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Airborne wind energy (AWE) systems are tethered flying devices that harvest wind resources at higher altitudes,

which are not accessible to conventional wind turbines. To become a viable alternative to other renewable energy

technologies, AWEsystemsare required to fly reliably and autonomously for longperiods of timewhile being exposed

to atmospheric turbulence and wind gusts. In this context, the present paper proposes a three-step methodology to

improve the resilience of an existing baseline control system toward these environmental disturbances. In the first

step, upset conditions are systematically generated that lead to a failure of the control system using the subset

simulation method. In the second step, the generated conditions are used to synthesize a surrogate model that can be

used to predict upsets beforehand. In the final step an avoidance maneuver is designed that keeps the AWE system

operational while minimizing the impact of the maneuver on the average pumping cycle power. The feasibility of the

methodology is demonstrated on the example of tether rupture during pumping cycle operation. As an additional

contribution a novel transition strategy from retraction to traction phase is presented that can reduce the probability

of tether rupture significantly.

I. Introduction

O PERATING airborne wind energy (AWE) systems requires
sophisticated control strategies that try to exploit the full physi-

cal capabilities of the system formaximum power generationwithout
compromising safety. The major part of the existing literature about
AWE control systems focuses on the former, to maximize the power
output using trajectory optimization (see, for instance, [1–4]). The
only recent publication that analyses reliability and safety of AWE
systems is [5], which presents a failuremode and effect analysis along
with a fault tree analysis for a flexible wing kite power system. This
imbalance between performance optimization and reliability analysis
in the AWE literature indicates that more research is necessary to
investigate how the resilience and robustness of AWE control sys-
tems can be improved, which motivates the present work.
AWE systems need to operate invarying environmental conditions

such as slowly varying wind speeds due to the altitude dependent
meanwind speed profile but also need to copewith rapid changes due
to wind gusts and turbulence. Because of the inherent stochastic
nature of the wind conditions, it is difficult to explicitly include them
in the control design process. In practice, the closed-loop system is
verified a posteriori for randomly generated wind conditions, as
presented, for instance, in [6]. If the controller fails to satisfy all
requirements, it needs to be either retuned or completely redesigned.
To create enough confidence that the controller achieves its objective,
a large amount of simulations is necessary. This approach belongs to
the direct Monte Carlo simulation methods ([7] p. 83f). Besides the
computational burden of the control system verification process, it is
also difficult to create enough counterexamples where the control
system fails. For example, awind gustwith a certain shape that occurs
with a probability of 10−6 requires on average 106 simulation runs
until it is encountered once. Especially for computationally expen-
sive simulation runs this approach can be practically infeasible if
several samples of these rare events need to be generated. Naturally,
the more information about the condition that leads to a control

system failure is available, the more reliably it can be predicted and
prevented in the future. Concretely, if enough data about counter-
examples are available, a model that runs in parallel to the control
system can be constructed that monitors the current flight state. It can
then be used to predict how likely it is that the current flight condition
leads to an upset and if necessary triggers a maneuver that avoids it.
Creating such a predictor requires a significant amount of data that
cannot be generated efficiently using the direct Monte Carlo method
due to the aforementioned computational burden. Therefore, a differ-
ent approach is chosen in this work, which is based on subset
simulations (SSs). It is an algorithm that has been developed origi-
nally to estimate small failure probabilities of high-dimensional
stochastic systems [8]. Recently SS has already been applied to small
failure probability estimation in the context of flight control system
verification (see [9,10]). In the context of this work the algorithmwill
not only be used to estimate rare event probabilities but also to
generate systematically a knowledge base for external disturbances
that lead to a specified control system failure, denoted as an upset.
The generated conditions will then be used to train a binary classifier
that is either based on a fixed threshold prediction strategy or a
support vector machine (SVM). These surrogate models are able to
predict and eventually prevent the occurrence of a failure beforehand
with the overall goal to improve the fail-operational characteristic of
the AWE system.
The contribution of this work can be summarized as follows. First,

a control system modification to a previously published work of the
authors (see [6]) is proposed. It is shown that themodification reduces
the probability of tether rupture significantly. Second, a generic
framework is presented that systematically generates conditions in
which the control system fails. Third, two different prediction strat-
egies are presented that are either based on a simple threshold
approach or a binary time-series classification technique to predict
upset conditions. Fourth, a loss rate function is derived that allows to
trade off the prediction performance with respect to the induced
economic loss of false positives and false negatives. In the last part
of this work, the framework is applied to predict and prevent tether
rupture, a common failure scenario in the context of AWE. A tailored
avoidance maneuver is proposed that prevents this specific upset and
keeps the system operational.
Ultimately, the following research questions are answered: How

can the transition from retraction to traction phase be shaped in order
to damp tether tension peaks during the transients? How can upset
conditions in the context of AWE be defined and systematically
generated if the probability of encountering one per pumping cycle
is low and how can they be predicted? Furthermore, how can the
practical impact of different prediction strategies be used to measure
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classification performance beyond classical metrics? Finally, is it
justifiable from an economic point of view to prevent these condi-
tions if that comes at the cost of false positives or is it more reasonable
to simply accept them?
To that end, the paper is structured as follows. In Sec. II the closed-

loop system is presented including a brief description of the used
models and controllers. In addition, a modification to the baseline
control architecture is introduced. In Sec. III the novel framework is
presented generically, and in Sec. IV it is applied to the specific case
of predicting and preventing tether rupture during a pumping cycle.
Finally, Sec. V concludes the paper.

II. Closed-Loop System Description

In this study a model of a generic AWE system operated in
pumping cycle mode is used along a modified version of the control
system presented in [6] in order to demonstrate the effectiveness of
the proposed framework. In the first part of this section the main
components of the model will be reviewed. In the second part the key
elements of the controller will be presented with a focus on the
modification with respect to the baseline architecture as presented
in [6].

A. Aircraft, Ground Station, and Wind Models

The aircraft is modeled as a six-degree-of-freedom rigid body, and
its geometric and aerodynamic properties are based on the values in
[11,12]. The translational dynamics are given by

� _vGk �B � −�ω�OBB × �vGk �B � �Ftot�B
ma

(1)

with

�Ftot�B � �Fa�B � �Fg�B � �Ft�B � �Fp�B (2)

where � _vGk �B, �vGk �B, �ω�OBB , and ma represent the kinematic accel-
eration, the kinematic velocity, the rotational rate of the aircraft with
respect to the north-east-down reference frame, and the total mass of
the aircraft, respectively. The subscript B indicates vectors given in
the conventional body-fixed frame of the aircraft as visualized in
Fig. 1. The total force acting in the center of mass G of the aircraft
consists of the resulting aerodynamic force �Fa�B, the weight �Fg�B,
tether force �Ft�B, as well as propulsion force �Fp�B. The rotational
dynamics are given by

� _ω�OBB � −J−1
�
�ω�OBB × J�ω�OBB − �Ma�B

�
(3)

where � _ω�OBB ,J, and �Ma�B denote the rotational acceleration, inertia
tensor, and resulting aerodynamic moment acting in the center of
mass, respectively. Note that it is assumed that the tether is attached to

the center of gravity because information about the exact location of
the attachment point is not publicly available. Therefore, the tether
does not contribute to the rotational dynamics. Furthermore, the
actuator dynamics for ailerons, elevator, and rudder are approximated
as first-order filters including rate and deflection limits. These values
are summarized in Table 1. For the post-takeoff phase a simple
propeller model is implemented as defined in [13] (p. 53f). Note that
the propeller is used only in the beginning of each simulation to
initialize the pumping cycle operation.
The ground station is modeled as in [6], and relevant parameter

values are summarized in Table 2. Furthermore, the discretized tether
model of [14] is implemented, and the used values are displayed in
Table 3. Wind conditions are simulated using the wind shear model
and the discrete Dryden turbulence model provided by theMATLAB
Aerospace Toolbox [15]. The resulting mean wind speed profile in
the present work as a function of altitude is depicted in Fig. 2. The
turbulence components are superimposed to this wind speed profile.

XB

Fig. 1 Small Earth analogy with wind reference frame W, tangential
plane frame τ, and body-fixed frame B [6].

Table 1 First-order actuator models

Parameter Value Unit

Bandwidth aileron ωa;0 35 rad ⋅ s−1

Aileron deflection limit δa;lim �20 °

Aileron rate limit _δa;lim �115 ° s−1

Bandwidth elevator ωe;0 35 rad ⋅ s−1

Elevator deflection limit δe;lim �20 °

Elevator rate limit _δe;lim �115 ° s−1

Bandwidth rudder ωr;0 35 rad ⋅ s−1

Rudder deflection limit δr;lim �30 °

Rudder rate limit _δr;lim �115 ° s−1

Table 2 Ground station parameters

Parameter Value Unit

Inertia JW 0.08 kg ⋅m2

Viscous friction κW 0.6 kg ⋅m ⋅ s−1

Acceleration limits aW;min∕max �5 m ⋅ s−2

Maximum speed vW;max 20 m ⋅ s−1

Minimum speed vW;min −15 m ⋅ s−1

Table 3 Tether parameters

Parameter Value Unit

Particles nT 5 — —

Mass density ρT 0.0046 kg ⋅m−3

Diameter dT 0.0025 m

Drag coefficient Cd;T 1.2 — —

Stiffness cT 10,243 N ⋅m−1

Damping dT 7.8833 N ⋅ s ⋅m−1

Fig. 2 Mean wind speed profile as a function of altitude.
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B. Control System Description

In the following the control objective for an AWE system operated
in pumping cycle mode is described. A pumping cycle usually results
in a trajectory similar to the one displayed in Fig. 3. The control
objective for such a system can be subdivided into a radial and a
tangential direction control task. On the one hand, the controller
needs to keep a high tension in the tether during the traction and a
low tension during the retraction phase. This radial direction control
objective is achievedusing the rotational speed of thewinch aswell as
the aircraft angle of attack and bank angle as control variables. On the
other hand, the aircraft needs to follow a prescribed flight path, for
instance, a figure-of-eight pattern during the traction phase and a
straight-line glide path during the retraction phase. These two differ-
ent flight path segments are indicated in Fig. 3 by the blue (traction)
and orange (retraction) lines. The path following objective will be
achieved using only the flight controller. In this work the flight
controller is implemented in a cascaded form with three feedback
loops. In the first loop the guidance commands in form of course and
flight path angle rates are calculatedwith respect to the path curvature
for the figure-of-eight flight, whereas during the retraction phase
command shaping filters are used. These commands are then trans-
lated into bank angle and angle-of-attack commands that are tracked
by the attitude controller. In the inner most loop the output of the
attitude controller is translated into rate commands that are tracked by
the rate controller and eventually allocated to the actuator deflections.
Additionally, in each loop pseudocontrol hedging is implemented to
comply with aircraft state and input limits.
In the following paragraphs two modifications to [6] are intro-

duced that improve the robustness of the controller in turbulent wind
conditions. The first modification consists of an improved guidance
strategy for the transition between the retraction and the traction
phase. The main challenge here is represented by the rising tether
tension, i.e., from low tension in the retraction to high tension in the
traction phase. Furthermore, because both phases are fundamentally
different from a control perspective a transition strategy from
straight-line following (retraction) to path following on a virtual
sphere (traction) needs to be achieved. Subsequently, several possible
solutions will be discussed before the final method is presented.
One possible approach is to directly switch into the figure-of-eight

path-following mode as soon as the end of the retraction path is
reached, which does not require any intermediate guidance strategy.
Another option is to include a planar circular arc at the end of the
retraction phase that defines the turning radius for the transition phase.
This delays the activation of the traction mode until the aircraft is
steered sufficiently back into thewind, which can be defined by away-
point on the arc. The drawback of the first approach is the reduced level
of guidance, and hence it is difficult to shape the transient behavior.
Because the same controller for the transient as for the traction phase is
used to avoid unnecessary switching between different controllers,
tuning of the controller for better transient behaviorwould also alter the
controller for the traction phase. The downside of the second approach
is that it requires additional parameters to be tuned such as the length
and curvature of the arc. Modifying the figure of eight would most

likely also require tomodify thegeometry of the transition arc. It can be

seen that both approaches are complementary in terms of additional

complexity and level of guidance. Note that more sophisticated

approaches such as an optimal control strategy that connects the

retraction and traction phase are also possible, but this requires again

an additional controller switch, which is not desirable.
The advantages of both approaches can be combined in the follow-

ing third alternative. Instead of defining a new arc in the horizontal

plane, the same but rotated figure-of-eight curve as for the traction

phase is used. This is similar to the first approach, where the traction

phase is directly triggered at the end of the retraction phase. However,

instead of directly approaching the traction phase path at a low

elevation angle (power zone) a figure-of-eight curve at a high eleva-

tion angle (limit is 90 deg) is used for better guidance in the turning

phase (advantage of the second approach). During the transient the

curve is rotated toward the desired elevation angle for the traction

phase. The time constant that defines the speedwith which the path is

rotated turns out to be an important parameter that trades of robust-

ness (large value) and performance (small value) because it defines

how fast the aircraft will fly into the power zone. In combination with

a shaped set point change for the tether force tracking, a smooth

transition from a straight path with low tether tension to figure-of-

eight flight path following with high tether tension can be achieved.

Themathematical implementation of this approach is discussed in the

following.
As in [6] the figure-of-eight flight path is parameterized using the

definition of a Lemniscate in spherical coordinates on a unit sphere.

Concretely, the longitude and latitude of each point on the path are

then given by

λp � b sin�s�
1� ��a∕b� cos�s��2

ϕp � a sin�s� cos�s�
1� ��a∕b� cos�s��2 (4)

where a and b define the specific shape of the path and s ∈ �0; 2π�
defines a specific position on the path. Transforming the path defi-

nition from spherical into Cartesian coordinates yields

�p�P �
0
@ cos λp cosϕp

sin λp cosϕp

sinϕp

1
A (5)

where the subscriptP denotes the path frame. It is essentially defined

in the same way as the wind reference frameW (see [6], and Fig. 1)

but is tilted by an angleϕr around the negative yW axis. The reference

path in the W frame is then defined by

�p�W �
0
@ cosϕr 0 − sinϕr

0 1 0

sinϕr 0 cosϕr

1
A�p�P (6)

Note that this redefinition of the path requires also a small modifica-

tion in the algorithm in [6] that finds the closest point on the path

using Newton’smethodwith respect to the current position. In [6] the

path is fixed at a certain elevation angle. However, because the

rotation matrix in Eq. (6) is constant with respect to s the derivatives
are not impacted and only the final result in [6] needs to be changed.

Concretely, the target on the path as well as the tangent and its

derivative with respect to s (see [6]) need to be rotated by ϕr using

the same rotation matrix as used in Eq. (6).
The transient of the rotation angle ϕr is shaped using a first-order

filter with bandwidth constant ω0;r and set point ϕset, which corre-

sponds to the reference elevation angle during the traction phase (see

Fig. 4):

_ϕr �
�
0 if Δϕ > �Δϕ

−ω0;rϕr � ω0;rϕset; ϕr�t � 0� � ϕ0 else
(7)Fig. 3 Generic pumping cycle trajectory with traction and retraction

phase.
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To avoid that the path is rotated too quickly _ϕr is set equal to zero as
soon as the arc length on the unit sphereΔϕ between the path and the

current projected position of the aircraft exceeds a certain threshold
�Δϕ, which is set to one degree for the subsequent simulations. Δϕ is

given by

Δϕ � ~ϕG − ~ϕt

~ϕG � arccos

� �pG
xy�⊤W�pG�W

k�pG
xy�Wk2k�pG�Wk2

�

~ϕt � arccos

� �pt
xy�⊤W�pt�W

k�pt
xy�Wk2k�pt�Wk2

�
(8)

where �pG
xy�W and �pt

xy�W are the normal projections into the xWyW
plane of the aircraft position �pG�W and the target on the path �pt�W ,
respectively. All vectors are given in the wind reference frame. The
inverse of ω0;r represents the time constant τr of the transition phase.
It is a tuning parameter that defines how quickly the path is rotated
into the power zone. In the limit, as τr goes to zero, the transition
scenario without guidance is reached. On the contrary, for large time
constants the aircraft will flymost of the time at high elevation angles,
which will reduce the power output. Hence, the parameter value
reflects the tradeoff between robustness (large τr) and maximum
power output (small τr). The impact of the time constant on the
robustness is addressed in more detail later in the paper. Note that
the initial condition is usually chosen smaller than 90 deg (between
70 and 80 deg); otherwise, this would cause the aircraft to overfly the
ground station. The filter is reset at the beginning of the transi-
tion phase.
For the retraction phase the straight glide path is defined as the

connecting line of the point at which the retractionmodegot triggered
and a waypoint on the rotated reference path defined by s �
f�π∕2�; �3π∕2�g and ϕ0. The s value is chosen depending in which
part of the figure of eight (positive or negative yW coordinate) the
traction phase got triggered. The retraction phase is triggered if two
conditions are met. First, a specified tether length needs to be
reached; second, the aircraft needs to pass the point on the path
specified by s1 � �π∕2� or s2 � �3π∕2�. As opposed to directly
triggering the retraction phase if the maximum tether length is
reached, this approach reduces the possible retraction points on the
path to two, which is more convenient for robustness analysis. The
downside of this approach is that the maximum length of the tether
can vary in one pumping cycle because the increment in tether length
per half figure of eight flight varieswith the reeling speed. Tomitigate
this effect the increment in tether length for each half-figure-of-eight
flight is predicted based on the previous increment. If the aircraft

reaches one of the two possible retraction points the increase in tether
length until the other retraction point is reached will be estimated. If
the estimated tether length is higher than the maximum allowable
tether length the retraction phase will be already triggered at the
current retraction point. This feature ensures that the maximum
allowable tether length is never exceeded.
Finally, a minor modification of the winch controller is presented.

In contrast to [6] the winch controller was simplified because the
feed-forward part turned out to be too aggressive in highly turbulent
wind conditions leading to instabilities due to the acceleration limits
of thewinch. Instead, a simple proportional-integral (PI) controller is
implemented that calculates a reference torque based on the differ-
ence between the tether force set point and the measured tether force
on the ground. Based on the reference torque thewinch will adapt the
reeling speed. This strategy works for traction and retraction phase
and requires only different set points.

III. Upset Condition Generation, Prediction, and
Avoidance Framework

The framework consists of three steps denoted with A, B, and C.
The different steps can be designed to a large extent independently,
which allows to improve the framework in the future in a modular
manner. In step A (upset condition generation) the SS algorithm is
used to systematically generate samples that lead to a specific upset
condition. In step B (upset condition prediction) the predictionmodel
is designed based on the created samples from step A in order to learn
to distinguish between upset and nominal conditions. Finally, in step
C (upset condition avoidance) the avoidance maneuver is designed.
The complete framework is visualized in Fig. 5, where the high-
lighted rectangles enclose the tasks associated to every individual
step. The three steps are discussed generically and in more detail in
the subsequent paragraphs. In Sec. IV the framework is applied to
generate, predict, and prevent tether rupture during pumping cycle
operation.

Fig. 5 Workflow of the proposed framework.

Fig. 4 Projection of the reference flight path in the xy plane of the W
frame.
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A. Upset Condition Generation

In this work upset conditions are generated using the SS algorithm.
The introduction of SS in this section follows [16]. Further details
about SS andmathematical proofs can also be found in [8]. In general,
SS is a popular algorithm to estimate small event probabilities for
high-dimensional systems [8]. An event, or failure, probability is a
function of a multidimensional random variable Θ. As a function of
its probability density function fΘ a failure can be written as a
multidimensional integral:

pf �
Z
Θ
1F�θ�fΘ�θ� dθ (9)

where Θ represents the entire space of θ, and 1F�θ� is the indicator
function that is either one if a certain realization θ leads to a failure or
zero otherwise. Furthermore, in the context of SS it is usually
assumed that the random variables are identically and independently
(iid) distributed; hence,

fΘ�θ� �
Yd
k�1

fΘk
�θk� (10)

In addition, it is assumed that the random variables are transformed
such that the transformed variables are iid standard normal random
variables with probability density function f 0. Directly evaluating the
integral in Eq. (9) analytically or even numerically is not feasible for
complex high-dimensional systems due to the curse of dimension-
ality [8]. One approach to calculate this integral is using directMonte
Carlo methods that randomly sample from the parameter marginal
distributions, evaluating the indicator function by simulation and
using eventually the sample average to approximate the failure
probability. If pf is small this can require an unfeasible amount of

simulation runs, which is especially critical if one simulation run is
time-consuming, i.e., several minutes or more. Contrarily, in the
context of SS, pf is written as a product of conditional probabilities

that involves the definition of intermediate failure domains. Themain
idea behind this strategy is that transitioning from one intermediate
failure domain to the next has a higher chance than directly transi-
tioning from nominal conditions into the failure domain. The failure
probability can then equivalently be expressed as a product of condi-
tional probabilities:

pf � Pr�F1�
Yms−1

i�1

Pr�Fi�1jFi� (11)

The first intermediate failure probability Pr�F1� is obtained via a
direct Monte Carlo approach where ns samples are generated at
random. Next, a limit function g that characterizes how close the
current sample is to the failure is evaluated for each sample. The limit
function is defined such that a higher value indicates a sample that is
closer to the actual failure defined by g	. The current intermediate
failure domain is defined by a threshold T for the limit function that is
in general smaller than the critical value g	. Given the current sample
set of size ns, the threshold T is calculated by splitting the ns samples
into two subsets. One that contains the ns ⋅ ps samples with the
highest limit function values and one that contains the remaining
ns − ns ⋅ ps samples. Then T is the average of the limit function
values that separate the two sets. Concretely, if the threshold values of
the limit function are arranged in descending order, then the inter-
mediate threshold value is defined by

T � gns⋅ps � gns ⋅ps�1

2
(12)

where gns ⋅ps and gns⋅ps�1 denote the ns ⋅ psth and �ns ⋅ ps � 1�th
largest samples with respect to their limit function values in the
current sample set. In that case, the transition probabilities
Pr�Fi�1jFi� are by definition equal to ps, which is usually set to
0.1 [8]. To populate an intermediate failure domain with new

samples a Markov chain Monte Carlo method, such as the modified
Metropolis algorithms (Algorithm 1), is used. The algorithm is
briefly introduced in the following based on [8]. In the context of
SS the task of the Metropolis algorithm is to populate an intermedi-
ate failure domain with samples that also belong to the current

intermediate failure domain, i.e., ~θ ∈ Fi. This means that ~θ leads
to a limit function value that is larger than the current intermediate
threshold T . As soon as ns samples are contained in the current
domain Fi, the subsequent intermediate failure domainFi�1 will be
defined. First, the new threshold T using Eq. (12) is calculated, and
afterward new Markov chains are created to populate Fi�1. New
samples, conditioned on an existing sample θ in an intermediate
failure domain Fi, are created by centering a symmetric proposal

function ~f around each coordinate θk of θ.
In this work a Gaussian proposal function is used. Its variance can

be calculated adaptively as described in [17]. This results in ns ⋅ ps

Markov chains with �1∕ps� − 1 elements. An accept/reject strategy,
as defined in line 5 of the algorithm, leads to a nongreedy random
walk around the previous state in the Markov chain. Because the
intermediate thresholds are selected adaptively with respect to the
most promising samples (higher limit function value) and new sam-
ples are only accepted if they are contained in the current intermediate
failure domain (line 7), the algorithmwill return at every stage inputs
that drive the system more toward an upset condition (critical limit
function value). This procedure is repeated until more than ns ⋅ ps

samples lie in the actual failure domain. The actual failure probability
can then be approximated by

pf ≈ pms−1
s

nf
ns

(13)

where nf > ns ⋅ ps is the number of samples that lie in the actual

failure domain and ms are the number of epochs in the SS run.
Applying the SS algorithm in the context of this work requires to

define the upset conditions formally in form of a scalar limit function.
All samples that lead to a limit function value that is beyond a defined
threshold value are considered as upset conditions. The crucial part in
modeling an upset condition is the allocation of the upset condition to
a reasonable signal value or a combination of different signal values.
For instance, if the analyzed upset is stall, the angle of attack
represents the obvious choice as a limit function. Because this
framework is mostly applicable to control system failure, finding
the right limit function is usually done by taking the complement of
the control objective. For instance, as described in Sec. II, the control
objective for AWE systems operated in pumping cycle mode can be
decomposed into a path-following problem (tangential direction
control) and a tether force tracking problem (radial direction control).
Hence, the limit function should be able to describe a failure in the
tangential or radial direction control objective. The performance of
the tangential direction control objective is reflected by the path-
following tracking error, which suggests to choose this signal as a
limit function to generate conditions in which the controller is not
able to keep the aircraft close enough to the flight path. Similarly, in
the radial direction the controller needs to track a high tension in the
tether for maximum power production while keeping the tether force
below the maximum tensile force that the aircraft and the tether itself
can still support. An upset condition in this case can then be defined
as a condition where the tension in the tether exceeds this critical

Algorithm 1: ModifiedMetropolis algorithm

1: Pick θ ∈ Fi

2: for each coordinate k � 1 : : : d in θ do
3: Sample ~θk ∼ ~f�⋅jθk�
4: Compute α � �f 0� ~θk�∕f 0�θk��
5: Accept ~θk if α > 1 or if α > u with u ∼ U�0; 1�
6: end for
7: Accept ~θ if ~θ ∈ Fi o.w. set

~θ � θ

8: return ~θ
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value. The latter example is investigated in depth in Sec. IV. Depend-
ing on the model fidelity, more complex upset conditions such as too
high wing bending or vibrations with certain amplitudes in a certain
frequency range can be analyzed, where the external excitation is
generated using SS. Ultimately, a wide range of different upset
conditions can be converted into a scalar function g�θ�with a thresh-
old value beyond which the upset occurs. Note that the choice of this
limit function is not limited to a specific functional form. It can be
represented by an arbitrary nonlinear scalar function that just needs to
be tailored to the specific upset condition. The only constraint is that
the function needs to be monotonous such that maximizing the
functional value indeed drives the system toward the considered
upset condition. In most cases it is dependent on the aircraft states
and outputs (e.g., angle of attack, airspeed, wing bending, tether
tension). Having defined the limit function, the SS algorithm can be
applied to sample θs in order to drive g into the specific upset g > g	.

B. Upset Condition Prediction

In this section two prediction approaches are presented. Because it
is assumed that an upset can be defined by the value of the corre-
sponding limit function, a first intuitive prediction approach is to
predict an upset solely based on the current functional value of g.
Because of the stochastic nature of the system the values of g will
fluctuate according to the joint distribution of the uncertainties.
Threshold values can then be selected based on the distribution of
the maximum g values obtained from Monte Carlo simulations. For
the sole purpose of classification it is obvious that selecting a thresh-
old value arbitrarily close to the maximum limit function value will
yield the highest prediction accuracy (least conservative). However,
due to the inertia of the system as well as time delays this will in
most cases not allow to avoid the upset condition. Contrarily, if the
threshold value decreases, the false-positive rate will grow (more
conservative). For this reason different threshold values need to be
tested and a benchmark strategy as presented at the end of this section
can be used to identify the best threshold.
In addition to the fixed threshold approach an alternative strategy

based on binary time-series classification is proposed. The main
motivation for this approach is that also the time history of certain
states and outputs contains information that can be exploited for
prediction. This approach is especially beneficial in the context of
controls because critical disturbances often cause an oscillatory
behavior before the actual upset. Obviously, oscillations can be
detected only by analyzing the time and frequency content of a signal
in a certain timewindow, which is not possible if the simple threshold
approach is used. In this work the time-series classifier is realized as
anSVM,which is optimized based on thegenerated samples in stepA
of the framework. In the following a concise description of the SVM
algorithm is given, which is based on ([18] pp. 383–387). More
details about SVMs can also be found in [19].
The goal of the SVM algorithm is to find a hyperplane for each

class such that the margin between the two planes is maximized. The
two spaces defined by the hyperplanes can be defined as

w⊤ϕf;i � b

�
≥ 1 if ϕf;i belongs to class 1

≤ −1 otherwise
(14)

where w is the normal vector of both hyperplanes and b is the bias
term. The distance between the two hyperplanes is given by

2∕
�����������
w⊤w

p
. To maximize the distance between the two planes the

scalar product w⊤w needs to be minimized, which leads to the
following quadratic programming problem ([18] p. 384):

minimize
1

2
w⊤w

subject to yi�w⊤ϕf;i � b� ≥ 1; i � 1; : : : ; n

(15)

with yi ∈ f−1; 1g. The optimization problem can be rewritten in
terms of its Lagrangian as defined in [18] (p. 386). It will contain

the input vector only as the scalar product ϕ⊤
f;iϕf;i, which allows to

apply the kernel trick. The kernel function essentially maps the input
parameter into a higher-dimensional space in which both classes are
linearly separable ([18] p. 382). A common kernel is the radial basis
function, or Gaussian kernel, which is also used in this work. Ulti-
mately, the SVM is used to solve a binary classification problem
where a given data set D � f�ϕf;i; yi�; i � 1; : : : ; ng is used to

construct a model that can predict if a certain input vector belongs
to class−1 or 1. The predictor equation that is eventually added to the
control system is given by

f̂ �
Xm
j�1

αjyje
−��ϕf;i−ϕj�⊤�ϕf;i−ϕj�∕σ2 � (16)

where the αj’s are the m nonzero Lagrange multipliers of the corre-

sponding support vectors ϕj as well as their class labels yj, and σ
2 is

the variance of the Gaussian kernel, which is a hyperparameter that
needs to be tuned. ϕf;i corresponds to the current feature vector. The

class label is then determined based on the condition

ŷ �
�

1 if f̂ ≥ 0

−1 else
(17)

In this work an upset is defined by y � −1 and a nominal condition
by y � 1. Estimated quantities are indicated by the “hat” operator.
The inputs to the SVM-based predictor will be specific estimations

of aircraft states andwind conditions.Note that it will be assumed that
the used signal values can be measured at a specific rate, and no state
estimation is performed. The approach can, however, be extended by
including a state estimator in between the predictor and the sensor
outputs.
Instead of capturing the complete time history of each signal,

specific signal statistics are extracted and collected in a finite-dimen-
sional feature vector. Therefore, each signal is cut into smaller seg-
ments according to a chosen time window size. For instance, the
highlighted green area in Fig. 6 indicates a time window with length
10 s of an arbitrary signal denoted here with z, which has a hypo-
thetical maximum value zmax of 1.8 (orange, dashed line). At around
67 s the signal content between 57 and 67 s, denoted with s1, is
translated into a feature vector. To create the training examples the
time window will be moved from either the final logged data point to
the first data point, or if the complete signal contains an upset, i.e.,
g�θ� > g	 (in this example, g�θ� � z > zmax), the segmentation
starts where the first upset occurs minus a shift ΔTr as depicted in
Fig. 6. The additional shift is required; otherwise, the predictor might
fail to forecast an upset before its occurrence. The signal segmenta-
tion contains overlaps between the segments; hence the first time

Fig. 6 Training example with reaction time definition for a hypothetical
signal.
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window is only shifted by ΔTs and not by the window length. Note
that only the first segment in Fig. 6 would be labeled as an upset, i.e.,
y � −1; the following segments starting with s2 belong all to the
nonupset class and are labeled with y � 1. Note that the time shifts
are hyperparameters that need to be tuned to improve the classifier
performance.
If a binary classifier is trained based on the generated data, the

prediction accuracy can be improved by balancing the training data
set. Although the SS algorithm will systematically generate upset
conditions, the segmentation of the logged signals within a pumping
cycle will always lead to more nonupset than upset conditions and
hence to an extremely imbalanced data set. In fact, most of the
simulated pumping cycles will not contain a single upset. One
approach, which belongs to the data-level methods of learning from
imbalanced data (see [20]), suggests to use a similar amount of
samples from both classes. In this case randomly chosen nonupset
samples are removed from the training data set (undersampling). This
has the disadvantage that samples are thrown away. Another more
sophisticated approach is to synthetically create more samples of the
minority class. This can be achieved using the so-called Synthetic
Minority Over-sampling Technique (SMOTE) algorithm (see [21]).
The algorithm randomly picks a sample from the minority class,
determines its k-nearest neighbors, picks one of the k neighbors at
random, and interpolates again randomly between the two samples to
synthesize a new minority class sample. Because the variances vary
strongly between the different features the k-nearest neighbors are
determined based on theMahalanobis distance, which normalizes the
Euclidean distance between two samples using the sample covariance
matrix of the training set. This process is repeated until a specified
amount ofminority class samples has been created.Note that SMOTE
can also be applied to the uncertainty vector θ. In that case the
synthesized input vectors can be tested by simulation if they indeed
lead to an upset and hence belong to the minority class. If a syn-
thesized input vector is not leading to an upset, it is discarded. This is
an advantage over the approach where SMOTE is used to synthesize
new feature vectors. In this case it is not guaranteedwith certainty that
a new feature vector indeed belongs to the upset class. A drawback of
applying SMOTE to the input vectors is that it requires significantly
more time to create more samples of the minority class because every
synthesized sample requires an additional simulation run. In thiswork
SMOTE is applied directly to the feature space to save training time.
Based on the balanced training set a greedy forward feature

selection algorithm as described in [22] is proposed to identify the
most relevant features. The relevance of a feature is determined using
10-fold cross-validation, and as a metric the average Matthews
correlation coefficient (MCC) is used to measure classification per-
formance. The MCC is defined as

MCC � nTP ⋅ nTN − nFP ⋅ nFN������������������������������������������������������������������������������������������������������nTP � nFP��nTP � nFN��nTN � nFP��nTN � nFN�
p

(18)

wherenTP,nTN,nFP, andnFN denote the number of true positives, true
negatives, false positives, and false negatives, respectively. TheMCC
is the preferred performance measure in binary classification prob-
lems because it condenses information of all four quadrants of the
confusion matrix in one single number. This is not the case if other
measures are used such as accuracy or F1 score, which is discussed in
detail in [23]. Ultimately, each continuous time-series segment is

condensed in an Rm-dimensional vector ~ϕf;i, and the predictor is

optimized based on the relationship

0
BBBB@

~ϕf;1

~ϕf;2

..

.

~ϕf;n�p

1
CCCCA →

0
BBBB@

y1
y2
..
.

yn�p

1
CCCCA (19)

where yi ∈ f−1; 1g. Note that the “tilde” operator indicates the
reduced feature vector, n indicates the amount of samples generated

by the SS algorithm, and p is the amount of additionally synthesized
samples using SMOTE. In this work the SVM is trained using the
MATLAB Statistics and Machine Learning Toolbox [24].
In the previous paragraphs two prediction strategies are presented:

on the one hand, a simple threshold-based predictor and, on the other
hand, a time-series classification prediction strategy. One open ques-
tion to be answered is how the performance of the predictionmethods
can be compared with each other in the context of upset condition
prediction for an AWE system. Besides the classical metrics such as
accuracy, F1 score, or MCC, it is beneficial to associate weights to
false positives and false negatives that reflect the practical impact on
the system performance. Because in practice false positives and false
negatives have in general a different impact, ranking predictors
simply based on their prediction accuracy is not a recommended
approach. In the context of AWE a solution is to weight both terms
proportionally to the resulting economic loss. In case of a false
positive this loss equals the energy loss due to the triggered emer-
gency maneuver EFP � Eem. The loss stemming from a false-neg-
ativeEFN is more difficult to estimate because it requires a cost model
that is able to predict the energy loss due to system downtime, repair
costs, and material costs in case the upset damaged the system. To
combine the impact of false negatives and false positives in a single
number, an economic loss rate is introduced, which is defined as the
weighted linear combination:

L � w1EFP � w2EFN (20)

where Eem and EFN are the associated energy losses in kWh due to
false predictions. In this work, the weights w1 and w2 are derived
based on the probabilities of false predictions. Mathematically, the
occurrence of either an FP or an FN is modeled as a Poisson process.
The Poisson process that models the arrivals of FPs runs until the first
arrival time within the Poisson process that models the arrival of an
FN. The expected value of the arrival time of an FN allows then to
estimate the amount of FPs until that point in time and hence the
resulting energy loss. The rate for the process that models the
occurrence of an FN is given by

λFN � Pr�ŷ � 1; y � −1�
� Pr�ŷ � 1jy � −1�Pr�y � −1�
� nFN

nFN � nTP
pf (21)

The conditional probability is simply given by the false-positive rate
of the prediction strategy, the probability that y � −1 is the upset
condition probability, which is independent of the prediction
approach. Estimating the conditional probability is done by resimu-
lating upset conditions for each of the different predictors using the
results from the SS run in step A. Note that it is paramount here to use
a different SS run from the one used to train the predictor. With the
estimated FN rate the number of pumping cycles until the first
expected FN occurs is then given by

npc �
1

λFN
(22)

The expected number of FP up to the first FN is given by the expected
value of the corresponding Poisson process defined by

nFP � λFPnpc

� Pr�ŷ � −1; y � 1�npc (23)

With the SVM-based predictor the probability of encountering a
false-positive per pumping cycle can be estimated by counting falsely
predicted upsets in a separate Monte Carlo simulation run. With a
fixed threshold predictor this probability can be directly calculated
using Eq. (24).

Pr�ŷ � −1; y � 1� � 1 − F �g�θ��q	� − pf (24)
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where q	 represents the chosen threshold value and F �g�θ� is the

cumulative distribution function of the maximum values of g�θ�,
which are calculated for each simulation run. Note that the threshold

value represents a quantile of the distribution of �g�θ�, and hence the
false-positive probability is the corresponding area under the PDF

right from the threshold minus the upset probability.
If an FN occurs, the system will not be operational for a specific

amount of time ΔTnop. It reflects the required time to conduct a

possible emergency landing, maintenance, and relaunching. This

mainly leads to a power loss in terms of missed pumping cycles.

Assuming an average pumping cycle time of tpc, the number of

missed pumping cycles is

nmpc �
ΔTnop

tpc
(25)

The expected energy loss per pumping cycle due to predictions errors

is eventually given by

L � w1EFP � w2EFN

� 1

npc � nmpc

�nFPPemtpc � nmpcPpctpc � Emisc� (26)

This expression can be normalized by the average energy Epc �
Ppctpc converted in one pumping cycle, which yields

L

Epc

� 1

npc � nmpc

�
nFP

Pem

Ppc

� nmpc �
Emisc

Epc

�
(27)

Emisc combines all additional losses involved with an FN such as

replacement costs of damaged parts. Equation (27) allows to rank

different predictors with respect to their expected energy loss relative

to the average converted energy in one pumping cycle. This metric is

better suited to assess prediction performance because it associates

weights to false positives and negatives that have a practical meaning.

This is not the case if standard metrics for prediction performance are

used. Note that, at this stage, only guesses about the average down-

time ΔTnop as well as the additional involved costs, summarized in

Emisc, can be made. Furthermore, due to the lack of a comprehensive

costmodel forAWEsystems, Eq. (27) is only an approximation of the

monetary loss that might be encountered in reality. In the future, and

as soon as more data become available, a more accurate cost model

should replace the simple model defined in Eq. (27).
Moreover, note that the features used by the SVM-based predictor

are selected with respect to the achieved MCC. One could also

directly choose Eq. (27) to rank the performance of feature combi-

nations.However, this requires to rank the features as a function of the

parameter values in the loss function for which only rough estima-

tions are available at the moment. For this reason the MCC is used to

optimize the SVM, and Eq. (27) is only used to compare different

prediction strategies after the design phase. Based on these results the

best predictor can be chosen and deployed on the real system.

C. Upset Condition Avoidance

In step C of the framework the avoidance maneuver is defined.

Because of the possibility of false positives it is desirable that the

impact of the maneuver on the pumping cycle operation is mini-

mized. One generic approach for upset avoidance during the pump-

ing cycle is to abort the current traction or retraction phase and use the

onboard propulsion system to either land the aircraft or to go into a

loiter mode from which the normal operation can again be initiated.

Both approaches, however, reduce the average power output of the

system significantly. Amore efficient upset avoidance strategy needs

to be tailored to the upset condition itself, which is demonstrated in

the next section for the case of tether rupture.

IV. Application of the Framework to Generate, Predict,
and Avoid Tether Rupture

A. Setup

In this section the three steps, A, B, and C, of the framework are
applied to the case of tether rupture, which is an important upset
condition in the field of AWE. Because of the complex interaction
between ground station and flight control system, wind, tether, as
well as the aircraft dynamics, it is basically impossible to analytically
derive conditions that lead to this critical event. Furthermore, assum-
ing that a reliable control system is implemented tether rupture has a
low probability of occurrence, which makes it a suitable example to
demonstrate the methodology proposed in this work. Additionally,
because this event has a high relevance for the AWE community, the
cause for tether rupture based on the obtained results is investigated in
depths.
In step A the SS algorithm is used to generate systematically

conditions that drive the tether force peak within a pumping cycle
beyond its maximum allowable value. The limit function is in this
case given by

g�θ� � Ft (28)

In the present example the stochastic excitation is limited to the
uncertainties in the wind conditions. It is arguably also the highest
uncertainty that makes AWE systems difficult to control. Of course,
the framework can be easily extended in order to include model
parameter uncertainties, sensor noise, or hardware failures as well,
but this is left for futurework. Thewind conditions in the simulations
are generated using the Dryden turbulence model that has as input
standard Gaussian-distributed random variables θk that are filtered to
recover the Dryden turbulence spectrum. In total d � Tsimfs random
variables are sampled per run, where Tsim is the simulation run time
and fs the sampling frequency,which is set to 10Hz. Further possible
variations in the wind field such as discrete gusts or changes in the
wind speed profile and the mean wind direction are not considered in
this work and are also left for future research. In general, upset
conditions for a complete pumping cycle, or even several pumping
cycles in a row can be generated with the proposed framework.
However, because the dimension of the joint probability density
function from which the wind condition is sampled grows linearly
with simulation time, all the results are generated for only one
pumping cycle per sample. For this specific example the SS algorithm

created 4221 tether ruptures, and around 7.1 ⋅ 105 segments without
tether rupture are extracted. The results are created with one SS run

that included in total 3 ⋅ 104 pumping cycle simulations. The selected
time window size for one segment is 5 s and the reaction time shift
ΔTr is set to 0.2 s.
In step B reasonable state and output variables are selected to

predict the upset, and the predictor is designed based on the results of
step A. In this example, only signals that are available at the aircraft
are considered in order to avoid communication delays between the
ground station and the aircraft. Concretely, the following signals are
chosen: 1) wind speed components vw;x;W , vw;y;W , and vw;z;W ; 2) air-
craft acceleration in radial direction az;τ; 3) tether forceFt; 4) angle of

attack α; and 5) path following error ep.
Following Sec. III.B, each signal is discretized into smaller over-

lapping time windows, and statistical properties in the time and
frequency domain are calculated. The used features that are calcu-
lated for each of the signals in the time domain aremean,median, root
mean square (rms) value, variance, maximum, minimum, maximum
peak-to-peak ratio, skewness, kurtosis, crest factor, median absolute
deviation, range of the cumulative sum, the time-reversal asymmetry
statistic given by Eq. (29), and the maximum signal slope. The time-
reversal asymmetry statistic is defined by [22]

p � E��s�t� − s�t − τ��3�
�E��s�t� − s�t − τ��2���3∕2� (29)

where different values for τ are considered. In the frequency domain
the following characteristics are calculated: median and maximum
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amplitude, and additionally the maximum amplitude above 1 Hz
using a fast Fourier transform. Note that this set of features is created
heuristically. The individual features are chosen because they are
computationally cheap to evaluate and easy to comprehend or
because they turned out to be useful features in other applications
(e.g., the time-reversal statistic in [22]). It will be shown later in the
paper that an optimized subset, which is derived from the initial
feature pool, leads to an acceptable prediction performance. Note
that it is always possible to add more features to the initial feature
pool, for instance, if the initial prediction performance is poor.
However, the larger the initial feature pool, the longer it takes to
optimize the smaller subset. Therefore, it is recommended to only
gradually increase the size of the feature pool and always check if an
acceptable classification performance can be achieved before new
features are added.
To balance the data set additional feature vectors are created using

the SMOTE algorithm and afterward the feature selection algorithm
is applied to reduce the dimension of the original feature space. With
SMOTE around 6 ⋅ 105 feature vectors are synthesized from the 4221
original samples created by the SS algorithm in step A. Note that in
contrast to the original feature vectors it cannot be guaranteed that the
synthesized feature vectors indeed belong to the set of feature vectors
that lead to tether rupture.One reason is that the set corresponding to a
tether rupture is not necessarily convex. Hence, an interpolated
feature vector can also end up outside the nonconvex set. The
optimized subset of features is displayed in Table 4 (ordered accord-
ing to significance). Note that theMCCvalue in the second column is
the cumulativeMCC value. In Fig. 7 the convergence of the selection
process is displayed. Convergence is defined as the point where the
relative change in theMCC after adding a feature to the list is smaller

than 10−4. This convergence criterion is also proposed in [22]. With
the optimized feature list the SVMpredictor is trained as explained in
Sec. III.B. Additionally, fixed thresholds are selected based on the
estimated distribution of the tether force peaks using the results of
the first stage of the SS run (direct Monte Carlo run). In this case the
thresholds are selected with respect to the tether force set point in the
traction phase. Concretely, the thresholds Ft;set � 8%, Ft;set � 10%,

Ft;set � 12%, Ft;set � 14%, and Ft;set � 16% are considered, which

are all larger than the 0.99-quantile of the tether force peak distribu-

tion, which corresponds to Ft;set � 7%. The set point Ft;set itself is

chosen to be −20% of the maximum allowable tether tension, which

is set to 2 kN.
In step C of the framework the avoidancemaneuver is designed. In

case of a predicted tether rupture the contingency maneuver must

reduce the current tension in the tether as quickly as possible. It turns

out that with the underlying control system this can be achieved with

a set point change for the tether force. On the one hand, the tension in

the tether is tracked by the winch controller via the reeling out/in

speed and, on the other hand, by the flight path controller through the

angle of attack and bank angle. Therefore, changing the set point for

the tether force leads to an adaptation of the winch reeling speed but

also of the angle-of-attack and bank angle commands αset and μa;set,
respectively. As derived in [6] both attitude commands are deter-

mined by inverting the flight path dynamics, which yields

fy;m � maνχk cos γkvk − ft;y;K

fz;m � maνγkvk � cos γkmag� ft;z;K (30)

μa;set ≈ μk;set � arctan

�
fy;m
fz;m

�

CL;set�α� �
������������������������
f2y;m � f2z;m

q
0.5ρv2aSw

αset � C−1
L;set� : : : � (31)

where the tether force set point components ft;y;K and ft;z;K are

obtained by

0
@ ft;x;K
ft;y;K
ft;z;K

1
A � −MKO�χk; γk�

�pG�O
k�pG�Ok2

Ft;set (32)

�pG�O is the position of the aircraft in the north-east-down frame O

and MKO�χk; γk� transforms a vector from the O frame into the

kinematic frame K (see [6]). Essentially, Eqs. (30–32) calculate the

angle-of-attack and bank angle commands based on the desired path

curvature represented by the pseudocontrol inputs νχk and νγk as well
as the tether force set point Ft;set. Note that for consistency the

kinematic bank angle should in general be converted into the aero-

dynamic bank angle (banking around the aerodynamic instead of the

kinematic velocity vector), but the effect is negligible here, which

leads to the approximation μa;set ≈ μk;set. The angle-of-attack com-

mand reflects the required lift magnitude, which is estimated by the

required forces fy;m, fz;m and involves the inversion of the lift

coefficient as shown in Eq. (31). Furthermore, χk is the aircraft course
angle, γk is the flight path angle, g denotes gravity, va is the airspeed,
ρ is the air density, and Sw is the wing reference area. Note that, in

order to track the tether force, the angle-of-attack and bank angle

commands are calculated using the tether force set pointFt;set and not

the measured tether force currently acting on the aircraft. During

nominal operation this allows to effectively keep the tether under the

desired tension. As soon as an upset is predicted this set point will be

reduced to a low value (Ft;set � 10 N). As a result the aircraft will

correct the current bank and angle-of-attack commands accordingly.

This allows to reliably reduce the tension in the tether quickly even if

the winch is currently saturating, which is discussed in the next

section. As soon as the tether force drops below a second threshold

value, i.e., Ft ≤ c ⋅ 10 N, with, for instance, c � 1.2 and the predic-
tor output switches from ŷ � −1 (upset) back to ŷ � 1 (no upset) the
force set point is increased again to the original traction phase set

point. The set point change is shaped smoothly using a first-order

filter.

Table 4 Ordered feature list

Feature MCC

Crest factor Ft 9.60

Time-reversal asymmetry statistic for the path
tracking error ep Eq. (29) with τ � 1 s

9.83

Maximum Ft slope 9.92

Mean of Ft 9.935

Maximum amplitude above 1 Hz of α 9.951

Median amplitude of Ft 9.957

Minimum α 9.959

Variance az;τ 9.965

Variance of Ft 9.965

Fig. 7 Maximization of MCC using greedy feature selection.

RAPPAND SCHMEHL 259

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Fe

br
ua

ry
 2

3,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

51
89

 



B. Results

The introduced control system modification in Sec. II has an
important impact on the overall probability of tether rupture and on
the power output, which is why it is also included in this paper.
Concretely, the choice of the bandwidthω0;r that defines howquickly
the path is rotated from higher to lower elevation angles during the
transition from retraction to traction phase allows to trade off robust-
ness against performance. In Fig. 8 the results of three independent
SSs are presented with three different choices forω0;r. As a reference

ω0;r � 0.05 is chosen, which leads to an approximate tether rupture

probability during a pumping cycle of pf ≈ 2 ⋅ 10−7. Increasing the

reference value by a factor of 1.5 and 2 increases the power output by
28 and 33% but also leads to a significant increase of the tether

rupture probability by a factor of approximately 1.9 ⋅ 103 and

1.3 ⋅ 104, respectively. Because there is no external standard that
defines the allowable tether rupture probability, the conservative
value of ω0;r � 0.05 is chosen to generate the subsequent results.

The corresponding low probability also justifies the use of SS to
generate this type of upset condition in the first place, whereas the
other two controller settings defined by 1.5ω0;r and 2ω0;r lead to

tether rupture probabilities thatmight be analyzedwith simpleMonte
Carlo simulations. Given a desired level of reliability, ω0;r can be

adapted in the future accordingly.
The performance of the different prediction strategies (SVM and

thresholds) is tested on a separately generated data set that is not used
to construct the predictors. The test data set is generated in the same
manner as the training data set using the SS algorithm. In the first part
of this section the effectiveness of the avoidance maneuver is ana-
lyzed. Subsequently, the prediction and prevention performance
among the different predictors is assessed using Eq. (27).
The effectiveness of the prediction and avoidance strategy is

demonstrated and explained in detail using the results of one sample
of the test set that contains a tether rupture. To that end, the same
simulation is carried out twice once with prediction and avoidance
method and oncewithout. To limit the scope of the result section, only
the results using the SVM prediction strategy are displayed and
analyzed. The resulting flight path of both scenarios is displayed in
Fig. 9, and the corresponding projection in the xWyW plane is
depicted in Fig. 10. The blue path shows one complete pumping
cycle where the tether rupture is prevented using the proposed
avoidance maneuver. It can be observed that the system is able to
continue its operation and the avoidance maneuver has no visible
impact on the path following performance. The green cross indicates
the point where the tether breaks, and as a result, in the scenario
without avoidance strategy, the aircraft is ejected from the reference
flight path and is no longer able to continue the pumping cycle. The
evolutionof the tether force in both scenarios is depicted inFig. 11.At
around 69 s the avoidance maneuver is triggered, which leads to a
significant tether tension reduction as indicated by the blue solid line.
In contrast to that, without the avoidancemaneuver the tether tension
continues to oscillate and at around 70.5 s the tether breaks.
The control system performance during the avoidancemaneuver is

analyzed more in detail using the evolution of the aerodynamic bank

angle and the angle of attack. In Fig. 12 the impact of the tether
tension set point change is clearly visible in the evolution of the bank

angle set point μa;set (blue, solid line). At around 69 s the set point
drops to around −30°. Because the controller uses a dynamic inver-
sion-based control strategy the set point is filtered (orange, dashed

line) and the actual bank angle is controlled such that it follows
the corresponding reference model (green, dotted line). A similar

Fig. 8 Relative gain in pumping cycle power over tether rupture prob-
ability as a function of multiples of the path rotation constant ω0;r.

Fig. 9 Three-dimensional flight paths with and without avoidance

strategy.

Fig. 10 Projected flight paths with and without avoidance strategy.

Fig. 11 Evolution of the tether tension with and without prediction and
avoidance strategy.
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behavior results for the angle of attack αset, (see Fig. 13). Also in this
case the tether tension set point change leads to a drop in the angle-of-

attack set point. The actual angle of attack follows the corresponding
reference model with an overshoot of approximately 2.3°.
The adaption of the bank angle and the angle of attack leads to an

adaption of the aircraft attitude with respect to the tangential plane.

Therefore, besides the change in lift magnitude through the adaption
of the angle of attack also the rotation of the lift force leads to a tether

force reduction. If the aircraft is flying in the tangential plane most of

the lift force is pointing in the radial direction. Increasing the attitude
angles (absolute value) with respect to the tangential plane by a

simultaneous roll and pitch maneuver can reduce the tension in the

tether because the component of the lift vector perpendicular to the
tether direction increases. This behavior can be observed in Figs. 14

and 15. Both plots demonstrate that due to the tether force set point

change the aircraft is indeed rotated into the tangential plane (blue,
solid line). The roll angle Φτ is reduced from a nearly horizontal

attitude (with respect to the tangential plane) to −50°, and the pitch

angleΘτ is reduced from around−5° to−25°.Without the avoidance
maneuver (orange, dashed line) the roll angle stays nearly constant

and the pitch angle starts to oscillate and to increase. The green dotted

line indicates the point where the tether breaks. For the case with
tether rupture avoidance the resulting trajectory is again displayed

in Fig. 16. The blue line represents the flight path of one pumping

cycle, of which only the part around the prevented tether rupture is
displayed in Fig. 17. The tether is shown as a solid gray line

connecting the aircraft with the ground station. Additionally, a simple

aircraft visualization (colored rectangle) is added to the figure, which
represents the orientation of the aircraft wing. The aircraft visualiza-

tion color changes from green to orange as soon as the avoidance

maneuver is triggered. The resulting attitude change is visible in the

beginning of the maneuver where the aircraft rolls negatively, with

respect to the body-fixed frame x axis, into the tangential plane. The
color changes back to green as soon as the avoidance maneuver is

finished. In this case the end of the avoidance maneuver is defined as

the first time the tether force set point reaches again 90% of the

original traction phase tether tension set point. Avisible drawback of

the avoidance maneuver is that the aircraft flies about a quarter of the

figure of eight at low tether tension, which results in a power loss.

Hence, the amount of falsely predicted upsets (i.e., false positives)

needs to be traded off against the power loss associated with a tether

rupture. On the other hand, a visible deviation from the flight path

Fig. 12 Evolution of the aerodynamic bank angle. Set point μa;set,
reference μa;ref, and achieved bank angle μa.

Fig. 15 Pitch angle with and without avoidance maneuver.

Fig. 16 Flight path of entire pumping cycle (blue) with the same aircraft
attitude visualization as in Fig. 17.

Fig. 13 Evolution of the angle of attack with set point αset, reference
filter state αref, and achieved angle of attack α.

Fig. 14 Roll angle with and without avoidance maneuver.
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cannot be observed, and the aircraft continues the traction phase

without interruption, which is an advantage over strategies that need

to abort the current operational mode in order to prevent tether

rupture.
The actual reason for the tether break can be found by looking at

the evolution of the tether, or winch, acceleration measured on the

ground. In Fig. 18 the winch acceleration for the scenario without

avoidance maneuver is displayed. The dashed orange line indicates

the point where the tether breaks. Before the tether breaks the winch

acceleration saturates at around 68 s and starts to jump between the

maximum and the minimum acceleration limit with increasing fre-

quency until the maximum supported tension is exceeded and the

tether breaks. In contrast, Fig. 19 shows thewinch acceleration for the

scenario with avoidance maneuver. In this case, the oscillation is
prevented and instead the winch stays in the upper saturation limit,
leading to a fast reeling out of the tether. The start of the avoidance
maneuver is indicated by the dashed green line. The corresponding
winch speed for the flight with tether rupture is displayed in Fig. 20. It
can be observed that the winch speed itself is not saturating but also
starts to oscillate due to the saturated acceleration. In contrast, with
the avoidance maneuver the reeling out speed continues to increase
after a small kink at the prediction point (see Fig. 21) and tether
rupture is prevented. As soon as the avoidance maneuver is com-
pleted the winch starts reeling out slower according to the increasing
tether force set point at around 70.2 s (see Fig. 11).
For completeness the mean wind speed at the aircraft around the

point in time at which the tether ruptures is displayed in Fig. 22 and
the wind speed evolution of the flight with triggered avoidance
maneuver in the same time window is displayed in Fig. 23. The
evolution of the wind speed before the avoidance maneuver is
triggered or before the tether ruptures does not show any visible
changes compared with wind speed after the avoidance maneuver
and after tether rupture. This indicates that the tether rupture is not
caused by an easy to comprehend change in thewind conditions at the
aircraft but rather is a result of the complex interaction between
aircraft and winch dynamics, as well as the control system and the
wind conditions. This is consistent with the results displayed in
Table 4, where the wind speed is not among the selected features.
In the previous paragraph the winch acceleration limits are iden-

tified as one cause for the tether rupture. However, a second factor
represented by a specific airspeed and angle-of-attack combination
can be identified. This can be shown by analyzing the distribution of
airspeed and angle-of-attack pairs for simulation runs with and with-
out tether rupture. Note that for the upset case the values at the upset
are taken, and for the nominal flight the values are picked at randomly

Fig. 19 Evolution of the winch acceleration with tether rupture
avoidance.

Fig. 20 Evolution of the winch speed without tether rupture avoidance.

Fig. 21 Evolution of the winch speed with tether rupture avoidance.

Fig. 17 Flight path (blue) with aircraft attitude visualization. Green
indicates the pre- and postavoidance maneuver state; orange indicates
the avoidance maneuver state.

Fig. 18 Evolution of the winch acceleration without tether rupture
avoidance.
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chosen positions on the flight path. The results are displayed in
Figs. 24 and 25. In total 22,200 simulations without tether rupture
and 5749 simulations with tether rupture from three different SS runs
are used to approximate the distributions. The red solid line in both
figures represents the same optimized separation boundary. The
distributions itself are plotted in two different figures for visualization
purposes. It can be observed that most of the samples above the
boundary are simulation runs where the tether ruptured, whereas
most of the simulation runs below the boundary are flight without
tether rupture. The color gradient represents the conditional proba-
bility of a specific airspeed and angle-of-attack combination given a

tether rupture or given no tether rupture. The results show that a
perfect separation between the two distributions is not possible. This
is, however, to be expected because using only airspeed and angle of
attack to distinguish tether rupture conditions from nominal flights
reduces the dimension of the problem significantly. However, except
some minor overlap in the tails the two modes of the distributions are
indeed distinguishable (brighter color). Furthermore, above an air-
speed of 37 m ⋅ s−1 there is a high chance that a sample belongs to the
upset class independently of the angle-of-attack value. Similarly,

below 30 m ⋅ s−1 and independent of the angle of attack no tether
rupture will occur with a high probability. This result suggests an
additional strategy to avoid tether rupture by limiting the angle-of-
attack set point as a function of airspeed according to the plotted
linear decision boundary. However, this is not investigated in this
work further and is left for future research.
In the following the performance of different predictors will be

investigated with respect to classical performance metrics as well as
the introduced economic loss rate given by Eq. (27). In total, five
different threshold-based predictors and one SVM-based predictor
are compared with each other. The results are visualized in Fig. 26,
where the conditional probabilities of not detecting and preventing an
occurring tether rupture is plotted over the probability of a false
positive. The blue, solid line with circular markers connects the
performance pairs of the five threshold strategies. The performance
of the SVM predictor is represented by the orange asterisk. The
numerical values are listed in Table 5. The false-negative rates are
estimated based on 764 flights with tether rupture and the false-
positive probability is estimated based on 20,803 samples without
tether rupture. For the fixed thresholds the probability of an FP is
negatively correlatedwith the probability of a not correctly identified/
prevented tether rupture, as expected. The closer the threshold value
is selected to the critical value, the more likely it is that the tether
rupture cannot be prevented due to the inertia of the system. In

Fig. 24 Distribution of airspeed va and angle of attackαa pairs at tether
rupture.

Fig. 25 Distribution of airspeed va and angle of attack αa pairs at
randomly selected times during traction phases without tether rupture.

Fig. 26 Conditional probability of not preventing tether rupture given a
tether rupture for different prediction thresholds and the SVMpredictor.

Fig. 22 Evolution of wind speed in mean wind direction without avoid-
ance maneuver.

Fig. 23 Evolution of wind speed in mean wind direction with avoidance
maneuver.
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contrast to that, the more conservative the threshold is chosen, i.e.,
closer to the set point, the more likely it is to prevent a tether rupture
but at the cost of an increasing false positive rate. Based on the
numerical values and also based on Fig. 26 it is difficult to decide
which is the best prediction strategy. The SVM achieves the best
performance with respect to false positives together with the highest
threshold, which, however, has an almost 10 times higher probability
of not avoiding a tether rupture. Between the thresholdsFt;set � 14%
and Ft;set � 12% the largest threshold value can be found that out-

performs the SVM in terms of the false-negative rate. However, this
predictor and predictors below this threshold lead to higher false-
positive rates. Therefore, selecting the right prediction strategy solely
based on these results is difficult because no reasonable acceptable
FPandFN rate can be defined a priori and bothmetrics are not equally
important from a practical point of view.
The energy loss rate defined in Eq. (27) tries to solve the afore-

mentioned issue by assigning weights to the FP and FN rate propor-
tionally to the associated performance loss. Because no reasonable
estimation of the term Emisc can be made at this stage of the research,
Emisc is set to zero in the following analysis. Note that in this case a
false negative impacts the performance loss only through the power
loss due to the number of missed pumping cycles during the down-
time of the system. The expected downtime after a tether rupture is
not available either, but a reasonable range of values can be defined
and the losses can be plotted over the selected range. All other
parameter values can be estimated using sample averages from the
Monte Carlo simulations. The numerical values are listed in Table 6.
In Fig. 27 the performance loss rateL per average converted energy

per pumping cycleEpc is displayed as a function of system downtime

using Eq. (27). The results show that without prevention strategy
(dashed line) the relative performance loss grows quickly with
increasing system downtime even for the estimated low probability
of tether rupture. For the thresholdsFt;set � 8% andFt;set � 10% the

loss rate remains constant because their false-negative rate is zero,
and hence the downtime has no impact on the loss. The other thresh-
olds and the SVM predictor loss rates remain nearly constant as well
due to the overall small probability of false negatives among the
predictors. The SVM leads to the lowest loss rate among the pre-
dictors in the considered time window.

C. Discussion Model Validity and Future Work

The presented framework uses models of the AWE system as well
as the wind to create, predict, and prevent upset conditions. The
accuracy of the models is critical in order to be able to project the
results to reality. The aircraft model has beenvalidated to some extent
as described in [11,12], but especially for quick changes in the wind
conditions the aerodynamic model is probably too aggressive
because changes in the local flow immediately change the resulting
lift force. It is expected that with a more realistic aerodynamic model
an additional time delay between changes in the local flowfield
around the aircraft and the resulting change of the tether force is
present, which might alter the presented results in the previous
section. The present model can hence be regarded as conservative,
and it is expected that the prediction accuracy can be further improved
with a more realistic model. Testing the framework with a more
realistic aircraft model is therefore regarded as the main suggestion
for future work. This will also allow to investigate further upset
conditions related to the structural and aerodynamic integrity of the
aircraft. For instance, wind conditions that lead to critical wing
bending or severe vibrations can be generated using the SS algorithm
and a data-driven predictor such as the SVM predictor can be used to
trigger a load and/or vibration alleviation strategy if necessary.
Finally, it needs to be emphasized that the presented results are
strongly dependent on the specific controller. To investigate how
well the results generalize it is recommended to apply the presented
methodology to a different closed-loop system model in the future.
Moreover, additional data-driven methods for the predictor can be
tested to further decrease both false-positive and false-negative rates
and hence the economic loss. Finally, if more information about the
terms in Eq. (27) is available, the SVM should be optimized with
respect to the loss and not the MCC.

V. Conclusions

The contribution of the present work consists of two major parts.
First, a modification to an existing pumping cycle control system is
presented. It improves the transition from retraction to traction phase
on the guidance level by a controlled rotation of the figure-of-eight
flight path from high to low elevation angles. Second, a framework to
generate, predict, and prevent upset conditions that jeopardize the
long-term reliability of AWE systems is presented. The feasibility of
the framework is demonstratedwith the example of tether rupture. The
presented results in the paper allow to draw the following conclusions.
First, the introduced control modification can reduce the tether

rupture probability significantly if a large time constant for the
transition phase is chosen. However, for increasing transition times
the aircraft flies longer at higher elevation angles,which decreases the
average pumping cycle power. Hence, the choice of the time constant
involves a tradeoff between robustness and average power output.
Second, a conservative implementation of the controlmodification

leads to a low tether rupture probability. This makes it impractical to
create knowledge about the conditions in which the tether breaks
using a direct Monte Carlo simulation approach. The SS algorithm
can achieve this task more efficiently. The samples generated by the
SS algorithm can be used to design and optimize a prediction model
that is able to detect tether rupture before it occurs. To trade off false-
positive and false-negative rates a cost function is introduced that is
better suited to rank predictor performances than conventional clas-
sification measures. It allows to associate an average energy loss rate
to each of the two prediction error types and henceweights prediction

Table 5 Upset detection performance

Method Pr �FP�, % Pr�ŷ � 1jy � −1�, %
Ft;set � 8% 0.48 0

Ft;set � 10% 0.13 0

Ft;set � 12% 0.04 0.26

Ft;set � 14% 0.01 1.44

Ft;set � 16% 0 7.20

SVM 0 0.79

Table 6 Average parameter values

Parameter Value Unit

Pem 0.4 kW

Ppc 3.9 kW

tpc 2.5 minutes

pf 2 × 10−7 — —

Fig. 27 Comparison of loss rates across different predictors.
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errors according to their practical impact. The SVM-based predictor
achieves the lowest loss in the investigated scenario, but more accu-
rate information about the involved parameters in the cost function
such as system downtime, repair costs, and maintenance costs is
required in the future to improve the validity of the loss rate function.
Third, the proposed upset avoidance maneuver can reliably pre-

vent tether rupture while keeping the system operational. The avoid-
ancemaneuver does not require to abort the current pumping cycle or
even land the aircraft, which lowers the impact of false positives on
the average power output.
Fourth, the analysis of the flights with tether rupture shows that the

upset is a result of the winch acceleration saturation as well as a
specific combination of airspeed and angle of attack during the
traction phase of the pumping cycle. No visible patterns in the wind
conditions could be identified, which leads to the conclusion that this
specific upset is due to the complex interaction between the dynamics
of the subsystems in addition to the atmospheric turbulence.
Finally, forwell-tuned control systems upset conditions occurwith

low probability, which poses the question if accepting upsets is better
than preventing them and therefore avoiding any prediction-error-
induced costs. However, the results in this work show that in the long
run also rare upset conditions can have an impact on the average
power output, and hence augmenting AWE baseline control systems
with an upset tailored prediction and prevention strategy, such as the
one presented in this work, is recommended.
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