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Mechanisms of interaction between stationary crossflow
instabilities and forward-facing steps

J. Casacuberta∗, S. Hickel †, and M. Kotsonis‡

Delft University of Technology, Delft, The Netherlands, 2629HS

We study the interaction between a stationary crossflow instability and forward-facing
steps in a swept-wing boundary layer using Direct Numerical Simulations (DNS). The station-
ary primary crossflow mode is imposed at the inflow. Steps of several heights are modeled.
Particular emphasis is placed on ensuring a fully stationary solution, in order to isolate the
modulation of the primary instability at the step and the generation of stationary secondary
perturbations. The main features of the base flow are step-induced flow reversal and secondary
inflection points. When approaching the step, the incoming crossflow instability lifts up and
passes over it. Additional perturbation streaks arise, which are accompanied by secondary
stationary vortices that have the same spanwise wavenumber as the fundamental crossflow
disturbance. For sufficiently high steps, secondary perturbation structures attain amplitude
values comparable in magnitude to primary instability in the vicinity of the step. We propose
metrics to quantify the impact of the step on the development of the crossflow disturbance
upon interaction. Considering energy-based criteria, we find that the crossflow perturbation
is amplified upstream of the step. Interestingly, the incoming primary crossflow instability
undergoes strong stabilization immediately downstream of the largest step. The mechanisms
revealed in this work provide a first insight into the possible causes of transition on swept wings
due to forward-facing steps.

Nomenclature

(·)b = base flow variable
(·)′ = perturbation variable measured from the base flow
(·)′(0, j) = jth stationary perturbation spatial modal component
{u, v,w} = flat-plate-oriented velocity field
{us, vs,ws} = inviscid-streamline-oriented velocity field
u∞ = inflow free-stream streamwise velocity
w∞ = free-stream spanwise velocity
ue = free-stream streamwise velocity
ûe = pseudo-free-stream streamwise velocity
δ0 = inflow boundary layer thickness
λz = spanwise wavelength of the fundamental crossflow instability
β0 = spanwise wavenumber of the fundamental crossflow instability
αi = streamwise perturbation growth rate
A(0, j) = amplitude of the jth perturbation Fourier mode
| ·̃|(0, j) = shape function of the jth perturbation Fourier mode
h = step height
{x, y, z} = flat-plate-oriented spatial coordinates
{xs, ys, zs} = inviscid-streamline-oriented spatial coordinates
xst = flat-plate-oriented streamwise coordinate with origin at the step location
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I. Introduction
The reduction of drag on the swept wings of subsonic aicraft is of concern for commercial aviation due to the major

economical and environmental impact involving noise and air pollution. Laminar Flow Control (LFC) techniques have
demonstrated high potential to delay laminar-turbulent transition and hence reduce skin friction drag by controlling the
growth of boundary layer instabilities [1]. However, despite promising results from a theoretical basis and in laboratory
testing, laminar flow is difficult to achieve in practice [2]. The effectiveness of LFC techniques in an operational
environment is severely affected by the presence of geometrical imperfections, which arise from either environmental
factors (i.e., debris, insect strikes, fowling, etc.) or due to manufacturing tolerances. Prominent in the leading edge
area of wings are two-dimensional spanwise imperfections in the form of steps at the junctions between panels or in
the leading edge-to-wing box [3]. The ability to exploit LFC and to achieve fully laminar wings in realistic flight
conditions invokes the necessity to understand the interaction between pre-existing boundary layer instabilities and
step-like roughness. In our work, the focus is put on forward-facing step geometries.

The earliest studies on laminar-turbulent transition induced by steps in two-dimensional boundary layers did not
include the effect of external pressure gradients. Considering wing flows, Drake et al. [4] carried out pioneering
experimental work involving steps mounted on unswept surfaces featuring a pressure gradient. They proposed
correlations of the movement of the transition front and the roughness Reynolds number

Rehh =
uhh
νh

, (1)

where h is the roughness height and uh , νh are the velocity and viscosity of the undisturbed boundary layer at the step
height. Small steps were initially tested, for which the transition process showed to be insensitive. The height was then
increased gradually until the step started to affect transition significantly and to move the transition front upstream. The
height was kept increasing until the transition front reached the immediate vicinity of the step.

Duncan Jr. et al. [5] used data from infrared thermography measurements in in-flight tests to carry out an analysis in a
fashion similar to Drake et al. [4]. However, as opposed to Drake et al. [4], besides the effect of pressure gradient, Duncan
Jr. et al. [5] included the effect of the sweep angle as well. They reported values of the critical roughness Reynolds
number, i.e., the value of Rehh above which the step starts to move the transition front upstream, significantly lower than
Drake et al. [4]. Three-dimensional boundary layers feature different stability characteristics than two-dimensional
boundary layers in this context. When considering swept-wing flows, the combined effect of sweep angle and external
streamwise pressure gradient causes the inviscid streamlines to bend inward. Whereas the pressure force and the
centrifugal force balance each other in fluid parcels in the inviscid flow region far from the wall, an imbalance between
these two forces exists in the boundary layer where viscous effects are significant. As a consequence, a secondary flow,
the so-called crossflow, is induced in the boundary layer region. Particularly relevant for the study of boundary layer
disturbances is the velocity profile projected in the plane whose normal locally points in the direction tangent to the
inviscid streamline. Such velocity component must vanish at the wall and when approaching the outer flow region,
inasmuch as it is orthogonal to the direction of the inviscid streamline. Hence, it must contain an inflection point. The
latter gives rise to a strong inviscid instability mechanism, the crossflow instability, which may be of travelling or
stationary nature. Within the scope of the current work, the focus is put on the stationary crossflow instability. It is the
dominant kind in environments with low free-stream turbulence levels such as free flight.

Duncan Jr. et al. [6] extended the analysis of Duncan Jr. et al. [5] with experimental work carried out in a
low-disturbance wind tunnel. For all step heights tested, the disturbance amplification factor, N , was found to increase
immediately downstream of the step. Through hotwire measurements, Duncan Jr. et al. [6] observed that for critical step
heights, forward-facing steps strongly amplify the stationary crossflow instability, whereas little effect on the unsteady
disturbance content was produced.

Tufts et al. [2] studied numerically the interaction between an incoming stationary crossflow instability and
forward-facing steps. The step-flow topology includes helical flow induced by two recirculation bubbles, one located in
the lower step corner and one located immediately downstream of the step. In line with observations of Duncan Jr. et al.
[6], Tufts et al. [2] captured strong amplification of the incoming stationary crossflow instability when passing over
forward-facing steps with critical roughness heights. The interaction between the helical flow in the upper separation
bubble and the incoming crossflow vortices was proposed as a possible mechanism to explain the amplification of the
incoming disturbance. Moreover, Tufts et al. [2] observed a near-wall lobe in the disturbance shape at the step location.
They reported that for small step cases, and when moving downstream of the step, the secondary disturbance peak
decays in amplitude and eventually disappears, whereas for large step cases, the near-wall lobe grows and it appears to
absorb the original lobe. Tufts et al. [2] indicated that the secondary perturbation lobe is located at the same wall-normal
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position as the flow separation region, hence they suggested that decreasing the size of the upper separation bubble is a
way to mitigate the effect of the step on the incoming perturbation. These results motivated Tufts et al. [2] to present a
model of an either destructive or constructive interaction between the incoming stationary crossflow vortices and helical
flow at the step.

Using naphthalene flow visualisation, Saeed et al. [7] investigated effects of the step location and observed that steps
near the neutral point have the strongest effect on stationary disturbances. Rius-Vidales et al. [3] conducted an extensive
experimental investigation using infrared thermography and reported the critical amplification factor reduction induced
by the step, ∆N , to be affected by yc/h and h/δ?, the estimated crossflow vortex height-to-step height ratio and the
relative step height respectively. Rius-Vidales et al. [3] found no evidence for universal validity of the criteria proposed
by Tufts et al. [2]. In contrast, they identified a significantly more complex functional relationship that is affected not
only by the topological characteristics of the incoming instability, but also by its respective amplitude, growth rate, and
overall stability characteristics.

Eppink and Casper [8] performed PIV experiments and segregated relevant effects downstream of the step location;
close to the step, flow separation and crossflow reversal were identified as main flow features. In this region, significant
growth of stationary perturbations was captured. Further downstream, the so-called flow-recovery region is a second
region of strong growth of the stationary perturbations, not necessarily at the same spanwise wavelengths which had
undergone strong amplification near the step. This second amplification phase is partially ascribed to non-linear effects,
inasmuch as significant sub-harmonic growth is measured in this region. Eppink and Casper [8] put into question the
model presented by Tufts et al. [2] for determining critical step heights; they did not find evidence of constructive
interaction between the incoming crossflow vortices and the step-induced helical flow.

While the majority of numerical investigations of transitional flows over geometrical imperfections is performed
using Direct Numerical Simulations, other methodologies have been emerging in recent years. Sumariva and Hein [9]
used the Linearised Harmonic Navier Stokes equations (LHNS) to study the impact of isolated humps on convective
Tollmien-Schlichting (TS) instabilities. Cooke et al. [10] applied the LHNS approach to DNS base flows to investigate
stationary crossflow perturbations interacting with step excrescence. When considering forward-facing steps, LHNS
was proven to be capable of dealing with the rapid streamwise variations of the base flow near the step. Cooke et al. [10]
reported sudden stationary crossflow growth triggered by the step corner. In line with results of Tufts et al. [2] and
Eppink and Casper [8], Cooke et al. [10] identified a secondary peak in the stationary perturbation shape emerging at
the step location near the wall, which merges back with the primary peak as the perturbation structure moves further
downstream. While Tufts et al. [2] attributed the growth of the secondary peak to the interaction between the incoming
disturbance and the upper region of flow reversal, Cooke et al. [10] did not capture an upper separation bubble –despite
their step geometries to reach up to 53% of the boundary layer thickness–. Based on this Cooke et al. [10] question
the conclusions of Tufts et al. [2] with regard to the role of the upper separation bubble in amplifying the incoming
perturbation.

There is controversy in the literature with regard to the role played by step-induced flow features in altering the
evolution of the pre-existing disturbance. In some cases, it has lead to conflicting hypotheses. Furthermore, to
quantitatively characterize the impact of the step on the stability properties of the incoming stationary perturbation upon
interaction remains an open problem. We contribute to the discussion by performing Direct Numerical Simulations
(DNS) of the base flow and the steady-state flow solution that arises from the interaction between the three-dimensional
instability and the step. We assess the organization of the stationary perturbation structures near the step and analyze
step-induced flow structures and mechanisms with potential to modify the behaviour of the pre-existing disturbance.
Particular emphasis is placed on characterizing the effect of the step on the incoming stationary instability solely,
disregarding possible effects on the unsteady perturbation content. For this purpose, we do not trigger unsteady
disturbances which are inherent to experimental environments; our intention is to isolate and shed light onto relevant
flow mechanisms which could be partially masked in more complex unsteady flow environments.

The organization of the paper is as follows. In section II, the flow problem is defined and we introduce the setup
characteristics, the main notation, and the numerical setup of our DNS. We start the discussion of the results in section
III, containing a qualitative description of the perturbation evolution in the smooth case, the step-distorted base flow
topology, and the organization of primary and secondary perturbation structures in the near-step regime. In section
IV, we quantify the effect of the step on the stability characteristics of the pre-existing crossflow disturbance upon
interaction.
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Figure 1 Sketch of the flow problem: flat plate and step geometry, external inviscid streamline with associated
crossflow velocity profile, flat-plate-aligned coordinate system (x, y, z), inviscid streamline-aligned coordinate
system (xs, ys, zs), free-stream velocity components, u∞ and w∞, step height, h, and spanwise domain length, λz .

II. Methodology

A. Flow problem and geometry
A sketch of the flow problem is depicted in Fig. 1. We model the swept-wing flow as flow over a swept flat plate

with a prescribed favourable pressure gradient aligned with the streamwise direction. The evolution of external pressure,
pe, resembles the airfoil-induced streamwise pressure gradient near the leading edge of a swept wing. For this purpose,
we use data acquired during independent experiments performed at TU Delft for a sweep angle of 45◦. See Rius-Vidales
et al. [3] for details on the wing set-up employed in the experimental campaign. The computational domain and the
main coordinate system x = [x y z]T are correspondingly swept and aligned with the leading edge of the airfoil. A
laminar three-dimensional boundary layer superimposed with a small-amplitude crossflow disturbance with a shape
function obtained by linear stability analysis is introduced at the inflow. The boundary layer and the perturbation develop
over the flat plate in the x direction and encounter a forward-facing step distributed along the spanwise direction, z.
The direction normal to the wall is denoted by y and the height of the step by h. To account for the sweep angle, the
incoming free-stream velocity is composed of a velocity component in x-direction, u∞, and a velocity component in
z-direction, w∞. The inflow boundary layer thickness, δ0 = 7.71 × 10−4 m, and the inflow free-stream streamwise
velocity, u∞ = 15.10 m/s, have been chosen as global characteristic quantities of our flow problem.

DNS for three different forward-facing step heights at a fixed streamwise location and for fixed free-stream properties
have been performed. Table 1 shows a comparison between boundary layer properties and step properties among all
tested configurations. The parameter δ99,h expresses the undisturbed boundary layer thickness at the location where the
steps would be placed, and we introduce the definition

Reh =
u∞h
νh

. (2)

All tested configurations represent sub-boundary layer roughnesses; the largest step reaches approximately half of the
undisturbed boundary layer thickness. To analyse the effect of the step location lies outside the scope of the current
work. Thereby, the streamwise location of the step is fixed for all configurations, and corresponding to 20% of the chord
of the wing model used to extract the free-stream conditions. The inlet of the numerical domain is virtually placed at
5% of the chord.
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Case h/δ0 h/δ99,h uh/u∞ Reh Rehh

Step I 0.57 0.31 0.76 448.80 339.06
Step II 0.73 0.40 0.91 577.13 523.97
Step III 0.95 0.52 1.07 748.13 797.01

Table 1 Comparison of boundary layer parameters among step cases.

B. Coordinate systems, parameters, and notation
In this work two coordinate systems are employed, namely, the flat plate-aligned coordinate system, {x, y, z}, and

a coordinate system whose axes are locally oriented based on the trajectory of the inviscid streamline, {xs, ys, zs}.
We denote by xs the unit vector pointing in the direction locally tangent to the inviscid streamline, ys = y, and zs is
orthonormal to xs and ys (Fig. 1). The velocity field in the flat-plate-aligned coordinate system is expressed as follows:
the x-aligned velocity is indicated by u, while v and w respectively refer to the wall-normal and the spanwise velocity
components.

Letting q be the state vector q = [u v w p]T , the developed flow is decomposed as

q(x) = qb(x) + q′(x). (3)

The left-hand-side (LHS) of Eq. 3 is the steady developed flow solution, qb is the laminar base flow solution, q′ is
the stationary disturbance field, which both are functions of the spatial coordinate vector x. The base flow is assumed
to be a spanwise-invariant flow solution, i.e., ∂qb/∂z = 0; under the hypothesis of infinite span wings, the spanwise
external pressure gradient and the acceleration of the base flow in z are assumed negligible [11–13]. Accordingly, the
free-stream spanwise velocity w∞ is set constant throughout the domain and such that w∞ = −1.24u∞.

Upstream of the step, the perturbation field is composed of the streamwise-developing crossflow disturbance and its
associated sub-harmonics. The fundamental stationary crossflow disturbance, referred to as (0,1), is prescribed at the
inflow, whereas the sub-harmonic components arise further downstream due to non-linear interactions. In this work we
refer to instability waves as (m,n). The index n = 2,3,4, . . . expresses waves whose spanwise wavenumber is a multiple
of the fundamental one, denoted by β0. The index m expresses waves of unsteady nature, thus m = 0 within the scope
of this work. The mean-flow distortion is denoted as (0,0). Upstream of the step, the stationary crossflow instability
manifests in the developed flow field as stationary co-rotating vortices, whose axes of rotation are approximately
aligned in the direction of the inviscid streamline. The instability itself, however, develops as counter-rotating vortices
[14]. To model the streamwise evolution of the crossflow mode, periodic boundary conditions are applied at the
spanwise boundaries, and the spanwise domain length is set equal to the spanwise wavelength of the fundamental wave,
λz = 2π/β0. In this work, we choose λz = 7.5 mm, which is the wavelength of the stationary crossflow mode with
the largest amplification factor, as predicted by linear local stability methods applied to the computed DNS base flow.
Despite their inherent parallel flow assumption [15], linear local methods can predict the wavelengths of the most
amplified stationary crossflow disturbances [11].

The results of the DNS are Fourier analyzed in the spanwise direction. The perturbation field is decomposed as a
sum of spatial Fourier modes, i.e.,

q′k =
j=N∑
j=0

Ak
(0, j) |q̃k |(0, j)ei(φ

k
(0, j)+jβ0z), (4)

where N is the total number of modes considered, k expresses the pertinent component of the state vector q,
|q̃ |(0, j) = |q̃ |(0, j)(x, y) ∈ R is the normalized shape function of Fourier mode (0, j), φ(0, j) = φ(0, j)(x, y) ∈ R is the phase
of Fourier mode (0, j), A(0, j) = A(0, j)(x) ∈ R is the amplitude of Fourier mode (0, j), and i2 = −1. The real and
imaginary parts of Eq. 4 are expressed as Re

{
q′
k

}
and Im

{
q′
k

}
respectively.

C. Free-stream characterization and crossflow decomposition
The external free-stream velocity ue increases in x. This is a consequence of the fact that a favourable pressure

gradient is prescribed. Moreover, as the pressure gradient is not constant in our DNS case, due/dy is non-negligible,
and thus ue = ue(x, y) with due/dx � due/dy. The free-stream non-uniformity in y poses the challenge of establishing
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Figure 2 Streamwise evolution of free-stream properties: streamwise velocity at the upper boundary (a),
inflow streamline used to define the pseudo-free-stream in the clean case (b) and in step case III (d), streamwise
velocity of the pseudo-free-stream in the clean case (solid red) (c) and in step case III (solid red) (e). Streamwise
location of the step (black dashed), trend shown in (a) replicated in (c, e) (black dash-dotted).

a robust definition of pseudo-free-stream conditions to be employed for the characterization of boundary layer properties.
By pseudo-free-stream, we mean a unique definition of free-stream properties for all step cases, which is representative
for the outer-flow evolution and is a function of x only. For this purpose, we numerically integrate an inflow streamline
forward in the streamwise direction. For all smooth and step cases, the properties of the flow along the trajectory of
each integrated streamline define their respective pseudo-free-stream properties. Hereafter, we denote by ûe = ûe(x) the
(external) streamwise velocity associated to the pseudo-free-stream. Figure 2 portrays the trajectories of integrated
streamlines and the evolution of ûe in x for the clean and the largest step cases.

A robust definition of representative free-stream properties is also required to perform the crossflow-velocity
decomposition, that is, to express the velocity components in the coordinate system oriented with respect to the local
deflection of the characteristic inviscid streamline. Accordingly, we evaluate the angle that xs forms with x as

ϕ(x) = arctan
(
w∞

ûe(x)

)
, (5)

and the base flow velocity components in the direction tangent, ub,s , and orthogonal, wb,s , to the characteristic inviscid
streamline are expressed as

ub,s = ub cos(ϕ) + wb sin(ϕ),
wb,s = wb cos(ϕ) − ub sin(ϕ), (6)

while vb,s = vb . In a similar fashion, the real part of the flat-plate-aligned velocity perturbation field (0,1) –as defined
in Eq. 4– projected on the inviscid-streamline-aligned coordinate system reads
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Re
{
u′s,(0,1)

}
= Re

{
u′(0,1)

}
cos(ϕ) + Re

{
w′(0,1)

}
sin(ϕ),

Re
{
v′s,(0,1)

}
= Re

{
v′(0,1)

}
,

Re
{
w′s,(0,1)

}
= Re

{
w′(0,1)

}
cos(ϕ) − Re

{
u′(0,1)

}
sin(ϕ).

(7)

Hereafter, a subindex “s” expresses that the velocity components are expressed on the streamline-based coordinate
system.

D. Computational setup
We compute the step-flow field by numerically solving the incompressible Navier-Stokes equations. We perform

independent DNS of the unperturbed laminar base flow and the stationary developed flow over the step. The stationary
developed flow arises from the interaction between an incoming stationary crossflow instability and the step. In absence
of unsteady perturbations, the DNS capture only perturbation mechanisms of stationary nature.

The DNS of the base flow and the developed flow are performed with INCA, a conservative finite-volume
solver [16, 17]. Relevant previous applications of this flow solver include perturbation growth flow mechanisms in
incompressible and compressible boundary layers. See for instance Hu et al. [18], who model the dynamics of a
supersonic transitional flow over a backward-facing step, or Casacuberta et al. [19], who studied the transitional wake
of a micro-ramp immersed in a quasi incompressible boundary layer. The incompressible Navier-Stokes equations
are marched in time with a third-order Runge-Kutta method. A fifth-order upwind scheme is used to discretize the
convective terms. We use the L2-norm of the temporal derivatives, ε = 10−6 and ε = 10−9, as convergence criterion for
the developed flow and base flow simulations, respectively. The time-converged base flow solutions are used as initial
condition for the developed flow computations.

The flow problem is solved in a numerical domain of dimensions 0 ≤ x/δ0 ≤ 480 in the streamwise direction,
0 ≤ y/δ0 ≤ 26 in the wall-normal direction, and −4.86 ≤ z/δ0 ≤ 4.86 in the spanwise direction. For all configurations
tested, the step is located at x/δ0 = 178.56. The coordinate xst = x − 178.56δ0, expresses the relative streamwise
distance from the step. The streamwise domain length of the current set-up ensures that the evolution of the stationary
perturbations and their harmonics are well captured. Furthermore, we place the upper boundary of our numerical
domain sufficiently far from the wall, such that the influence of the step on the free-stream evolution near the top
becomes negligible. This is a point of special attention, inasmuch as the independent empirical data used to define the
top boundary condition of the DNS of the step cases was measured in a smooth wing configuration, i.e., without steps.

The results presented in this paper have been obtained with a computational grid containing 4 × 105 and 7.4 × 106

grid cells for the base flow and the developed flow cases respectively. Figure 3 portrays the structure of the grid around
the step. The grid is homogeneous in the spanwise direction, with 2 and 18 grid cells along z for the base flow and the
developed flow computations, respectively. The cells within a localized rectangular domain encompassing the near-step
region are square-shaped. Further away from the region of interest, we coarsen the grid in both the streamwise and the
wall-normal directions; hyperbolic stretching refinement is applied in the buffer region separating the near-step domain
and the outer domain.

As boundary conditions, we prescribe total pressure at the outlet, whereas a static pressure distribution obtained
from the independent empirical data is imposed at the top boundary. Velocity is extrapolated in a way that velocity

Figure 3 Grid structure around the step.
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fluctuations are damped at the upper boundary [17]. To reproduce the experimental free-stream conditions described
previously in our numerical simulations, we fit a polynomial of order four and with logarithmic basis to the experimental
streamwise velocity distribution:

uexpe /u∞ = 0.0023 ln4(x + c) + 0.0377 ln3(x + c) + 0.1752 ln2(x + c) + 0.5303 ln(x + c) + 1.8574, (8)

with c = 0.0468 m. We use Eq. 8 and the assumption of irrotational flow in the outer flow region to compute a static
pressure distribution that is prescribed as upper boundary condition in the DNS.

We apply periodic boundary conditions in the z direction and the no-slip condition at the wall. The three-dimensional
laminar boundary layer at the inflow is obtained as the solution to the Falkner-Skan-Cooke equations [15], which
we denote by uFSC. For the DNS of the developed flow, we additionally perturb the inflow solution by adding a
small-amplitude neutral stationary crossflow mode. Accordingly, the prescribed inflow streamwise velocity, uin, reads

uin = uFSC + A0
(
ũinr

{
cos(αin

r x + β0z)} − ũini
{
sin(αin

r x + β0z)}) , (9)

in the developed flow simulations, whereas we impose uin = uFSC in the base flow computations.
In Eq. 9, αin

r ∈ R is the streamwise wavenumber of the inflow perturbation, ũin = ũinr + iũini is the normalized
streamwise-velocity shape function of the inflow perturbation with max

{
abs(ũin)} = 1, and A0 ∈ R is the initial

disturbance amplitude. We impose A0 = 3.5×10−3u∞ in the smooth and all step cases; the justification for this particular
choice is given in section III.A. The values of αin

r , ũinr , ũini used in Eq. 9 are the eigenproperties of the stationary crossflow
mode obtained as the solution to a local linear Orr-Sommerfeld analysis [15] on the inflow DNS base flow profile.

III. Organization of the base flow and the perturbation field at the step

A. Perturbation development in the smooth case
We start the analysis of the results by describing the evolution of the perturbation field in the smooth flat plate.

When analyzing the behaviour of the crossflow disturbance in further sections, differences in amplitude and perturbation
shape distortion will be attributed to the presence of steps.

The laminar boundary layer and the small-amplitude crossflow mode imposed at the inflow develop along the
flat plate. The boundary layer, which is invariant in the spanwise direction, grows in x. At the virtual location of
the step, the boundary layer thickness has increased by 1.8 times. Figure 4 depicts the perturbation shape of the
streamwise-velocity-perturbation Fourier modes (0,1) and (0,2). In the case of the fundamental component, the shape
function displays a single-peak structure; the second harmonic is characterized by a double-peak structure.

We quantify the amplitude evolution in x of the different Fourier components by measuring amplitude at the
wall-normal location of the global maxima of their respective shape functions, following the definition given in Eq. 4.

-80 -60 -40 -20 0 20 40

1

2

3
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y
/δ

0
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-80 -60 -40 -20 0 20 40

1
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3
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Figure 4 Shape of the streamwise-velocity-perturbation Fourier modes (0,1) (a) and (0,2) (b).

8

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
26

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

08
54

 



0 20 40 60 80 100 120 140 160

10−1

10−3

10−5

10−7

x/δ0

Au (0
,j
)/u

∞

0 0.5 1
0

1

2

3

4
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Figure 5 Streamwise evolution of the amplitude of the streamwise-velocity-perturbation Fourier modes (0,0)
(dotted orange), (0,1) (solid black), (0,2) (dash-dotted blue), (0,3) (dashed red) from DNS and from PSE (circles)
(a). Shape function of the primary crossflow disturbance at xst = 0 from DNS (solid black) and PSE (circles) (b).
Plane of streamwise velocity in the developed flow field at xst = 0 (c).

We choose an inflow amplitude of the primary crossflow disturbance of A0 = 3.5 × 10−3u∞. This choice yields
exponential streamwise growth of the fundamental component until approximately the virtual location of the step, while
the high-order harmonics are weakly activated at xst = 0. By weak harmonics, we mean crossflow sub-harmonic waves
whose amplitudes are orders of magnitude lower than the primary wave, and they do not significantly distort the base
flow nor significantly deviate the streamwise evolution of the fundamental instability from the trend predicted by linear
stability methods. This is illustrated in Fig. 5 (a) portraying the evolution in x of the amplitude of the fundamental and
the sub-harmonic Fourier components. Figure 5 (a) additionally shows the amplitude evolution of the fundamental
crossflow disturbance obtained by applying the Parabolized Stability Equations (PSE) approach [20] to the computed
DNS base flow. We find good agreement with the trend measured from DNS. Significant differences between growth of
the primary component in the DNS and from the linear stability method begins approximately downstream of the virtual
location of the step. We also find agreement when comparing shape function profiles at xst = 0, see Fig. 5 (b).

When the crossflow instability develops in x, the total developed flow field eventually displays a characteristic wavy
pattern. This is shown in Fig. 5 (c) portraying the streamwise velocity of the field obtained as the superposition of the
base flow and the full perturbation system at xst = 0.

B. Topology of the base flow around the step
A major feature of the step-distorted laminar base flow is flow recirculation induced at the step, see Fig. 6 depicting

streaklines of the base flow in the x-y plane. In this work, flow separation refers to the flat plate-aligned streamwise
velocity, ub . We capture flow reversal at the lower concave corner for all step configurations, as commonly reported in
previous investigations [2, 10]. On the other hand, previous work debates the existence of flow recirculation downstream
of the step. Whereas Tufts et al. [2] point out that an upper separation bubble is found for the whole range of step heights
tested, Cooke et al. [10] do not capture flow reversal downstream of the step in any configuration –despite their steps
reaching up to 53% of the undisturbed boundary layer thickness–. The results of our DNS show that flow separation in
the upper corner is induced only in the largest step cases, i.e., step configurations II and III. The existence and the extent
of flow recirculation has been further addressed by evaluating the distribution of wall shear. It ought to be mentioned,
however, that a very weak and localized recirculation bubble cannot be excluded for step case I. Future computational
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Figure 6 Base flow crossflow velocity, ws,b , streaklines of the base flow field (ub ,vb) (solid grey), loci of points
with ws,b = 0 (dotted white) for step case I (a), and step case III (b).

work involving more refined grids will shed light on this matter.
Table 2 summarizes the main features of the regions of flow separation induced upstream and downstream of the

step. In this work, their basic geometrical properties are defined based on the evolution of ub = 0. The region of flow
recirculation at the lower step corner terminates at the step for all configurations, and the cores of their reverse flow
vortices are maintained rather close to the step. Despite the increase in streamwise length of the flow separation region
for an increase in step height, the magnitude of peak reversed-flow within is maintained rather low, never surpassing 1%
of the local external velocity, ûe, in any step case. The upper separation bubbles attain a higher strength, i.e., peak
reversed-flow value, when compared to that at the lower corner; step cases II and III respectively acquire 1% and 3.3%
of the local external velocity, ûe.

Within the scope of classical pressure-induced laminar separation bubbles, Rodríguez et al. [21] indicate that a
self-excited global mode exists in bubbles with peak reversed-flow values of at least 7% of the local free-stream velocity.
Alam and Sandham [22] point out that an absolute instability mechanism may exist for bubbles with a strength of
more than 15%. Notwithstanding that the separation bubbles observed in the present study are geometry-induced, the
most critical bubble in our simulations is far from attaining the aforementioned values. Furthermore, our DNS of the
stationary developed flow do not show evidence of the existence of a self-sustained global mode interacting with the
incoming crossflow vortices.

Besides flow separation, we also capture reversal of the crossflow component in the near-step base-flow region.
In the clean case, the combination of sweep angle and a favourable streamwise pressure gradient induces a crossflow
component which is positive in our coordinate system. When a step is placed, it locally distorts the pressure distribution.
When approaching the step in the x-direction, a local region of adverse pressure gradient is induced. In a very limited
streamwise extent at the step corner, the pressure gradient momentarily becomes favourable, yet it is immediately
followed in x by a second region of adverse pressure gradient. This behaviour is identical to that reported by Tufts et al.
[2]. The two regions of adverse pressure gradient upstream and downstream of the step induce a negative crossflow
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Feature Property Step I Step II Step III

Upstream Start: xst/δ0 = −0.59 −1.35 −2.81
separation Height: y/δ0 = 0.14 0.24 0.41

Relative height: y/h = 0.23 0.31 0.41
Strength: −ub/u∞ = 0.22 × 10−2 0.50 × 10−2 0.93 × 10−2

Relative strength: −ub/ûe = 0.17 × 10−2 0.38 × 10−2 0.70 × 10−2

Downstream Start: xst/δ0 = - 0.22 0.16
separation End: xst/δ0 = - 0.86 3.35

Strength: −ub/u∞ = - 1.36 × 10−2 4.39 × 10−2

Relative strength: −ub/ûe = - 1.03 × 10−2 3.29 × 10−2

Upstream Start xst/δ0 = −7.07 −9.51 −12.64
crossflow reversal Strength: −ws,b/u∞ = 5.77 × 10−2 6.95 × 10−2 7.55 × 10−2

Relative strength: −ws,b/ûe = 4.38 × 10−2 5.26 × 10−2 5.69 × 10−2

Strength location: xst/δ0 = corner corner corner
Downstream Start: xst/δ0 = 0.27 0.22 0.16

crossflow reversal End: xst/δ0 = 1.19 5.35 13.29
Strength: −ws,b/u∞ = 1.39 × 10−2 3.65 × 10−2 5.32 × 10−2

Relative strength: −ws,b/ûe = 1.05 × 10−2 2.75 × 10−2 3.99 × 10−2

Strength location: xst/δ0 = 0.38 0.32 0.27
Table 2 Properties of the regions of flow separation and crossflow reversal at the step.

velocity near the wall. Downstream of the step, and further away from the wall, the crossflow component shows a
strong (positive) increase, see Fig. 6. We capture crossflow reversal upstream and downstream of the step for all
configurations. In contrast to the geometry-induced separation bubble(s), the crossflow reversal is a pressure-induced
effect, carrying stronger history in the streamwise direction. As such, the regions of crossflow reversal span over a
significantly larger streamwise extent than the areas of flow recirculation, see Table 2. Furthermore, the magnitude of
the peak reversed-crossflow is generally larger (in absolute value) than the strength of the separation bubbles.

C. Organization of Fourier mode (0,1) in the near-step regime
Amain question motivating the present study is the elucidation of the pertinent mechanisms governing the interaction

of the incoming stationary crossflow instability with the forward-facing step. Therefore, we next put the focus on the
perturbation organization in the immediate vicinity of the step and we first restrict the analysis to the primary Fourier
mode. The evolution of the sub-harmonic content is discussed later on in section III.F.

The three-dimensional organization of the perturbation Fourier mode (0,1) near the step is portrayed in Fig. 7 (u′(0,1)),
and Fig. 22 in the Appendix (w′(0,1)), at selected y-z planes. Additionally, Fig. 8 depicts the non-normalized shape
function of the streamwise-velocity-perturbation Fourier mode (0,1) immediately upstream and downstream of the step.
When the step is approached in x, the incoming instability gradually lifts up and passes over it. Figure 8 (a.1-a.3)
illustrates that in the upstream vicinity of the step, the wall-normal position of the primary peak in the shape function has
significantly shifted upward with respect to the smooth case. As the core of the incoming instability lifts up, a secondary
peak in the shape function develops close to the wall. It manifests in the three-dimensional perturbation organization as
a system of streaks alternating in the spanwise direction, see Fig. 7 and Fig. 22 in the Appendix. For all step heights, the
primary peak –which is associated to the core of the pre-existing disturbance– remains after passing the step.

Downstream of xst = 0 in step case I, Fourier mode (0,1) characterizes well the coherent evolution of the incoming
instability and the mode shape qualitatively resembles that of the clean case. When considering step case III, however,
the shape of Fourier mode (0,1) undergoes strong changes in topology, see Fig. 7 (b) and Fig. 22 (b) in the Appendix.
The system of near-wall streaks captured upstream of the step arises downstream of the step as well. It develops
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Figure 7 Three-dimensional organization of the streamwise-velocity-perturbation Fourier Mode (0,1) at the
step location for step cases I (a) and III (b).

underneath the core of the incoming instability and it undergoes a phase evolution in the x-direction different than that
of the upper part of the pre-existing disturbance. In a fashion similar to the region upstream of the step, we identify a
secondary near-wall peak in the perturbation shape downstream of the step, which is in linked to the near-wall streaks.
We capture manifestations of this secondary lobe in the shape function for all xst > 0 in the near-step region and for all
step configurations.

The system of streaks in the upstream and the downstream vicinity of the step displays a different relative organization
when considering the streamwise and the spanwise velocity components. In step case III, upon comparison between the
core amplitude values of the incoming crossflow instability and the near-wall streaks, we find significant differences
downstream of the step in the case of u′(0,1) (Fig. 7 (b)). Contrarily, in the case of w′(0,1), the cores of the original
instability and the near-wall streaks are hard to visually differentiate downstream of the step, see Fig. 22 (b) in the
Appendix. Upstream of the step, the trend is reverted. In the case of w′(0,1), the amplitude ratio between the core of the
mode shape and the near-wall lobe is closer to one than in the case of u′(0,1). This is illustrated in Fig. 7 (b) and Fig. 22
(b) in the Appendix, but appears more evident in Fig. 8 and Fig. 23 in the Appendix.

Interestingly, we find that downstream of the step, the streamwise position of maximum amplitude of the near-wall
lobe is not at the exact step corner, but at a small finite distance from it, see Fig. 8 and Fig. 23 in the Appendix. Initially
close to the step corner, the secondary peak is weak in step case II, and very weak in step case I. In step case III, the
near-wall lobe attains significantly larger amplitude values than the primary peak. For increasing x, the secondary lobe
in step cases I and II rapidly merges back to the main profile, whereas in step case III, it undergoes strong decay in
amplitude and, eventually, it becomes a local minima rather than a local maxima. This is highlighted in Fig. 9 depicting
the evolution of the shape function in the streamwise direction downstream of the step. Further downstream, the part of
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Figure 8 Profiles of Au
(0,1) |ũ|(0,1) at xst/δ0 = −0.32 (a.1), −0.16 (a.2), −0.05 (a.3), 0.11 (b.1), 0.22 (b.2), 0.38 (b.3),

0.54 (b.4), 0.65 (b.5). Clean case (solid black), step case I (dotted orange), II (dash-dotted blue), III (dashed red).
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Figure 9 Profiles of Au
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position of the secondary inflection point in step case III base flow.
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the profile associated to the near-wall indentation gradually relaxes back towards a configuration closer to that displayed
by the no-step perturbation profile (Fig. 9 (h)). The existence of a secondary lobe in the shape function downstream of
the step has been reported previously, see for instance Tufts et al. [2], Cooke et al. [10], or Eppink [23]. In particular, we
find very good qualitative agreement between the results of Fig. 9 and the results presented by Tufts et al. [2] at the
downstream vicinity of the step.

Sufficiently downstream of the step, the overall shape of Fourier mode (0,1) in Fig. 7 (b) and Fig. 22 (b) in the
Appendix gradually becomes elongated and tilts anti-clockwise. This shape transformation is observed to occur in
parallel to the process by which the near-wall streaks become weaker and eventually disappear in x.

D. Correlation with base-flow features
We next refocus the attention to main elements of the base flow. Figure 10 (c,d) reproduces the results of Fig. 7 at

the centerplane, i.e., at z = 0. To aid in the identification of base flow mechanisms with potential to trigger perturbation
growth, we superimpose relevant features of the base flow on Fig. 10, namely, the location of ub = 0, ws,b = 0,
d2ub/dy2 = 0, and d2ws,b/dy2 = 0. Additionally, Figure 10 (a,b) portrays the evolution of the total perturbation
system.

Solid black lines in Fig. 10 are the loci of inflection points in the crossflow component. Upon comparison with the
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Figure 10 Streamwise-velocity-perturbation structure at the step, represented at the centreplane (z = 0): total
perturbation field (a,b), perturbation Fourier mode (0,1) (c,d) for step case I (a,c) and step case III (b,d). Loci
of points of base flow features: d2ws,b/dy2 = 0 (solid line), d2ub/dy2 = 0 (dash-dotted line), ws,b = 0 (dashed
line), ub = 0 (dotted line).
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results of the no-step case, the upper solid black line in Fig. 10 is associated to the inflection point in the crossflow
component which originally gives rise to the crossflow instability. It undergoes a distortion in spatial organization at the
step which increases with the height of the step. However, a major difference between the smooth and the step cases is
the appearance of a prominent second family of inflection points in the crossflow component. They arise near the wall
and close to the step, both upstream and downstream of it, see Fig. 10. Additionally, Fig. 9 depicts the wall-normal
location of this secondary step-induced inflection point relative to the wall-normal distribution of the perturbation shape
function. Hosseinverdi and Fasel [14] study instability mechanisms of swept laminar separation bubbles. They report
the existence of a secondary inflection point in the crossflow component as well. Similar to the step cases of this work,
it emerges in a region of adverse pressure gradient and they associate it to reversal of the crossflow component [14].

In the largest step case, we observe correlation between the location of this second family of inflection points
downstream of the step and the core of the secondary near-wall peak in the mode shape of u′(0,1) (Fig. 9). Correlation is
reasonably good but deteriorates when the near-wall lobe is measured in the spanwise-velocity component. A family
of step-induced inflection points in the base flow streamwise-velocity component, ub, is capture as well. Its spatial
organization resembles that of the second family of inflection points in the crossflow component, see dash-dotted lines
in Fig. 10. Upon performing a local linear Orr-Sommerfeld analysis on the base flow upstream and downstream of the
step considering β = β0, we do not identify additional unstable eigensolutions which are not present in the clean case,
and which could potentially be associated to a new inviscid instability mechanism arising at the step. Nonetheless, this
is not conclusive given the strong assumptions inherent to the Orr-Sommerfeld approach [15].

Tufts et al. [2] argue that the secondary peak in the shape function profile develops as a result of the interaction
between the incoming instability and the downstream region of flow recirculation. There is little evidence in our DNS to
support such claim. We capture manifestations of the near-wall peak for all xst > 0 in the near-step regime. Nonetheless,
flow reversal in the basic flow starts at a slightly more downstream position, at xst/δ0 = 0.22 and 0.16 in step cases II and
III respectively (Table 2). Furthermore, manifestations of the secondary lobe are measured for all step heights, whereas
in step case I we do not capture flow reversal downstream of the step. Cooke et al. [10] report two peaks in their shape
function profile as well, despite not capturing downstream flow separation in any of their step configurations. Tufts
et al. [2] support their argumentation by finding that the secondary peak is at the same wall-normal position than the
downstream area of flow recirculation. In a similar fashion, Eppink and Casper [8] indicate good agreement between the
location of the near-wall peak in the perturbation shape and the region of flow separation. However, this is not the case
in our results. Upon visual inspection, we find that the core of the near-wall lobe in the streamwise-velocity-perturbation
Fourier mode (0,1) is located above the region featuring ub < 0 in the base flow. We remark that the same conclusion is
drawn when reversal in the streamwise-velocity component is characterized using the spanwise-average developed flow
solution instead, or when the perturbation shape accounts for the addition of the primary disturbance and its associated
sub-harmonics.

E. Stationary secondary perturbations
In section IV, we quantitatively characterize the amplitude evolution of the incoming instability upon interaction

with the step. However, before attributing a stabilizing or destabilizing effect of the step, it is paramount to clarify to
what degree the near-wall system of streaks described above can be assumed to be a structure distinct to the pre-existing
instability. To aid in the identification of coherent perturbation structures, we compute the Q-criterion [24] of the
perturbation field (0,1). We evaluate the Q-criterion in the following manner:

Q′(0,1) =
1
2

(
| |R′(0,1) | | − | |S′(0,1) | |

)
, (10)

where

| |R′(0,1) | | =
1
2

{(
ω′x,(0,1)

)2
+

(
ω′y,(0,1)

)2
+

(
ω′z,(0,1)

)2
}
,

| |S′(0,1) | | =
i,k=3∑
i,k=1

{
1
2

(
∂m′i
∂xk
+
∂m′

k

∂xi

)}2

,

(11)

and m′1 = u′(0,1), m′2 = v′(0,1), m′3 = w′(0,1), x1 = x, x2 = y, x3 = z, real part implied.
Definition 10 is applied to the perturbation field (0,1) solely, i.e., without the addition of the base flow and the

sub-harmonic components, since the current aim lies in the identification of vortical structures developing in the
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Figure 11 Q-criterion of perturbation field (0,1) at y-z planes with integrated streaklines of the inviscid-
streamline-oriented velocity perturbation field (0,1). Planes located at the upstream vicinity of the step (1), at
the downstream vicinity of the step (2), at a constant position further downstream (3). Clean case: xst = −1δ0
(a.1), 3δ0 (a.2), 15δ0 (a.3); step case I: xst = −0.7h (b.1), 1.5h (b.2), 15δ0 (b.3); step case II: xst = −0.7h (c.1), 2h
(c.2), 15δ0 (c.3); step case III: xst = −0.7h (d.1), 3h (d.2), 15δ0 (d.3).

fundamental perturbation space. Marxen et al. [25], for instance, study mechanisms of three-dimensional disturbances
in a pressure-induced separating boundary layer. They identify disturbances in the form of streamwise perturbation
vortices through visualization of isosurface of λ2 [26] in the perturbation field. Under the definition of Eq. 10, we
characterize regions of vortical motion in the perturbation organization as regions with excess of rotation rate relative to
the strain rate, i.e., where Q′(0,1) > 0.
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Furthermore, in an attempt to shed light onto the nature and characteristics of the near-wall perturbation streaks, we
consider the representation of the perturbation field expressed on the inviscid-streamline-aligned coordinate system. We
evaluate the vorticity of the field defined in Eq. 7 in the direction xs as

ω′xs,(0,1) =
∂w′

s,(0,1)
∂ys

−
∂v′

s,(0,1)
∂zs

, (12)

with

∂w′
s,(0,1)
∂ys

=
∂w′

s,(0,1)
∂y

,

∂v′
s,(0,1)
∂zs

=
∂v′

s,(0,1)
∂z

∂z
∂zs
=
∂v′

s,(0,1)
∂z

cos (ϕ) ,
(13)

real part implied. Figure 11 displays y-z planes of Q′(0,1) with streaklines of the two-dimensional field defined by
the inviscid-streamline-aligned perturbation components, v′

s,(0,1) and w′
s,(0,1), at the plane. We present results for the

smooth and all step cases. Figure 11 (1) is representative of the immediate upstream vicinity of the step, Fig. 11 (2) is
representative of the immediate downstream vicinity of the step, and Fig. 11 (3) shows a much downstream position, yet
still in the near-step regime.

First, a representation of the primary crossflow disturbance when it develops over the smooth flat plate is shown in
Fig. 11 (a). As expected, the instability manifests itself as spanwise-alternating counter-rotating vortices [14]. They are
counter-rotating since the vorticity of the perturbation field (0,1) in the xs direction features opposite values (but equal
in absolute value) at the core of the swirling motion in z-consecutive vortices. Furthermore, the core of the perturbation
vortices matches well the location of large positive values of Q′(0,1).

When considering the smallest step case, far upstream of the step, the organization of the projected streaklines is
identical to that of the no-step case. At the immediate upstream vicinity of the step, it suddenly displays a significantly
different organization, featuring a three-layer structure in the wall-normal direction. First, the core and the upper part of
the original perturbation vortices essentially maintain their topology. Second, there is a convoluted pattern of streaklines
close to the wall. In between, we capture the onset of a new family of weak coherent perturbation vortices distributed
in the spanwise direction and with the same spanwise wavenumber than the pre-existing vortices. Figure 11 (b.1) is
representative of this. Therefore, Fourier mode (0,1) contains at least two main distinct vortical structures within: the
perturbation vortices associated to the pre-existing crossflow instability and secondary vortices which arise immediately
upstream of the step. At the streamwise position of inception of the latter, ω′

xs,(0,1) displays clear patches which visually
match the location of the secondary vortices. Consecutive spanwise patches feature opposite values of vorticity, thus the
new vortices counter-rotate with respect to each other as well. Furthermore, we identify isolated patches of large Q′(0,1)
very close to the wall, which could point towards the existence of an additional perturbation structure.

Just after passing the step corner, the secondary vortices undergo distortion in shape. They rapidly re-organize in x
and remain underneath of the primary vortices and close to the wall. When moving further downstream, the secondary
vortices eventually disappear and the overall streakline organization becomes visually similar to that of the smooth case,
see Fig. 11 (b.3). In step case II, we observe an evolution of the perturbation vortex system rather similar to that of step
case I, see Fig. 11 (c). However, a main difference is the increased strength of the secondary vortices downstream of the
step corner. This is consistent with the fact that the near-wall lobe in the perturbation shape increases its strength when
the step height is increased. Furthermore, the secondary vortices are generally elongated in the spanwise direction,
which is a distinctive attribute of the near-wall system of streaks illustrated in Fig. 7 and Fig. 22 in the Appendix. In
essence, the secondary perturbation vortices, the near-wall streaks, and the secondary peak in the perturbation shape
function downstream of the step are manifestations of a common mechanism.

In step case III we capture strong differences in the vortical activity around the step when compared to the smaller step
cases. Figure 12 complements Fig. 11 and portrays the evolution of the perturbation vortices at additional intermediate
y-z planes for step case III solely. Upstream of the step, secondary vortices are easier to visually identify. Downstream
of the step, the near-wall vortices undergo very strong growth and distortion in shape. At xst/δ0 = 1.9, the secondary
vortices are significantly more comparable in size to the primary vortices than in step cases I and II; the region of
influence of the secondary vortices extends approximately up to 1h above the wall, see Fig. 12 (a). At approximately
xst/δ0 = 2.5 (Fig. 12 (b) and Fig. 11 (d.2)) the secondary vortices display elongation in the spanwise direction. At
this streamwise station, they become much stronger than the original perturbation vortices; the field ω′

xs,(0,1) features
significantly larger (absolute) values in the region of influence of the secondary vortices as compared to that of the

17

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
26

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

08
54

 



(a) (b) (c)

(d) (e) (f )
−4 −2 0 2 4

1

2

3

4
y
/δ

0

−4 −2 0 2 4

1

2

3

4

−4 −2 0 2 4

1

2

3

4

−4 −2 0 2 4

1

2

3

4

z/δ0

y
/δ

0

−4 −2 0 2 4

1

2

3

4

z/δ0
−4 −2 0 2 4

1

2

3

4

z/δ0

Figure 12 Q-criterion of perturbation field (0,1) at y-z planes with integrated streaklines of the inviscid-
streamline-oriented velocity perturbation field (0,1) of step case III. Planes located at xst/δ0 = 1.9 (a), 2.5 (b), 6
(c), 13 (d), 15 (e), 18 (f ). Color expresses maximum in-plane values, relative to each plane.

primary vortices. We note that the secondary vortices downstream of the step require a small finite streamwise distance
to feature their maximum strength. In a similar fashion, the near-wall lobe in the perturbation shape function does
not develop its peak amplitude at xst = 0 identically, but slightly downstream of it (Fig. 8). When moving further
downstream from the step corner, the near-wall vortices in step case III evolve in a fashion similar to the near-wall
system of streaks depicted in Fig. 7 and Fig. 22 in the Appendix: their strength rapidly decreases in x, and their cores
follow a three-dimensional trajectory different than that of the pre-existing structures.

Initially near the step corner, a primary vortex counter-rotates with respect to the secondary structure located
approximately underneath. Figure 11 (b.2), (c.2), and (d.2) portrays a streamwise station which is representative of this.
When moving downstream, the phase difference between the lower and the upper part of Fourier mode (0,1) changes
significantly. This is illustrated in Fig. 13 portraying φu(0,1) at the vicinity of the step. As a consequence, sufficiently
downstream, the secondary vortices have become closer to an equivalent co-rotating primary vortex structure above
and we observe gradual vortex merging between primary and secondary perturbation vortices. In Figs. 11 (d.3) and
12 (d), the organization of the perturbation streaklines shows a unique primary entity with a main swirling motion;
the original patches of large Q′(0,1) close to the wall and far from the wall start to merge. The spatial organization
of the primary and secondary vortices at the beginning of the merging process causes the resulting entity to initially
feature an elongated shape (Figs. 11 (d.3) and 12 (e)), which is seemingly tilted anti-clockwise with respect to the
remaining primary structure in the clean and smaller step cases (Figs. 11 (a.3), (b.3), and (c.3)). This is associated to
the characteristic elongated shape that Fourier mode (0,1) eventually exhibits downstream of the step, as previously
pointed out and illustrated in Fig. 7 (b), and Fig. 22 (b) in the Appendix.

The existence of secondary vortical structures developing underneath of the pre-existing ones at the step was
reported by Eppink [27]. In her results, the manifestation of these vortices is presented in the total flow field. In the
model proposed by Eppink [27], secondary vortices captured immediately upstream and downstream of the step are
distinct structures. The secondary vortices induced upstream generate a perturbation in the wall-normal direction. This
perturbation is maintained downstream of the step close to the wall, at the location of the second step-induced inflection
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Figure 13 Phase of the streamwise-velocity-perturbation Fourier mode (0,1) around the step of case III.

point in the crossflow component. A new secondary near-wall vortex can develop due to the strong crossflow component
right at the step, enhanced by the sustained wall-normal perturbation generated upstream [27]. The convoluted
organization of the perturbation field at the step makes it hard for us to interpret whether two distinct secondary vortices
emerge immediately upstream and downstream of the step or, on the contrary, a single structure persists and undergoes
shape distortion while passing very close to the step corner. In step case III, immediately upstream of the step, at
xst/δ0 = −0.53, we capture the core of the secondary vortices at y/δ0 = 1.17. Immediately downstream of the step, at
xst/δ0 = 0.59, the core of the secondary vortices is measured at y/δ0 = 1.17 as well. This correlation is not conclusive,
but it suggests that the secondary vortices captured downstream of the step are a single structure induced upstream of it.
Moreover, we remark that, in step case III, the wall-normal location of the second near-wall inflection point in the base
flow crossflow component lies at y/δ0 = 0.95 for xst/δ0 = −0.53 and at y/δ0 = 1.11 for xst/δ0 = 0.59.

On the one hand, Eppink [23, 27] postulates that the destabilizing effect of the step-induced inflection points –which
cause the velocity profiles to be of inviscidly unstable nature– is mainly responsible for the strong perturbation growth
downstream of the step. On the other hand, near-wall vortices with an organization which resembles the one presented in
this work have been identified in other studies concerning two-dimensional steps [28, 29] and linked to transient growth
mechanisms. Within the context of these investigations, an incoming pre-existing boundary layer instability was not
imposed, thus similarities ought to be addressed cautiously. Breuer and Kuraishi [30] studied transient growth effects
in a three-dimensional boundary layer. They pointed out that in boundary layers featuring large crossflow, transient
growth can boost the growth of crossflow vortices, which afterwards follow the Orr-Sommerfeld type of mechanism.
The appearance of streak-like regions can be a manifestation of this [30].

F. Evolution of the sub-harmonic content at the step
Until now, we have put the focus on main structures which belong to the fundamental perturbation space. Nonetheless,

the sub-harmonic instability waves are known to play a relevant role in the interaction between the incoming disturbance
and the step, see Eppink [23] for instance. Therefore, in this section we center the attention to the behaviour of Fourier
modes (0,2)-(0,4).

As mentioned in previous sections, for the choice of initial amplitude of the crossflow mode imposed at the inflow,
low activity of the sub-harmonic content is triggered at xst = 0 in the smooth case (section III.A). However, when
considering the step cases, significant activity of the sub-harmonic components is captured at the step. Figures 14 and
15 portray Au

(0, j) |ũ|(0, j), j = 2,3,4 in step cases I and III, respectively. Additionally, Figs. 14 and 15 superimpose the loci
of points of d2ws,b/dy2 = 0 in the base flow. Upstream of the step, the shape function of Fourier mode (0,2) displays a
double-peak structure which resembles the one observed in the smooth case, see section III.A. This topological feature
is common in all step configurations. However, this is hard to visualize in Figs. 14 and 15 due to the sub-harmonic
growth downstream of the step, which hinders a more comprehensive global representation.

At the step corner in the smallest step case, Au
(0, j) |ũ|(0, j), j = 2,3,4 increases suddenly in x in the region where the

secondary peak in the shape function of Fourier mode (0,1) in step case III is prominent. See for instance, Fig. 14
(b,c,d) compared to Fig. 15 (a). For increasing x, this region of enhanced sub-harmonic growth at the step corner and
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Figure 14 Shape function of Fourier mode (0,1) (a), (0,2) (b), (0,3) (c), (0,4) (d) in step case I. Solid black and
white lines are the loci of points in the base flow with d2ws,b/dy2 = 0.
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Figure 15 Shape function of Fourier mode (0,1) (a), (0,2) (b), (0,3) (c), (0,4) (d) in step case III. Solid black
and white lines are the loci of points in the base flow with d2ws,b/dy2 = 0.
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the upper lobe of the incoming perturbation structure tend to connect in space. Sufficiently downstream of xst = 0, all
sub-harmonic mode shapes manifest a (distorted) double-peak structure again.

In step case III, we capture sudden sub-harmonic amplification at xst = 0 as well, in a fashion similar to the behaviour
display by Fourier mode (0,1). In the largest step, the secondary peak in the perturbation shape of the fundamental
Fourier mode decays rapidly in x, see section III.C; however, this is not the case when considering Fourier modes
(0,2)-(0,4). When moving downstream of the step corner, the sub-harmonic disturbance growth initiated at xst = 0
persist close to the wall and amplifies. We find strong correlation between the spatial location of peak amplitude in the
shape of Fourier modes (0,2)-(0,4) and the location of the secondary inflection points in the base flow downstream of
the step. When moving further in x, the near-wall region of enhanced sub-harmonic activity gradually shifts upward,
close to the location of the primary peak of the incoming fundamental disturbance.

The similarities between the behaviour of the fundamental and the sub-harmonic Fourier modes at xst = 0 suggests
the existence of a common mechanism responsible for the sudden disturbance growth close to the wall. A main question
that arises is whether, as discussed for mode (0,1), for the sub-harmonic instabilities this is similarly attributed to the
effect of upstream secondary inflections points as suggested by Eppink [27] or due to transient growth mechanisms. By
analogy, there exists the possibility that secondary stationary perturbations with spanwise wavenumbers of β = jβ0,
j = 2,3,4... arise at the step corner as well. However, a major difference between the evolution of disturbances with
β = β0 and β > β0 further downstream of xst = 0 is the apparent insensitivity of the former to the secondary near-wall
inflection points. Thus, the evolution of Fourier modes (0,2)-(0,4) in the large step case is in qualitative agreement with
the model proposed by Eppink [27], which is partially not the case for Fourier mode (0,1). A possible explanation
which ought to be further explored is the fact that high-order instability waves may be prone to amplification due to an
Orr-Sommerfeld type of mechanisms when considering the distortion of the base flow induced by the step near the wall.

IV. Quantification of the impact of the step on the incoming stationary crossflow disturbance

A. Primary crossflow instability
We next refocus the attention to a main objective of this investigation, which is to quantitatively asses the effect of

the step on the stability properties of the fundamental crossflow disturbance upon interaction. Figure 16 portrays the
streamwise evolution of Au

(0,1), the amplitude of the streamwise-velocity-perturbation Fourier mode (0,1). Immediately
upstream of the step, Au

(0,1) grows gradually for all step configurations. Downstream of the step, the amplification of

-20 0 20 40 60 80 100
xst/δ0

158.56 178.56 198.56 218.56 238.56 258.56 278.56
0

0.1

0.2

0.3

x/δ0

Au (0
,1
)/u

∞

(A) (B)

Figure 16 Streamwise evolution of the amplitude of the streamwise-velocity-perturbation Fourier mode (0,1)
for the clean case (solid black), step case I (dotted green), II (dash-dotted blue), III (dashed red). Limits of zones
(A,B) (dash-dotted black).
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Figure 17 Streamwise evolution of the amplitude of Fourier mode (0,1), Au
(0,1), in the clean case (thick solid

black line), step case I (dotted orange line), II (dash-dotted blue line), III (red circles). Streamwise evolution of
Âu
(0,1) in step case III (thin solid red line).

Fourier mode (0,1) is gradual and extends over a large streamwise range for step cases I and II, see the zone denoted by
“A” in Fig. 16. On the other hand, the trend followed by the curve of step III is characterized by a strong and sudden
initial growth immediately downstream of the step followed by an abrupt strong decay. Further downstream, still within
zone A, we observe a phase of mild amplification followed by a second phase of decay, which causes the curve of case
III to eventually intersect the curve associated to the smooth configuration. We find the amplitude evolution of step case
III near the step to be in very close qualitative agreement with PIV results presented by Eppink and Casper [8] (Fig. 9).
In zone “B”, the clean configuration generally features larger amplitude of the primary mode, when compared to the
largest step; thus, sufficiently downstream, the incoming stationary instability is eventually stabilized with respect to the
no-step case.

We next restrict the analysis to zone A in Fig. 16 encompassing the mechanisms of interaction in the near-step regime.
As stated above, the curve of step case III undergoes a significantly different evolution than that of the curves associated
to the smooth and smaller step cases. This is ascribed to the differences pointed out previously in the development of
the perturbation structures at the step. In particular, we associate the sudden explosive growth of the curve of step III in
Fig. 16 to the strong amplification in x of the near-wall lobe in the perturbation shape function. Figure 9 illustrates that
the strength of the near-wall lobe eventually exceeds that of the primary peak. The amplitude of Fourier mode (0,1),
as formally defined in Eq. 4, is evaluated at the global maxima of the shape function in y. Consequently, at a small
finite distance downstream of xst = 0, the characterization of Au

(0,1) jumps discontinuously in the wall-normal direction
from the original primary peak far from the wall to the secondary peak close to the wall. Further downstream, as the
near-wall lobe undergoes strong amplitude decay in x, this trend is reverted.

In previous sections, we have established that the secondary lobe in the shape function profile, the system of
near-wall streaks, and the secondary vortices are manifestations of a common perturbation mechanism arising close
to the step, whereas the primary peak is associated to the core of the pre-existing instability. Thus, we believe that
the classic approach used in other investigations –which relies on characterizing the amplification or stabilization of
the incoming disturbance at the step by measuring the peak amplitude of the full perturbation shape– may lead to
misleading interpretations. Upon using the global maxima of the perturbation profile for characterizing amplification of
the pre-existing instability, close to the step for large steps, the growth of a secondary perturbation structure distinct to
the main one is inherently measured. Or, at least, the growth of a perturbation structure which originally was part of
the main one and, near the step, it decouples from it, undergoes a significantly different organization, and eventually
disappears or merges with the core of the pre-existing one.

We propose that a more representative characterization of the effect of the step on the original disturbance is obtained
when the amplitude of the perturbation shape function is measured at the wall-normal location of the original primary
peak, continuously in x. Hereafter, this amplitude definition is denoted by Â, and Â(0,1) = Â(0,1)(x). We observe that,
for all x in the near-step regime, the streamwise-velocity-perturbation shape profile features at least one point with
d |ũ|(0,1)/dy = 0 and d2 |ũ|(0,1)/dy2 < 0 far from the wall, within the boundary layer region. Moreover, the wall-normal
location of the primary peak changes smoothly in x as the perturbation system passes over the step. Figure 17 depicts

22

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
26

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

08
54

 



-8 -6 -4 -2 0 2 4 6

−1.6

−1.4

−1.2 ·10−2

xst/δ0

α̂
u i,
(0
,1
)δ

0,
α̂
v i,
(0
,1
)δ

0

-8 -6 -4 -2 0 2 4 6

−0.1

0

0.1

xst/δ0

(a) (b)

Figure 18 Growth rate of the streamwise- (dash-dotted black) and the wall-normal-velocity perturbation
component (solid green) based on the definition of Â(0,1), in the clean case (a) and step case III (b).

the streamwise evolution of Au
(0,1) and Âu

(0,1) close to the step. In the smooth and step cases I and II, Au
(0,1) = Âu

(0,1)
since secondary peaks, if present, never surpass the primary ones in strength. However, in step case III we find very
significant differences when comparing the streamwise evolution of Au

(0,1) and Âu
(0,1).

Moreover, when the aforementioned criterion for amplitude characterization is employed, we observe that different
perturbation-velocity components display different growth rates around the step. We characterize the streamwise growth
rate of the primary instability as

α̂k
i,(0,1) = −

1
Âk
(0,1)

(
d Âk
(0,1)

dx

)
, (14)

where k expresses the pertinent component of the state vector q. Figure 18 portrays the streamwise evolution of α̂u
i,(0,1)

and α̂v
i,(0,1) for the smooth (a) and step III (b) cases. In Fig. 18 (a), α̂u

i,(0,1) = α̂
v
i,(0,1) approximately. This behaviour is

expected for a stationary crossflow instability developing in a quasi-parallel boundary layer. In Fig. 18 (b), however,
the streamwise evolution of α̂u

i,(0,1) and α̂
v
i,(0,1) is fundamentally different: immediately downstream of the step, α̂v

i,(0,1)
attributes stabilization whereas α̂u

i,(0,1) attributes destabilization. This is contrary to observations performed by Eppink
[27], who points out that the growth rates of the streamwise- and the wall-normal-perturbation components are very
similar at the step. We presume that this observation refers to growth rate characterization based on peak amplitude
evolution. Eppink [27] relates the similarity in the growth rate of different velocity components to the possibly linear
nature of the disturbance mechanisms immediately downstream of the step. The discrepancy between the observations
of Eppink [27] and the results presented above ought to be further explored in future work. Particularly, since our
findings pose the question whether the crossflow instability interacting with the step can be fully described as a single
eigenmode which amplifies all velocity components at a same rate in x.

To overcome the ambiguity in amplification characterization which arises from the particular choice of a state
variable, it appears suitable to consider energy-based criteria. We introduce the following definition of disturbance
kinetic energy:

Ê(0,1) =
1
2

{(
Âu
(0,1)

)2
+

(
Âv
(0,1)

)2
+

(
Âw
(0,1)

)2
}
, (15)

which encompasses the evolution of the primary peak of all velocity-perturbation components simultaneously. We remark
that Ê(0,1) = Ê(0,1)(x). Definition 15 suffers from lack of consistency since Âu

(0,1), Âv
(0,1), and Âw

(0,1) are independently
measured at different wall-normal positions. However, if the aim lies in quantifying the impact of the step on the
incoming instability solely, characterizations based on the integration of the full perturbation profile may suffer from
vagueness in the definition of the integration limits when segregating secondary perturbation effects.

The streamwise evolution of
√

2Ê(0,1) is illustrated in Fig. 19. Upstream of the step, at approximately xst/δ0 = −16,
the curves of all step cases gradually deviate from the curve associated to the smooth case. At xst = 0, the presence of
the step has amplified the crossflow disturbance in all configurations. We observer that, the larger the step, the larger the
amplification factor at xst = 0. Downstream of xst = 0, the curves of step cases I and II grow monotonically, at a rather

23

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
26

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
1-

08
54

 



-16 -12 -8 -4 0 4 8 12 16 20 24
0.1

0.15

0.2

0.25

xst/δ0

√ 2Ê
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Figure 19 Streamwise evolution of Ê(0,1) in the clean case (solid black), step case I (dotted orange), II (dash-
dotted blue), III (dashed red).

constant rate. The curve of step case III, however, displays weak initial growth followed by an abrupt decay. The curve of
step case III eventually intersect the curve associated to the smooth case before growing again. Therefore, for our largest
step, the incoming primary crossflow disturbance undergoes strong stabilization slightly downstream of the step corner.

B. Total perturbation field
In section III.F, we have reported that significant activity of the sub-harmonic instability waves is triggered

immediately downstream of xst = 0 when considering our largest step. Thus, an accurate quantitative representation
of the amplitude evolution of the total perturbation field at the step may require the addition of high-order Fourier
modes to the methodology presented above. In this section, we extend the previous analysis by considering a Fourier
representation of the perturbation field truncated at mode (0,3).

Upstream of the step, the second and the third sub-harmonic Fourier modes display amplitude values significantly
smaller than that of the primary Fourier component. This is illustrated in Fig. 20 characterizing the streamwise evolution
of Au

(0,2) and Au
(0,3) in step case I (a) and step case III (b), and is in line with results presented in section III.A. At

the location of the step, Au
(0,2) and Au

(0,3) increase suddenly in x, a trend which may not necessarily be associated to
amplification of the incoming perturbation structures. For different combinations of perturbation-velocity components,
step heights, and Fourier components, the characterization of amplitude based on the global maxima of the shape
function generally jumps discontinuously in the wall-normal direction at the location of the step in x. In a fashion

-80 -60 -40 -20 0 20 40
10−5

10−4

10−3

10−2

10−1

xst/δ0

Au (
0,
j)/

u ∞

-80 -60 -40 -20 0 20 40
10−5

10−4

10−3

10−2

10−1

xst/δ0

(a) (b)

Figure 20 Streamwise evolution of the amplitude of the streamwise-velocity-perturbation Fourier mode (0,1)
(solid), (0,2) (dashed), (0,3) (dotted) for step case I (a) and III (b).
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Figure 21 Streamwise evolution of Ê(0,1): clean case (solid black), step case I (dotted orange), II (dash-dotted
blue), III (dashed red). Streamwise evolution of Êτ: clean case (diamonds), step case I (triangles), II (circles),
III (squares).

similar to the case of the fundamental Fourier mode, significant sub-harmonic disturbance growth close to the wall
manifests as additional peak(s) in the perturbation shape of the high-order Fourier modes. New secondary peaks induced
at the step corner may attain the largest amplitude value in y, locally downstream of xst = 0.

The amplification of Au
(0,2) and Au

(0,3) at the location of the step is significantly stronger in step case III, when
compared to step case I. Therefore, the mechanism which triggers disturbance growth at the step corner near the wall
induces stronger amplification of the sub-harmonic content for increasing step heights. Similarly, the secondary lobe in
the shape function of Fourier mode (0,1) attains significantly larger amplitude values in step case III, as compared to
step cases I and II (Fig. 9). Furthermore, in section III.F we have qualitatively described that, in step case III, the initial
growth of sub-harmonic disturbance content at the step corner is sustained and amplified further downstream, close to
the location of the secondary near-wall inflection point. Contrarily, when considering step case I, the near-wall effects
downstream of the step are rather weak. Figure 20 quantitatively confirms this behaviour: in step case III, the strong
growth of Au

(0,2) and Au
(0,3) at xst ≈ 0 is maintained and even enhanced immediately downstream, which is not the case

for step configuration I.
With all, the sub-harmonic Fourier shape functions at the step exhibit an intricate topology. This poses the challenge

of reproducing the methodology for amplitude characterization applied in the previous section identically. To track a
main peak of the mode shape continuously in x when the pertinent sub-harmonic perturbation system passes over the
step may be laborious for certain combinations of step heights and perturbation-velocity components. To overcome
this predicament, we characterize amplitude evolution of the full perturbation field using the following definition of
disturbance kinetic energy:

Êτ(x) = 1
2

j=3∑
j=0

k=3∑
k=1

{
Ak
(0, j)(x) |q̃k |(0, j)(x, s(0,1)(x))

}2
. (16)

In Eq. 16, j expresses a mode of the Fourier series, k expresses a velocity component of the state vector q, and s(0,1)(x)
is the wall-normal location of the primary peak of the streamwise-velocity-perturbation component of Fourier mode
(0,1), i.e., the wall-normal position associated to Âu

(0,1). In essence, Eq. 16 expresses a metric equivalent to Eq. 15;
however, Eq. 16 considers Fourier modes (0,0)-(0,3) and evaluates all velocity components at a common wall-normal
position defined by the behaviour of the fundamental incoming instability.

Figure 21 reproduces the results of Fig. 19 and adds the characterization of Eq. 16 to compare the streamwise
evolution of Ê(0,1) and Êτ . As expected, Êτ = Ê(0,1) in the smooth case near the virtual streamwise position of the step.
When considering step cases I and II, the streamwise evolution of Êτ and Ê(0,1) are in close agreement. Hence, the
sub-harmonic disturbance growth downstream of the step does not significantly impact the amplitude evolution of the
full perturbation field at the wall-normal location of the core of the incoming fundamental instability. On the other hand,
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in step case III, the streamwise evolution of Êτ and Ê(0,1) diverge at xst/δ0 ≈ 8. In Fig. 15, this streamwise position
corresponds approximately to the location where the near-wall sub-harmonic content has significantly amplified in
x and the strongest peak in the shape function profile begins to shift upward. We note that xst/δ0 ≈ 8 corresponds
as well to the location where the amplitude decay of the fundamental instability (considering Ê(0,1)) decelerates in x.
Immediately downstream, it starts to display growth again. We do not have conclusive evidence to justify whether this is
mainly attributed to weakening of the mechanism which initially stabilizes the incoming primary instability or it is a
consequence of sub-harmonic non-linear interactions.

V. Conclusion
We studied the effect of forward-facing steps of several heights to a pre-existing stationary crossflow instability in

an incompressible swept-wing boundary layer. We performed Direct Numerical Simulations (DNS) of the laminar
base flow and the stationary solution that arises from the interaction between the incoming instability and the step.
The stationary primary crossflow mode is imposed at the inflow. The swept-wing flow is modeled as flow over a flat
plate with a prescribed airfoil-like favourable pressure gradient obtained from independent experimental data on a 45◦
swept wing. The computational domain is swept and aligned with the leading edge of the wing. All steps are virtually
located at 20% of the chord of the wing model. We performed DNS for three step heights and a smooth no-step case. A
common inflow perturbation amplitude is imposed in all cases. The primary crossflow instability undergoes exponential
growth until (at least) the virtual location of the step in the smooth case, as also predicted by linear stability methods
applied to the computed base flow.

The analysis is restricted to the near-step regime. We contribute to the discussion in the literature with regard to
the role played by main step-induced flow features in altering the development of the incoming perturbation upon
interaction. Special emphasis was put on understanding the impact of the step on the primary crossflow disturbance
itself, neglecting unsteady perturbation effects, since it remains an open problem in the literature. Accordingly, unsteady
disturbances, which are an essential part of the transition mechanisms responsible for turbulent breakdown, were not
triggered in the DNS. We assessed relevant stationary perturbation mechanisms at the step. We qualitatively and
quantitatively characterized the modulation of the fundamental stationary crossflow disturbance upon interaction with
the step, as well as the evolution of the sub-harmonics instability waves. Moreover, we identified and described the
behaviour of secondary stationary perturbation structures. The study presented in this work sets the foundations for
future investigations which will deepen on laminar-turbulent transition in swept wings due to forward-facing steps.

The topology of the base flow is significantly distorted by the presence of the step. We measured reversal of the
base-flow velocity in the direction of the flat-plate, x, upstream of the step in all configurations. A second region of flow
recirculation is captured downstream of the step, only in the two largest step cases. The values of peak reversed-flow
do not exceed the local free-stream velocity by more than 3.3% in any case. Reversal of the crossflow component is
induced upstream and downstream of the step as well, which is accompanied by secondary near-wall inflection points in
the crossflow component.

We Fourier transformed the perturbation field in the spanwise direction. At the vicinity of the step, the fundamental
Fourier mode contains (at least) two main perturbation structures. On the one hand, the primary stationary crossflow
disturbance. When the step is approached in x, it lifts up and passes over it. We found that the incoming primary
disturbance becomes amplified immediately upstream of the step; the larger the height of the step, the larger the
amplitude difference with respect to the smooth case at the location of the step. On the other hand, we captured
spanwise-alternating perturbation streaks induced immediately upstream of the step, close to the wall.

Downstream of the step, near-wall perturbation streaks develop as well. They are linked to a secondary peak in the
perturbation shape function. This is a topological feature that we captured in all step cases and it manifests for all x
immediately downstream of the step. The secondary peak is weak in the small step case. On the contrary, for the case of
the largest step, the secondary peak attains amplitude values significantly larger than the original primary peak close to
the step corner. Secondary perturbation structures in the form of spanwise-distributed vortices which counter-rotate
with respect to each other accompany the system of streaks. They were identified in all step configurations. Sufficiently
downstream of the step in the largest step case, primary and prominent secondary vortical structures eventually merge.
We indicated that the secondary peak in the shape function of the fundamental Fourier mode, the near-wall system of
streaks, and secondary perturbation vortices are manifestations of a common mechanism arising at the step.

For all step configurations, activity of the sub-harmonic disturbance content is enhanced downstream of the step.
This feature is particularly prominent in the largest step case. The similarities between the behaviour of secondary
peaks in the shape function of the fundamental and the high-order Fourier modes points towards the existence of a
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common mechanism responsible for sudden near-wall perturbation growth at the step corner among different spanwise
wavenumbers. Based on similarities with previous work, this may be ascribed to either transient growth [29] or to
the effect of the upstream crossflow reversal [27]. We indicated strong correlation between the spatial location of
secondary peaks in the perturbation shape and the location of step-induced inflection points in the crossflow component
downstream of the step. When considering the fundamental Fourier mode, growth of secondary perturbation structures
downstream of the step was only captured in the step-corner region. However, when considering the sub-harmonic
instability waves in the largest step case, the perturbation growth initiated at the step corner is significantly enhanced
further downstream, close to the location of the near-wall inflection points. This is not the case for the smallest step.

We introduced metrics to quantify the impact of the step on the evolution of the primary incoming crossflow
disturbance upon interaction. To segregate secondary perturbation effects downstream of the step, we proposed to
characterize amplitude at the wall-normal location of the primary peak in the shape function profile, which is associated
to the core of the incoming disturbance. When this methodology is applied, we found that different perturbation-velocity
components display significantly different streamwise growth rates. By using a definition of disturbance kinetic energy
we reported that, for the smallest step cases, the primary crossflow instability grows monotonically at a rather constant
rate downstream of the step. Interestingly, for our largest step, the incoming primary disturbance is strongly stabilized
immediately downstream of the step. Significant growth of the sub-harmonic disturbance content was measured close to
the streamwise position at which the primary crossflow perturbation grows again in x.
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Appendix
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Figure 22 Three-dimensional organization of the spanwise-velocity-perturbation Fourier Mode (0,1) at the
step location for step cases I (a) and III (b).
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Figure 23 Profiles of |w̃ |(0,1) at xst/δ0 = −0.32 (a.1), −0.16 (a.2), −0.05 (a.3), 0.11 (b.1), 0.22 (b.2), 0.38 (b.3),
0.54 (b.4), 0.65 (b.5). Clean case (solid black), step case I (dotted orange), II (dash-dotted blue), III (dashed red).
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