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 

Abstract— The paper presents an approach for online 

centralized control in active distribution networks. It combines a 

proportional integral (PI) control unit with a corrective control 

unit (CCU), based on the principle of Model Predictive Control 

(MPC). The proposed controller is designed to accommodate the 

increasing penetration of distributed generation in active 

distribution networks. It helps in continuously satisfying the 

reactive power requirements of the transmission system 

operators (TSOs), while maintaining an acceptable voltage 

profile in the active distribution network, and simultaneously 

minimizing the total active power losses. The controller also 

ensures compliance to operation requirements of distribution 

network operators (DNOs).  By replacing the full load flow (LF) 

calculation with sensitivities, derived from a linearized model of 

the network, the controller can work in real-time applications. 

Moreover, the computational burden of the proposed controller 

is reduced since the CCU is activated only when a voltage 

violation or considerable change of operation condition occurs. 

The performance of the proposed controller is demonstrated on a 

11-kV test network with 75 buses and 22 distributed generators. 

 
Index Terms— Voltage control, distributed generation, 

reactive power management, model predictive control, artificial 

neural networks, smart grids. 

I.  INTRODUCTION 

NTERMITTENT renewable energy resources (RES), like 

solar and wind, will be massively connected to European 

distribution networks due to very high levels of renewable 

energy sources (RES). RES will reach 75% of the total 

demand in 2040 [1]. This entails several challenges as system 

reliability, security and optimal operation, especially in the 

short term operation time frame, where a high degree of 

variability of power supply from RES may occur [2-3]. 

Besides, transmission systems in Europe are increasing in 

complexity. E.g. reactive power reserves, available in the 

transmission system, are diminishing as mainly converter 

connected RES replaces synchronous connected generation. 

Consequently, it is necessary to ensure the development of 

robust approaches to ensure that voltage excursions stay 

within permissible limits. 
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Thus, the European Commission (EC) defines a set of 

common requirements for an interface between transmission 

and distribution networks. EC also requests that DNOs comply 

with a contractual PQ diagram [4]. For instance, transmission 

connected distribution grids in Switzerland face payments if 

the power factor of exchanged (imported and exported) power 

is outside 0.9 inductive to 0.9 capacitive [5]. Furthermore, the 

need for increased cooperation between system operators is 

widely recognized, especially in a scenario with increasing 

renewable energy sources (RES) and increasing participation 

of DER to ancillary services markets. For instance, there was a 

shift in preference from passive control schemes to „active 

network management‟ (smart grid) [3],[6]. A smart grid 

increases the level of coordination because system operators 

can support each other in the efficient and cost-effective 

operation. 

Several studies have investigated the reactive power 

exchange at the transmission-distribution interface, but, in 

most of the cases, they were focused on the problem only from 

the DNO‟s point of view, considering stiff voltages in the TSO 

grid and pre-defined ranges of reactive power exchange. In 

[7], a two-stage optimization routine is developed to tune 

controllers such that the power confidence levels at the 

HV/MV interface remain within specified limits. In [8], the 

author proposes two-time scales to schedule the planning and 

to perform the operational optimization of interface powers 

considering uncertainties. The authors in [9]-[11] propose 

different measures to reduce impact of DGs on the 

transmission system by regulating the reactive power 

exchange at the point of common coupling (PCC). Similarly, a 

mean-variance mapping optimization (MVMO)-based 

controller for an online optimal control of reactive power 

sources in wind farms is proposed in [12] to fulfill the grid 

requirements at PCC. An active network management 

approach is proposed in [13] to limit the reactive power export 

to National Grid and it is based on a multi-period optimal 

power flow framework. A coordination mechanism between 

TSO and DNO based on an Optimal Power Flow (OPF) tool 

featuring Model Predictive Control (MPC) and Multi-

Objective (MO) optimization is presented in [14]. The work 

presented in [15] provides the fundamentals for an MPC 

application for voltage control in active distribution networks. 

In [16] an MPC controller has been presented in order to 

control both the voltages in distribution systems and the 

reactive power exchanged at the TSO–DNO interface by 

maintaining the ratio of reactive power over active power, 

consumed by the MV network, inside a range of predefined 

values. Besides, to ensure that the voltage set-point given by 

TSO always leads to feasible DNO operation, the authors in 
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[17]-[19] proposed different approaches for incorporating 

information between TSO and DNO. More recent works 

introduce concepts of active, reactive power, and voltage 

controls, taking into account different scenarios. The work 

presented in [20] employs discretized state-space equations to 

represent system‟s operation. Similarly, in [21], the optimal 

power flow formulation of the MPC is provided. However, 

both methods [20]-[21] require a detailed formulation of the 

mathematical equations, which cannot be intuitively defined. 

In order to speed up control, in [22], it is proposed to use a 

decoupled MPC, where OLTC tap changes are characterized 

with slow dynamics, and DGs active and reactive power 

changes with fast dynamics.  

The main objective of this paper is to introduce a MPC-

based centralized controller for an online optimal control of 

reactive power sources in distribution networks. Beyond the 

current state-of-the-art on MPC applications for this purpose, 

this paper proposes a new centralized controller for the online 

active distribution network management. Particularly, the 

controller is able to optimally drive the network by using 

measurements from selected buses, subjected to operational 

security constraints (i.e. no violation of voltage limits). In 

comparison with the most of the published algorithms, the 

proposed variant of MPC uses sensitivities estimated through 

artificial neural network (ANN), and, thus, it does not require 

extensive mathematical calculations. The architecture of the 

controller comprises the two following controllers: 

● A PI controller with a slow response, which undertakes a 

task of fulfilling requirements of TSO (i.e. reactive power 

import/export from distribution networks at the PCC). This is 

done by equally distributing reactive power demand into 

available VAr sources. 

● A controller, based on the MPC principles and the 

calculation of sensitivities, which, due to the reduced 

computational burden, enables its application in real-time 

operation. The controller helps in satisfying DNO‟s 

requirements, such as stable voltage profile within pre-defined 

technical bounds, and the minimum losses. The controller 

serves as a corrective control unit (CCU). Remarkably, it is 

only trigged when necessary, to correct control actions in 

optimal manner based on a small set of selected measurements 

and an offline trained model. 

The paper is organized as follows. Section II explains the 

overall operation principle of the proposed controller. Section 

III provides a detailed description of the CCU. The test 

network and algorithm implementation together with the 

simulation results are given in Section IV. Finally, concluding 

remarks are summarized in Section V. 

II.  PROPOSED CONTROL STRATEGY 

The proposed controller‟s scheme is sketched in Fig. 1. The 

controller consists of two main control units: the PI control 

unit and the CCU inspired by MPC. While the PI control unit 

carries out fulfilling reactive power demand ( ref

PCCQ ) requested 

by TSOs (e.g. to meet certain grid code requirements), the 

CCU corrects the control variables‟ values in order to 

minimize losses and correct voltages. The controller presented 

in this paper focuses on operations characterized by a slow 

time response (e.g. 10 seconds to few minutes) to adapt the 

DG response to changing steady-state requirements. It is 

emphasized that the proposed controller is exclusively 

conceived (from DNO‟s point of view) for continuous 

fulfillment (in an optimal manner) of grid code requirement at 

PCC, and not for system-wide reactive power control 

purposes. Thus, an analysis from a large-scale system 

performance perspective falls outside the scope of this paper. 

In this study, there are three types of control variables [15]: 

                     , ,
T

T T T

g tap gV   u q p                               (1) 

where 
T
 denotes vector transpose. Vectors 

gp  and 
gq  

are active and reactive power injections of DGs, while 
tapV  is a 

voltage set-point of the transformer.  

The action of the control algorithm shown in Fig. 1 is 

summarized in following steps: 

 The proposed controller collects necessary 

measurements, such as meas

PCCQ , 
meas

v , meas

gp , and meas

gq . Where 

PCCQ  and v  are the reactive power exchanged at PCC and the 

measured voltages at selected buses, respectively. The 

subscript „meas’ stands for measurements. It should be noted 

that the actual losses and the energy that “leaves” the 

distribution network are usually quantified in practice. The 

difference between the aggregated consumption data, provided 

from the settlement system, and the GSP measured energy, 

represents the overall network losses. The maximum sampling 

time for real-time applications is 1 s [23].  

  Next, the controller provides reactive power set-points of 

the DGs ( PI

g g g  q q q ). Where PI

gq  is the reactive power 

injection by the DGs requested by the PI control unit, 
gq  

refers to the change of DGs reactive power. The change of the 

OLTC transformers‟ voltage set-point is 
tapV , and the 

curtailment of the active power injection of DGs is 
gp . 

These control actions are sent to the corresponding 

components across the network. 
 

Fig. 1. The proposed controller scheme. 
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 Except for the reactive power 
gq , which is calculated in 

the controller at local level, other set-points (
tapV , 

gp ) are 

computed as illustrated in Fig. 2. The value ref

tapV is the 

reference set-point of the tap changer, whereas ref

gp  is 

calculated based on the actual operating conditions (e.g. 

influenced by the actual wind speed, solar intensity). Note that 

the subscript „ref’ stands for reference value. 

ref

gp

gp

(based on actual 

operating conditions)

gq
gp

ref

tapV

tapV

(based on initial set-

point)

tapV

DGs

The 

controller

Transformer

 
Fig. 2. Calculation of set-points at local level. 

III.  THE CORRECTIVE CONTROL UNIT 

The CCU, depicted in Fig. 3, is triggered occasionally, under 

predefined conditions (voltage violation, operation condition 

change), to correct voltage profile and to minimize the total 

losses. When it is triggered, the CCU starts collecting 

available real-time measurements. Some of the measurements 

are used as an input of an artificial neural network (ANN). 

The ANN is trained offline to output sensitivities. The process 

of determining the control actions is performed based on the 

online measurements and the sensitivities provided by the 

ANN. To prevent inaccurate measurements, the new 

measurements for the next calculation iteration are performed 

after a time delay 
delayT . 

stepN  is a predefined value which 

limits the number of CCU iterations per triggering. Hence, 

stepN  defines a MPC horizon. 

Collecting online measurements

Artificial neural network

(ANN)

Determine control actions by 

an optimization algorithm

Sensitivities

Selected measurements

The CCU triggered

Execute control actions

1step step 

stepstep N

End

de layT

 

Fig. 3. Flowchart of the CCU operation principle. 

A.   Conditions for triggering the CCU 

To reduce the computation burden, the CCU is only 

triggered if one of the following conditions occur:  

 Voltage violation. 

 Predefined change level of operation condition: When 

the networks significantly change their operation 

condition (e.g. load profile variation identified from day 

to night or reactive power requirement of TSO 

corresponding to a predefined step change), the networks' 

optimal operation setting-points need to be adjusted 

accordingly. In this study, it was assumed that the step 

change of 2 MVAR corresponding to reactive power 

capacity of a DG will trigger the CCU. 

B.  Artificial Neural Network 

As indicated earlier, the ANN is used to approximate 

sensitivities. The ANN is trained by using several online 

measurements as its inputs. The procedure for creating the 

ANN involves several steps, as shown in Fig. 4. The ANN 

training process is performed offline. Firstly, a database is 

created by using past, predicted, or approximated load 

profiles. A classification of the input data of the ANN, as well 

as the calculation of sensitivities (considered as the output), 

from the created database is performed afterwards. Next, the 

architecture of the ANN is defined according to the set of 

input and output data. The process of training is carried out to 

specify parameters of the ANN which are stored afterwards. 

Characterize inputs from 

the database

Define the ANN architecture

Create database for 

the ANN training

Store parameters of the ANN

Run sensitivities 

calculation and store all 

sensitivites

Execute ANN training process

 

Fig. 4. Flowchart of building the ANN. 

In this study, a multi-layer feedforward network based on 

backpropagation learning procedure is designed. It 

approximates sensitivities of the active power losses. The size 

of the input and output layers are defined by the measurements 

and the number of sensitivities, respectively. The selected 

neural network architecture consists of one input layer of log-

sigmoid neurons, followed by an output layer of linear 

neurons, and it is trained by using the functions of the 

MATLAB Neural Network Toolbox. The example proposed 

in the paper is tested by using two scenarios with different 

numbers of input and output layers. It is worth recalling that 

the CCU requires the ANN to provide the sensitivities of the 

active power losses with the respect to reactive power 

injections loss

g

P loss

q

g

S





P

q
, where 

lossP is a vector of the active 

power losses and 
gq  is a vector of DGs‟ reactive powers. 

Authorized licensed use limited to: TU Delft Library. Downloaded on February 15,2021 at 14:56:42 UTC from IEEE Xplore.  Restrictions apply. 



0885-8969 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEC.2021.3054844, IEEE
Transactions on Energy Conversion

 4 

C.  CCU operation principles 

1) Calculation of Sensitivities at every operating point 

The calculation of sensitivities is based on two methods. A 

direct method uses the steady-state power equations of load 

flow calculation. For example, the inverse of the Jacobian 

matrix provides the sensitivity of bus voltages with respect to 

the power variations. The equations presented in [24] can be 

used to compute the sensitivities between different variables. 

Another method approximates sensitivities based on load flow 

calculations, each one obtained by a small perturbation (e.g. 

10% of the nominal value, as used in this paper) of a control 

variable. In this study, the latter is used to calculate the 

sensitivities of the control variables with the respect to the 

state variables. 

D.  Determination of the Control Actions 

The MPC CCU calculates the change of control variables 

      at a time instant  , as shown in (2), not only to 

maintain the monitored voltages within permissible limits, but 

also to minimize the active power losses. 

 ( ) ( ) , ( ) , ( )
T

T T T

g tap gk k V k k      u q p           (2) 

with ( ) ( ) ( 1)k k k   u u u .
 

    1)  Formulation of the Overall Objective Function 

The overall objective function of the CCU is a function of 

multiple objectives associated with the following control 

variables. 

          a)  Reactive Power of DGs 

Different objective functions can be used by the system 

operators. Besides the traditional minimization of the active 

power losses, there are other approaches such as the 

minimization of reactive power cost [25], [26], minimization 

of the deviations from contracted transactions [27], or 

minimization of the cost of adjusting reactive power control 

devices [28]. In this study, the minimization of the active 

power losses is selected, and the objective function (OF) at 

time instant k is therefore defined as follows: 

      

max

1

1

( ) min ( )
g

loss

gi

N

P

loss q gi

i

OF k P S q k


 
    

 
            

(3) 

where max

lossP  is maximum active power losses over the 

distribution network, assumed to be equal to 10% of total 

loads in this study. As already mentioned loss

gi

P

qS  represents 

sensitivity of the losses power with the respect to the j-th 

component of reactive powers vector.  

          b)  Tap-changer of the Transformer  

The higher number of OLTC operations is proportional to 

higher cost in maintenance and reflects a reduction of the 

lifetime. Consequently, the minimization of tap changer 

operations is often a adopted as an optimization target. On the 

other hand, tap changers will be activated when: i) Changes in 

operation conditions push the controlled voltage at substation 

ctrV  out of the dead-band; and ii) A shift of the dead-band is 

caused by a change of 
tapV  when the controlled voltage at a 

substation ctrV  is out of the dead-band. Therefore, the 

minimization of the change of 
tapV  could lead to the least 

number of OLTC movements. The corresponding objective 

function is therefore defined as 

                 
 2( ) min ( )tapOF k V k 

                        
(4)

 
          c)  Active Power Generation of DGs  

The maximization of the active power production from DGs 

entails an economical advantage. This is permanently satisfied 

at local level because DGs always try to capture the maximum 

power by tracking actual conditions, such as wind speed, 

solar. However, under certain operation conditions, such as 

voltage violation, some curtailments of active power of DGs 

are needed. Consequently, the minimization of the active 

power curtailment becomes necessary to safeguard the 

network operation. Hence, the objective function is defined as 

               
3

1

( ) min ( )
gN

gj

j

OF k p k


 
  

 
                        

(5) 

where 
gN  is the number of DGs. 

The CCU is essentially an MPC which finds a sequence of 

control actions in CN  steps (MPC horizon). Therefore, the 

overall objective of the CCU is formulated as a composition of 

the objective functions defined by (3)-(5), under a relation 

described by a weighting matrix w , to penalize expensive 

control actions. In short, the composite problem is defined as 

            

1 3

0 1

( ) min ( )
CN

j j

i j

OF k w OF k i


 

 
  

 
    

  (6) 

subject to: 

● Constraints of control variables   

                      

min max( )k i  u u u                                (7a) 

● Constraints of voltage 

                      

min max( )k i  V V V                             (7b) 

● Constraint of reactive power exchange with external grid 

                   
( )ref meas

PCC PCCQ Q k i                                 (7c) 

Equation (7c) indicates that control actions of the CCU do not 

cause any interaction with PI control unit. Therefore, (7c) can 

be translated into  

                       
  ( )PCCQ k i    

u
u                      (7d) 

where 
u

 represents gradient of the vector of control 

variables u . 

The weighting matrix w  is intuitively chosen in such way 

that the effects of the reactive powers have the biggest 

influence on the objective function and that active powers 

have the smallest effect. It ensures the highest priority to 

reactive powers (OF1). If the constraints are still not fulfilled, 

variables of OF2 (tap voltage) will be used. After that, if they 

are still not satisfied, variables of OF3 (DGs active powers) 

will be used as the last resort. Therefore, tuning the weighting 

matrices in this paper is merely done by choosing the 

weighting factor for OF2 much bigger than for OF1 and much 

smaller than for OF3. 

2) The Voltage Constraint – Problem and Adaptation into 

the Optimization Algorithm  

The constraint (7b) can be rewritten as follows: 
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min max

0

( )
i

meas

l

(k | k)+ k l


   V v V V  
     

       (8) 

then, it can be transformed into: 

         
0

( | ) ( ) ( | )
i

l

k i k k l k i k


     LB V UB            (9) 

with 
min

max

( | )  : Lower bound

( | )  : Upper bound

meas

meas

k i k (k | k)

k i k (k | k)

   


  

LB V v

UB V v

  

and ( )k l V  is calculated based on the impacts of the three 

following events: 

             1 2 3( ) ( ) ( ) ( )k l k l k l k l          V V V V  
   

(10) 

 1V  are impacts of control actions on voltage changes. 

                
 1( ) ( )k l k l     

u
V V u                   (11) 

 2V  is treated as known disturbances due to slow 

response of tap position changes. 

             2( ) ( )tap

ctr

tap

k l V k l
V




    


V
V              (12) 

 3V  appears in a case that can occur at the time of 

measurement collection by CCU, if the PI control unit 

does not fulfill reactive power exchange due to its slow 

response. Consequently, the CCU has to account for the 

influence on voltages caused by further output evolution 

of PI control unit as follows:  

             
 3( ) ( )

g

PI

gk l k l     
q

V V q                (13) 

  

 
1( ) ( )

( ) PCC

g

ref meas
QPI PCC PCC

g

g

Q k l Q k l
k l S

N

   
     

 
qq   (14) 

where PI

gq  is reactive power of DGs further required by PI 

controller, and 
g


q

V  is sub-matrix of the matrix u
V . 

Equation (14) is determined with the consideration that 

reactive power at PCC is controlled using one PI controller. It 

is assumed that all DGs are influencing this error. Thus, this PI 

control produces a change at every DG, and the error is 

divided by the number of DGs, and by multiplying it by the 

corresponding sensitivity. 

On the other hand, to avoid excessive control actions caused 

by inaccurate sensitivities leading to voltage violation, and to 

ensure voltages within their limits at the end of the prediction 

horizon, the range of voltage bounds should be narrowed at 

the beginning of the control horizon, and progressively 

expanded to its actual value up to the end of control horizon. 

Consequently, the voltage bounds in (9) can be adaptively 

adjusted as follows: 

           
( | ) ( ) ( | )

( | ) ( ) ( | )

k i k k i k i k

k i k k i k i k





   


   

LB LB

UB UB
              (15) 

with ( )
( 1)

C

C C

N i
k i

N N



 


 . 

mu

mpen

min

mu max

mu
0

Strategy#1

Strategy#2

Current 

operating point

D

 

Fig. 5. Determination of penalty value of each control variable   . 

3) Modification of the Overall Objective Function to Achieve 

Better Performance  

In this paper, the sensitivities are calculated based on a small 

perturbation of each control variable (e.g. smaller than 10% of 

its nominal value). Therefore, the modification of the overall 

objective, by changing the magnitude of control variables 

around their actual values, is necessary to enhance accuracy of 

the sensitivities. To do so, an additional penalty term imposed 

on the change of control variables should be added in the 

objective function. Therefore, (7) is changed as follows: 

1 3

0 1 1

( ) min ( ) ( )
gC

NN

j j m

i j m

OF k w OF k i pen k i


  

 
     

 
    

     

(16) 

where mpen  can be calculated using two different strategies, 

as presented in Fig. 5. In the Strategy#1 penalties are 

estimated as           
  

( ) ( )m mpen k i u k i       
            

(17) 

where positive real number   is a slope. In the Strategy#2 a 

dead-band is used to penalize only large change of control 

variables. Thus,     

            
0,  if ( ) ,

( )
(k+i) , otherwise.

m m

m

m

u k i D
pen k i

u

   
  

           
(18) 

The introduction of mD  indicates that only the change of m-th 

control variable is encouraged. The value of mD  should be 

selected equal to the value of perturbation of these variables in 

sensitivities calculation process. Hence 10%mD   of the 

nominal value. 

 It should be noted that the MPC represents a feasible 

problem. The selected objective function covers a convergent 

system if it is satisfied that for the objective function 

1
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which is always positive, it is satisfied that 
1

0

1

( ( )) ( ( )) 0
CN

N

i

V k l k




 u u  and that stems inequality

0 0( ( ( ))) ( ) ( ( )) 0N N N NV f V l   u u u . The Lyapunov control 

function 0 ( ( ))NV ku  is always positive, since it presents a sum 

of positive functions over the prediction horizon 
CN . It 

presents a Lyapunov control function because it satisfies 

definition 2.31 on the page 126 in [29].  Outside of the 
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prediction horizon ( )ku is zero, and thus, ( )N u  is zero. It 

can be concluded that 
0 0 0( ( ( ))) ( ) ( ( )) ( ) 0N N N N NV f V l V     u u u u , which proves 

the stability. 

Regarding the polytopic nature of the constraints, the 

system is convex if on the polytope facets the Lyapunov 

function “drags” the system into origin [30], see Fig. 6 where 

the origin (or a steady-state, or also called operating point) is 

denoted as 0. There is well established theory how to tune 

such a system and we can refer to the work of Yuzo Ohta [31, 

32]. With this approach state variables operate inside “so-

called” polytope (see Fig. 6) and the control using Lyapunov 

function should ensure that the system stays inside the 

polytope, or that from any point outside it, it converges 

towards origin. The idea for tuning the weights in this 

approach relies on constructing negative time derivative of the 

piecewise-linear Lyapunov function, which should be 

orthogonal to the side of polytope or so-called facet, see 

orthogonal vector f1 on Fig. 6. Multiple algorithms have been 

design for it, see [31, 32]. The mentioned approach provides 

fundament on how to define convex polyhedron (polytope) 

and on that way gives an estimate of the weights used inside 

piecewise-linear Lyapunov function, because they are 

equation related. This is possible because the Lyapunov 

function is directly related to the polytope and they are both 

using the same weights.  

Since, for the detailed convexity analysis it is needed to 

check system equations at the each facet and Filippov criteria 

on the interconnection of influence of two constraints, the 

proof is omitted in this paper. However, for the each simulated 

case, the convexity of the problem is visible from its 

convergence into the steady-state. 

 

E.  Adaptive Selection of the Control Horizon  

The minimization of active power losses, when the 

controller works in loss control mode, is the primary task 

during normal operation. To reach this target, the controller 

must ensure acceptable voltages, even when subjected to 

inaccurate sensitivities. This can be achieved by setting 

2CN  , which however leads to more computational burden.   

By contrast, when a voltage violation takes place 

somewhere over the network, the voltage control mode should 

be activated. It is expected that the voltage returns within the 

limits as fast as possible. Hence, CN  should be minimal (or

1CN  ). 

IV.  ALGORITHM IMPLEMENTATION AND RESULTS 

A.  Test Network and Measurement Deployment 

The test network depicted in Fig. 7 is taken from an U.K. 

generic distribution network (UKGDN), available in [33]. It 

comprises of 75 load buses (except bus #1000 and bus #1100) 

and 22 DG units (3 MW in the nominal capacity of each). It 

connects to transmission system through a cable (Thévenin 

reactance of 0.1 p.u of 200 MVA short-circuit power) and a 

33/11 kV transformer equipped with OLTC which is able to 

regulate voltage in range of ±10% nominal voltage at 

distribution network side with 19 tap positions. The reactive 

power capacity of each DG is limited in range ±2 MVAR. 

Besides, measurements at all DG buses, voltages of several 

additional buses are also measured as in Fig. 7. It is expected 

that if voltages at measured buses are admissible, voltages at 

the other busses are also admissible. 

In the following subsections all numerical experiments were 

performed on a HP Pavilion Laptop with an Intel® Core™ i7–

5500 central processing unit (CPU), 2.4 GHz processing speed 

and 8 GB random access memory. 

B.  Characteristics and Parameters Setup of the Controller: 

    1)  The ANN  

Active power loads in the normalized half-hour span and 

generation profiles over one year are provided in the UKGDN. 

Load profiles are given in form of consumer class that can be 

Domestic/Unrestricted (D/U), Domestic-Economy (D/E), 

Industrial (I), and Commercial (C). The methodology, given in 

[34] and approximation methods of mixing consumer classes 

at each bus to create load profile (used as the database of the 

ANN) are adopted in this paper. The ANN training takes 

database consisting of a whole year with 17520 half-hour time 

steps.   

    2)  Parameters Setup and Algorithm Selection for the 

Controller 

The aim of the controller is to preserve voltages in the 

distribution network within ±5 % of their nominal values. 

Table I presents controller parameters. The parameters of the 

 

Fig. 6. Polytope example. 

 
Fig. 7. Test network. 
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PI controller are selected to ensure slow reaction (e.g., within 

a time frame of around 10 s to a few minutes). For design 

purposes, the proportional gain of the PI block can be 

considered relatively small and the integral time constant can 

be set within [10,20] sI  . 

TABLE I 
PARAMETERS OF THE CONTROLLER 

PI control unit Corrective control unit 

KI KP        Nc 

0.01 0.1 10 s 4 

 

As discussed before, 
CN  indicates a trade-off between 

controller performance and computational expense since 

larger 
CN  could translate to higher performance and higher 

computational burden. In this fashion, 4CN   is intuitively 

selected in this study. In addition, it is also assumed that 

calculation time of controller is 2 s. 

The problem in (6) and (7) can be solved by using various 

optimization methods. In this study, a sequential equality 

constrained quadratic programming method in IMSL library 

written for Fortran programming language is adopted. In 

particular, we are using NNLPF function. It should be noted 

that simulation with 4CN   control steps, on a system with 

45 variables (22 DGs with active and reactive power control 

variables and 1 OLTC control variable) lasts 0.75 s.  

From an implementation point of view, with the specified 

delay and with estimated calculation time, it is possible to 

ensure control in the real time. One example of the hardware 

implementation is to have measurement stations at the every 

DG node which would wirelessly send data to a 

microcontroller plugged in computer (IoT devices). The 

computer can receive measured data through serial port and 

USB and process them to obtain the necessary control action. 

In this work, is assumed that the computer “reacts” on the data 

send through UART or USB within milliseconds (which is 

enabled through the operating system scheduling thread). 

Thus, the real time operation is theoretically feasible. 

However, experimental implementation and verification is not 

within the scope of this paper. 

C.  Losses Minimization Performance of the Controller 

    1)  Impacts of the Overall Objective Function   

Fig. 8 shows response of the controller in fulfilling reactive 

power demand which is requested by TSOs. As discussed in 

part III-C-3, two strategies were proposed to improve 

performance of the controller. In each strategy, value of the 

slope,  1,0.1,0.05,0.01  , is simulated in turn. Examples of 

various   are compared with the original strategy (without 

penalty term in the objective function, 0  ), denoted as 

Baseline. It can be seen from Fig. 9 that in case of Baseline, 

performance of losses minimization can be comparative with 

the cases of two strategies. However, a lot of power 

fluctuation appears. This is because control variables 

requested by the controller move far from their actual values 

to attempt to minimize the losses. Unfortunately, such large 

 

Fig. 10. Active power exchange inversely proportional to losses reduction. 

 

 

Fig. 11. Voltage at bus#1166 with highest sensitivity on voltage violation. 

 

 

Fig. 12. Voltage at bus #1166 with highest sensitivity on voltage violation. 

 

Fig. 8. Correction of reactive power exchange. 

 

Fig. 9. Active power exchange inversely proportional to losses reduction: 
Largely to small dashed black lines describe Strategy#1 with α from bigger to 

smaller. The similarly featured lines but with light black color present 

Strategy#2, and solid black line is of Baseline. 
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change of control variables could aggravate inaccuracy of their 

sensitivities which are approximated by small perturbation 

around their actual values. By contrast, with introduction of 

two proposed strategies, the drawback of Baseline case can be 

solved. 

In Strategy#1, the controller displays significantly different 

performances with various slopes α.  On the other hand, 

introduction of a dead-band around actual value of each 

control variable in Strategy#2 can alleviate the dependence 

between the controller performance and the slope α, hence 

selection of α is simplified. 

    2)  Impacts of Sensitivities Accuracy 

This section shows that the performance of the controller is 

strongly dependent on the accuracy of the sensitivities. The 

performance of the controller was investigated in the 

following scenarios with the same operation conditions as in 

the previous section. The accuracy of the sensitivities 

decreases from Scenario#2 to #5. 

 Scenario#1: At each new operating point, optimal LF, 

calculated by a heuristic optimization algorithm, namely Mean 

Variance Mapping Optimization (MVMO) introduced in [12], 

is adopted in order to minimize the losses. This scenario 

apparently provides the best performance and hence, 

considered as a base case for comparison. 

 Scenario#2: The sensitivities are directly computed using 

LF calculation (not using the ANN) at each calculation step. 

 Scenario#3: The sensitivities are provided by the ANN 

with 66 input signals, (
meas

gv , 
meas

gp , 
meas

gq ) of all 22 DGs. 

This ANN is trained 3 minutes and 8 seconds on the CPU with 

RAM. After the training is measured mean squared error 

7.01.10
-6

. 

 Scenario#4: It is a repetition of Scenario#3, however with 

only 33 input signals of 11 DGs. Since this is a smaller ANN 

than in the Scenario#3, the training is shorter and it lasts 42 s 

using the same computer as previously mentioned. Mean 

squared error after the training is 3.55.10
-5

. It should be noted 

that controller‟s performance decreases with reduction of 

ANN‟s input nodes (see Fig. 10). 

 Scenario#5: The sensitivities are initially calculated using 

LF, and they are unchanged throughout simulation. 

Fig. 10 shows that controller‟s performance in minimizing 

the losses is directly proportional to accuracy of sensitivities. 

Moreover, from Scenario#3 and #4 it is a further assertion that 

 

Fig. 13. Correction of reactive power exchange. 

 

 

Fig. 14. Active power injection of DGs. 

 

 

Fig. 15. Reactive power injection of DGs. 

 

 

Fig. 16. Voltage at several buses. 

 

Fig. 17. Active power exchange inversely proportional to losses reduction. 

 

Fig. 18. Voltage of monitored buses. 

 

Fig. 19. Voltage at important points of OLTC transformer. 
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training performance of the ANN can be improved with 

increasing number of its inputs. 

The proposed controller, carefully, but not conservatively 

reaching the targets (i.e., adaptive length of control horizon 

according to actual operation condition),  as shown in Fig. 11, 

displays ability of regulating voltage subjected to inaccuracy 

of sensitivities.  

D.  Voltage Correction Performance of the Controller 

    1)  Impacts of Adaptive Selection of the Control Horizon  

In this scenario, it is assumed that the network operates at 

the condition with low load and high generation so that some 

buses are facing high voltage conditions. 

To investigate performance of voltage regulation in terms of 

length of the control horizon in the proposed controller, three 

strategies such as adaptive length introduced in Part III-D, 

long one (e.g. 2CN  ) and short one ( 1CN  , which is 

preferred by the network operator) are compared. In this 

investigation we assume that the CCU is triggered at 10 st 

merely for creating clearer pictures in Fig. 12. The voltage 

starts decreasing at 12 st   when control actions apply. 

Controllers with the short and the adaptive prediction horizons 

have faster capacity in correcting the voltage than the one with 

a long horizon.  As a result, at 22 st  , while the controller 

with short and the adaptive horizon manages to control losses, 

the controller with long horizon still continues correcting 

voltage. In other words, due to inaccurate model, controller 

with the short horizon produces excessive control actions, 

hence voltage breach at 24 st  . This is not repeated in the 

case with adaptive horizon, since in loss control mode the 

adaptive horizon becomes a long one, and controller calculates 

sequences of control actions to reach targets within several 

time steps ahead. 

    2)  Voltage Correction without OLTC of the Transformer  

Initially all DGs operate optimally to keep reactive power 

exchange at zero. At 10 st  and 100 st  , a large amount of 

20 MVAR power is exported and then down to 5 MVAR, 

respectively, is requested by TSOs. Fig. 13 presents response 

of the controller to fulfill this demand. 

It can be seen from Fig. 14 and Fig. 15 that during the 

time interval between 10 st  and 100 st  , when the large 

amount of reactive power is demanded, DGs closer to the 

substation try to fulfill reactive power exchange. Meanwhile 

other DGs at the end of several feeders, where voltages reach 

their limits (±5% nominal voltage), absorb reactive power to 

decrease voltage. But it can be seen that reactive power 

capacity of these DGs is insufficient to correct voltages. 

Drop of active power generation of DGs is needed, as shown 

in Fig. 14. As soon as the reactive power demand reduces to 

5 MVAR at 100 st  , the CCU ensures that reactive power 

control brings the voltages into their limits, so active power 

curtailment should be eliminated. However, to avoid 

excessive control actions caused by inaccurate model or 

measurement noises, the CCU gradually ejects expensive 

control actions, thereby always keeping the voltages in the 

limits over the simulation time, as shown in Fig. 16.  

At each triggered time 10 st  and 100 st  , the CCU 

have four chances, defined with 4stepN  , to reach its target 

as well as to improve its performance. Fig. 17 presents that 

with loss control mode the controller is able to improve its 

performance in minimizing the losses. 

    3)  Voltage Correction with OLTC of the Transformer  

With this scenario we aim at investigating voltage 

correction performance of the controller by using either DGs 

or OLTC of the transformer. Reactive power demand of TSOs 

is repetition of the last scenario, as shown in Fig. 13. It is 

noted that OLTC tap changer serves as a cheaper control 

action than active power curtailment control action, and that 

the time delay for the first tap change as well as for 

subsequent tap changes is 20 s. 

Fig. 18 presents voltage corrections by optimal control 

actions. The transformer takes one movement of tap-changer 

at 32 st  to correct voltages. It can be seen from Fig. 19 that 

the voltage set-point ordered by the controller firstly changes 

at 12 st  , which pushes the OLTC monitored voltage at bus 

#1100 out of the acceptable dead-band. After the time delay of 

20 s, the movement of tap-changer is performed at 32 st  . It 

is worth emphasizing that at 24 st  , the CCU operates in 

the loss control mode with regulating reactive power of DGs 

only, as shown in Fig. 20. Later, since the decrease of reactive 

power exchange demand at 100 st   does not cause voltage 

violation, the CCU is triggered just for the purpose of losses 

minimization. 

It can be noticed from Fig. 17 and Fig. 21 that voltage 

correction using the control variables of the OLTC, instead of 

active power curtailment, leads to a higher minimization of the 

losses. 

V.  CONCLUSIONS 

In this paper, a centralized control scheme based on a MPC 

and PI control unit has been successfully developed for 

accommodating the increasing integration of distributed 

generators into distribution networks and satisfying the 

different objectives of the operations by TSOs and DNOs. The 

 

Fig. 20. Reactive power of DGs. 

 

Fig. 21. Active power exchange as indication of loss reduction. 
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proposed controller is based on sensitivities that replace the 

typical approach based on full LF calculation. The controller 

demonstrates to be effective for both voltage correction and 

losses minimization. The controller is only activated in 

predefined conditions. Thus, it helps significantly in relieving 

the computation burden. With adaptive MPC horizon length, 

the controller is able to quickly drive the network operating 

point close to the optimal solution, and without violation of 

the technical limits in each operation condition. From the 

perspective of the MPC practical implementation, the 

prediction horizon can be limited either by limiting a number 

of CPU computations (iterations) or by limiting the CPU time. 

Hence, for the tap change, the MPC can be designed and 

applied with a different time scale. Numerical results show 

that model inaccuracies or delays of the control actions do not 

affect the control actions. The implications (on controller‟s 

performance) of particular surfaces defining PQ constraints of 

the DGs and the PCC, depending on the activation and use of 

different control modes, and the corresponding specifications 

of the DGs, like in the study presented in [35], are part of 

future research. 
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