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Figure 1: Our method reduces reduces disk bandwidth by minimizing the number of batching points that need to be loaded. The images above
show for each test scene (left to right: crown, landscape, island) the average number of batching points visited per sample in unidirectional
path tracing. The top row shows regular batched ray traversal, the bottom row shows batched ray traversal with our method.

Abstract
We present a method for improving batched ray traversal as was presented by Pharr et al. [PKGH97]. We propose to use
conservative proxy geometry to more accurately determine whether a ray has a possibility of hitting any geometry that is stored
on disk. This prevents unnecessary disk loads and thus reduces the disk bandwidth.

CCS Concepts
• Computing methodologies → Ray tracing; Visibility;

1. Introduction

Rendering large scenes is an ongoing challenge in computer graph-
ics, specifically, simulating global illumination for scenes that do
not fit in system memory. Monte Carlo light simulation can result
in strongly incoherent memory access patterns when traversing an
acceleration structure, hereby, reducing performance. These issues
are exaggerated in out-of-core traversal since modern solid state
drives only provide a fraction of the bandwidth that system mem-
ory does.

In this paper, we will discuss and improve upon batched ray
traversal, which was first introduced in [PKGH97]. Batched ray

traversal is a technique that improves performance of in-core, out-
of-core, and distributed rendering by making access patterns more
coherent. We propose a possibility to avoid batching rays during
traversal, if we can predict that they will not intersect the actual
geometry, which reduces the disk bandwidth. We show that this
consistently outperforms regular batched ray traversal in terms of
memory bandwidth.

2. Related work

The research field of large scene visualisation can be broken up
into two categories. The first aims to minimise the memory require-
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ments by reducing geometric complexity. This comes at the cost of
a (slight) degradation in image quality. Alternatively, carefully de-
signed renderers are able to visualise scenes at their full geometric
complexity by caching data to disk. The challenge in this second
category is to reduce disk traffic and hide the latency associated
with disk access.

Walt et al. [WDS05] have shown a distributed ray-tracing sys-
tem that is able to produce images at interactive rates by replacing
data that is not in memory by a low resolution proxy. A similar con-
cept for GPU out-of-core rendering can be used for volumetric data
sets [CNLE09,GMIG08,CNSE10]. Offline rendering solutions also
explored replacing geometry by proxies until a scene fits in mem-
ory [PFHA10]. Similarly, Yoon et al. [YLM06] replace geometry
by oriented planes based on a screen-space error function.

Out-of-core rendering often relies on a paging system to move
data between disk and system memory [CE97, WDS05]. Al-
ternatively, application controlled data movement may provide
more room for domain specific optimizations; Christensen et al.
[CLF∗03] use application-controlled caching of surface tessella-
tion to aid out-of-core traversal performance, while Wald et al.
[WSB01] utilise a two-level acceleration structure hierarchy to
manage data movement in a distributed system.

A common limitation in these works far is that incoherent rays
are difficult to handle efficiently, due to their incoherent memory
access patterns, which are particularly pronounced in Monte-Carlo
global-illumination solutions. To combat ray divergence, breadth-
first traversal, ray stream traversal and ray reordering schemes have
been proposed. Breadth-first traversal of an acceleration structure
by a collection of rays ensures that each node is touched at most
once [WGBK07, GR08, Tsa09, RGD09], but an "early-out" is im-
possible, as no front-to-back traversal can be ensured. Ray stream
traversal techniques [BAM14, FLPE15] solve this issue at the cost
of potentially visiting nodes multiple times. Finally, global ray re-
ordering schemes [MBK∗10, ENSB13] sort rays before accelera-
tion structure traversal in an effort to improve the resulting memory
access patterns.

Batched ray traversal [PKGH97] can increase memory coher-
ence for improved performance. Here, rays are batched (queued)
at the lower elements of a two-level hierarchy, which represents
nearby geometry. When enough rays have been batched, batching
points are loaded into memory and the associated (bottom-level)
acceleration structure is traversed by the batched rays. Batched ray
traversal can also be effective for in-core rendering by reducing
CPU cache misses [NFLM07] and different acceleration structures
have been used for this purpose [Bik12, Gas16].

Our contribution improves ray-handling at the top-level accel-
eration structure. We propose to store (in system memory) proxy
geometry at each leaf node (batching point). Rays that do not inter-
sect the proxy can immediately continue their traversal to the next
batching point, without having to load and access the second-level
structure.

3. Algorithm Overview

Here, we give a more detailed overview of our approach. We first
discuss batched ray traversal and our specific implementation. Then

we present the memory-efficient geometric proxy, which allows us
to quickly and conservatively restrict the amount of rays that re-
quire access to the lower-level acceleration structure. In an out-
of-core system, this solution reduces disk access and the memory
bandwidth.

3.1. Batched Ray Traversal

Batched ray traversal is designed to improve memory coherency
by grouping rays passing through the same region of space. The
space is divided by creating large clusters of primitives. Each of
these clusters forms a batching point for rays to be queued, i.e.,
rays passing through this region will be accumulated. Each batch-
ing point has an acceleration structure such that rays can be quickly
intersected against the geometry. In out-of-core rendering systems,
such as ours, geometry is stored on disk and is loaded when needed.

The rendering process is started by spawning an initial set of
camera rays and inserting them into the first batching point they in-
tersect. The scheduler is then responsible for continuously select-
ing batching points to load and traverse. We use a simple scheduler
which always selects the batching point with the most rays. This en-
sures that the disk bandwidth is amortised over many rays. When
a light path ends, a new camera ray is automatically spawned such
that the number of rays in the system remains constant. If a ray
needs to continue its traversal of the scene after visiting a batching
point (e.g., it missed the geometry inside) then it is batched at the
next batching point along its path.

The top-level acceleration structure needs to be able to efficiently
restart traversal, while storing as little state per ray as possible. We
have chosen for a 4-wide BVH following Gasparian et al. [Gas16].
Geometry intersections at batching points are implemented using
the Embree ray tracing kernels. The acceleration structures are
(re)build when needed and are stored in a LRU (least recently used)
cache.

3.2. Proxy Geometry

The major novelty of our solution is to store for each batching point
some form of proxy geometry that is both memory efficient and
conservative. When traversal of the top-level structure reaches a
batching point, the ray is first intersected against this approxima-
tion; A ray is only batched if it intersects, otherwise traversal of the
top-level acceleration structure continues.

We have chosen to approximate the geometry as a binary
volume, as very efficient storage solutions exist that have been
used in several real-time applications [KSA13,SKOA14,DKB∗16,
KRB∗16]. Such a volume handles even open geometry naturally
but we need to ensure the solution is conservative. The construction
of the proxy for each batch point works as follows. In a preprocess,
the related geometry is conservatively voxelized into a tightly fit-
ting voxel grid. This binary grid is converted to a Sparse Voxel Oc-
tree (SVO). To reduce the memory usage, these SVOs are converted
to Sparse Voxel Directed Acyclic Graphs (SVDAG) [KSA13] with
the difference that not only duplicate subtrees within an SVO are
removed but also duplicate subtrees across all of the SVOs. Each
duplication is replaced by a single instance. In the resulting struc-
tures nodes may have multiple parents; hence they are not trees but
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Figure 2: Total SVDAG memory usage (left) and the effectiveness
of our system (right) at different voxel grid resolutions.

directed acyclic graphs. Further, SVOs from one batch point can
virtually share children with another batch point. These SVDAGs
may be traversed by any existing SVO traversal algorithm; We use
the traversal algorithm presented by Laine et al. [LK11].

4. Results & discussion

To test this concept, we have implemented a basic out-of-core path
tracer using batched ray traversal as described above. The scenes
that were used for testing are the crown model, the landscape scene
and the Moana Island scene. The crown model was artificially sub-
divided 5 times to increase its primitive count. For the Island scene
we only render the triangle/quad control meshes, ignoring other
geometric primitives. All scenes were rendered using a homoge-
neous Lambert material since our focus lies on traversal perfor-
mance only.

Table 1: Triangle counts of the tested scenes.

Crown Landscape Island
Unique 860,272,002 25,947,395 142,771,030
Instanced 860,272,002 4,330,336,849 31,443,289,446
Per batching point 10,000,000 20,000,000 25,000,000

Selecting the appropriate batching point size is important and
non-trivial. More (smaller) batching points increases the memory
overhead of the batching system as well as requiring more mem-
ory to store the SVDAGs. The minimum number of triangles per
batching point was empirically chosen for each scene, see Table 1.
This results in 132, 335 and 1984 batching points for the crown,
landscape and Island scenes respectively. Our code is available at
https://github.com/mathijs727/pandora.

4.1. Voxel grid resolution

The resolution of the voxel grids from which the SVDAGs are gen-
erated impacts the memory usage, computational overhead, and
effectiveness, see Figure 2. As expected, memory usage of the
SVDAGs scales cubic with respect to the voxel grid resolution.
The large discrepancies in memory usage between the scenes can
be attributed to the different number of batching points (and thus
SVDAGs) per scene.

Increasing the resolution quickly has a diminishing effect on the
number of times that we do not need to descend to the second-
level hierarchy. Scenes with larger batching points such as the Is-
land scene seem to benefit more from high resolution voxel grids.
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Figure 3: The total disk bandwidth at different geometry memory
limits with and without our technique. When proxy geometry in-
tersection testing was enabled, the memory limit was adjusted to
compensate for the memory used by the SVDAGs.

The additional geometric details caused by higher primitive counts
require a higher SVDAG resolution to accurately approximate.

4.2. Proxy Geometry

To test the effectiveness of our system as a whole, we rendered
all scenes with 128 samples per pixel at different memory budgets
with a voxel grid resolution of 1283. Figure 3 shows the reduc-
tion in total disk bandwidth when our solution is enabled. It sig-
nificantly reduces the total disk bandwidth required to render the
island and landscape scenes. The impact on disk bandwidth for the
crown scene is modest. We suspect that this is caused by it’s sim-
plistic shape which only has a high primitive count because of the
artificial subdivision.

4.3. Discussion

Our addition of a conservative test on the upper hierarchy level for
batched ray traversal works well for all the scenes and memory
limits that were tested. Every time a ray is batched it delays its
traversal, requiring a disk read to continue. By reducing the amount
of times that rays are batched we improve the flow of rays through
the system. An issue with batched ray traversal is that rays can get
stuck at infrequently visited batching points. Only when nearing the
end of a render will these batching points be loaded and traversed.
Path tracing may lead to many bounces causing long delays when
finishing a render. By adding our mechanism we can prevent that
straggler rays cause batching points to be loaded every time. In
our limited tests, discarding these straggler rays did not reduce the
effectiveness of our method.

Our solution works well for batched ray traversal but could also
be applied to other traversal schemes. For out-of-core traversal
where the discrepancy between processing power and disk band-
width is high, the overhead of SVDAG traversal is negligible. We
are unsure whether this approach could also work for in-core traver-
sal and we leave this up to future work.

The hit points found by intersecting against the proxy geometry
could also be used to guide the bottom-level acceleration structure
traversal. For example, rays could be sorted based on their expected
hit points as was suggested by Moon et al. [MBK∗10].

Additionally, our method could work well for shadow rays. Here,
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we would voxelize geometry conservatively in two manners; one as
described above, the other as an inner voxelization that conserva-
tively predicts a valid intersection. Testing against this inner vox-
elization would reveal whether a ray can conservatively be stopped.
If not, we test it against the other voxelization and no intersection
implies that the ray can traverse further, while an intersection im-
plies that we need to batch the ray.

5. Conclusion

The novel idea presented in this paper is to batch rays only when
an intersection with a (conservative) proxy geometry occurred.
Hereby, we reduce disk bandwidth. To illustrate this principle, we
have built an out-of-core renderer that implements batched ray
traversal and relies on a voxel-based representation that is efficient
in terms of memory.

Our results confirm that this technique can indeed improve per-
formance of batched ray traversal. We also believe the same con-
cept can be applied more broadly for other traversal schemes but
we leave this for future work.
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