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Semi-Analytical Modelling of Variable Stiffness Laminates with
Discontinuities

Thomas A. Janssens∗ and Saullo G. P. Castro†

Delft University of Technology, Kluyverweg 1 2629HS Delft

Designs taking advantage of fibre-steered laminated manufacturing can optimally vary
the stiffness and strength properties of high-performance structural components according to
the geometry, loads and boundary conditions. For the stability behaviour of laminates with
discontinuities such as local reinforcements and cut-outs, variable stiffness laminates have the
additional ability to decrease stress concentration factors, increase buckling loads and decrease
the negative effects of a cut-out; outperforming traditional straight-fibre designs. With the aim
of finding closed-form analysis methods or methods with a reduced computational cost, the
present study proposes a semi-analytical framework to analyze the stability behaviour of vari-
able stiffness laminates with local reinforcements and cut-outs. Due to the discontinuous nature
of the displacement field in these structures, the approximation functions are enriched to cap-
ture the behaviour near the discontinuity. In order to determine the energy functional deriva-
tives across the laminate domain, Gauss-Legendre Quadrature numerical integration rules are
applied to both rectangular and circular domains and the resultant energies are obtained by
subtracting the integration of the cut-out domain from the full domain. A displacement-based
formulation is used for the out-of-plane field variable, whereas a stress-based approach is used
for the in-plane pre-buckling stress state. The model is set-up for balanced and symmetric
laminates, thus decoupling the out-of-plane and the in-plane behaviours. A thorough verifica-
tion is performed against existing models in the literature and against finite element results.
The results for various plates and laminates with varying discontinuities and variable stiffness
properties show a good agreement for both in-plane and out-of-plane field variables, ultimately
leading to an accurate prediction of the stability behavior of structures with discontinuities.

I. Introduction
Composite materials have become more widespread across the aerospace industry. The use of fibre reinforced

polymers, or composites, allow designers to tailor a design for a specific function and can create structures with high
strength/stiffness to weight ratios. Conventional composite laminates are composed of multiple layers, or laminae,
in which the fibre direction can be aligned with the directions where strength and stiffness are required. Traditional
tailoring is done by varying the direction of the fibres and amount of layers for a laminate. Restricting the design to
straight fibres however, limits the potential of the fibre composite materials in cases where the strength and stiffness
requirements are not uniform across a laminate. For instance in cases of buckling or when the laminate has a cut-out.
With a traditional layup design philosophy, the laminate will contain stiffness and strength even at locations where it
might not be needed, i.e. additional unnecessary weight. Varying the fibre orientation within a single ply will allow the
designer to use even more of the potential provided by fibre composite materials. This application of Variable Angle
Tow (VAT) laminates, also known as variable stiffness laminates, thus broadens the design space, allowing the designer
to achieve better designs for a given application. In previous work, [1–3] the improvements of performance for these
variable stiffness laminates has been demonstrated. However, when structures include cut-outs, often computationally
and license-fee expensive finite element (FE) software is used. When designing for a structure with a cut-out, it is
of importance to know the effects of the presence, location and size of the cut-out. For traditional materials, e.g.
metals such as aluminium, the effects of cut-outs have been studied for decades and are well understood. Furthermore,
while the behaviour for isotropic materials is well understood, the effects for composite materials are dependant on the
specific layup used. When considering VAT laminates, with the fibre orientation varying throughout a single layer,
the effects become more complicated again. This paper is based on the work by Janssens [4], where a new method of
determining the mechanical behaviour for plates with cut-outs is introduced. An analytical model has been set-up using
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

the Rayleigh-Ritz method. However, due to the discontinuity created by the presence of the cut-out, the integration
of the structural matrices is not performed analytically, but using the Gauss-Legendre Quadrature, thus arriving at a
semi-analytical model. The definitions for the variable stiffness laminates can vary from using discrete stiffness changes
to linear variation along a single axis, or even non-linear variation along both the G and H axes. In the work, the discrete
stiffness change and linear variation are presented. Due to the discontinuous nature of the laminate, either a cut-out or a
sudden change of stiffness, the homogeneous solutions in the Rayleigh-Ritz method can take many terms to converge to
a solution. To overcome this, the enriched Rayleigh-Ritz method is used, as proposed by Huang et al. [5] and Milazzo et
al. [6], to add additional enriching series of functions to describe the behaviour close to the discontinuity. Each of the
’building blocks’ described above are discussed in this paper.

II. Variable stiffness laminates
With variable stiffness laminates, the stiffness parameters across the laminate domain are are dependent on the

location along the laminate domain. Therefore, the stiffness matrix relating the in-plane distributed forces and moments
with the strains, widely known as ABD matrix, become variable across the domain, as represented below:[

A B
B D

]
=

[
A(G, H) B(G, H)
B(G, H) D(G, H)

]
Variable stiffness is still a rather broad expression, and here three different options will be discussed. The first

consists of discrete changes in the stiffness, either by locally adding or subtracting a laminae. The second is a linear
variation of the fibre paths throughout each laminae producing variable stiffness by means of different in-plane stiffnesses
terms; and finally the third option is a non-linear variation of the fibre path in a laminae. Note that, in the present
study, coupled variable thickness due to the presence of overlaps created during tow steering [7, 8], will not be investigated.

A. Local reinforcements
Examples of local stiffness changes are reinforcing the outs edges of a laminate, in order to increase the buckling

load, as has been done by Biggers & Srinivasan [9] and Kassapoglou [10], as seen in figure 1.

(a) Image from [9]
(b) Image from [10]

Fig. 1 Local reinforcements

B. Linear variation of fibre angle
The second option was introduced by Gürdal & Olmedo [1], where the fibre angle is varied along the length of the

plate linearly according to the expression in Eq. 1, where 0 denotes the laminate length. The consequent fibre path with
)0 = 45 and )1 = 0 is shown in Fig. 2a.

Φ(G) = 2()8 − )0)
0

G + )0 (1)

C. Non-linear variation of fibre angle
Rather than varying the fibre direction only with respect ot the G direction, a variation can also be determined using

a non-linear fibre path definition, such as shown by Wu et al. and Guimaraes et al. [3, 11], described in Eq. 2 where Φ8
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

is the ply reference angle and )<= are the control angles in the reference points, as illustrated in Fig. 2b.

\ (G, H) = Φ8 +
"−1∑
<=0

#−1∑
==0

)<=

∏
<≠8

G − G8
G< − G8

∏
=≠ 9

H − H 9
H= − H 9

(2)

(a) Linear, image from [1]. (b) Non-linear, image from [11].

Fig. 2 Fibre paths using linear and non-linear definitions from Eqs. 1 and 2 respectively.

III. Modelling
The model uses the energy method to define the total energy in a body, where the total energy consists of the internal

energy, or strain energy *, and the potential energy + . The goal is to find the point where the total energy is at a
minimum, i.e. its derivative is equal to zero. For the analysis, both the Total Potential Energy (TPE) and the Total
Complementary Energy (TCE) are used. The TPE is used for the out-of-plane behaviour of the laminates where the
energy is expressed in terms of the displacements, as shown in Eq. 3 where the laminate domain is denoted by Ω. This
work only considers symmetric and balanced laminates, thus the coupling terms (B8 9 = 0), allowing the de-coupling of
the in-plane and out-of-plane analyses.

* =
1
2

∬
Ω


�11

(
m2F
mG2

)2
+ 2�12

m2F
mG2

m2F
mH2 + 4�16

m2F
mG2

m2F
mGmH

+�22

(
m2F
mH2

)2
+ 4�26

m2F
mH2

m2F
mGmH

+ 4�66

(
m2F
mGmH

)2

 3G 3H (3)

The TCE, where the energy is expressed in terms of stresses, is used for the in-plane behaviour of the laminates.
The expressions for the strain energy for the TCE is shown in Eq. 4. The inverse of the ABD matrix is denoted by the
lower case notation abd.

* =
1
2

∬
Ω

(
011#

2
G + 022#

2
H + 2012#G#H + 066#

2
GH

)
3G 3H (4)

A. Pre-buckling behaviour
In the modelling of the pre-buckling, or in-plane, behaviour, the TCE is used. In this approach approximation

functions must be used for the in-plane loads #G , #H and #GH . These loads can be reduced to a single unknown function
to be approximated using the Airy stress function, shown in Eq. 5. In order to define the approximation functions for
Φ, the boundary conditions must be defined. In this work, the laminates are under a uni-axial compressive load. The
potential energy thus consist of the axial loads with corresponding deformations, as shown in Fig. 6 where 0 and 1
denote the laminate length and width, and D the axial deformation due to the compression.
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

#G =
m2Φ

mH2 #H =
m2Φ

mG2
#GH = −

m2Φ

mGmH
(5)

+ = −
∫ 1

0
[#G · D]G=0G=0 3H (6)

This load can be either a uniform compressive force or a uniform compressive displacement, both cases will be
examined. When considering an applied displacement D at the outer vertical edges, the load distribution along these
edges will be non-uniform due to the variable stiffness, either due to VAT or the presence of a cut-out. This load
distribution is unknown and is approximated using an added set of trial functions, Φ0. According to the boundary
conditions, visualised in Fig. 3a, #GH0 is zero at the vertical edges. This is not necessarily the case for #H , but the
behaviour for #H near the edges should follow from the choice of trial functions for the entire domain. So the Φ0
functions are added only to comply with the edge compressive load #G0. They are thus only related to the edge load
#G0, i.e. mΦ0,HH ≠ 0 and Φ0,GG = Φ0,GH = 0. As the Φ0 function only relates to the #G0 distribution along the vertical
edges, it is only a function of H. Please note, the derivative m2Φ0

mH2 is written as Φ0,HH for legibility.

(a) The laminate geometry, uniform com-
pressive loading and boundary conditions.
Image from [3].

(b) Coordinate systems used in this work.

Fig. 3

In this work, as in the thesis by Janssens [4], four sets of approximation functions are used, as shown in Eq. 7.
These sets of functions are defined in various coordinate systems, depending on the type of functions chosen and their
suitability. These different coordinate systems can be seen in Fig. 3b, where the natural coordinates, b and [ range
from [−1, 1], G, H range from [0, 0], [0, 1], \ ranges from [0, 2c] and A starts from 0 and is made non-dimensional by
dividing with the smaller value of 0 or 1. Functions Φ0 describe the applied force distribution along the vertical edges
of the laminate. Functions Φ1 describe the behaviour across the entire laminate and combined with Φ0 is considered as
the homogeneous solution, i.e. the solution for a laminate without cut-out in accordance with the work by Wu et al. [3].
Functions Φ2 and Φ3 are the enriching functions and are added to describe the behaviour close to the discontinuity.

Φ(G, H) = Φ0 (H) +Φ1 (G, H) +Φ2 (G, H) +Φ3 (G, H) (7)

As the Φ0 function is used to comply with the #G0 distribution at the vertical edges, the Φ1,Φ2 and Φ3 functions
should yield a zero #G at the vertical edges, while #H is not necessarily zero. For the transverse edges, the opposite is
true. As the transverse edge are allowed to deform freely, they are stress free (#H0 = #GH0 = 0), but #G is not necessarily
zero. In the case of a cut-out, the trial functions should account for the stress-free state at the cut-out edges. The normal
stress and tangential shear stress with respect to the cut-out edge should yield a zero result. The sets of trial functions
must be chosen with these boundary conditions in mind. It was observed by Janssens, that the boundary conditions
along a cut-out edge results in complicated conditions when considering multiple coordinate systems [4]. To overcome
the problem, a residual thickness is used, whereby the thickness for a cut-out is reduced to 2% of the thickness of the
surrounding structure. The value of 2% was chosen by Janssens following a sensitivity analysis [4]. Removing the
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

complete thickness would yield results that would not comply with the boundary conditions along the edge of the
cut-out, as the approximation functions could not enforce this. Rather, leaving a 2% thickness the cut-out region is made
sufficiently weak, such that is does not carry any load, but still contains material forcing the model to account for the
equilibrium conditions within the laminate.
Due to the approach, the approximation functions Φ1,Φ2 and Φ3 do not take into account the boundary conditions
along the cut-out edge.

The approximation functions for Φ0 and Φ1 are adopted from the work by Wu et al. and consist of Legendre
polynomials as defined in Eq. 8. The Legendre polynomials are chosen because they capture localised behaviour well
due to the non-periodic nature of the successive polynomials with respect to trigonometric functions [12–14]. Moreover,
with Legendre polynomials the choice between simply-supported, clamped or free boundary conditions is done by
simply including or not the first terms in the series [12, 15, 16], in contrast with penalization-based approaches for
linear [17–19] and non-linear semi-analytical approaches [20–23]. It has been mentioned that at the vertical edges, the
Φ0 functions only describe the #G0 behaviour, i.e. Φ0,HH . Since the functions Φ0,GG and Φ0,GH are zero by definition,
only the Φ0,HH functions need to be defined. The series solution is presented in Eq. 9.

!0 = 1, !1 = b, !2 =
1
2
(3b2 − 1)

(= + 1) · !=+1 = (2= + 1) · b · != − = · !=−1

(8)

#G0 = Φ0,HH =

 ∑
:=0

2: · q0,HH =

 ∑
:=0

2: · !: (H) (9)

Where !: are the Legendre polynomials, which are multiplied by unknown coefficients 2: . This definition thus
complies with Φ0,GG and Φ0,GH being equal to zero. From Eq. 8, the first term in the Legendre series solution is a
constant. The case where a uniform force is applied rather than a uniform displacement is thus recovered if only a single
term is used for Φ0 function. The Φ1 functions are composed of Legendre polynomials also, but now using the (b, [)
coordinates. To comply with the stress free conditions described previously and shown in Fig. 3a, they are multiplied
with a boundary condition forcing function. The Legendre polynomials are multiplied as shown in Eq. 10, and the final
expression for Φ1 is given in Eq. 11.

-8 = (1 − b2)2 · !8 (b)

. 9 = (1 − [2)2 · ! 9 ([)
(10)

Φ1 =

�∑
8=0

�∑
9=0

�8 9 · -8 (b) · . 9 ([) (11)

In the work by Janssens [4], a new set of functions is introduced inspired by the work by Huang et al. [5] and
Milazzo et al. [6], who simulated the presence of cracks by means of the Ritz method. These functions use the (A, \)
coordinate system and are composed of trigonometric functions. Similar to the functions for Φ1, the functions are
multiplied with a boundary condition function, 6q . The functions are shown in Eqs. 12 and 13.

Φ2 = 6q (b, [) ·
"∑
<=0

#∑
==0

�<= · 2>B(<cA) · 2>B(=\) (12)

Φ3 = 6q (b, [) ·
"∑
<=1

#∑
==1

�<= · B8=(<cA) · B8=(=\) (13)

6q (b, [) = (1 − b2)2 · (1 − [2)2

With the entries forΦ0,Φ1,Φ2 andΦ3, the expression in Eq. 7 can be completed. The system can then be minimised
with respect to the unknown coefficients �8 9 , �<=, �<= and 2: , set equal to zero and subsequently solved for the
coefficients. The expression for the potential energy however also consists of functions including the unknown 2: . The
system to be solved will thus include these coefficients. The system is shown in Eq. 14
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

[
K KC

KC
) C

] {
i

c

}
=

{
0

Px0

}
(14)

Where the K entry is the result from the term q8≠0 · q)8≠0, the KC entry is the result from the terms q0,HH · q)(8≠0) and
the C entry is the results from the term q0,HH · q)0,HH . On the RHS the vector Px0 is the result from the q0,HH terms in the
potential energy Eq. 6. The vector on the LHS contains the coefficients, where i resembles the coefficients �8 9 , �<=
and �<=, and c resembles the coefficients 2: .
For the full derivation of these expressions, see Appendix A.

B. Buckling behaviour
To determine the buckling behaviour, the pre-buckling stresses determined in the previous section are used and

coupled to a system to determine the out-of-plane behaviour. This system uses the TPE with approximation functions
for the deflection F input into Eq. 3. The potential energy is determined using the non-linear mid-plane strains to arrive
at the expression in Eq. 15.

+ =
1
2

∬
Ω

{
#G

(
mF

mG

)2
+ #H

(
mF

mH

)2
+ 2#GH

(
mF

mG

) (
mF

mH

)}
3G 3H (15)

The approximation functions for the deflection F are again composed of a homogeneous set and enriching functions.
The final expression consists of three sets of functions and is shown in Eq. 16. The expressions for F1, F2 and F3
are shown in Eqs. 17 through 19. Unlike using the TCE with approximation functions for the stresses, there are no
geometrical boundary conditions for the laminate at the cut-out edge, thus they are free and no additional conditions
need to be met.

F = F1 (G, H) + F2 (G, H) + F3 (G, H) (16)

F1 (G, H) =
�∑
8=1

�∑
9=1

�8 9 B8=

(
8cG

0

)
B8=

(
9cH

1

)
(17)

F2 (G, H) = 6F (b, [) ·
{
"∑
<=1

#∑
==0

�<= · (1 − A)< · 2>B(=\)
}

(18)

F3 (G, H) = 6F (b, [) ·
{
"∑
<=1

#∑
==1

�<= · (1 − A)< · B8=(=\)
}

(19)

6F (G, H) = (1 − b2) · (1 − [2)

Inputting these expressions into Eq. 16 and subsequently into the expression for * and + in Eqs. 3 and 15
respectively, the eigenvalue problem in Eq. 20 is obtained.

[K + _F] {2} = 0 (20)

In Eq. 20 the parameter _ denotes the eigenvalues, Q is the stiffness matrix resulting from the minimisation of strain
energy Eq. 3 and L is the matrix resulting from the minimisation of the potential energy in Eq. 15. The inputs for #G ,
#H and #GH in the potential energy are obtained from the in-plane load distribution. As the eigenvalues _ are in relation
to the applied loading, they resemble the applied load used to determine the inputs #G , #H and #GH in Eq. 14.
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

C. Numerical modelling
Asmentioned, a Gauss-Legendre Quadrature numerical integration scheme is used for he integration. The integration

for the full, rectangular domain is reasonably straightforward and has been documented by many authors and textbooks.
The integration for the discontinuity, a square insert, a circular insert or a circular cut-out is less straightforward. The
procedure to find the circular integration points and corresponding weights for a quarter unit circle are presented by
Shivaram [24], Janssens has taken this approach and extended it to cover a full circle [4]. The integration of the TPE or
TCE functional can then be performed for both the full and discontinuous part of the domain and in accordance with the
stiffness difference, the total energy of the laminate can be determined.

IV. Results
In this section, the results will be presented. They consist of verification results comparing to previous work done by

Kassapoglou [10] and using a isotropic plate with a cut-out as means of verification. Then a variable stiffness laminate
with a linear fibre path definition is analysed.

A. Square stiffening insert
The laminate presented in Fig 1b was analysed by Kassapoglou and due to the square insert, the coordinate systems

were coupled and a analytical solution was found using the energy methods and stress based approximation functions. A
very similar approach to this work, and thus a good starting point to check the working of the semi-analytical model. In
the work by Kassapoglou, slight differences apply with respect to the previous presented theory. First, an applied uniform
force is used and thus only the first term for the potential energy is used. Second, no enriching functions are used, and
the functions for #G , #H and #GH are defined separately, while still complying to the in-plane equilibrium conditions.
Using the functions and coordinate systems defined by Kassapoglou, the results presented in Fig. 4 are reproduced using
the semi-analytical model. Furthermore, in Fig. 5, the axial stresses are shown in comparison to results from FEM. The
plate characteristics are taken with an outer dimensions of 508 × 508 [mm] and three different center patch dimensions
50.8 × 50.8 [mm], 102 × 102 [mm] and 254 × 254 [mm]. The material properties are taken from the reference literature
and consist of a plain weave fabric with �1 = �2 = 67.5 [GPa], �12 = 4.48 [GPa] and a12 = 0.05. The center layup
consisted of layers [(±45)5/(0/90)2/(±45)5] and the perimeter layup of layers [(±45)/(0/90)2/(±45)].

Fig. 4 Results from [10] including the recreation of the results using the semi-analytical model developed.

B. Circular stiffening insert
The next step is to check the validity of the numerical integration scheme concerning the circular integration.

Also, the approximation functions as presented in this paper are used as they are deemed more suitable for circular
discontinuities with respect to the functions from Kassapoglou [10], This has been checked by Janssens [4] and the
approximations produce more accurate results while using less terms.
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

(a) Semi-analytical model (b) ABAQUS FE

Fig. 5 Axial loads #G shown in comparison to those obtained from FEM.

The results for a laminate with the same materials properties and layup as the one presented in Section IV.A, loaded
by uniform compressive force, containing a stiffening circular insert, are checked against results from FE software and
presented in Fig. 6. Such a case could be considered where a joint is present and a hole is filled with a rivet or bolt with
a higher stiffness than the sheet.

(a) Semi-analytical model (b) ABAQUS FE

Fig. 6 Axial loads #G shown in comparison to those obtained from FEM.

C. Isotropic plate with a cut-out
In this section, an isotropic plate with a circular cut-out is presented. In this case the residual thickness of 2% is

used as the discontinuity consists of a cut-out.

1. Pre-buckling
The material properties and plate dimensions are � = 71 [GPa], a = 0.33, C = 1 [mm], 0 = 1 = 254 [mm] and

' = 25 [mm]. The plate is loaded by a uniform compressive displacement of 1 [mm]. The approximation functions
include all functions described in the previous sections, Eqs. 9, 11, 12 and 13 with � = � =  = 8, " = 39 and # = 5
yielding a total of 524 terms, or degrees of freedom. The in-plane load distribution #G , #H and #GH are shown in Figs.
7 and 8.
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

(a) #G (b) #H (c) #GH

Fig. 7 Loads obtained from the semi-analytical model.

(a) #G (b) #H (c) #GH

Fig. 8 Loads obtained from the FE model in ABAQUS.

The results show great agreement with the results from FE models. Due to the use of the residual thickness however,
one observation that was made by Janssens [4], is the presence of fluctuations in the stress-field of the semi-analytical
model close to the cut-out edge. This is due to the assumption made before, where the model does contain material
inside the cut-out, which is made very weak as to not carry load. The semi-analytical model described this behaviour
well, and so the stresses inside the cut-out area must be zero. Close to the cut-out edge in cases where there is a stress
concentration, the model must make a large "jump" in stress level, whereas if the stress approaches zero near the cut-out
edge, the model agrees very well. This is best illustrated when looking at the axial load #G along two paths, at half
width of the plate moving along G and at half length of the plate moving along H, as presented in Figs. 9 and 10.
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

(a) Visualisation of path (b) Axial load #G along G

Fig. 9 No fluctuations as loads approach zero near cut-out edge.

(a) Visualisation of path (b) Axial load #G along H

Fig. 10 Fluctuations when loads do not approach zero near cut-out edge.

2. Buckling
With the in-plane loads determined, the buckling behaviour for the plate can be determined using the TPE and

the aprroximations functions described in Eqs. 17, 18 and 19. The total number or terms taken are � = � = 6 and
" = # = 10 for a total of 246 terms. The first two eigenmodes are shown in Figs. 11 and 12. The eigenvalues are
presented in Table 1.

Table 1 Eigenvalues for isotropic plate containing a cut-out under uniform compressive displacement.
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

(a) Semi-analytical model

(b) ABAQUS FE

Fig. 11 First eigenmode of isotropic plate with cut-out

(a) Semi-analytical model

(b) ABAQUS FE

Fig. 12 Second eigenmode of isotropic plate with cut-out

D. Variable stiffness laminate
In this section, the results for a variable stiffness laminate are presented. The laminate under consideration is defined

according to the linear fibre path definition in Eq. 1 using a layup of [90± < 0|75]B . The subsequent fibre path is shown
in Fig. 13.

1. Pre-buckling
Using the TCE with Eqs. 9, 11, 12 and 13, the laminate is analysed for when loaded under a uniform compressive

displacement of 1 [mm]. For the approximations functions, � = � =  = 8, " = 39 and # = 5. The obtained load
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

Fig. 13 Fibre path for the laminate with layup [90± < 0|75]B and with a circular cut-out.

distributions are shown in Figs. 14 and 15. The axial load is plotted along three different paths, the same two as in the
previous section and in addition the axial loads along the width of the laminate when G = 0. These plots are shown in
Figs. 16a through 16c. Note, that due to the variable stiffness, almost no stress concentration is present close to the
cut-out edge, and thus the model shows almost no oscillations and agrees very well with the results from FE software.

(a) #G (b) #H (c) #GH

Fig. 14 Loads obtained from the semi-analytical model.

(a) #G (b) #H (c) #GH

Fig. 15 Loads obtained from the FE software ABAQUS.
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

(a) Along H, G = 0 (b) Along G, H = 1/2 (c) Along H, G = 0/2

Fig. 16 #G distribution for the [90± < 0|75 >]B laminate, under uniform compressive displacement

2. Buckling
Using the in-plane loads, the buckling behaviour is determined and compared to the same laminate, only without a

cut-out. The out-of-plane approximation functions are used with � = � = 15 and " = # = 10. The eigenvalues are
shown in Table 2, and the first two eigenmodes are shown in Figs. 17 and 18. From Table 2, it can be seen that for the
first eigenmode, 95% of the buckling capacity is retained while the laminate contains a cut-out.

Table 2 Eigenvalues for the VAT laminate both with and without cutout.

(a) With cut-out (b) Pristine

Fig. 17 First eigenmode for the variable stiffness laminate, with and without cut-out.
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

(a) With cut-out (b) Pristine

Fig. 18 Second eigenmode for the variable stiffness laminate, with and without cut-out.

V. Conclusions & Discussion
The semi-analytical model combined with the approximation functions presented in this work culminated in a

framework capable of producing accurate results for the out-of-plane deflection, the in-plane stress distribution and the
buckling behaviour of plates and laminates with discontinuities such as stiffened inserts, variable stiffness due to fibre
steering and cut-outs. In the case of cut-outs, the chosen method of the Airy stress resulted in stress fluctuations near the
cut-out edge. The stress-based approach was taken in order to reduce the number of unknown functions in the energy
functionals, but yielded the need for additional boundary conditions on the edges of the cut-out. The main reason for
this is the dependency of the different sets of trial functions on G, H, A and \, while the boundary conditions are defined
in either G and H along the outer edges or A and \ along the edge of the cut-out.
A suggested next step research would be to set up the semi-analytical model to use a displacement-based approach
already for determining the in-plane stresses in the presence of discontinuities, eliminating the issues encountered at
the cut-out free edge. Another improvement would be to use the non-linear strain equations to determine the in-plane
and out-of-plane behaviour simultaneously via the geometric stiffness matrix [18] rather than decoupling them in the
linear strain equations. The extension of the present model to a more general formulation considering non-symmetric
laminates would also increase the scope of the present framework.

A. Matrix entries
The equations for the derivation of the energy matrix entries are shown here, further explanation is found in the

work by Janssens [4].

A. Strain energy,* [
K KC

KC
) C

] {
i

c

}
=

{
0

Px0

}
* =

1
2

∬
Ω

(
011#

2
G + 022#

2
H + 2012#G#H + 066#

2
GH

)
3Ω (21)
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

* =
1
2

∬
Ω

{
011

(
Φ0,HH +Φ1,HH +Φ2,HH +Φ3,HH

)2

+ 022
(
Φ0,GG +Φ1,GG +Φ2,GG +Φ3,GG

)2

+ 012
(
Φ0,HH +Φ1,HH +Φ2,HH +Φ3,HH

) (
Φ0,GG +Φ1,GG +Φ2,GG +Φ3,GG

)
+ 066

(
−Φ0,GH −Φ1,GH −Φ2,GH −Φ3,GH

)2
}
3Ω

As Φ0 is the edge load function, it only has a value for #G , so Φ0,GG = Φ0,GH = 0. Expanding the equation further
yields:

* =
1
2

∬
Ω

{
011

(
Φ2

0,HH +Φ
2
1,HH +Φ

2
2,HH +Φ

2
3,HH + 2Φ0,HHΦ1,HH

+2Φ0,HHΦ2,HH + 2Φ0,HHΦ3,HH + 2Φ1,HHΦ2,HH + 2Φ1,HHΦ3,HH + 2Φ2,HHΦ3,HH
)

+022

(
Φ2

1,GG +Φ
2
2,GG +Φ

2
3,GG + 2Φ1,GGΦ2,GG + 2Φ1,GGΦ3,GG + 2Φ2,GGΦ3,GG

)
+2012

(
Φ0,HHΦ1,GG +Φ0,HHΦ2,GG +Φ0,HHΦ3,GG +Φ1,HHΦ1,GG +Φ1,HHΦ2,GG +Φ1,HHΦ3,GG

+Φ2,HHΦ1,GG +Φ2,HHΦ2,GG +Φ2,HHΦ3,GG +Φ3,HHΦ1,GG +Φ3,HHΦ2,GG +Φ3,HHΦ3,GG
)

+ 066

(
Φ2

1,GH +Φ
2
2,GH +Φ

2
3,GH + 2Φ1,GHΦ2,GH + 2Φ1,GHΦ3,GH + 2Φ2,GHΦ3,GH

)}
3Ω

Collecting terms which correspond to the coupling between the various sets of trial functions will then give the
energy expressions which will lead to the corresponding matrix entry.

*00 =
1
2

∬
Ω

(
011Φ

2
0,HH

)
3Ω

*11 =
1
2

∬
Ω

(
011Φ

2
1,HH + 022Φ

2
1,GG + 066Φ

2
1,GH + 2012Φ1,HHΦ1,GG

)
3Ω

*22 =
1
2

∬
Ω

(
011Φ

2
2,HH + 022Φ

2
2,GG + 066Φ

2
2,GH + 2012Φ2,HHΦ2,GG

)
3Ω

*33 =
1
2

∬
Ω

(
011Φ

2
3,HH + 022Φ

2
3,GG + 066Φ

2
3,GH + 2012Φ3,HHΦ3,GG

)
3Ω

*01 =

∬
Ω

(
011Φ0,HHΦ1,HH + 012Φ0,HHΦ1,GG

)
3Ω

*02 =

∬
Ω

(
011Φ0,HHΦ2,HH + 012Φ0,HHΦ2,GG

)
3Ω

*03 =

∬
Ω

(
011Φ0,HHΦ3,HH + 012Φ0,HHΦ3,GG

)
3Ω

*12 =

∬
Ω

(
011Φ1,HHΦ2,HH + 022Φ1,GGΦ2,GG + 066Φ1,GHΦ2,GH + 012

[
Φ1,HHΦ2,GG +Φ1,GGΦ2,HH

] )
3Ω

*13 =

∬
Ω

(
011Φ1,HHΦ3,HH + 022Φ1,GGΦ3,GG + 066Φ1,GHΦ3,GH + 012

[
Φ1,HHΦ3,GG +Φ1,GGΦ3,HH

] )
3Ω

*23 =

∬
Ω

(
011Φ2,HHΦ3,HH + 022Φ2,GGΦ3,GG + 066Φ2,GHΦ3,GH + 012

[
Φ2,HHΦ3,GG +Φ2,GGΦ3,HH

] )
3Ω

The entries for the matrices K,Kc and C are obtained by minimising the energy expressions above with their
respective unknown coefficient.
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Semi-Analytical Modelling of Variable Stiffness Laminates with Discontinuities

[K] {i} =


m*11
m�8 9

m*12
m�8 9

m*13
m�8 9

m*12
m�<=

m*22
m�<=

m*23
m�<=

m*13
m�<=

m*23
m�<=

m*33
m�<=


[Kc] {c} =


m*01
m�8 9

m*02
m�<=

m*03
m�<=


[C] {c} =

[
m*00
m2:

]
B. Potential energy, V

+ = −
∫ 1

0

[
Φ,HHD

] G=0
G=0 3H (22)

+ = −
∫ 1

0

[
D

(
Φ0,HH +Φ1,HH +Φ2,HH +Φ3,HH

) ] G=0
G=0 3H

+ = −
∫ 1

0
Δ GΦ0,HH 3H

+ = −Δ G
∫ 1

0
Φ0,HH 3H

+ = −Δ G
∫ 1

0

 ∑
:=0

2: · !: (H) 3H

Px0 = −Δ G


1

0
...

0


(:=0)

(:=1)
...

(:= )
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