Table 2 - CETESB’s WQI classification and service thresholds (CETESB, 2017) 

WQI Class 

IQA 
High quality Good quality Average quality Poor quality Very poor 

quality 
79<IQA≤100 51<IQA≤79 36<IQA≤51  19<IQA≤36 IQA≤19 

IVA IVA≤2.5 2.6<IVA≤3.3 3.4<IVA≤4.5  4.6<IVA≤6.7 6.8≤IVA 
IET IET≤47 47<IET≤52 52<IET≤59 59<IET≤63 63<IET≤67 67<IET 

 

 
Fig.6 - Flowchart of the predictive model development 
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