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Incremental Sliding Mode Control for Aeroelastic

Launch Vehicles with Propellant Slosh

Erwin Mooij∗and Xuerui Wang†

Delft University of Technology, Faculty of Aerospace Engineering,

Kluyverweg 1, 2629 HS Delft, The Netherlands

This paper focuses on the attitude control and propellant slosh suppression of aeroelastic
launch vehicles. Four candidate controllers are proposed: the Linear Quadratic Regulator
(LQR), the Incremental Non-linear Dynamic Inversion (INDI) control, the Incremental
Sliding Mode Control (INDI-SMC), and the Feedback Linearisation-based Sliding Mode
Control (FL-SMC). Theoretical analyses show INDI itself is unable to deal with under-
actuated systems. Therefore, when applied to the launch vehicle directly, it cannot simul-
taneously track the pitch command and effectively suppress the slosh dynamics. This issue
is solved by INDI-SMC, which also has enhanced robustness against both matched and
unmatched uncertainties. Furthermore, despite its reduced model dependency, INDI-SMC
has better robustness against model uncertainties and external disturbances than FL-SMC.
These merits of INDI-SMC are verified by various simulation results. First, when the nom-
inal plant configuration is adopted, the system using INDI-SMC has the smallest pitch-
angle tracking error. The slosh motion is also effectively damped out. Second, Monte-Carlo
studies are used to test the robustness of LQR, INDI-SMC, and FL-SMC to parametric un-
certainties. Among these three controllers, LQR shows the worst performance and largest
control-effort outliers. On the contrary, both INDI-SMC and FL-SMC can resist a wider
range of perturbations without significant performance degradation. Even so, the tracking
and slosh damping performance of INDI-SMC is still the best. Finally, both INDI-SMC
and FL-SMC show robustness against unmodeled dynamics, while the robust performance
of INDI-SMC is superior.

I. Introduction

Long and slender bodies, such as (small) conventional launch systems, may suffer from an unwanted
coupling between the rigid-body and flexible modes, which can lead to stability and controllability issues
when not properly dealt with. This coupling may be amplified by the large variation of mass properties
(due to oxidiser and fuel consumption), as well as the change in operational conditions, because of the large
flight and altitude regime. The flexible modes can be excited by wind (gusts) and turbulence. An additional
complication may arise for launchers with liquid-propellant propulsion systems, as (part of) the fuel and
oxidiser may start moving in their corresponding tanks. These so-called sloshing effects can create a dynamic
coupling with the rigid and/or flexible body that is not trivial to suppress. This is further complicated by
the time-varying nature of the dynamic coupling, since the tank filling grades change significantly during
the flight.

Stability of aeroelastic launchers has been studied for many years1–3 and invariably focussed on the
interaction between rigid and flexible modes, and the response to wind gust and turbulence, or the impact of
aeroelasticity on control-system stability margins, e.g., the work covered in Ref. 4. Part of our previous work
focussed on the effect of aeroelasticity on launch-vehicle stability, controllability, and controller performance
at a single point during the ascending flight,5 as well as the additional effect of wind gust and turbulence
during the trajectory from lift-off to burnout of the first stage, taking transient effects into account.6
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Many authors have studied the effect of sloshing on the stability and controllability of launchers and
satellites.7–11 Cui et al. discuss the parametric resonance of small-amplitude sloshing and show stability
diagrams for different sloshing damping.7 Non-linear slosh damping is also included in the stability analysis
in Ref. 8 to come up with a relationship between the non-linear slosh damping and equivalent linear damping
at a given slosh amplitude. Also, a more accurate (analytical) prediction of the danger zone of slosh mass
locations is given when the launcher is controlled by proportional-derivative feedback. Using a multi-body
formulation and bifurcation analysis, the neutral stability curves for a typical launcher in planar atmospheric
flight are obtained in Ref. 9, and Bode plots are provided for the linearised system. In terms of control,
the non-linear dynamics and control of a launcher’s upper-stage are considered by applying Lyapunov-based
non-linear feedback control laws with thrust-vector control.10,11

Most of the performed studies, especially when related to control-system design, assume perfect knowledge
of the slosh motion, by applying an equivalent mechanical model. Stabilising the system with a simple PD
controller and inspecting the gain and phase margins, shows that sloshing has a major effect and poses
a problem for a standard proportional-derivative control system.12,13 A significant and increasing control
effort is in that case required to stabilise the vehicle, but when the slosh states (position and velocity of the
slosh mass) are fed back, the performance improves significantly. However, when the slosh states are required
in the feedback laws it is not necessarily true that this “perfect” knowledge is available. The motion of the
liquid cannot directly be measured, and dedicated slosh “observers” may have to be developed to estimate
the required slosh states.

In Ref. 13, a sliding-mode observer was designed to estimate the slosh states of the LOX and RP-1 tanks
of the first stage of a rigid launch vehicle. The nominal performance of the observer, i.e., when simulation
and observer model are identical in terms of slosh parameters (mass, eigenfrequency, location, and damping
factor), was shown to be excellent. The convergence of the observer error dynamics was achieved in at
most 10 seconds, so only a short initialisation time was required before activating the control system. Small
oscillations of the slosh masses persisted after a step response, with a frequency close to the natural frequency
of the slosh masses. The PD controller could not remove these, and the swivel commands exhibited some
form of limit-cycle behaviour.

A robustness analysis showed that when the slosh-observer parameters start deviating from the imple-
mented slosh model, the performance is very sensitive to these differences. With only a two-percent variation,
some outliers exhibited a doubling of the control effort and slosh motion. With a 5% variation, though, the
(maximum) integrated slosh position had more than doubled, whereas the oscillatory behaviour had even
tripled. Despite the fact that also in that case the rigid-body response was not so much affected, quite a
large number of outliers pointed to a significant increase in control effort, as well as strong fluctuations in
the control command. The combination with engine and flexible-body dynamics in the simulation model did
lead to significant performance degradation of the observer.

The origin of this could be traced back to the poor performance of the PD controller, and a simple
test with a rigid-body Incremental Non-linear Dynamic Inversion (INDI) controller increased robustness
significantly. It did exhibit a form of limit-cycle behaviour, though, because feedback of the slosh states
was lacking. Therefore, priority in this paper is given to the development of a more robust controller that
includes the feedback of slosh signals.

To further enhance the robustness of INDI control, the Incremental Sliding Mode Control (INDI-SMC)
framework was proposed.19 This hybrid framework was derived for generic multi-input/multi-output non-
linear uncertain systems. Lyapunov-based analyses and extensive simulation cases show that INDI-SMC is
able to resist a wide range of model uncertainties, sudden actuator faults, and structural damage with reduced
sliding mode control/observer gains. Real-world quadrotor flight tests also demonstrated the effectiveness
and easy implementation of INDI-SMC.20 Furthermore, INDI-SMC can achieve high-order sliding modes with
finite-time convergence.21 More importantly, as compared to the conventional model-based SMC designs in
literature, the control model dependency and sliding mode control/observer gains are simultaneously reduced
in the INDI-SMC framework.

This paper has two theoretical contributions as compared to the INDI-SMC designs in literature:19,20

first, by exploiting the null space, the sliding surface designed in this paper ensures the robustness of the
controller against unmatched uncertainties; second, this paper presents the design and Lyapunov-based
stability proofs of INDI-SMC for under-actuated dynamic systems. Furthermore, the presented theories
are validated by applying INDI-SMC to a command tracking problem of an aeroelastic launch vehicle with
propellant slosh.
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As a reference, the two-stage PacAstro launcher for small payloads up to 225 kg has been selected for
continuity of the research and the availability of launcher dataa. The launcher is treated as a flexible beam
with lumped masses to account for the subsystems and the fuel.5,6, 13 Modelling of the slosh motion will be
done for oxidiser and fuel separately, with one tank each per stage of the selected two-stage launcher.

The layout of this paper is as follows. Section II will discuss the simulation model, i.e., the combination
of the rigid system with coupled slosh dynamics. Some remarks will be made about the coupling with engine
dynamics and flexible modes, although studying those coupling effects is not the main focus of this paper.
These effects will be included as perturbations, once the controller has been properly designed. Section III
presents the incremental sliding mode controller. For comparisons, the conventional sliding mode control
based on feedback linearisation is also shown in Sec. III. Next, in Sec. IV, the results of the study are shown,
split into two parts: first, the nominal case is considered, and second, parameter uncertainties in the slosh
model are taken into account. Section V, finally, concludes this paper.

II. Flight-Dynamics Model

For stability and controllability studies of flexible launchers, it is common practise to focus on pitch-plane
motion only, and then even considering a linearised system that represents the error dynamics. Following
this approach, in previous work the state-space model for a flexible launcher with engine dynamics and
coupled slosh dynamics has been derived.5,12 In this section we will summarise this model, but refrain from
the detailed mathematical expressions; the reader is referred to the earlier mentioned references.

The flexible-launcher configuration that serves as the basis for the state-space model describing the error
dynamics is shown in Fig. 1. Input to this error-dynamics model is a modal description as a function of
current mass, the normal-load and pitch-moment distribution, and, of course, the flight conditions. The
launcher is assumed to move with a steady-state velocity u0. Its rotational states are the pitch angle, θ, and
its derivative the pitch rate, q, and the angle of attack, α, that originates from the vertical velocity and has
been added to allow for adding wind effects as a perturbation in angle of attack. The local deformation is
determined by the combination of thrust, T , gravity, mgd, aerodynamic normal force, N , and aerodynamic
pitch moment, M . The structural model is represented by a (discretised) flexible beam, and its modal shapes
have been used to include the effects of elastic line deformation in the aerodynamic coefficients. Finally, the
engine is assumed to be 100% throttleable, and its direction is given by the swivel angle, εT . The swivel is
modelled as a third-order dynamics system.

The liquid motion in the fuel and oxidiser tanks will introduce perturbing accelerations that affect the
motion of the launcher. Besides the actual slosh dynamics, sloshing will introduce coupling effects with
the rigid translational and rotational motion, as well as with the flexible-body dynamics. In Fig. 2 the
configuration of the flexible launcher is shown, with two slosh masses, ms,1 and ms,2, for the RP-1 and LOX
tanks of the first stage, and two for the second stage (ms,3 and ms,4), albeit that in this paper it is assumed
that the second-stage tanks do not experience any sloshing.

The slosh model for a cylindrical tank (partially) filled with fuel or oxidiser is based on a damped mass-
spring system (see also Fig. 3). Abramson, in Refs. 15 and 16, as well as Dodge in Ref. 17, provide a
simple model to calculate ns eigenfrequencies for different tank shapes, including the cylindrical one. The
model has been adapted for a partial filling grade, and damping of the (primary) slosh mode is based on
the model derived from the experimental study by Stephens et al.18 In summary, each slosh mode is defined
by its mass, ms, the location with respect to the launcher’s centre of mass, `s, the spring stiffness, ks, and
damping constant, cs.

In its general form, the system equation of the extended state-space model that is used for the plant
(launcher) is given by

Eẋ = Ax + Bu (1)

or

ẋ = E−1Ax + E−1Bu = A′x + B′u (2)

aPacAstro was a US transportation service company, formed in 1990, to provide low-cost transportation of small satellites to
Low Earth Orbit for approximately $5 million per launch using proven technology.14 Unfortunately, the launcher never came
to operation despite several engine tests and three launch contracts, due to the lack of development funding. The company
ceased to be in 1997.
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Figure 1. Flexible vehicle definitions Figure 2. Slosh configuration of the flexible launcher

Figure 3. Slosh geometry for a cylindrical tank (single mode).

with the state and control vector given by xT =
(
α θ q ε̈T ε̇T εT η̇1 η1 ... η̇nf ηnf żs,1 zs,1 ... żs,ns zs,ns

)T
and

u = εT,c (the commanded swivel angle), respectively. The matrices A and B are the system and control
matrix, respectively, whereas E is the (coupled) mass matrix.

Due to the different nature of groups of state variables, it makes sense to partition A and B into sub-
matrices representing the rigid-body motion, the engine dynamics, the flexible-body motion, and the slosh
dynamics, thereby identifying the coupling terms between the different sets. The corresponding state-space
matrices are then written as:
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A =


ARR ARE ARF ARS

AER AEE AEF AES

AFR AFE AFF AFS

ASR ASE ASF ASS

 and B =


BR

BE

BF

BS

 (3)

where the indices indicate

1. R for the rigid-body states angle of attack, α, pitch angle, θ, and pitch rate, q;

2. E for the engine states ε̈T (angular acceleration), ε̇T (angular velocity) and εT (the angular position
or swivel angle). These states originate from the assumption that the engine is modelled as an electro-
hydraulic servo system, represented by a third-order transfer function;

3. F for the flexible-body states η̇i and ηi for mode i. The total number of states in this group depends
on how many bending modes nf are taken into account;

4. S for the slosh-mass states żs,j and zs,j for slosh mass j. The total number of states in this group is
given by ns, i.e., the product of the number of slosh masses and modes per mass.

For the non-linear controller design to be discussed in the next section, we reformulate the above state-
space system, and group some of the coupling effects and the engine dynamics. The error-dynamic model is
now written in the following form:12

θ̈ − 1

Iyy

2∑
j=1

ms,j`s,j z̈s,j = fq(t,x, u) +
T −D
mIyy

ns∑
j=1

ms,jzs,j

z̈s,j + u0α̇− `s,j q̇ +

nf∑
i=1

φi(xs,j)η̈i =
T −D
m

θ − 2ζs,jωs,j żs,j − ω2
s,jzs,j

α̇+
1

mu0

2∑
j=1

ms,j z̈s,j = fα(t,x, u, αdis)

η̈i +

2∑
j=1

ms,jφi(xs,j)z̈s,j = fη(t,x, u)

(4)

In the above equation, θ and α represent the rigid-body states of the launch vehicle. The slosh dynamics
is modelled as two mass-spring-damping systems (the primary mode for each tank in the first stage), where
ms,j represents the slosh mass, ωs,j and ζs,j are the eigenfrequency and damping ratio of the jth slosh
mode, and zs,j is the (position) state for the jth slosh mode. T and D denote the total thrust and drag,
respectively, whereas αdis in fα represents the angle of attack induced by external atmospheric disturbances
(include discrete gusts and turbulence). Finally, ηi is the generalised coordinate of the ith flexible mode, and
the coupling between flexible and slosh modes is enforced through the modal shape function, φi, at the axial
slosh location xs,j .

III. Control Design

This paper aims at simultaneously achieving different control objectives using a single control input u.
First of all, the controller should guarantee the stability of the closed-loop system. Then, the controller aims
at driving θ towards its reference θc. The slosh dynamics should also be damped. Finally, the controller
should be able to reject external disturbances and be robust to model uncertainties.

To begin with, fq(t,x, u) in Eq. (4) is explicitly written as

fq(t,x, u) =
Cmq q̄Srefdref

Iyy
q +

Cmα q̄Srefdref

Iyy
α+

nf∑
i=1

aq,η̇j η̇j +

nf∑
i=1

aq,ηjηj +
LeT

Iyy
u (5)
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with q̄ being the dynamic pressure, and u = εT,c the commanded swivel angle, the only control input to the
system.

Denote the acceleration along the elastic axis as ax = T−D
m , using Eqs. (4) and (5), the dynamics of the

launch vehicle are expressed as


1 −ms,1`s,1Iyy

. . . −ms,ns`s,nsIyy

−`s,1 1 +
ms,1
m . . .

ms,ns
m

...
. . .

−`s,ns
ms,1
m . . . 1 +

ms,ns
m




θ̈

z̈s,1
...

z̈s,ns

 =


Cmq q̄Srefdref

Iyy
0 . . . 0

0 −2ζs,1ωs,1 . . . 0
...

. . .

0 0 . . . −2ζs,nsωs,ns




θ̇

żs,1
...

żs,ns



+


0

axms,1
Iyy

. . .
axms,ns
Iyy

ax −ω2
s,1 . . . 0

...
. . .

ax 0 . . . −ω2
s,ns




θ

zs,1
...

zs,ns

+


LeT
Iyy

0
...

0

u+


Cmα q̄Srefdref

Iyy
α+

∑nf
i=1 aq,η̇j η̇j +

∑nf
i=1 aq,ηjηj

−u0fα −
∑nf
i=1 φi(xs,j)η̈i
...

−u0fα −
∑nf
i=1 φi(xs,j)η̈i

 (6)

Equation (6) can be written in a condensed form as

Msẍ = −Csẋ−Ksx + Bsu+ ds (7)

The state vector is defined as x = [θ, zs,1, zs,2, . . . , zs,ns ]
T. Since 0 < ms,j < m for all j, the mass matrix

Ms in Eq. (7) is always invertible. The non-zero off-diagonal elements of Ms reflect the inertial couplings
between the pitch and slosh dynamics. From Eq. (7), the launch vehicle pitch dynamics is written as

θ̈ = fθ(θ̇, θ, żs,j , zs,j) +Gu+ dθ (8)

in which fθ represents the first row of Ms
−1(−Csẋ−Ksx), while dθ represents the first row of Ms

−1ds in
Eq. (7). The control effectiveness G equals the first row of Ms

−1Bs.

Assumption 1 G is non-singular for all t.

A. Partial Feedback Linearisation

The dynamic system given in Eq. (6) contains coupled rigid-body pitch and slosh dynamics. However, there
is only one single control input to the system. Therefore, the control problem of simultaneously stabilising
θ and slosh states becomes an under-actuated problem. Since rigid-body motion control has higher priority,
the controlled output variable is selected as y = θ. The resulting system input-output mapping can be
linearised using the following control input:

u = (ν − f̂θ)/Ĝ (9)

in which f̂θ and Ĝ represent the estimations of fθ and G in Eq. (8). ν in Eq. (9) is a virtual control input,
which will be designed later for stabilising the linearised dynamics. Moreover, slosh dynamics is not used
in Eq. (9), thus the system dynamics is only partially linearised (from u to θ), while the slosh dynamics
remains unchanged. Substituting Eq. (9) into Eq. (8), the closed-loop dynamics is

θ̈ = fθ(θ̇, θ, żs,j , zs,j) +G(ν − f̂θ)/Ĝ+ dθ = ν + (fθ − f̂θ) + (G− Ĝ)u+ dθ , ν + εndi (10)

It can be observed from Eq. (10) that if the system dynamics is known accurately, and if there is no
external disturbance, then the partial feedback linearisation results in perfect θ̈ = ν, which is a double
integral system. However, model uncertainties and external disturbances are inevitable in practice, resulting
in the lumped uncertainty term εndi in Eq. (10). In light-perturbation circumstances, where εndi is bounded,
a linear virtual control design can still ensure the boundedness of the tracking error. However, in severe
perturbation cases where εndi becomes unbounded, the stability of the closed-loop system is not guaranteed
anymore. The sensitivity of feedback linearisation to model uncertainties and external disturbances is one
of its main drawbacks.
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In view of the major drawback of the model-based feedback linearisation, the sensor-based Incremental
Non-linear Dynamic Inversion (INDI) was proposed in Ref. 24. Recently, INDI was generalised to generic
multi-input/multi-output non-linear systems.25 The partial input-output feedback linearisation can also be
achieved by INDI. Denote the sampling interval as ∆t. Taking the first-order Taylor series expansion of
Eq. (8) around the condition at t−∆t (denoted by the subscript 0) results in

θ̈ = fθ(θ̇, θ, żs,j , zs,j) +Gu+ dθ

= θ̈0 +
∂fθ

∂θ̇

∣∣∣∣
0

∆θ̇ +
∂fθ
∂θ

∣∣∣∣
0

∆θ +

ns∑
j=1

∂fθ
∂żs,j

∣∣∣∣
0

∆żs,j +

ns∑
j=1

∂fθ
∂zs,j

∣∣∣∣
0

∆zs,j +G0∆u+ ∆dθ +R1 (11)

where ∆(·) represents the variations of (·) in one sampling interval ∆t. R1 in Eq. (11) is the expansion
remainder, which Lagrange form is

R1 =
1

2

∂2fθ

∂θ̇2

∣∣∣∣
m

∆θ̇2 +
∂2fθ
∂θ2

∣∣∣∣
m

∆θ2 +

ns∑
j=1

∂2fθ
∂ż2
s,j

∣∣∣∣
m

∆ż2
s,j +

ns∑
j=1

∂2fθ
∂z2
s,j

∣∣∣∣
m

∆z2
s,j

 (12)

in which (·)|m means evaluating (·) at a condition where x ∈ [x(t − ∆t), x(t)], ẋ ∈ [ẋ(t − ∆t), ẋ(t)], and
u ∈ [u(t−∆t), u(t)]. The incremental control is designed as

∆u = (ν − θ̈0)/Ĝ0 (13)

The actual actuator control command equals

u = u0 + ∆u (14)

where u0 is the control input at t−∆t. Substituting Eq. (13) into Eq. (11) leads to

θ̈ = ν + (G0 − Ĝ0)∆u+ ∆dθ +

∂fθ
∂θ̇

∣∣∣∣
0

∆θ̇ +
∂fθ
∂θ

∣∣∣∣
0

∆θ +

ns∑
j=1

∂fθ
∂żs,j

∣∣∣∣
0

∆żs,j +

ns∑
j=1

∂fθ
∂zs,j

∣∣∣∣
0

∆zs,j +R1


= ν + (G0 − Ĝ0)∆u+ ∆dθ +

(
∂fθ
∂ẋ

∣∣∣∣
0

∆ẋ +
∂fθ
∂x

∣∣∣∣
0

∆x +
1

2

∂2fθ
∂ẋ2

∣∣∣∣
m

∆ẋ2 +
1

2

∂2fθ
∂x2

∣∣∣∣
m

∆x2

)
, ν + (G0 − Ĝ0)∆u+ ∆dθ + δ(x, ẋ, t) , ν + εindi (15)

In Eq. (15), δ(x, ẋ, t) represents the closed-loop value of the state variations and expansion remainders.
εindi is the lumped uncertainty term under INDI control.

Assumption 2 The lumped variation term δ(x, ẋ, t) in Eq. (15) satisfies |δ(x, ẋ, t)| ≤ δ̄.

In view of Eq. (6), x is twice continuously differentiable. Therefore, lim∆t→0 ‖∆x‖2 = 0 and lim∆t→0 ‖∆ẋ‖2
= 0. If the first-order and second-order partial derivatives of fθ with respect to x and ẋ are bounded, then
it can be seen from Eq. (15) that the absolute value of δ(x, ẋ, t) approaches zero as ∆t decreases. Therefore,
this assumption can be met by the selection of a sufficiently small sampling interval.

Proposition 1 Under Assumptions 1 and 2, if |1 − G/Ĝ| ≤ b̄ < 1 for all t, then for sufficiently small
sampling interval ∆t, the residual error εindi in Eq. (15) is ultimately bounded.

Proof: Recall Eq. (15), θ̈ = ν+εindi. This equation is valid at every time step, thus at t−∆t, θ̈0 = ν0+εindi,0.
Using this relationship and Eqs. (13) and (15), the residual error εindi is further derived as

εindi = δ(x, ẋ, t) + ∆dθ + (G0 − Ĝ0)∆u = δ(x, ẋ, t) + ∆dθ + (G0 − Ĝ0)Ĝ−1
0 (ν − θ̈0)

= δ(x, ẋ, t) + ∆dθ + ((GĜ−1)|0 − 1)(ν − ν0 − εindi,0)

, Eεindi,0 − E(ν − ν0) + δ(x, ẋ, t) + ∆dθ (16)

To avoid the chattering phenomenon, the virtual control ν is designed to be continuous in time. Using
this continuity, lim∆t→0 |ν − ν0| = 0. This also indicates that there always exists a ∆t such that ν − ν0 is
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bounded by a constant ∆ν. In practice, the variation of external disturbance in one incremental time step
is bounded, thus the bound of ∆dθ is denoted as ∆d. Given these bounded variation terms, Eq. (16) is in
a similar form with Eq. (14) in Ref. 19. Therefore, analogous to the proof of Theorem 1 in Ref. 19, εindi is
bounded at each time step and is ultimately bounded by (∆νb̄+ δ̄ + ∆d)/(1− b̄). �

Although the term “sufficiently small” sampling interval is used in Proposition 1, it is not difficult to find
a practical sampling frequency. 100 Hz is sufficient for rigid aircraft, which has been verified by real-world
flight tests.26

B. Virtual Control Design

After using the model-based partial feedback linearisation, or the sensor-based INDI, the pitch dynamics
become θ̈ = ν + εndi/indi (Eqs. (10, 15)). In conventional INDI control, the following virtual control design
is used to stabilise the tracking error of θ:

νindi = θ̈ref − kθ(θ − θref)− kq(q − qref) (17)

where kθ and kq are positive control gains. However, this virtual control design only contains rigid-body
state feedback, thus it is not sufficient to damp out slosh motions. This has been demonstrated by the
simulation results in Ref. 13. To simultaneously achieve rigid-body state tracking and slosh suppression, the
incremental sliding mode control (INDI-SMC) will be used. Recall Eq. (6), the complete system dynamics
after partial feedback linearisation can be written in the state-space form as



θ̈

θ̇

z̈s,1

żs,1
...

z̈s,ns
żs,ns


=



0 0 0 0 . . . 0 0

1 0 0 0 . . . 0 0

a1,1 a1,2 a1,3 a1,4 . . . a1,2ns+1 a1,2ns+2

0 0 1 0 . . . 0 0
...

...
...

...
...

...

ans,1 ans,2 ans,3 ans,4 . . . ans,2ns+1 ans,2ns+2

0 0 0 0 . . . 1 0





θ̇

θ

żs,1

zs,1
...

żs,ns
zs,ns


+



1

0

b1

0
...

bns
0


ν +



εndi/indi

0

d1

0
...

dns
0


(18)

The virtual control ν becomes the new control input of this system, and it should be designed to fulfill
the tracking task, damp out the slosh dynamics, and enhance the robustness against model uncertainties
and external disturbances. Theses tasks can be achieved by sliding mode control.

Define the new state vector as X = [θ̇, θ, żs,1, zs,1, . . . , żs,ns , zs,ns ]
T, and define its reference vector as

Xref = [θ̇ref, θref, 0, 0, . . . , 0, 0]T, then the dynamics of the tracking error e = X−Xref are written as

ė = AX + Bν + d− Ẋref = ÂX + B̂ν + (A− Â)X + (B− B̂)ν + d− Ẋref (19)

where only the estimated Â and B̂ are available for control-system design. The model uncertainties and
external disturbances in Eqs. (18) and (19) can be classified into matched and unmatched uncertainties.
Because εndi/indi enters the state equation at the same point as the virtual control input ν, it is a matched
uncertainty term. Although sliding mode control has inherent robustness to matched uncertainties, the
sliding surface should be carefully designed to ensure the robustness to unmatched uncertainties, which in
this case, are the uncertain system elements ai,j , i = 1, ..., ns, j = 1, ..., 2ns + 2, b1, ..., bns , and d1, ..., dns .

Design the sliding surface as s = CTe = 0, where C ∈ R(2ns+2)×1. This vector C is designed such that
the unmatched uncertainties belong to the null space of CT, while CTB̂ should still be invertible. In this
paper, C is designed as

C = [1, cθ, 0, c1, . . . , 0, cns ]
T (20)

Using Eqs. (18) and (20), the following equations can be verified

CT(A− Â) = 0, CT(B− B̂) = 0, CTB̂ = 1, CTd = εndi/indi (21)

Lemma 1 (Ref. 23) If a Lyapunov function V satisfies V̇ + αV + βV γ ≤ 0, α, β > 0, 0 < γ < 1, then

V = 0 will be reached in finite time T ≤ 1
α(1−γ) ln αV 1−γ(t0)+β

β .
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Theorem 1 For the system modeled by Eq. (18) with sliding surface s = CTe = 0, where C is given by

Eq. (20), design ν = −k1s− k2|s|ρsign(s)−CTÂX + CTẊref, k1 > 0, k2 > η > 0, 0 < ρ < 1, then

1. In the absence of the perturbation term εndi/indi, s = 0 is reached in finite time.

2. If the perturbation term εndi/indi is bounded, then the system trajectories will converge to the neigh-

bourhood of s = 0 as s ≤ s̄ndi/indi = (|εndi/indi|/(k2 − η))
1
ρ in finite time.

Proof : Consider a candidate Lyapunov function V = 1
2s

2, using Eqs. (19) and (21), the time derivative of
V yields

V̇ = s[CT(ÂX + B̂ν + (A− Â)X + (B− B̂)ν + d− Ẋref)]

= s[CTÂX + ν + εndi/indi −CTẊref)]

= −k1s
2 − k2|s|ρ+1 + sεndi/indi (22)

1. When εndi/indi = 0, Eq. (22) is derived as

V̇ = −k1s
2 − k2|s|ρ+1 = −2k1V − 2(ρ+1)/2k2V

(ρ+1)/2 (23)

Using Lemma 1, V converges to zero in finite time:

T ≤ ln[(k1V (t0)(1−ρ)/2 + 2(ρ−1)/2k2)/(2(ρ−1)/2k2)]/[k1(1− ρ)]

Equivalently, s = 0 is reached in finite time.

2. When εndi/indi 6= 0, Eq. (22) is derived as

V̇ ≤ −k1s
2 − k2|s|ρ+1 + |s||εndi/indi| ≤ −k1s

2 − η|s|ρ+1, ∀|s| ≥
( |εndi/indi|

k2 − η

) 1
ρ

, s̄ndi/indi (24)

Using Lemma 1, the above equation demonstrates that s converges to the domain s ≤ s̄ndi/indi in finite
time. �

It is noteworthy that the sliding surface designed in this paper guarantees that all the unmatched uncer-
tainties belong to the null space of CT, and the resulting dynamics are only perturbed by εndi/indi, which lies
in the input channel of ν. In theory, this matched uncertainty term can be completely cancelled in finite time
using the conventional η− reaching law, which would result in V̇ = s(−kssign(s) + εndi/indi) ≤ −η|s|, ∀ks ≥
η + |εndi/indi|. However, this reaching law contains the discontinuous sign function, which causes chattering
in practice. If the boundary-layer approximation is used, the sliding variable s would also stay in the vicinity
of its origin. Moreover, the finite-time convergence property would also lost. By contrast, the fast terminal
sliding mode reaching law −k1s − k2|s|ρsign(s) is adopted in this paper. The choice 0 < ρ < 1 ensures the
achievement of finite-time reaching and continuity at the same time.

The ultimate bound of s can be diminished by increasing k2 and reducing ρ (given |εndi/indi|/(k2 − η) < 1).

Although the nominal model Â is needed in ν, using Eqs. (18) and (20), it can be seen that CTÂ =
[cθ, 0, c1, 0, ..., cns , 0], which actually does not contain any model information.

On the sliding surface, the equivalent virtual control is νeq = −CTÂX + CTẊref, which is calculated by
substituting s = 0 into the ν given in Theorem 1. Therefore, the equivalent closed-loop dynamics is

ė = AX + Bν + d− Ẋref = AX + B(−CTÂX + CTẊref) + d− Ẋref (25)

Since CT(A− Â) = 0 (Eq. (21)), then

ė = (I−BCT)AX− (I−BCT)Ẋref + d (26)

Consider θref as a piecewise linear signal such that θ̈ref = 0. Because Xref = [θ̇ref, θref, 0, 0, . . . , 0, 0]T,
using Eq. (18), it can be seen that Ẋref = AXref. Substituting this equation into Eq. (26) yields

ė = (I−BCT)Ae + d , Aee + d (27)
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Although Ae ∈ R(2ns+2)×(2ns+2), it can be examined that the rank of Ae equals 2ns+1. This shows that
on the sliding surface, the closed-loop system behaves as its reduced dynamics. To analyse the stability of
the reduced-order dynamics, select er = Te, where T ∈ R(2ns+1)×(2ns+2), and ensure the rank of T equals
2ns + 1. Without loss of generality, select er = [eθ, żs,1, zs,1, . . . , żs,ns , zs,ns ], then Eq. (27) can be rewritten
as (

ėθ̇
ėr

)
=

[
A11 A12

A21 A22

](
eθ̇
er

)
+

(
εndi/indi

dr

)
(28)

On the sliding surface, s = CTe = [1, cθ, 0, c1, . . . , 0, cns ]e = 0. Therefore, ėθ̇ = −[cθ, 0, c1, . . . , 0, cns ]er.
Substituting this relationship into Eq. (28), the reduced-order dynamics is

ėr = A22er −A21[cθ, 0, c1, . . . , 0, cns ]er + dr , Arrer + dr (29)

Recall Eq. (6), dr contains the aerodynamic force fα and the elastic perturbations. A part of these
perturbations vanishes at the origin (α = q = zs,j = ηi = 0), while the remaining terms caused by the
disturbing angle of attack αdis are non-vanishing perturbations. In view of this, the following assumption is
made:

Assumption 3 In Eq. (29) ‖dr‖2 ≤ γd‖er‖2 + εd.

Theorem 2 Under Assumption 3, if C in Eq. (20) is designed such that Arr in Eq. (29) is Hurwitz, and
if γd <

1
2‖P‖2 , where P = PT > 0 is the solution of the Lyapunov function PArr + AT

rrP = −I, then on the

sliding surface s = CTe = 0, the tracking error vector e in Eq. (19) is ultimately bounded.

Proof: Consider a candidate Lyapunov function Ve = eT
r Per, using Eq. (29), the time derivative of Ve is

V̇e = eT
r (PArr + AT

rrP)er + 2eT
r Pdr

≤ −‖er‖22 + 2‖er‖2‖P‖2‖dr‖2 ≤ −‖er‖22 + 2γd‖P‖2‖er‖22 + 2εd‖P‖2‖er‖2

≤ −(1− σ1)‖er‖22 + 2εd‖P‖2‖er‖2 ≤ −(1− σ1)(1− σ2)‖er‖22, ∀‖er‖2 ≥
2εd‖P‖2

(1− σ1)σ2
(30)

in which σ1 ∈ (0, 1) is chosen close enough to one such that γd <
σ1

2‖P‖2 . σ2 is also chosen within the interval

(0, 1). Apply the Theorem 4.18 in Ref. 22, it is concluded that er is ultimately bounded by 2εd‖P‖2
(1−σ1)σ2

√
λmax(P)
λmin(P) ,

in which λmax(P) and λmin(P) represent the maximum and minimum eigenvalues of P , respectively.
Furthermore, on the sliding surface, Eq. (20) leads to ėθ̇ = −[cθ, 0, c1, . . . , 0, cns ]er. Therefore, ėθ̇ is

ultimately bounded by
√
c2θ + c21 + · · ·+ c2ns

2εd‖P‖2
(1−σ1)σ2

√
λmax(P)
λmin(P) . As a result, the entire tracking error vector

e in Eq. (19) is ultimately bounded. �

C. Comparisons of INDI, INDI-SMC, and FL-SMC

The main difference between INDI control and INDI-SMC lies in the virtual control design. After the partial
feedback linearisation using incremental non-linear dynamic inversion, the closed-loop pitch dynamics is
θ̈ = ν+εndi/indi. Conventional INDI control only stabilise this rigid-body motion, with νindi given in Eq. (17).
On the contrary, the virtual control of INDI-SMC is a function of sliding variable s, which is designed to
stabilise both rigid-body and slosh dynamics. The inclusion of SMC also robustifies the INDI control, as the
matched uncertainty term is completely cancelled on the sliding surface. The INDI-SMC designed in this
paper also ensures the robustness against unmatched uncertainties, which is achieved by exploiting the null
space in the sliding surface design.

On the other hand, FL-SMC (feedback linearisation or non-linear dynamic inversion-based SMC) and
INDI-SMC use the same SMC virtual control design given in Theorem 1, and their differences are in the
linearisation loop. As shown in Sec. III.A, FL uses both f̂θ and Ĝ for linearisation, while INDI only needs the
estimated control effectiveness Ĝ. A block diagram for INDI-SMC is shown in Fig. 4. Although the model
dependency of INDI is less, its robustness is enhanced by virtue of its sensor-based nature.19 Despite the
fact that lumped perturbation terms are present in the closed-loop of feedback linearisation and INDI, εndi

and εindi have different properties. As discussed in Ref. 19, the boundedness conditions on εindi are easier
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Plant

Actuators

Sensors

Sensor Measurements
and/or Actuator Model

and Estimator

+

Filters and/or
Estimator

_ +

= plant related

  = control related

    = sensing related

Figure 4. Block diagram for INDI-SMC.

to achieve in practice, while εndi can become unbounded in severe fault or damage cases. Moreover, even in
the circumstances where both εndi and εindi are bounded, there exists a sampling frequency such that the
upper bound on εindi is smaller. The smaller bound of εindi can effectively reduce the ultimate bound on
the tracking error, and can also reduce the minimum possible gains required by sliding mode controllers and
observers.19 These advantages of INDI-SMC over FL-SMC have been verified by quadrotor flight tests in
Ref. 20.

IV. Results and Discussions

A. Nominal Configuration

The analysis of controller performance will be done in several steps, taking previous results as a baseline.13

The configuration of the plant is that of a rigid-body representation of the launcher, with an LOX and RP-1
tank in the first stage that can exhibit sloshing. The two tanks in the second stage are considered to be
completely filled, and are thus assumed to be rigid. The point of interest is that of maximum dynamic
pressure, i.e., at t = 63.5 s into the launch. Information about the launch trajectory, and the details about
the state variables can be found in Ref. 5.

The baseline controller is a state-feedback controller, with gains obtained from optimal-control theory, the
so-called Linear Quadratic Regulator (LQR). The LQR has been designed for a relatively smooth response
with a maximum state deviation of ∆θ = 1◦, ∆q = 5◦/s, ∆żs = 30 m/s and ∆zs = 40 m. The latter two
large deviations have been selected to avoid a strong controller response due to more violent slosh motion.
With a maximum swivel angle of ∆εT = 6◦, this gives the gains Klqr = (6.07, 1.37, -0.0045, -0.0154, -0.0027,
-0.0148), associated with states θ, q, żs,1, zs,1, żs,2 and zs,2. It is noted that the angle of attack is not
fed back to the controller. In the current research, we assume perfect rigid- and slosh-state knowledge; the
observer developed in Ref. 13 has shown to be working well to provide this slosh knowledge. However, it
is left as future work to also include a (rigid-)state observer, e.g., one that works well in the presence of
turbulence and other uncertainties.

Finally, to minimise slosh excitation due to discrete command changes, a first-order command pre-filter
is included in the pitch-angle channel, with transfer function

Hc(s) =
1

τs+ 1
(31)

where the time constant τ = 1.25 s. This value has not been optimised, but as it reduces the slosh excitation
it serves its purpose for this paper.

The manoeuvres that will be executed are step commands in pitch angle, i.e., θc = 2◦ and θc = 5◦. An
example of the baseline-controller performance is shown in Fig. 5, which shows the response after θc = 5◦.
The coupling between rigid-body motion and the slosh motion is clear, as the oscillating slosh masses induce
a perturbing oscillation in the swivel angle and as a very minor oscillation in the pitch motion. Due to
the inherent damping in the slosh model, the oscillations slowly damp out. Overall, the response is stable,
despite the destabilising LOX mode, which is very well controlled.
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Figure 5. Benchmark performance: θc = 5◦, LQR controller.
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Figure 6. System response after a 2◦ step in θ; engine dynamics and two flexible modes included (INDI
control).

From the earlier research it appeared that in spite of the decent performance for the nominal case, the
LQR had a problem to control the plant when besides the slosh motion, the perturbing effect of the flexible
modes and the engine dynamics were added. The marginal phase shifts in the feedback signals were already
sufficient to destabilise the controller. A preliminary analysis to use a more robust (and non-linear) controller,
the INDI, gave promising results.13 With only the feedback of the rigid-body states θ and q, but otherwise
including all effects, the response shown in Fig. 6 was obtained. The coupling with the slosh motion is
obvious, and is, of course, not a desired closed-loop response, but realising that this performance is obtained
without any slosh knowledge, motivates to adapt such a controller.

As we have discussed earlier, the objective of the current research is to do just that: extend the INDI
controller with slosh feedback, and study its performance. In the earlier sections, we have developed con-
trollers based on Incremental Sliding Mode Control (INDI-SMC), and Feedback Linearisation-based Sliding
Mode Control (FL-SMC). These controllers will first be evaluated on the nominal plant configuration. For
fair comparisons, the sliding surface and SMC parameters used by INDI-SMC and FL-SMC are kept the
same, while the differences remain in the linearisation loop (Sec. III.C). The sliding surface parameters in
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Figure 7. Step response with nominal slosh parameters; θc = 5◦.

Eq. (20) are selected as cθ = 8, c1 = −0.06, c2 = −0.03. These parameters are chosen such that Arr in
Eq. (29) is Hurwitz (Theorem 2). The virtual control gains in Theorem 1 are k1 = 5, k2 = 5, ρ = 0.8. As
discussed in Sec. III.B, the ultimate bound of s can be diminished by amplifying k2 and reducing ρ. Besides,
the convergence rate can be increased by amplifying k1 (Eq. (24)).

Figure 7 shows the response, including that of the benchmark LQR controller. It is clear that the INDI-
SMC and FL-SMC outperform the LQR, which is most obvious from the slosh motion. The LOX slosh-mass
position does not show any oscillation anymore, and also the RP-1 slosh mass motion has reduced a bit.
In terms of pitch-angle error, both non-linear controllers exhibit smaller errors, with the INDI-SMC being
the better one. Note that the slosh-mass positions have been constrained to the tank radius, being rtank =
0.9144 m.

To anticipate on the later sensitivity analysis, in Table 1 the performance indices for these nominal
performance simulations have been listed. In Appendix A these indices have been defined; they are related
to the integrated state deviation,

∑
θerr

, the integrated control effort,
∑
εT

, the integrated velocity and position∑
ws

and
∑
zs

of the slosh masses (corresponding to the total kinetic and potential energy involved in the slosh

motion), and indices representing the amount of oscillation in the signals, i.e., Fθ, FεT , Fws , and Fzs . For
each index it holds that the smaller the value the better the controller performance. So, going over the values
in the table, these confirm the earlier observations. For the two non-linear controllers, the indices are quite
close together, apart from the smaller value for

∑
θerr

.

B. Slosh-Parameter Variation

In this section, the robustness of the controllers is addressed, in case the actual slosh parameters are different
from the nominal ones that were used to design the controllers. For all simulations, we perturb the slosh
parameters ms,1, `s,1, ωs,1, ζs,1, ms,2, `s,2, ωs,2, and ζs,2, where ωs and ζs have been selected as an alternative
to ks and cs, respectively. These changes reflect as changes in the plant model, i.e., the state and control
matrices A′ and B′ in Eq. (2). The controller gains that were obtained during the design process for the
nominal plant are kept constant. For all Monte-Carlo batches, we execute 500 simulations, with perturbed
slosh parameters drawn from a uniform distribution. The random generator is reinitialised to its default
settings after each batch.

To begin with, and to have a basis for comparison, in Fig. 8(a) the results are shown using the LQR.
A 5% variation of the slosh parameters is applied, and the manoeuvre is a two-degree step command on
the pitch angle. Even though it might seem that pitch control is not that bad, if one studies the integrated
control effort it becomes clear that there are many outliers requiring a significant control effort. For the
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Table 1. Performance indices of nominal simulation; θc = 5◦.

parameter unit LQR INDI-SMC FL-SMC∑
θerr

◦s 3.7 2.6 3.1∑
εT

◦s 15.6 15.4 15.5∑
ws,RP−1

m 5.5 2.9 2.9∑
zs,RP−1

m s 3.5 3.2 3.2∑
ws,LOX

m 4.9 3.6 3.6∑
zs,LOX

m s 3.4 3.2 3.2

Fθ
◦ 0.5 0.5 0.5

FεT
◦ 2.0 3.5 3.6

Fws,RP−1 m/s 4.5 4.2 4.2

Fzs,RP−1 m 1.0 0.7 0.7

Fws,LOX m/s 4.7 4.3 4.3

Fzs,LOX m 1.1 0.7 0.7
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Figure 8. Monte-Carlo results for 5% slosh-parameter variation; θc = 2◦.

sake of comparison, in Table 2 the mean value, µ, standard deviation, σ, and the maximum outlier (max)
for this analysis have been listed, as well as the corresponding values for the other two controllers. It is
evident that the two new controllers are much more robust under the slosh-parameter variations. As visual
support, in Fig. 8(b) the integrated state deviation and integrated control effort have been plotted for the
same manoeuvre and slosh-parameter variations. The total range for these indices is quite small, as if the
controllers are not really affected by the uncertainties. Another observation is that not only is the (nominal)
performance of the INDI-SMC better than that of the FL-SMC, it also seems to be more robust, as it
experiences fewer outliers.

When we have a closer look at the values in the table, it does show that in terms of robustness, all other
performance metrics basically have the same standard deviations, and the maximum values for the outlier
are only a bit larger for the FL-SMC. That means that performance-wise the FL-SMC is not that much worse
compared to the INDI-SMC. The LQR, on the other hand, shows very large values for some of the standard
deviations, and that on top of large mean values. All slosh-related parameters exhibit this behaviour, which
confirms that the LQR is not very well capable to suppress the slosh motion in the presence of uncertainties.
It could be that the performance of the LQR can be improved, but since it is not the objective of this
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Table 2. Performance indices of Monte-Carlo simulation (5% slosh-parameter variation); θc = 5◦.

parameter unit LQR INDI-SMC FL-SMC

µ σ max µ σ max µ σ max∑
θerr

◦s 3.8 0.2 4.4 2.6 0.1 2.8 3.1 0.1 3.3∑
εT

◦s 21.8 11.1 54.3 15.4 0.1 15.8 15.5 0.1 16.0∑
ws,RP−1

m 28.4 38.3 131.0 4.5 1.6 9.0 4.5 1.6 8.8∑
zs,RP−1

m s 8.1 8.0 29.6 3.3 0.3 4.2 3.4 0.3 4.3∑
ws,LOX

m 23.2 31.8 117.1 6.7 3.2 14.5 6.7 3.2 14.6∑
zs,LOX

m s 7.1 6.7 26.9 3.6 0.5 4.8 3.7 0.5 4.9

Fθ
◦ 0.6 0.0 0.7 0.5 0.0 0.5 0.5 0.0 0.5

FεT
◦ 3.5 3.0 13.7 3.6 0.1 3.8 3.6 0.1 3.8

Fws,RP−1 m/s 9.2 8.4 36.1 4.4 0.2 4.8 4.3 0.1 4.8

Fzs,RP−1 m 2.1 1.8 8.0 0.8 0.0 0.9 0.8 0.0 0.9

Fws,LOX m/s 8.2 6.7 31.6 4.7 0.4 6.2 4.7 0.4 6.1

Fzs,LOX m 1.8 1.5 7.1 0.8 0.1 1.2 0.8 0.1 1.2

research, we will not use the LQR any further – also, because the range of uncertainties could not be further
increased with stable responses. Instead, we will do the final analyses with the two non-linear controllers.

The final two batches concerned a 5◦-step command on the pitch angle (rather than θc = 2◦), to explore
a bit more of the transient effects, in combination with both 5% and 10% variation of the slosh parameters.
As the interpretation of the results in both cases is similar, we will only present the 10%-uncertainty case.
The results of this batch are shown in Figs. 9 and 10. From both figures, it is clear that both controllers
are very well capable of executing the commands, while maintaining stability. The INDI-SMC has a better
nominal performance, shows more results left of this, and has smaller values for the maximum outliers
than the FL-SMC. Contrary, the FL-SMC has some smaller minimum outliers. Figure 9(b) shows that the
oscillatory behaviour in the pitch and swivel angle is smaller for the INDI-SMC, albeit marginally smaller
for θ. However, for εT , the difference is more pronounced. Also, Fig. 10 confirms that there is less energy
involved in the slosh motion, when controlled with INDI-SMC, and fewer oscillations.

Even though comparable in performance, the overall conclusion seems to be that of the two studied
controllers the INDI-SMC is the better one. This will, of course, have to be verified by introducing more
non-linearities in the model. In the next and final section, we will include the flexible-body and engine
dynamics, and study how the system behaves.

C. Aeroelasticity and Engine Dynamics

In this last section, we will study the controller robustness after adding unmodelled dynamics, i.e., two flexible
modes of the launcher structure. We kick off with a nominal simulation, i.e., nominal slosh parameters and
a step response of θc = 5◦. In Figs. 11 and 12, the results for the INDI-SMC are shown – those obtained
with the FL-SMC are quite similar. A marginal effect of the rigid-flexible-body coupling can be seen, but
this is more obvious in the flexible-body coordinates that clearly show a coupling with the slosh states.
The slosh motion induces a small structural vibration, which, for the structural design, should be analysed
in more detail in case this can potentially cause damage. All in all, the controller(s) does not seem to be
affected much by these additional dynamics. For reference, in Table 3 the corresponding performance indices
are listed, for both controllers. These can serve as a baseline for interpreting the results of the upcoming
Monte-Carlo analysis.

There are some differences, most notably in
∑
θerr

and the slosh-related parameters, in favour of the

INDI-SMC having the smaller values. We have added the integrated effects of the generalised flexible-body
velocity and position, as well as the corresponding oscillation indices. The former two may be interpreted as
an indicators for the elastic kinetic and potential energy, whereas, for instance, Fη1 can serve as indicator for
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Figure 9. Monte-Carlo results for 10% slosh-parameter variation; θc = 5◦.
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Figure 10. Monte-Carlo results for 10% slosh-parameter variation, θc = 5◦: slosh parameters.

the amount of vibration. For the nominal case, the excitation of the modes is the same for both controllers.
As was to be expected, judging from the eigenfrequencies of the two modes, i.e., 37.3 and 105 rad/s,
respectively,13 the first bending mode is dominating and will be the one to be studied below.

The final analysis we will do is a 10% variation of the slosh parameters. Again, 500 simulations per batch
are executed, and the variations are drawn from a uniform distribution. For either controller, the random
generator is initialised with the same seed. The results are shown in Figs. 14 through 15, supported by the
data in Table 4. In all aspects, the INDI-SMC performs better than the FL-SMC. For the integrated state
deviation, the tendency is that more simulations end up with a smaller value than the nominal one, whereas
for the FL-SMC this is less pronounced. Concerning the integrated control effort, the distribution for the
FL-SMC is more skewed with some more outliers towards the maximum. The oscillations in θ are marginal,
and both controllers can suppress this well. The oscillations in the swivel angle is a little more noticeable,
but this does not seem to be a problem.

The variation in the slosh parameters leads to a stronger coupling with the flexible modes, as shown in
Fig. 14. The INDI-SMC suppresses the vibrations a bit better, but this is a consequence of more stable
control of the slosh modes. The differences are not very large, but present nonetheless.
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Figure 11. Step response with nominal slosh parameters (θc = 5◦). Launcher with flexible dynamics, INDI-
SMC controller.
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Figure 12. Flexible modes after a step response with nominal slosh parameters (θc = 5◦). Launcher with
flexible dynamics, INDI-SMC controller.

Comparing the results with the corresponding plots, Figs. 9 and 10 shows that the addition of the
unmodeled flexible dynamics does not degrade the controller performance too much. Both controllers do an
excellent job, but the winner in this case is the INDI-SMC.

The final test of robustness is to simulate a 5◦-step response for the complete system, i.e., the flexible
launcher with engine dynamics and sloshing in the fuel and oxidiser tanks. Initial runs indicated a high-
frequency oscillatory motion of the swivel command, which could not be resolved by tuning the controller.
However, the origin of the oscillations was traced back to the actuator feedback loop, which amplified the
oscillations in the system. Therefore, we included a first-order low-pass filter (with a bandwidth equal to
30 rad/s) in this feedback loop, which solved the problem. The final results are shown in Figs. 16 and 17.
From these results, the robust performance of the INDI-SMC controller is obvious, but it is also clear that
attention should be paid to the actuator-feedback loop. It does not suffice to just use the previous command
value issued by the controller.
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Table 3. Performance indices of nominal simulation with flexible dynamics; θc = 5◦.

parameter unit INDI-SMC FL-SMC∑
θerr

◦s 6.9 8.3∑
εT

◦s 38.3 38.7∑̇
η1

s 1.7 1.9∑
η1

s 2.2 2.2∑̇
η2

s 0.1 0.1∑
η2

s 0.1 0.1∑
ws,RP−1

m 12.3 13.4∑
zs,RP−1

m s 7.9 8.1∑
ws,LOX

m 13.9 15.4∑
zs,LOX

m s 8.0 8.3

Fθ
◦ 1.1 1.1

FεT
◦ 7.7 7.9

Fη̇1 - 2.9 3.2

Fη1 - 0.2 0.2

Fη̇2 - 0.4 0.4

Fη2 - 0.0 0.0

Fws,RP−1 m/s 7.6 7.8

Fzs,RP−1 m 1.4 1.4

Fws,LOX m/s 7.9 8.2

Fzs,LOX m 1.4 1.5
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Figure 13. Monte-Carlo results for 10% slosh-parameter variation (θc = 5◦); launcher with flexible dynamics.

V. Conclusions and Recommendations

This paper focuses on the attitude control and slosh dynamic suppression of an aeroelastic launch vehicle
with non-linear engine dynamics. A series of damped mass-spring systems are used to model the slosh
dynamics in the fuel and oxidiser tanks of the PacAstro launch vehicle. The resulting slosh dynamics is
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Figure 14. Monte-Carlo results for 10% slosh-parameter variation (θc = 5◦): slosh parameters. Launcher with
flexible dynamics.
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Figure 15. Monte-Carlo results for 10% slosh-parameter variation (θc = 5◦): slosh parameters. Launcher with
flexible dynamics.

tightly coupled with the rigid-body dynamics, which, if not properly dealt with, can destabilise the entire
launch vehicle.

In literature, the Linear-quadratic Regulator (LQR) has been applied to this problem. Although the
vehicle under LQR control can track the pitch angle command, limit-cycle behaviour presents itself in the
swivel commands. Moreover, the performance of LQR degrades in the presence of model uncertainties and
unmodeled dynamics (aeroelastic modes, engine dynamics, etc.). In view of these limitations, the Incremental
Non-linear Dynamic Inversion (INDI) control was proposed for launch-vehicle control. It has been shown
that INDI indeed has superior performance in terms of state deviation and control effort. However, since
conventional INDI control cannot handle under-actuated systems, the slosh dynamics cannot be effectively
suppressed. As a consequence, limit-cycle behaviour still presents itself under INDI control.

This paper adopts the novel Incremental Sliding Mode Control (INDI-SMC) to deal with the under-
actuated dynamics and to enhance the robustness of INDI control further. Apart from the inherent robust-
ness of Sliding Mode Control (SMC) to the so-called matched uncertainties, the sliding surface designed in
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Table 4. Performance indices of Monte-Carlo simulation with flexible dynamics (10% slosh-parameter varia-
tion); θc = 5◦.

parameter unit INDI-SMC FL-SMC

µ σ max µ σ max∑
θerr

◦s 7.0 0.6 8.4 8.4 0.7 10.0∑
εT

◦s 39.7 1.3 43.8 40.3 1.5 44.8∑̇
η1

s 7.8 3.2 14.0 8.5 3.4 15.6∑
η1

s 2.7 0.4 3.6 2.8 0.4 3.8∑̇
η2

s 0.2 0.1 0.4 0.2 0.1 0.4∑
η2

s 0.1 0.0 0.1 0.1 0.0 0.1∑
ws,RP−1

m 30.6 10.9 56.4 32.3 11.3 59.2∑
zs,RP−1

m s 10.1 1.8 15.0 10.5 1.9 15.5∑
ws,LOX

m 49.8 18.1 82.2 53.4 19.3 90.8∑
zs,LOX

m s 13.6 3.4 20.8 14.3 3.6 22.3

Fθ
◦ 1.1 0.0 1.1 1.1 0.0 1.1
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◦ 8.4 0.5 9.7 8.6 0.5 10.0
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Figure 16. Step response (θc = 5◦) of flexible launcher, with sloshing and engine dynamics (INDI-SMC).

this paper also ensures the robustness against unmatched uncertainties. The stability of the proposed con-
troller is proved using Lyapunov methods. Different from the conventional SMC designs based on Feedback
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Figure 17. Step response (θc = 5◦) of flexible launcher, with sloshing and engine dynamics: flexible modes
(INDI-SMC).

Linearisation (FL), the only model information needed by INDI-SMC is the control effectiveness. Even so,
by excavating the sensor measurements, INDI-SMC still has better robustness against model uncertainties
and external disturbances than its FL-SMC counterpart.

The merits of INDI-SMC over LQR, INDI, and FL-SMC are verified by numerical simulations. In
the nominal case, conventional INDI control (without slosh-state feedback) is unable to suppress the slosh
dynamics. On the contrary, all the other three controllers can enhance the slosh damping. A sensitivity
analysis also shows that INDI-SMC and FL-SMC can more effectively damp out the slosh motions than the
LQR. Moreover, the pitch-angle tracking error under the control of INDI-SMC is the smallest.

Monte-Carlo studies have been used to evaluate the robustness of the controllers to parametric uncer-
tainties. When a 5% variation of the slosh parameters and a 2◦-step command on the pitch angle is applied,
the system using LQR has many outliers requiring significant control efforts. Also, the performance metrics
for LQR present both the highest mean values and the largest standard deviations among all the tested
controllers. To further distinguish the difference between INDI-SMC and FL-SMC, the parameter variation
range and the step command magnitude are amplified to 10% and 5◦, respectively. Under this circumstance,
both INDI-SMC and FL-SMC can execute the command, while damping the slosh motions. However, INDI-
SMC has better nominal performance, as well as smaller values for the maximum outliers than FL-SMC.
The slosh energy using INDI-SMC is lower as well. It is worth noting that INDI-SMC also requires less
model information than FL-SMC.

The robustness of the controller to unmodeled dynamics has also been evaluated. Adding two flexible
modes of the structural model to the plant shows that either controller can handle this well, even in the
presence of 10% variation in the slosh parameters. Coupling between the slosh and flexible modes is observed,
which may be studied in more detail once a more advanced structural model of the launcher is available.
After the inclusion of a third-order engine dynamics, the actuator feedback loop had oscillations. Inserting a
low-pass filter in this loop solved this issue, and a very robust control response was obtained. It is stressed,
though, that attention should be paid to the actuator-feedback loop. It does not suffice to just use the
previous command value issued by the controller, because it does not always reflect the hardware state.

For all performance indices studied, the INDI-SMC is the more robust controller. Most notable differences
are found in the integrated state deviation and the slosh motion, but this also reflects as a smaller excitation
of the flexible modes.

For future work, it is recommended to design a robust observer for both the rigid-body and the slosh states.
Modelling the slosh dynamics as (non-linear) damped pendulum systems and comparing the resulting model
properties with the damped mass-spring systems is also recommended. The ultimate goal of this research is
to design non-linear and robust controllers and observers for fully non-linear launch-vehicle dynamics.
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Appendix A. Controller Performance Indices

To compare the controller responses and the effect of sloshing, several performance metrics will be defined.
The first one is the minimum attitude deviation of the launcher with respect to the guidance commands,
whereas the second one is the swivel effort that is required to achieve this. These two objectives can be
expressed as the integrated pitch-angle deviation and the integrated swivel angle (equivalent to, for instance,
the total hydraulic power required), given by:

∑
θerr

=

T∫
0

|θc(t)− θp(t)|dt
∑
εT

=

T∫
0

|εT (t)|dt (32)

A graphic representation of the above metrics is shown in Fig. A1(a), represented by the grey areas, for
a 2◦ step command in θ, starting at ∆t = 1 s with a duration of 14 s. For optimal controller performance,
both individual areas should be as small as possible, which means that their numerical equivalent can be
used to evaluate different controller designs. In the given example,

∑
θerr

= 6.55◦s and
∑
εT

= 17.21◦s.

Another metric can be the oscillatory behaviour of either state or control variable. Oscillations in the
control may not only be energy expensive and a burden on the hardware, it could also lead to instabilities.
Equivalently, oscillations in the slosh states gives an indication of the severity of the motion and potential
hazardous situations. To detect oscillations or otherwise discrete changes in the controls, the cumulative
moving standard deviation can be used. For a subset j of ns out of a total of N samples of an arbitrary

control signal u, the moving mean is defined as ȳj = 1
ns

j+ns−1∑
i=j

ui. Here, j will run from j = 1+ns/2 to

N -ns/2, so each subsequent subset will shift by only one sample. Let the squared deviation from this mean
be defined as su,j = (uj+ns/2− ȳj)2, which represents the value at the midpoint of subset j. The cumulative
standard deviation, Fu, for subset j is then

Fuj =

√√√√ 1

N − ns − 1

j∑
k=1

sk (33)

As an example, in Fig. A1(b) the oscillation pattern of the slosh velocity is shown, due to a poorly designed
control system. The cumulative standard deviation increases more rapidly when a discrete jump occurs, or
when there is an interval with persistent oscillations. As a metric, the grey area under the curve can be
used, which, while minimised, would lead to a smoother behaviour. In this particular example, the numerical
value is Fzs = 35.6 m/s.
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Figure A1. Controller performance indices.
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