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A B S T R A C T   

Urban gas pipelines usually have high structural vulnerability due to long service time. The locations across 
urban areas with high population density make the gas pipelines easily exposed to external activities. Recently, 
urban pipelines may also have been the target of terrorist attacks. Nevertheless, the intentional damage, i.e. 
terrorist attack, was seldom considered in previous risk analysis of urban gas pipelines. This work presents a 
dynamic risk analysis of external activities to urban gas pipelines, which integrates unintentional and intentional 
damage to pipelines in a unified framework. A Bayesian network mapping from the Bow-tie model is used to 
represent the evolution process of pipeline accidents initiating from intentional and unintentional hazards. The 
probabilities of basic events and safety barriers are estimated by adopting the Fuzzy set theory and hierarchical 
Bayesian analysis (HBA). The developed model enables assessment of the dynamic probabilities of consequences 
and identifies the most credible contributing factors to the risk, given observed evidence. It also captures both 
data and model uncertainties. Eventually, an industrial case is presented to illustrate the applicability and 
effectiveness of the developed methodology. It is observed that the proposed methodology helps to more 
accurately conduct risk assessment and management of urban natural gas pipelines.   

1. Introduction 

Aging urban natural gas pipelines have high operational risk due to 
their exceptional location and long service life (Mao et al., 2014; Li et al., 
2020). The 10th EGIG report indicates that 28.37% of accidents of Eu
ropean onshore gas pipelines are caused by external interference and, 
14.9% of accidents are triggered by ground movement (EGIG, 2018), as 
shown in Fig. 1. Halim et al. (2020) investigated the causal factors of the 
pipeline incident data reported in databases of US PHMSA, Canada 
National Energy Board (NEB), and European Gas Pipeline Incident Data 
Group (EGIG). It can be found that external activities such as external 
interference and ground movement are the most significant factors 
resulting in gas pipeline failures. This paper uses the term of external 
activities to describe causations of natural gas pipeline accident from 
external interference and ground movement et al., defined in EGIG 
report. 

Nowadays, natural gas pipelines have gradually become the target of 
terrorist attacks due to their economic value and the significant impacts 

of destruction. In the past few years, many accidents to oil and gas 
pipelines, due to intentional damage, have been observed. For example, 
a natural gas pipeline in the Republic of Dagestan, Russia, was exploded 
due to terrorist attacks, which interrupted gas supply to 100,000 people 
(Chen et al., 2015). Also, a natural gas pipeline leak in Egypt’s Sinai 
Peninsula was caused by a terrorist attack. The leak incident escalated 
into a fire and explosion, which disrupted Egypt’s natural gas trans
mission to Israel and Jordan (Chen et al., 2015). Thus, the external 
damage-causing pipeline failures are not only accidental but can also be 
intentional. The external activity that casing pipeline accident in this 
paper is further divided into intentional and unintentional parts. The 
unintentional part means the activities without deliberate intent or 
irresistible natural factors, whereas the intentional part means the 
external activities with purpose or intent. It is significantly important to 
integrate unintentional and intentional factors in quantitative risk 
assessment of urban natural gas pipeline accidents from external 
activities. 

Currently, considerable efforts have been made on qualitative and 
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quantitative risk studies of urban oil and gas pipelines. Li et al. (2019) 
analyzed the cause of accidents based on a combination of DEMATEL, 
ISM, and BN to reduce pipeline network risk and avoid leak accidents. 
Xing et al. (2020) studied urban pipeline accidents from a systematic 
perspective, and the direct and indirect causes of the accident were 
considered to deeply analyze the accident-causing factors and identify 
the risk associated with the leaks. Gong et al. (2018) studied 
long-distance oil pipelines to extend the cause-and-effect analysis from 
immediate failures to a systemic perspective and explained the reasons. 
Guo et al. (2016) used a cloud inference method for risk (third-party 
damage, corrosion damage, design flaws, etc.) assessment of natural gas 
pipelines. Wang et al. (2017) built an advanced two-step approach to 
assess the failure probabilities of urban buried gas pipeline. Badida et al. 
(2019) used a fuzzy fault tree to analyze the likelihood of natural gas 
pipeline failure due to natural hazards. Ma et at. (2013) conducted a 
quantitative risk analysis for urban natural gas pipeline networks using 
geographical information systems (GIS). Han and Weng (2011) estab
lished a risk index system by using a qualitative method and constructed 
a quantitative method consisting of probability assessment of potential 
consequences and risk assessment. 

Meanwhile, external activities, as one of the leading causes of oil and 
gas pipeline failure, has also attracted the attention of many scholars. 
Guo et al. (2018) identified the risk factors after the oil and gas pipeline 
accident caused by a third-party based on BN. Cui et al. (2020) inves
tigated pipeline risks caused by unintentional external activities by 
integrating Bayesian network and game theory; Liang et al. (2012) 
focused on the application of SOMs to assess third-party risk in the 

pipeline and classify risk patterns. Bajcar et al. (2015) quantified the 
impact of external activities risks on natural gas pipelines to accurately 
define the level of risk by studying population density; Li et al. (2016) 
evaluated the failure probability of urban natural gas pipelines on 
external activities by AHP and fuzzy mathematical theory. 

The above-mentioned researches have discussed different qualitative 
and quantitative techniques for risk assessment of the oil and gas pipe
lines. However, there are two issues that remain to be addressed. First, 
we need to investigate how to model the integrated risk of aging urban 
natural gas pipelines, abnormal events that can be divided into acci
dental events and intentional events, which are respectively caused by 
unintentional risk and intentional risk (i.e., terrorism, vandalism, and 
mischief). Both unintentional and intentional hazards should be 
considered in risk assessment. However, it is inadequate that the pre
vious studies on risk assessment of natural gas pipelines mainly focused 
on the accidental risk. Aging urban natural gas pipelines remain 
vulnerable due to the intentional risk. Hence, it is necessary to perform 
an integrated external activities risk assessment of aging urban natural 
gas pipelines. Second, the previous risk assessment of urban oil and gas 
pipelines mainly focused on addressing the limitations arising from the 
static structure of conventional methods. Moreover, the quantitative risk 
analysis is also challenged by limited or missing data, and this increases 
the uncertainty in assessment outcomes. Expect for considering the in
terdependencies among risk factors, this work also accounts for the data 
uncertainty of basic risk factors which is addressed by using integrated 
probability estimation techniques. Thus, the developed model could 
capture both data and model uncertainties. 

The available accident statistic reports are analyzed to find previ
ously unrecognized intentional damage factors. BN is a graphical 
inference probability technique that describes the relationship between 
the cause and consequence of a system (Arzaghi et al., 2017; Baksh et al., 
2018). This method can effectively solve the problem of interconnected 
and multi-state input abnormal events, and can appropriately update the 
probability of accidents and their consequences according to changes in 
risk. BN is used in this work to model urban natural gas pipeline failure 
from the integrated external activities. Besides, fuzzy set theory utilizes 
linguistic variables to represent boundaries between system states and 
state probabilities, and it is suitable for the situation where state 
boundaries cannot be defined in the form of probability data. HBA is 
widely used to handle source-to-source uncertainty. The related data 
collected from different sources can be used in the HBA framework to 
estimate the probability of an event. Thus, fuzzy set theory, HBA and BN 
can be used to handle both the data and model uncertainties in risk 
assessment of integrated external activities to urban natural gas 
pipelines. 

The purpose of this paper is to establish a model for dynamic risk 
assessment of the integrated external activities to urban natural gas 
pipelines. The uniqueness of this work is an integration of intentional 
and unintentional external activities to an urban gas pipeline. The Bow- 
tie method is used to identify the integrated hazards and construct an 
accident scenario. It is then mapped into a BN to capture the dependency 
among interacting causations and find the accident evolution path of 
urban gas pipeline failure due to integrated external activities. The fuzzy 
set theory and hierarchical Bayesian analysis (HBA) are used to estimate 
the probabilities of basic events and safety barriers under uncertainty. 
The developed model has a dynamic feature. Firstly, it can update the 
state of integrated hazards given new evidence and secondly, it also can 
perform dynamic probability learning given the available precursor 
data. 

The remainder of the paper is organized as follows. Section 2 pre
sents the framework and methods of the risk assessment and discusses 
the steps of this model. A case study is presented in Section 3 to illustrate 
the effectiveness and applicability of the proposed model. Section 4 
presents the conclusions of this work. 

Fig. 1. Incident distribution per cause (EGIG, 2018).  

Fig. 2. Framework of the methodology.  
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2. The methodology 

Fig. 2 presents the framework of the methodology used for integrated 
external activities risk assessment of the aging urban natural gas pipe
line. The main steps include: 1) Identifying integrated hazards for 
external activities on urban gas pipelines, including intentional and 
unintentional factors; 2) Identifying pipeline failure consequences; 3) 
Accident scenario modeling using Bow-tie model; 4) Dynamic quanti
tative accident modeling; 5) Probabilities estimation of BEs and Barriers; 
6) Dynamic assessment of accident probabilities. 

2.1. Step 1: Identifying integrated external activities 

Hazard identification is a fundamental step in of quantitative risk 
assessment framework. This work uses a fault tree (FT) to determine the 
risk factors related to the impact of external activities on urban natural 
gas pipelines. FT is a directed logical tree describing the occurrence of an 
event from accident results to causations. The top event (TE) is the urban 
gas pipeline leak due to external activities. Basic events (BEs) are po
tential causations that lead to the occurrence of TE. In this paper, BEs are 
mainly identified from some available literature, e.g. EGIG, UKOPA and 
PHMSA et al., and the opinions of experts who work in this field for long 
years. By analyzing through FT, the underlying accident causations can 
be identified to decide on prevention of the accident. In this work, the 
hazards related to external damages on urban natural gas pipeline are 
identified from both the intentional and unintentional aspects. 

2.2. Step 2: Identifying accident consequences 

The urban natural gas pipeline leak may lead to some unexpected 
consequences, including the loss of assets, and a threat to human life, 
resulting from flammable gas dispersion, fire, and explosion. The event 
tree (ET) is a useful tool to deduce the unexpected consequences from an 
initial incident. ET analysis a process from causation to its impacts 
which can be used to analyze the consequence states of an accident. The 
safety barrier is designed to prevent the initial event escalating into 
severe consequences. It has two states, i.e. success and failure. The two 
branches of success and failure also have two states of success and 
failure, respectively in the next stage. This is repeated until the final 
consequences are identified to generate a horizontal tree. In this way, 
through analyzing the state change of safety barriers, different states of 
consequences are obtained. This work uses ET to find the potential 
consequences from external activities induced urban gas pipeline leak. 

2.3. Step 3: accident scenario construction 

A bow-tie (BT) model is comprised of an FT and an ET, which well 
describes the evolution process of an unexpected incident from its cau
sations to its consequences (Delvosalle et al., 2005, 2006). Although BT 
as a popular tool, was adopted in previous studies for risk analysis, it is 
subject to some limitations. BT is a static model and cannot capture the 

dependent failure and dynamic change of hazard states. Therefore, this 
work uses BN to relax the inherent limitations of the BT model. BT is 
mapped into a BN based on the established mapping algorithm (Khakzad 
et al., 2012). In this paper, BT is mainly used to construct an urban 
natural gas pipeline accident due to integrated external activities. Then, 
the BT model is used as an informative base to establish a BN model. 

2.4. Step 4: Dynamic quantitative accident modeling 

BN is a network based on probabilistic graphics, and it is a directed 
acyclic graph. Fig. 3 presents a simple example of a BN. BN is mainly 
used to solve the model uncertainty problem (Afenyo et al., 2017; Cai 
et al., 2016). Compared with the conventional methods, e.g., FT, ET, and 
BT, BN considers conditional dependencies and describes the interrela
tionship among nodes. The significant advantage of BN is that the 
probability assigned to a node can be updated given the observed new 
evidence (He et al., 2018). Therefore, BN is utilized to construct the 
relationship among variables and solve the model uncertainty. 

The joint probability distribution P(U) of a set of variables U = {A1,

A2,A3…} can be presented Eq. (1). 

P(U)=
∏n

i=1
p(Ai|Pa(Ai)) (1)  

where Pa(Ai) is parent set of variables U = {A1,A2,A3…}. 
Through Bayes’ theorem presented in Eq. (2), the posterior proba

bility of a variable is obtained when new evidence is observed. 

P(U|E)=
P(U,E)

P(E)
=

P(U,E)
∑

UP(U,E)
(2)  

2.5. Step 5: Probability estimation of BEs and barriers 

Using the BN model, the probability of integrated external activities 
on urban natural gas pipeline accidents can be assessed dynamically. 
This step is designed to determine the probabilities of basic events and 
safety barriers which are the essential inputs of the BN model. The basic 
event and safety barrier are divided into three types according to their 
data source.  

● The probability of basic event and safety barriers can be found 
directly from the literature and databases;  

● There are no direct data for BEs and Barriers, but these probabilities 
are determined through consulting with experts in the field. This can 
be achieved by fuzzy set theory in which fuzzy judgment language 
from experts is converted into crisp probabilities;  

● For some BEs and Barriers, there are partially available failure data, 
but they are not sufficient for determining the probabilities using 
available statistical methods. This paper collects the indirect but 
relevant data and uses them in a hierarchical Bayesian analysis 
(HBA) framework to evaluate the probabilities. 

The following section briefly introduces the fuzzy set theory and HBA 
techniques used in this study. 

2.5.1. Fuzzy set theory 
Fuzzy set theory is widely applied to solve the challenge of data 

uncertainty, and it converts qualitative knowledge or judgments into 
quantified numerical reasoning. The expert language judgment is 
generally fuzzy and subjective, and fuzzy numbers are used to relax this 
limitation. Fuzzy numbers are divided into triangular fuzzy numbers 
(TFN) and trapezoidal fuzzy numbers (ZFN) (Ferdous et al., 2011). TFN 
is utilized in this paper to describe the uncertainty of expert language. 
TFN is a vector (Pl, Pm, Pu) representing the lower bound, the most likely 
value and the upper bound, respectively (Huang et al., 2001). The main 
steps of the fuzzy set theory are presented as follows. 

Fig. 3. A schematic of a BN model.  

X. Li et al.                                                                                                                                                                                                                                        
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Firstly, the opinions on basic events from multi-experts are expressed 
in language terms which are divided into seven levels of Very Low (VL), 
Low (L), Fairly Low (FL), Medium (M), Fairly High (FH), High (H), Very 
High (VH). The language term from an expert is converted into fuzzy 
numbers. Considering the difference among backgrounds of multiple 
experts (e.g. different education levels, different experiences in a 
particular field, etc.), the multi-experts’ judgments are aggregated using 
the weight averaging method, as explained in Eq. (3) (Li et al., 2018). 

Pi =

∑m
j=1wjPi,j
∑m

j=1wj
(3)  

where, Pi represents the aggregated fuzzy number of input event i; Pi, j 
represents the fuzzy number of input event i from expert j; wj is the 
weight of expert j, and m represents the number of experts. 

Secondly, the aggregated fuzzy numbers are converted into a fuzzy 
probability score (FPS). FPS represents an integrated assessment of 
probabilities of BEs by multiple experts. Several methods are available 
to convert the aggregated fuzzy number into FPS. This paper uses max- 
min aggregation method to defuzzify the aggregated fuzzy number. The 
maximum and minimum fuzzy set are shown in Eq. (4). 

fmax(x) =
{

x, (0 ≤ x ≤ 1)
0, (otherwise)

fmin(x) =
{

1 − x, (0 ≤ x ≤ 1)
0, (otherwise)

(4) 

Subsequently, the right and the left score of fuzzy set can be 
computed as Eq. (4). Then, the FPS can be obtained by calculating the 
left and right fuzzy set scores, as shown in Eq. (5) (Yazdi and Kabir, 

(a)

(b)

(c)

Fig. 4. (a) FT for urban natural gas pipelines failure due to external activities. (b) Sub-FT for pipeline failure due to intentional due to external activities. (c) Sub-FT 
for pipeline failure due to unintentional external activities. 
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2017). 

FPS(Pi)=
[
FPSRight(Pi)+ 1 − FPSLeft(Pi)

]
∕2 (5) 

Eventually, FPS can be converted into failure probability for quan
titative analysis by using Eqs. (6) and (7) (Onisawa, 1990). 

PFi = 1∕10k (6)  

k= 2.301 × [(1 − FPS/FPS)]1∕3 (7)  

2.5.2. Hierarchical Bayesian analysis 
HBA is a technical method used in probabilistic risk analysis (PRA) to 

solve the uncertainty caused by lack of, or even no, data. This technique 
can deal with the source-to-source variability in indirect but relevant 
data. In general, a multi-stage prior distribution is solved in the HBA 
framework, which is a very complicated numerical process and requires 
high computational requirements. However, with the application of 
Markov Chain Monte Carlo (MCMC) sampling, the operation of HBA has 
been promoted (Kelly and Smith, 2009). The advantages of HBA over 
conventional Bayesian models are mainly two points: 1) HBA can solve 
the problem of the population variability of data from different sources; 
2) It is able to borrow strength from indirect but relevant data (Yang 
et al., 2015). 

In the HBA framework, an informative prior distribution of interest 
parameter γ from different sources is constructed. The uncertain 
parameter γ follows a general distribution with its parameters called 
hyperparameters, α and β, which are recorded as h(γ|α, β). This is the 
first-stage prior distribution. Also, the hyperparameters α and β are also 
unknown, which follow diffusive or non-informative distributions, such 
as uniform distributions or Jeffries priors (EI-Gheriani et al., 2017). This 

Table 1 
Basic events considered in FT.  

Symbol Description Probability 
determination approach 

X1 Interest-driven activity Fuzzy set theory 
X2 Deficiency of safety education Available data source 

(2.58E-03) 
X3 Deficiency of legal education Available data source 

(1.54E-03) 
X4 No regular patrolling Fuzzy set theory 
X5 Low patrolling frequency HBA 
X6 Low responsibility of patrolmen Fuzzy set theory 
X7 Low skill of patrolmen Fuzzy set theory 
X8 Mental illness HBA 
X9 Heresy-driven activity HBA 
X10 Worse public security Fuzzy set theory 
X11 Personal interest loss HBA 
X12 Suffering unfair treatment HBA 
X13 Abnormal social expectation HBA 
X14 Reactionism-driven activities Fuzzy set theory 
X15 War Fuzzy set theory 
X16 Partisan bickering Fuzzy set theory 
X17 Resource disputes Fuzzy set theory 
X18 Sovereignty disputes HBA 
X19 Illegal digging Available data source 

(7.54E-03) 
X20 Illegal piling Available data source 

(5.49E-03) 
X21 Illegal drilling Available data source 

(4.31E-03) 
X22 Illegal blasting Available data source 

(5.14E-03) 
X23 The contractor is without qualification HBA 
X24 Unlicensed operations of the contractor HBA 
X25 Informative missing of pipeline Fuzzy set theory 
X26 Without update of pipeline route 

information 
HBA 

X27 Insufficient communication between 
contractor and government 

Fuzzy set theory 

X28 No warning signs above pipeline HBA 
X29 Warning sign above pipeline is destroyed HBA 
X30 Operational errors of constructors Available data source 

(1.34E-03) 
X31 Insufficient experience of constructors Available data source 

(4.89E-03) 
X32 Backward construction techniques Fuzzy set theory 
X33 Poor town planning HBA 
X34 Illegal land approval procedure HBA 
X35 Temporary buildings above the pipeline Available data source 

(2.65E-03) 
X36 Construction materials stacked Fuzzy set theory 
X37 Heavy construction equipment stacked Fuzzy set theory 
X38 Government regulation not in place Fuzzy set theory 
X39 Management deficiency of construction 

organizations around the pipeline 
Fuzzy set theory 

X40 Poor safety awareness of residents around 
the pipeline 

Fuzzy set theory 

X41 High traffic density around the pipeline Available data source 
(2.89E-03) 

X42 High-intensity personnel activities above the 
pipeline 

Available data source 
(1.23E-03) 

X43 Agricultural activities around the pipeline Available data source 
(2.26E-03) 

X44 Earthquake Available data source 
(4.58E-04) 

X45 Debris flow Available data source 
(3.49E-04) 

X46 Landslide Available data source 
(7.24E-04) 

X47 Typhoon Available data source 
(9.58E-04) 

X48 Lightning Available data source 
(3.97E-04) 

X49 Stress on the pipeline from growing plants Available data source 
(1.23E-04) 

X50 Damage by wildlife and livestock Available data source 
(3.23E-04)  

Table 1 (continued ) 

Symbol Description Probability 
determination approach 

X51 Design defect of pipeline Available data source 
(1.34E-03) 

X52 Welding defect Available data source 
(1.46E-03) 

X53 Structural degradation of pipeline Fuzzy set theory 
X54 Depth of cover is too shallow HBA 
X55 Deficiency of anticorrosive design Fuzzy set theory 
X56 Imperfect failure alarming management Fuzzy set theory  

Table 2 
TE and IEs considered in FT.  

Symbol Description Symbol Description 

TE Urban natural gas pipeline leak IE13 Unknown pipeline route 
IE1 Damage due to intentional 

external activities 
IE14 Construction defect 

IE2 Stealing natural gas IE15 Excessive pressure on 
pipeline 

IE3 Failure of the pipeline inspection 
system 

IE16 Overload 

IE4 Terrorist attacks IE17 Construction overload 
IE5 Terror action IE18 Unreasonable building 

planning 
IE6 Psychological problem IE19 Material stacking 
IE7 Dissatisfaction with society IE20 Difficult to manage 
IE8 Political dispute IE21 Frequent ground 

activity 
IE9 Damage due to unintentional 

external activities 
IE22 Natural factors 

IE10 Third-party external interference IE23 Pipeline conditional 
defects 

IE11 Construction damage IE24 Failure of pipeline 
defect inspection 

IE12 Illegal development and 
construction around pipelines 

IE25 High pipeline 
vulnerability  
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is the second-stage distribution of uncertainty in α and β. 
The generic data D collected from a different source can be utilized to 

update the second-stage distribution to obtain the posterior distribution 
of hyperparameters, which can be calculated by Eq. (7) (Yu et al., 2017). 

h(α, β|D)=
h(α, β)l(D|α, β)

∫∫
h(α, β)l(D|α, β)dαdβ

(8)  

where the h(α, β|D) is the posterior distribution of hyperparameters. The 
likelihood function of hyperparameters l(D|α, β) can be shown as Eq. (8) 
(EI-Gheriani et al., 2017). 

l(D|α, β) =
∫

l(D|γ)h(γ|α, β)dγ (9) 

After obtaining the posterior distribution of α and β, the posterior 
distribution h1 of γ can be updated by calculating the average value of α 
and β, as shown Eq. (9) (Khakzad et al., 2014). 

h1(γ|D)=

∫∫

h(γ|α, β)h(α, β|D)dαdβ (10) 

As more case-specific information D* is found, based on Bayes’ the
orem, h1(γ|D) can be further written as h1(γ|D, D*). 

h1(γ|D,D*)=
h1(γ|D)l(D*|γ)

∫
h1(γ|D)l(D*|γ)dγ

(11)  

2.6. Step 6: Dynamic assessment of accident probability 

By conducting step 5, the probabilities of basic events and safety 
barriers are obtained. They are then used as the inputs in BN framework 
for dynamic probability reasoning of the system. The probabilities of BEs 
and safety barriers are utilized in a forwarding inference to assess the 
probability of different consequences of accident scenarios in the BN 
model. As new evidence is observed, the probability of basic event nodes 
can be updated in BN based on backward inference to find the most 
probable hazards. Furthermore, BN can perform probability learning. 
When the available data is continuously observed, dynamic probabilities 
of urban natural gas pipeline accidents at different times can be 
obtained. 

The above is a Bayesian network-based dynamic risk assessment 

Fig. 5. ET for urban natural gas pipeline failure due to external activities.  
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Fig. 6. BT for urban pipeline leak due to integrated external activities.  
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framework for integrated external activities to an urban natural gas 
pipeline. The methodology is designed to dynamically assess the inte
grated risk of external activities to an urban gas pipeline. It can be used 
to predict accident probability and find the most probable hazards to 
formulate management and control strategy further. 

3. Case study 

3.1. Identification of integrated hazards 

This section takes an urban natural gas pipeline in China as an 

example to illustrate the applicability of the methodology. Using urban 
natural gas pipeline leak due to external activities as top event, the 
involved hazards are identified from intentional and unintentional as
pects, shown in Fig. 4. These risk factors are found from literature and 
expert knowledge (You et al., 2014; EGIG, 2018; Xing et al., 2020; Li 
et al., 2019; Halim et al., 2020). The BEs, IEs and TE in the FT model are 
explained in Table 1 and Table 2. The unintentional external activities 
account for a significant percentage in all pipeline failures due to 
external activities. Both the unintentional activities and high pipeline 
vulnerability contribute to the pipeline failure from unintentional 
external activities. Unintentional activities include four parts, i.e. 

Fig. 7. BN model for urban natural gas pipeline accident due to external activities.  

Table 3 
BEs’ probabilities from fuzzy set theory.  

Symbol Experts knowledge (E1, E2, E3) Prior probabilities 

X1 (L, M, VL) 5.61E-04 
X4 (M, FH, VL) 2.90E-03 
X6 (FH, H, FL) 8.80E-03 
X7 (H, M, M) 8.80E-03 
X10 (M, H, L) 4.80E-03 
X14 (FL, FL, FH) 2.80E-03 
X15 (VL, VL, VL) 2.14E-05 
X16 (L, VL, FL) 2.99E-04 
X17 (L, L, FH) 1.10E-03 
X25 (FH, M, M) 6.10E-03 
X27 (H, M, FL) 7.10E-03 
X32 (FH, FH, M) 8.10E-03 
X36 (H, M, FH) 1.16E-02 
X37 (VH, H, FH) 2.81E-02 
X38 (L, H, FL) 2.50E-03 
X39 (L, H, FH) 4.60E-03 
X40 (FL, H, FH) 6.90E-03 
X53 (FH, FH, VH) 1.68E-02 
X55 (H, FH, VH) 2.52E-02 
X56 (H, FL, M) 7.00E-03  

Table 4 
Precursor data for BEs and consequences.  

Year 1 2 3 4 5 6 7 8 9 10 

X5 1 0 1 1 2 3 2 1 2 1 
X8 0 0 1 0 1 0 1 0 0 3 
X9 1 0 2 0 1 0 1 1 2 0 
X11 0 1 2 0 0 1 1 0 1 2 
X12 1 0 0 1 0 1 2 2 3 0 
X13 3 0 1 0 1 1 0 0 2 0 
X18 0 1 0 0 2 0 3 0 1 0 
X23 1 2 1 2 3 1 2 3 0 3 
X24 2 2 1 2 2 0 1 2 3 2 
X26 0 3 1 1 0 2 1 2 0 1 
X28 3 2 3 0 2 1 2 3 2 0 
X29 1 1 2 1 3 0 1 3 3 3 
X33 0 1 0 2 3 3 1 2 3 0 
X34 1 0 1 2 3 1 3 2 2 1 
X54 1 3 1 3 1 2 3 0 2 2 
C1 5 3 4 4 3 5 3 2 4 3 
C2 3 4 3 5 3 3 2 4 5 3 
C3 3 3 5 2 3 5 3 3 2 3 
C4 4 3 3 2 3 2 3 3 2 4 
C5 3 2 2 3 3 3 4 3 2 2  
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construction damage, excessive pressure on pipeline, frequent activities 
around the pipeline, and natural factors. This pipeline crosses an urban 
area with a high population density, which makes it easily exposed to 
unintentional external interference. The construction damage due to the 
operation errors and frequent activities of ground personnel and vehi
cles could lead to the failure of the pipeline. This pipeline was built 
before the development of the city, which means that the buildings were 
built above the pipeline. The pipeline may crack and break due to 
overload over a long time. Besides, natural factors are also another type 
of unintentional external interference, including earthquake, debris 
flows, landslides, typhoons, lightning and wild animal and plant growth 
on pipes. The high vulnerability of pipelines is an essential reason that 
the failure of pipelines, in the case of unintentional external in
terferences, would occur. The causations leading to high vulnerability of 
pipeline include defects and flaws, as well as inspection shortfalls and 
maintenance planning. 

However, as discussed in the introduction, natural gas pipelines 
gradually become the targets of intentional attack due to their economic 
value and the serious impacts following the destruction. The intentional 
external interferences on pipelines are comprised of stealing natural gas 
and terrorist attacks. 

3.2. Identification of consequences 

ET is used to identify different consequence states caused by urban 
natural gas pipeline failure. As shown in Fig. 5, when a leak occurs, five 
safety barriers, i.e. (S1) leak monitoring, (S2) emergency shutdown, (S3) 
manual shutdown, (S4) safety warning and evacuation and (S5) ignition 
prevention are considered to prevent further escalation of the leak ac
cident with catastrophic consequences. Due to the sequential failure of 
safety barriers, there are five different types of consequences related to 
the level of economic losses and casualties caused by accident, and they 
are (C1) near miss; (C2) general economic losses; (C3) general economic 
losses and casualties; (C4) major economic losses; (C5) major economic 
losses and casualties. The established ET model is subjected to the 
following assumptions: 1) When (S1) leakage monitoring fails, (S2) 
emergency shutdown and (S3) manual shutdown fail; 2) Only when (S2) 
emergency shutdown fails, (S3) manual shutdown will be judged, that is, 
if (S2) emergency shutdown has already taken action, (S3) manual 
shutdown will be skipped. 

3.3. Accident scenarios construction 

A BT model is developed by integrating above-mentioned FT and ET, 
which describes the entire process, from the hazards related to external 
activities, to pipeline failure and final catastrophic consequences. Fig. 6 
presents the developed BT model for urban natural gas pipelines due to 
integrated external activities. 

However, as discussed in 2.1, the BT model is static, assuming that 
system variables are independent with each other and does not take into 
account the complex dependencies among hazards and the change of 
risk factor states over time. To relax these limitations, the BT model is 
mapped into a BN, as illustrated in Fig. 7. Basic events, intermediate 
events and top events in BT are mapped into root nodes and leaf nodes in 
BN. The nodes are connected by arcs, indicating the interaction between 
the events. The CPT in BN is used to depict the conditional dependency 
relationship between child nodes and parent nodes. CPT is determined 
by modifying the relationship presented in the logical gate of FT. The 
logical gate of FT presents a deterministic relationship between BEs and 
the corresponding IE. For example, if X4, X5, and X6 and X7 occur 
simultaneously, the pipeline inspection system will fail inevitably. This 
is presented by deterministic value, i.e., 0 and 1. However, the pipeline 
inspection system may not fail actually. There are some uncertainties in 
the mentioned logical inference between BEs and IE. This can be 
considered by modifying the value CPT, and uncertain values, such as 
0.99 and 0.01, are used in CPT. The modification can be based on the 
expert’s experience or data-driven method. 

3.4. Probability estimation of BEs and safety barriers 

The sources of the BEs probabilities in the FT are divided into three 
types, e.g. 1) the probability are available from the literature; 2) the 
probability which is subjective and imprecise needs to be determined by 
fuzzy set theory based on expert opinions, 3) the probability needs to be 
determined by HBA method due to the data of event probability being 
limited and insufficient, as shown in Table 1. 

For the second type of BEs, the probabilities are estimated by expert 
judgments. Based on the educational background and work experience, 
a particular weight is assigned to each individual expert. The method 
described in section 2.2.1 is adopted to aggregate and calculate expert 
opinions to obtain the probabilities of BEs. The experts’ knowledge and 
the crisp probability of BEs are presented in Table 3. 

HBA framework is utilized to estimate the probability of BEs and 
safety barriers in which the data is insufficient according to different 
available sources. For the sake of illustration, the hypothetical precursor 
data of BEs and consequences are shown in Table 4, which are the 
occurrence numbers of these factors in each year. It assumes that these 
precursor data are observed for 10 years from 235 pipelines. The 
assumption of the form of precursors is based on the actual engineering 
basis. The oil and gas company usually performed an annual inspection 
to ensure the integrity of aging gas pipeline. The form of precursors used 
in this paper can be derived from the inspection report. As shown in 
Table 5, the BEs’ probabilities are inferred based on the indirect but 
related precursor data through HBA. It should be noted that the last 
column means the confidence interval is on the estimation, not on their 
accuracy. As discussed in section 2.2.2, the binomial distribution of the 
interest parameter p is assigned to each BE to model the number of 
failures per time interval, where p follows a beta distribution with 
hyperparameters a and b, which follows the independent diffusion dis
tributions (Li et al., 2018). Fig. 8 shows the expected value of the failure 
probability of the BEs at the 97.5% confidence interval. Similarly, the 
failure probabilities assigned to the safety barriers can also be obtained. 

3.5. Diagnostic analysis for critical hazards identification 

The probabilities of external activities-induced pipeline failure and 
five consequence states can be obtained through forwarding reasoning 
after using the probabilities of BEs and safety barriers as inputs. The 
probability of urban gas pipeline leak is estimated to be 1.68E-01. The 
probabilities of consequence states are presented in Table 6. The prob
abilities of the five consequences states from high to low are C1, C2, C4, 
C3, and C5. However, the severity of the five accident consequences from 
high to low is C5, C4, C3, C2, and C1. The most important advantage of BN 
is that it can perform the probability update. In this work, C4 is used as 

Table 5 
BEs’ probabilities estimated using HBA.  

Symbol Prior probability 97.5% Confidence interval 

X5 6.22E-03 (2.27E-03,1.14E-02) 
X8 3.42E-03 (3.33E-06,9.35E-03) 
X9 3.74E-03 (5.32E-04,8.31E-03) 
X11 3.74E-03 (6.13E-04,8.10E-03) 
X12 4.65E-03 (4.78E-04,1.07E-02) 
X13 3.99E-03 (9.04E-05,1.02E-02) 
X18 4.02E-03 (1.48E-06,1.14E-02) 
X23 7.91E-03 (3.25E-03,1.37E-02) 
X24 7.52E-03 (3.06E-03,1.32E-02) 
X26 5.03E-03 (9.54E-04,1.05E-02) 
X28 8.00E-03 (2.76E-03,1.47E-02) 
X29 7.86E-03 (3.03E-03,1.41E-02) 
X33 6.72E-03 (1.38E-03,1.39E-02) 
X34 7.11E-03 (2.77E-03,1.26E-02) 
X54 7.95E-03 (3.03E-03,1.44E-02)  
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Fig. 8. Predictive distributions for failure probabilities of BEs.  
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the new evidence observed due to its high severity and probability. The 
probabilities of BEs and safety barriers are updated through back 
reasoning. The most probable BEs and safety barriers are identified to 
formulate targeted preventive measures, and it makes BN superior in 
comparison with BT. 

A comparison of the prior and posterior probabilities of BEs is shown 
in Fig. 9. As illustrated in this figure, BEs with obvious probability in
crease are X1 (Interest-driven activity), X2 (Deficiency of safety educa
tion), X3 (Deficiency of legal education), X4 (No patrolling regularly), X6 

(Low responsibility of patrolmen), X8 (mental illness), X9 (Heresy-driven 
activity), X11 (Personal interest loss), X13 (Abnormal social expectation), 
X15 (War), X17 (Resource disputes), X18 (Sovereignty disputes), X23 
(Contractor is without qualification), X24 (Unlicensed operations of the 
contractor), X41 (High traffic density around pipeline), X43 (Agricultural 
activities around pipeline), X53 (Structural ageing of the pipeline) and 
X55 (Deficiency of anticorrosive design). It means that these events are 
most sensitive to consequence state C4. Among them, X1, X2, X3, X4, X6, 
X8, X9, X11, X13, X15, X17, X18 are the BEs involved in intentional damage, 
accounting for two-thirds of the total key events. This is due to the fact 
that intentional damage is often planned in advance, and it is not easy to 
detect or manage, which is the reason that leakage accidents often 
evolve into catastrophic consequences. Therefore, these most probable 
events should be paid more attention. 

Similarly, the comparison of the prior and posterior probabilities of 
safety barriers is shown in Fig. 10. It is observed that the increase of S1 is 
the most obvious. Except for S1, S2 has the most substantial increase 
among the remaining four safety barriers. The reason is that S1 is the first 

Table 6 
The probability of consequence states by BN.  

Consequence state Probability 

C1 1.58E-01 
C2 7.20E-03 
C3 2.17E-04 
C4 2.30E-03 
C5 3.01E-06  

(a)

(b)

Fig. 9. (a) Comparison of prior and updated probabilities of BEs (X1-X28). (b) Comparison of prior and updated probabilities of BEs (X29-X56).  
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barrier after the accident, and it is also a barrier to alert people. Once the 
S1 fails, people will not notice the occurrence of a pipeline leak, so 
emergency and manual shutdown systems will not start, and the leak 
incident will continue until a catastrophic consequence occurs. S1 is the 
most important barrier, and if it fails, the consequences will be severe. In 
addition, an emergency shutdown is the first action after the leak is 
detected. If the emergency shutdown responds quickly, the source of the 
leak will be shut down in time to prevent the continuing leakage, and the 
accident consequences will not be serious. However, if the emergency 
shutdown measures do not respond, there is the possibility of causing a 
major accident, because manual shutdown may also fail. Therefore, S1 
and S2 are the critical safety barriers that cause the consequence of the 
C4 accident. These barriers need to be regularly checked and repaired to 

ensure that they would work properly in case of accidents. 

3.6. Dynamic probability analysis 

In addition to probability updating, probability learning is another 
critical feature of the established BN model. Probability learning is a 
process that revises the probability of BE nodes through real-time 
observation to dynamically update the probability of accident and 
consequence states. In this study, Table 3 presents the precursor data 
obtained from the industrial sector for the BEs and safety barriers of 
interest. With these data propagated in BN, the probability over time of 
accident and consequence states can be dynamically updated. Fig. 11 
demonstrates the real-time dynamic probability update of the leakage 
accident caused by the external activities of aging urban gas pipeline 
over 10 years. Year 0 is the accident probability calculated in section 
3.4. It can be found that the probability of pipeline leak increases over 
10 years. In the third, seventh, and tenth years, the probability increases 
are larger. This is related to the fact that the critical events have occurred 
more frequently in these three years. The present variation trend of 
pipeline leak probabilities is the results that prior probabilities are 
updated continuously with precursor data. When the probability of 
occurrence exceeds an acceptable level, the targeted prevention de
cisions need to be made. 

Figs. 12 and 13 present the time-dependent probabilities of safety 
barriers and consequence states over 10 years, respectively. The failure 
probabilities of safety barriers gradually increase, given the observed 
new data. S4 and S5 increase rapidly. For the consequences due to 
external activities induced pipeline leak, the probability of C1 gradually 
decreases over time. Near miss can be regarded as a safe state, which will 
decrease as the accident probabilities increase. On the contrast, the 
probabilities of C3, C4, and C5 are increasing over 10 years. The main 
reasons for this are that the probabilities of consequences are updated 
subject to the assumption that no improvement measures are adopted. 
C2 gradually increases in the first three years and gradually stabilizes in 
the fourth year. C3, C4, and C5 are accident states, and they are the 
opposite state of C1. Thus, the probability of C3, C4, and C5 will increase 
as the probability of C1 decreases over 10 years. 

The important BEs and weak safety barriers obtained through 
probability updating and learning should be the focus of pipeline man
ager’s attention. In the risk assessment, targeted measures would be 
taken to avoid the failure of these nodes to improve the reliability of the 
system and to reduce the impact caused by accident. 

4. Conclusions 

This paper presents a model for dynamic risk assessment of 

Fig. 10. Comparison of prior and updated probabilities of safety barriers.  

Fig. 11. The dynamic occurrence probability of aging urban natural gas 
pipelines leak. 

Fig. 12. Dynamic failure probability of safety barriers.  
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integrated external activities on urban natural gas pipelines. It includes 
not only the unintentional external activities but also the intentional 
external activities, i.e. terrorist attack. Probabilistic risk assessment is 
performed in a BN-based assessment framework. FT and ET are utilized 
to identify BEs and consequences, respectively. BT is utilized to develop 
the accident scenarios and then mapped into BN to conduct quantitative 
reasoning. The probabilities of BEs and safety barriers are handled by 
fuzzy set theory and HBA. BN is used to capture complex dependencies 
among hazards and the change of hazard state. The developed meth
odology enables us to perform a robust probabilistic assessment 
considering uncertain information. 

The proposed model is applied to an urban natural gas pipelines. A 
total of 56 hazard factors related to external activities for urban natural 
gas pipelines are identified, including 18 intentional factors and 38 
unintentional factors. The results of integrated risk assessment provide 
support for pipeline safety management. The probability updating using 
the observed evidence finds that a total of 18 BEs are the most probable 
factors, of which 2/3 BEs are intentional factors. Through comparison of 
the prior and posterior probabilities, it is found that interest-driven ac
tivity, deficiency of safety education, low responsibility of patrolmen 
and resource disputes are significant factors causing pipeline failure by 
intentional damage. Besides, leak monitoring is the most critical barrier 
to preventing pipeline leak. Probability learning reflects an increasing 
trend of operational risk of urban gas pipelines due to the integrated 
external activities. It indicates that the necessary mitigation measures 
should be applied to reduce the operational risk of the pipeline. 

The uniqueness of the framework is that it integrates intentional and 
unintentional external activities on urban aging oil and gas pipeline. The 
proposed framework can help find the most probable external activities 
factors causing an accident and predict the dynamic risk evolution trend. 
It can be used to conduct efficient risk management of external activities 
on an urban natural gas pipeline. Overall, the present work is pre
liminary and can be extended further. Future work is planned to 
investigate the interactions and inter-dependency between safety- and 
security-related activities. Besides, future work will also consider the 
relationship among risk factors during their probability estimations. 
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