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Abstract. Satellite observations can provide valuable infor-
mation for a better understanding of hydrological processes
and thus serve as valuable tools for model structure devel-
opment and improvement. While model calibration and eval-
uation have in recent years started to make increasing use
of spatial, mostly remotely sensed information, model struc-
tural development largely remains to rely on discharge ob-
servations at basin outlets only. Due to the ill-posed inverse
nature and the related equifinality issues in the modelling
process, this frequently results in poor representations of the
spatio-temporal heterogeneity of system-internal processes,
in particular for large river basins. The objective of this study
is thus to explore the value of remotely sensed, gridded data
to improve our understanding of the processes underlying
this heterogeneity and, as a consequence, their quantitative
representation in models through a stepwise adaptation of
model structures and parameters. For this purpose, a dis-
tributed, process-based hydrological model was developed
for the study region, the poorly gauged Luangwa River basin.
As a first step, this benchmark model was calibrated to dis-
charge data only and, in a post-calibration evaluation proce-
dure, tested for its ability to simultaneously reproduce (1) the
basin-average temporal dynamics of remotely sensed evapo-
ration and total water storage anomalies and (2) their tem-
porally averaged spatial patterns. This allowed for the diag-
nosis of model structural deficiencies in reproducing these
temporal dynamics and spatial patterns. Subsequently, the
model structure was adapted in a stepwise procedure, testing
five additional alternative process hypotheses that could po-
tentially better describe the observed dynamics and pattern.
These included, on the one hand, the addition and testing of
alternative formulations of groundwater upwelling into wet-

lands as a function of the water storage and, on the other
hand, alternative spatial discretizations of the groundwater
reservoir. Similar to the benchmark, each alternative model
hypothesis was, in a next step, calibrated to discharge only
and tested against its ability to reproduce the observed spatio-
temporal pattern in evaporation and water storage anoma-
lies. In a final step, all models were re-calibrated to dis-
charge, evaporation and water storage anomalies simultane-
ously. The results indicated that (1) the benchmark model
(Model A) could reproduce the time series of observed dis-
charge, basin-average evaporation and total water storage
reasonably well. In contrast, it poorly represented time se-
ries of evaporation in wetland-dominated areas as well as
the spatial pattern of evaporation and total water storage.
(2) Stepwise adjustment of the model structure (Models B–
F) suggested that Model F, allowing for upwelling ground-
water from a distributed representation of the groundwater
reservoir and (3) simultaneously calibrating the model with
respect to multiple variables, i.e. discharge, evaporation and
total water storage anomalies, provided the best represen-
tation of all these variables with respect to their temporal
dynamics and spatial patterns, except for the basin-average
temporal dynamics in the total water storage anomalies. It
was shown that satellite-based evaporation and total water
storage anomaly data are not only valuable for multi-criteria
calibration, but can also play an important role in improving
our understanding of hydrological processes through the di-
agnosis of model deficiencies and stepwise model structural
improvement.
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1 Introduction

Traditionally, discharge observations at basin outlets are used
for hydrological model development and calibration, which
can be a robust strategy in small watersheds with relatively
uniform characteristics such as topography and land cover
but not for larger, heterogeneous basins (Blöschl and Siva-
palan, 1995; Daggupati et al., 2015). As a result, temporal
dynamics of discharge may be well reproduced. This, how-
ever, does not ensure that the spatial patterns and temporal
dynamics of model internal storage and flux variables pro-
vide a meaningful representation of their real pattern and dy-
namics (Beven, 2006b; Kirchner, 2006; Clark et al., 2008;
Gupta et al., 2008; Hrachowitz et al., 2014; Garavaglia et al.,
2017). Especially in large, poorly gauged basins, this tradi-
tional model calibration and testing method is likely to result
in a poor representation of spatial variability (Daggupati et
al., 2015) due to equifinality and the related boundary flux
problem (Beven, 2006b).

An increasing number of satellite-based observations have
become available over the last decade, giving us insight into
a wide range of hydrology-relevant variables, including pre-
cipitation, total water storage anomalies, evaporation, surface
soil moisture or river width (Xu et al., 2014; Jiang and Wang,
2019). These data are increasingly used as model forcing or
for parameter selection and model calibration (e.g. Li et al.,
2015; Mazzoleni et al., 2019; Tang et al., 2019).

Many studies used a single satellite product in the calibra-
tion procedure, some of them additionally using discharge
data, others not. For instance, hydrological models have been
calibrated with respect to evaporation (e.g. Immerzeel and
Droogers, 2008; Winsemius et al., 2008; Vervoort et al.,
2014; Bouaziz et al., 2018; Odusanya et al., 2019), water
storage anomalies from GRACE (Gravity Recovery and Cli-
mate Experiment; Werth et al., 2009), river width (Revilla-
Romero et al., 2015; Sun et al., 2018) or river altimetry (Geti-
rana, 2010; Michailovsky et al., 2013; Sun et al., 2015; Huls-
man et al., 2020).

Other studies simultaneously calibrated hydrological mod-
els with respect to multiple remotely sensed variables but
only exploiting basin-average time series, without considera-
tion for spatial patterns (e.g. Milzow et al., 2011; López et al.,
2017; Kittel et al., 2018; Nijzink et al., 2018). On the other
hand, some studies exclusively calibrated models to spatial
patterns of observed variables (Stisen et al., 2011; Koch et al.,
2016; Mendiguren et al., 2017; Demirel et al., 2018; Zink et
al., 2018). As most satellite-based observations such as evap-
oration are not measured directly but are themselves a result
of underlying models using satellite data as input (Xu et al.,
2014), more focus has been recently placed on calibration to
the relative spatial variability instead of using absolute mag-
nitudes (Stisen et al., 2011; van Dijk and Renzullo, 2011;
Dembélé et al., 2020).

To fully exploit the information content of satellite-based
observations, simultaneous model calibration on both tem-

poral dynamics and spatial patterns of multiple variables has
the potential to improve the representation of spatio-temporal
variability and, linked to that, their underlying model inter-
nal processes and therefore the model realism (Rientjes et
al., 2013; Rakovec et al., 2016; Herman et al., 2018). Strik-
ingly, only a few studies so far have used satellite-based ob-
servations to calibrate with respect to the temporal and spatial
variation simultaneously (Rajib et al., 2018; Dembélé et al.,
2020).

In general, most studies that have made use of remotely
sensed data for model applications have exclusively ad-
dressed the problem of parameter selection and thus model
calibration. However, as models are always abstract and sim-
plified representations of reality, every model structure needs
to be understood as a hypothesis to be tested (Clark et al.,
2011; Fenicia et al., 2011; Hrachowitz and Clark, 2017). Yet,
most studies on model structural improvement have so far
only relied on spatially aggregated variables (Fenicia et al.,
2008; Kavetski and Fenicia, 2011; Hrachowitz et al., 2014;
Nijzink et al., 2016), while spatial data remain rarely used
for that purpose (e.g. Fenicia et al., 2016; Roy et al., 2017).

The overall objective of this paper is therefore to explore
the simultaneous use of spatial patterns and temporal dy-
namics of satellite-based evaporation and total water storage
observations for a stepwise structural improvement and cal-
ibration of hydrological models for a large river system in
a semi-arid, data-scarce region. More specifically, we tested
the research hypotheses that (1) spatial patterns and tempo-
ral dynamics in satellite-based evaporation and water storage
anomaly data contain relevant information to diagnose and to
iteratively improve on model structural deficiencies and that
(2) these data, when simultaneously used with discharge data
for calibration, do contain sufficient information for a more
robust parameter selection.

2 Site description

The Luangwa River in Zambia is a large, mostly unregu-
lated tributary of the Zambezi with a length of about 770 km
(Fig. 1). This poorly gauged river basin has an area of
159 000 km2, which is mostly covered with deciduous for-
est, shrubs and savanna and where an elevation difference of
up to 1850 m can be found between the highlands and low-
lands along the river (The World Bank, 2010; Hulsman et
al., 2020). In this semi-arid basin, the mean annual evapora-
tion (1555 mm yr−1) exceeds the mean annual precipitation
(970 mm yr−1).

The Luangwa River flows into the Zambezi upstream of
the Cahora Bassa dam, which is used for hydropower pro-
duction and flood and drought protection. The operation of
this dam is very difficult since there is only limited informa-
tion available from the poorly gauged upstream tributaries
(SADC, 2008; Schleiss and Matos, 2016). As a result, the lo-
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Figure 1. Map of the Luangwa River basin in Zambia with (a) the elevation, groundwater reservoir units at 0.1◦ resolution and 1◦ grid
according to GRACE and (b) the main landscape types.

cal population has in the past suffered from severe floods and
droughts (ZAMCOM et al., 2015; Schumann et al., 2016).

2.1 Data availability

2.1.1 In situ discharge observations

Historical daily in situ discharge data were available from
the Zambian Water Resources Management Authority at the
Great East Road Bridge gauging station, located at 30◦13′ E
and 14◦58′ S (Fig. 1), for the time period 2004 to 2016, yet
containing considerable gaps, resulting in a temporal cover-
age of 31 %.

2.1.2 Spatially gridded observation

Spatially gridded data were used for a topography-based
landscape classification into hydrological response units
(HRUs; Savenije, 2010), as model forcing (precipitation and
temperature) and for parameter selection (evaporation and to-
tal water storage; see Table 1).

More specifically, topography was extracted from
GMTED with a spatial resolution of 0.002◦ (Danielson and
Gesch, 2011). Daily precipitation data were extracted from
CHIRPS (Climate Hazards Group InfraRed Precipitation
with Station) with a spatial resolution of 0.05◦. Monthly
temperature data extracted from CRU at a spatial resolution
of 1◦ were used to estimate the potential evaporation, apply-
ing the Hargreaves method (Hargreaves and Samani, 1985;
Hargreaves and Allen, 2003). These monthly observations
were interpolated to a daily timescale using daily averaged
in situ temperature measured at two locations with the
coordinates 28◦30′ E, 14◦24′ S and 32◦35′ E, 13◦33′ S. The
satellite-based total evaporation data were extracted from
WaPOR (Water Productivity Open-access portal; FAO,
2018) version 1.1 as it proved to perform well in African
river basins (Weerasinghe et al., 2020). This product was

available on 10 d temporal and 250 m spatial resolution.
Satellite-based observations on the total water storage
anomalies were extracted from the Gravity Recovery and
Climate Experiment (GRACE). With two identical GRACE
satellites, the variations in the Earth’s gravity field were mea-
sured to detect regional mass changes, which are dominated
by variations in the terrestrial water storage after having
accounted for atmospheric and oceanic effects (Landerer
and Swenson, 2012; Swenson, 2012). In this study, the
long-term bias between the discharge, evaporation (WaPOR)
and total water storage anomalies (GRACE) was corrected
by multiplying the evaporation by a correction factor of 1.08
to close the long-term water balance.

The gridded information provided for the precipitation,
temperature and evaporation was rescaled to the model res-
olution of 0.1◦. If the resolution of the satellite product was
higher than 0.1◦, then the mean of all cells located within
each model cell was used. Otherwise, each cell of the satellite
product was divided into multiple cells, such that the model
resolution was obtained, retaining the original value. In con-
trast, the modelled total water storage was rescaled to 1◦, the
resolution of the GRACE data set, by taking the mean.

3 Modelling approach

A previously developed and tested (Hulsman et al., 2020)
distributed, process-based hydrological model was imple-
mented for the Luangwa basin; see Sect. 3.1 for more in-
formation. This benchmark model (Model A) was calibrated
with respect to discharge for the time period 2002–2012 and
validated for the time period 2012–2016 with respect to dis-
charge, evaporation and total water storage anomalies. Then,
the model was calibrated with respect to all above variables,
hence discharge, evaporation and total water storage anoma-
lies simultaneously, for the time period 2002–2012 and val-

https://doi.org/10.5194/hess-25-957-2021 Hydrol. Earth Syst. Sci., 25, 957–982, 2021



960 P. Hulsman et al.: Learning from satellite observations: increased understanding of catchment processes

Table 1. Data used in this study.

Time Spatial Product Source
period resolution resolution name

Digital elevation map n/a n/a 0.002◦ GMTED Danielson and Gesch (2011)

Precipitation 2002–2016 Daily 0.05◦ CHIRPS Funk et al. (2014)

Temperature 2002–2016 Monthly 0.5◦ CRU University of East Anglia
Climatic Research Unit et al.
(2017)

Evaporation 2009–2016 10 d 0.00223◦ WaPOR FAO (2018), FAO and IHE
Delft (2019)

Total water storage 2002–2016 Monthly 1◦ GRACE Swenson and Wahr (2006),
Landerer and Swenson
(2012), Swenson (2012)

Discharge (Luangwa 2004–2016 Daily n/a n/a WARMA
Bridge gauging
station)

n/a stands for “not applicable”.

idated with respect to the same variables for the time pe-
riod 2012–2016. Model deficiencies were then diagnosed for
this benchmark model (Model A) based on the results of both
calibration strategies.

Next, model structure changes were applied creating Mod-
els B–D to improve the deficiencies found in Model A. These
changes concerned the groundwater upwelling into the unsat-
urated zone as explained in Sect. 4.2. The same calibration
and validation strategies as applied to Model A were applied
to Models B–D. Model improvements were evaluated, and
further deficiencies were diagnosed for these models based
on the calibration and validation results.

To improve the deficiencies diagnosed in Models B–D,
further model structural changes, i.e. increased levels of
spatial discretization of the saturated zone as explained in
Sect. 4.3, resulted in Models E and F. Similar to the previous
models, the same calibration and validation strategies were
applied to Models E and F, and model improvements and de-
ficiencies were diagnosed based on the calibration and vali-
dation model performances.

The calculation of the model performance with respect to
discharge, evaporation and total water storage is explained
in Sect. 3.2. The calibration and validation procedures are
described in Sect. 3.3 and 3.4.

3.1 Hydrological models

3.1.1 Benchmark model (Model A)

This model is a process-based hydrological model developed
in a previous study by Hulsman et al. (2020) for the Luangwa
basin. In this model, the water accounting was distributed
by discretizing the basin and using spatially distributed forc-

ing data, while the same model structure and parameter set
were used for the entire basin. Each 0.1◦× 0.1◦ model cell
was then further discretized into functionally distinct land-
scape classes, i.e. hydrological response units (HRUs), in-
ferred from topography (Fig. 1b) but connected by a common
groundwater component (Euser et al., 2015) following the
FLEX-Topo modelling concept (Savenije, 2010), which was
previously successfully applied in many different and climat-
ically contrasting regions (Gao et al., 2014, 2016; Gharari et
al., 2014; Nijzink et al., 2016). Here, the landscape was clas-
sified based on the local slope and the height above the near-
est drainage (HAND; Rennó et al., 2008) into sloped areas
(slope≥ 4 %), flat areas (slope< 4 %, HAND≥ 11 m) and
wetlands (slope< 4 %, HAND< 11 m). For this purpose, the
drainage network was derived from a digital elevation map
extracted from GMTED (Sect. 2.1.2) using a flow accu-
mulation map after having burned in a river network map
extracted from OpenStreetMap (https://wiki.openstreetmap.
org/wiki/Shapefiles, last access: February 2021) to obtain an
as accurate as possible drainage network, as done success-
fully in previous studies (Seyler et al., 2009). According to
this classification, the wetland areas covered 8 % of the basin,
flat areas 64 % and sloped areas 28 % (Fig. 1).

The model consisted of different storage components
schematized as reservoirs representing interception and un-
saturated storage, as well as a slow-responding reservoir, rep-
resenting the groundwater, and a fast-responding reservoir
(Fig. 2). The water balance for each reservoir and the as-
sociated constitutive equations are summarized in Table 2.
The individual model structures of each parallel HRU were
very similar. Functional differences between HRUs were thus
mostly accounted for by different parameter sets. To allow
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Figure 2. Schematization of the model structure applied to each grid cell. Symbol explanation: precipitation (P ), effective precipitation (Pe),
interception evaporation (Ei), plant transpiration (Et), infiltration into the unsaturated root zone (Ru), drainage to fast runoff component (Rf),
delayed fast runoff (Rfl), lag time (Tlag), groundwater recharge (Rr), upwelling groundwater flux (RGW), fast runoff (Qf) and groundwa-
ter/slow runoff (Qs).

for the use of partly overlapping prior parameter distribu-
tions while maintaining relationships between parameters of
individual HRUs that are consistent with our physical un-
derstanding of the system and to limit equifinality, model
process constraints (Gharari et al., 2014; Hrachowitz et al.,
2014) were applied for several parameters (Table 3). For in-
stance, in the Luangwa basin, the sloped areas are dominated
by dense vegetation, suggesting higher interception capac-
ities and larger storage capacities in the unsaturated zone
compared to the remaining part of the basin. In addition, for
each HRU the model structure was adjusted where necessary
to include processes unique to that area. For instance, water
percolates and recharges the groundwater system in sloped
and flat areas, whereas in wetlands this was assumed to be
negligible due to groundwater tables that are very shallow
and thus close to the surface.

The runoff was first calculated for each individual grid
cell. A simple routing scheme based on the flow direction and
constant flow velocity as calibration parameters was applied
to estimate the flow at the outlet. In total, this model consisted
of 16 calibration parameters with uniform prior distributions
and constraints as summarized in Table 3.

3.1.2 First model adaptation: adding groundwater
upwelling (Models B–D)

Satellite-based evaporation and total water storage observa-
tions were used to evaluate the benchmark model (Model A)
with respect to the spatial and temporal variability visu-
ally and using model performance metrics as described in
Sect. 3.2 to detect model deficiencies in these system-internal
variables. The first model adaptation was applied to improve
the hydrological model with respect to the deficiencies de-
tected in Model A. Therefore, a detailed description of the
reasoning behind the first model adaptation was explained in
Sect. 4.2 after having described the deficiencies in Model A
in Sect. 4.1.3.

In short, groundwater upwelling (RGW) was added in wet-
land areas (see Fig. 2). This upwelling groundwater was
made (1) a linear function of the water content in the un-
saturated reservoir (Model B; Eq. 9 in Table 2), (2) a linear
function of the water content in the slow-responding reser-
voir (Model C; Eq. 10) and (3) a non-linear function of the
water content in the slow-responding reservoir (Model D;
Eq. 11). As a result, upwelling water from the saturated zone
feeds the unsaturated zone, controlled by the water content in
the unsaturated (Model B) or in the saturated zone (Models C
and D), and thus increasing the water availability for transpi-
ration from the unsaturated zone in wetland areas. Compared
to the benchmark model (Model A), Model B introduces one
additional calibration parameter, Model C two and Model D
three (Tables 2 and 3).

3.1.3 Second model adaptation: discretizing the
groundwater system (Models E and F)

Similar to the first model adaptation, the second model adap-
tation was developed to improve deficiencies detected in
Models B–D. Therefore, a detailed description of the rea-
soning behind the second model adaptation was explained in
Section 4.3 after having described the deficiencies in Mod-
els B–D in Sect. 4.2.3.

In short, the spatial resolution of the slow-responding
reservoir was gradually increased from lumped (Models A–
D) to semi-distributed (Model E) and fully distributed
(Model F). In Model E, the slow-responding reservoir was
divided into four units as visualized in Fig. 1a, whereas in
Model F it was further discretized into a grid of 10×10 km2,
equivalent to the remaining parts of the model. For both al-
ternative formulations, Models E and F, the slow reservoir
timescales Ks remained constant throughout the basin to
limit the number of calibration parameters. For both Mod-
els E and F, groundwater upwelling was included according
to Eq. (10) (Table 2), hence using Model C as a basis, in-
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Table 2. Equations applied in the hydrological model. Fluxes [mm d−1]: precipitation (P ), effective precipitation (Pe), potential evapora-
tion (Ep), interception evaporation (Ei), plant transpiration (Et), infiltration into the unsaturated zone (Ru), drainage to fast runoff compo-
nent (Rf), delayed fast runoff (Rfl), groundwater recharge (Rr for each relevant HRU and Rr,tot combining all relevant HRUs), groundwater
upwelling (RGW for each relevant HRU and RGW,tot combining all relevant HRUs), fast runoff (Qf for each HRU and Qf,tot combining all
HRUs), groundwater/slow runoff (Qs) and total runoff (Qm). Storages [mm]: storage in interception reservoir (Si), storage in unsaturated
root zone (Su), storage in groundwater/slow reservoir (Ss) and storage in fast reservoir (Sf). Parameters: interception capacity (Imax) [mm],
maximum upwelling groundwater (Cmax) [mm d−1], maximum root zone storage capacity (Su,max) [mm], reference storage in the saturated
zone (Ss,ref) [mm], splitter (W ) [–], shape parameter (β) [–], transpiration coefficient (Ce) [–], time lag (Tlag) [d], exponent (γ ) [–], reservoir
timescales [d] of fast (Kf) and slow (Ks) reservoirs, areal weights for each grid cell (pHRU) [–] and time step (1t) [d]. Model calibration
parameters are shown in bold letters in the table below. The equations were applied to each hydrological response unit (HRU) unless indicated
differently.

Reservoir system Water balance equation Equation Process functions Equation

Interception 1Si
1t = P −Pe−Ei (1) Ei =min

(
Ep,min

(
P,

Imax
1t

))
(2)

Pe = P −Ei (3)

Unsaturated zone Sloped:
1Su
1t = Ru−Et (4) Et =min

((
Ep−Ei

)
,min

(
Su
1t ,

(
Ep−Ei

)
·

Su
Su,max

·
1

Ce

))
(5)

Flat:
1Su
1t = Pe−Et−Rf (6) Model A: RGW = 0 (7)

Wetland:
1Su
1t = Pe−Et−Rf+RGW (8) Model B: RGW =min

((
1− Su

Su,max

)
·Cmax,

Ss
1t
pHRU

)
(9)

Model C, E, F: RGW =min
(

min(Ss,Ss,ref)
Ss,ref

·Cmax,
Ss
1t
pHRU

)
(10)

Model D: RGW =min
((

min(Ss,Ss,ref)
Ss,ref

)γ
·Cmax,

Ss
1t
pHRU

)
(11)

if Su+RGW ·1t > Su,max : RGW =
Su,max−Su

1t (12)
Sloped:
Ru = (1−C) ·Pe (13)

C = 1−
(

1− Su
Su,max

)β
(14)

Fast runoff 1Sf
1t = Rfl−Qf (15) Qf =

Sf
Kf

(16)
Flat/Wetland:

Rf =
max(0,Su−Su,max)

1t (17)
Rfl = Rf (18)
Sloped:
Rf = (1−W) ·C ·Pe (19)
Rfl = Rf∗f

(
Tlag

)
(20)

Groundwater 1Ss
1t = Rrtot −RGWtot −Qs (21) Rr =W ·C ·Pe (22)

Rrtot =
∑

HRU
pHRU ·Rr (23)

RGWtot =
∑

HRU
pHRU ·RGW (24)

Qs =
Ss
Ks

(25)

Total runoff Qm =Qs+Qftot (26) Qftot =
∑

HRU
pHRU ·Qf (27)

Supporting literature Gao et al. (2014), Gharari et al. (2014), Euser et al. (2015), Hulsman et al. (2020)

troducing two additional calibration parameters compared to
the benchmark model (Model A; Tables 2 and 3).

3.2 Model performance metrics

3.2.1 Discharge

The model performance with respect to discharge was eval-
uated using eight distinct signatures simultaneously char-
acterizing the observed discharge data (Euser et al., 2013;

Hydrol. Earth Syst. Sci., 25, 957–982, 2021 https://doi.org/10.5194/hess-25-957-2021
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Table 3. Model parameter and ranges (Hulsman et al., 2020).

Landscape class Parameter Min Max Unit Constraint Comment

Entire basin Ce 0 1 –
Ks 50 200 d
Ss,ref 100 500 mm Only for Models C to F

Flat Imax 0 5 mm
Su,max 300 1000 mm
Kf 10 12 d
W 0.5 0.95 –

Sloped Imax 0 5 mm Imax,sloped > Imax,flat
Su,max 300 1000 mm Su,max,sloped > Su,max,flat
β 0 2 –
Tlag 1 5 d
Kf 10 12 d
W 0.5 0.95 – Wsloped >Wflat

Wetland Imax 0 5 mm Imax,wetland < Imax,sloped
Su,max 10 500 mm Su,max,wetland < Su,max,sloped
Kf 10 12 d
Cmax 0.1 5 mm d−1 Only for Models B to F
γ 0.01 0.5 – Only for Model D

River profile v 0.01 5.0 m s−1

Hulsman et al., 2020). The model performance measure was
based either on the Nash–Sutcliffe efficiency (ENS,θ ; Eq. 28
in Table 4) or the relative error (ER,θ ; Eq. 29) depending
on the individual signature. The resulting performance met-
rics for the eight signatures then included the Nash–Sutcliffe
efficiencies of the daily discharge time series (ENS,Q), its
logarithm (ENS,logQ), the flow duration curve (ENS,FDC)
and its logarithm (ENS,logFDC), of the autocorrelation func-
tion of daily flows (ENS,AC) and the relative errors of the
mean seasonal runoff coefficient during dry and wet peri-
ods (ER,RCdry,ER,RCwet) and of the rising limb density of the
hydrograph (ER,RLD). All these signatures were combined
into an overall performance metric based on the Euclidian
distance to the “perfect” model (DE,Qcal; Eq. 31). In ab-
sence of more information, and to obtain balanced solutions,
all individual performance metrics were equally weighted in
Eq. (31). Here, a DE,Qcal = 1 indicates a perfect fit.

The discharge data availability was very limited during the
validation time period (2012–2016). As a result, hydrologi-
cal years were not fully captured, resulting in incomplete in-
formation on the hydrologic signatures such as rising limb
density or autocorrelation function. That is why the overall
model performance (DE,Qval) was calculated using the sig-
natures ENS,Q, ENS,logQ, ENS,FDC and ENS,logFDC, exclud-
ing ER,RCdry, ER,RCwet, ER,RLD and ENS,AC. It is therefore
important to note that DE,Qcal cannot be meaningfully com-
pared with DE,Qval. Instead, following the overall objective
of the analysis,DE,Qval of the different alternative model hy-

pothesis were compared to evaluate the differences between
the models.

3.2.2 Evaporation and total water storage

The model performance was also evaluated with respect
to both the temporal dynamics and the spatial pattern
of evaporation and total storage, respectively. For this
purpose, satellite-based evaporation data (WaPOR) were
used on a 10 d timescale and total water storage anomaly
data (GRACE) on a monthly timescale.

Temporal variation

To quantify the models’ skill in reproducing the temporal dy-
namics of evaporation and total water storage anomalies, the
respective Nash–Sutcliffe efficiencies (Eq. 28) were used as
performance metrics. This performance metric was applied
to assess the models’ skill in reproducing the basin-average
time series of evaporation and total water storage anoma-
lies, i.e. ENS,Basin,E and ENS,Basin,S. Similarly, the models’
performance in mimicking the dynamics of evaporation in
all grid cells dominated by the wetland HRU was calcu-
lated with the Nash–Sutcliffe efficiency (ENS,Wetland,E). Grid
cells were considered as wetland-dominated if they were
completely covered by wetlands, hence if pHRU = 1, with
pHRU the areal weight of wetland areas within that cell. With
respect to evaporation, the flux was normalized first with
Eq. (33) to emphasize temporal variations rather than abso-
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Table 4. Overview of equations used to calculate model performance.

Name Objective function Equation Variable explanation

Nash–Sutcliffe efficiency ENS,θ = 1−

∑
t
(θmod(t)−θobs(t))

2

∑
t

(
θobs(t)−θobs

)2 (28) θ variable

Relative error ER,θ = 1− |θmod−θobs|
θobs

(29)

Spatial efficiency ESP =
1
tmax
·
∑
t

1−
√
(α− 1)2+ (β − 1)2+ (γ − 1)2 (30) α Pearson correlation coefficient

metric With: ϕobs, ϕmod observed/modelled map
α = ρ (ϕobs,ϕmod) β coefficient of variation
β =

σobs/µobs
σmod/µmod

σ standard deviation

γ =

(
i=n∑
i=0

min(Ki,Li)

)
·

(
i=n∑
i=0

Ki

)−1

µ mean

γ fraction of histogram intersection
between K and L
K observed histogram
L modelled histogram
n= 100 bins
t time step within the dry season
with maximum tmax

Euclidian distance DE,Q = 1−

√
1

(N+M)

(∑
n

(
1−ENS,θn

)2
+
∑
m

(
1−ER,θm

)2) (31) n signatures evaluated with Eq. (28)

over multiple with maximum N

signatures m signatures evaluated with Eq. (29)
with maximum M

Euclidian distance DE,ESQ = 1−

√
1
N

(∑
n
(1−En)2

)
(32) n variables maximum N

over multiple En model performance metric of
variables variable n

lute values in an attempt to reduce bias-related errors in the
observation:

Enormalized =
E−Emin

Emax−Emin
. (33)

Spatial variation

The model performance with respect to the spatial pattern
of evaporation and total water storage anomalies was cal-
culated with the spatial efficiency metrics ESP,E and ESP,S
(Eq. 30), respectively, which were successfully used in pre-
vious studies (Demirel et al., 2018; Koch et al., 2018). The
spatial model performance was first calculated for each time
step within the dry period which was in September and Oc-
tober and then averaged to obtain the overall model perfor-
mance (ESP, Eq. 30). The spatial pattern was averaged over
the dry season to minimize the effect of precipitation errors.

3.2.3 Multi-variable

The overall potential of the models to simultaneously re-
produce the temporal dynamics as well as the spatial pat-
terns of all observed variables, i.e. discharge, evaporation

and total water storage anomalies, was tested with the over-
all model performance metric DE,ESQ. This metric was
the Euclidian distance (Eq. 32) of the following individ-
ual metrics: the temporal variation of the basin-average
evaporation (ENS,Basin,E) and total water storage anoma-
lies (ENS,Basin,S), spatial pattern of the evaporation (ESP,E)
and total water storage anomalies (ESP,S), as well as dis-
charge (DE,Q). See Table 5 for an overview of all model per-
formance metrics used in this study.

3.3 Model calibration

In general, the model was calibrated by first running the
model with 5× 104 random parameter sets generated with a
Monte Carlo sampling strategy from uniform prior parame-
ter distributions (Table 3). Then, the optimal and 5 % best-
performing parameter sets were selected according to the
model performance metric as described in the previous sec-
tion. The model was calibrated within the time period 2002–
2012 with respect to (1) discharge (DE,Qcal) and (2) all vari-
ables simultaneously (DE,ESQcal). As the objective of this
study was to explore the information content of multiple vari-
ables using multiple model evaluation criteria for stepwise
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Table 5. Overview of the applied model performance metrics.

Data Temporal dynamics/ Performance metric Symbol and Calibration/validation
spatial pattern equation no.

Discharge Temporal dynamics Euclidian distance over multiple DE,Qcal (Eq. 31) Calibration (2002–2012)
signatures (combining ENS,Q,
ENS,logQ, ENS,FDC, ENS,logFDC,
ENS,AC, ER,RCdry, ER,RCwet and
ER,RLD)

Temporal dynamics Euclidian distance over multiple DE,Qval (Eq. 31) Validation (2012–2016)
signatures (combining ENS,Q,
ENS,logQ, ENS,FDC and ENS,logFDC)

Evaporation Temporal dynamics Nash–Sutcliffe efficiency ENS,Basin,E (Eq. 28) Validation (2012–2016)
(basin-average)

Temporal dynamics Nash–Sutcliffe efficiency ENS,Wetland,E (Eq. 28) Validation (2012–2016)
(wetland areas)

Spatial pattern Spatial efficiency metric ESP,E (Eq. 30) Validation (2012–2016)

Total water storage Temporal dynamics Nash–Sutcliffe efficiency ENS,Basin,S (Eq. 28) Validation (2012–2016)
anomalies (basin-average)

Spatial pattern Spatial efficiency metric ESP,S (Eq. 30) Validation (2012–2016)

Multi-variable Combination Euclidian distance over multiple DE,ESQcal (Eq. 32) Calibration (2002–2012)
(discharge, variables (combining DE,Qcal,
evaporation ENS,Basin,E, ESP,E, ENS,Basin,S and
and total water ESP,S)

storage anomalies) Combination Euclidian distance over multiple DE,ESQval (Eq. 32) Validation (2012–2016)
variables (combining DE,Qval,
ENS,Basin,E, ESP,E, ENS,Basin,S and
ESP,S)

model structure development and calibration, it was impor-
tant to use the same parameter sets for all models as a com-
mon starting point to rule out the effect of different parameter
sets. This was efficiently possible with the Monte Carlo pa-
rameter sampling strategy, which, in addition, also allowed
for a relatively straightforward and intuitive interpretation
and communication of the results.

3.4 Model validation

The model was validated with respect to discharge,
evaporation and total water storage anomalies for the
time period 2012–2016. During validation each vari-
able was evaluated separately, both temporally and spa-
tially. This included the temporal variation of the basin-
average evaporation (ENS,Basin,E) and total water stor-
age anomalies (ENS,Basin,S), evaporation in wetland ar-
eas (ENS,Wetland,E), spatial pattern of the evaporation (ESP,E)
and total water storage anomalies (ESP,S), as well as dis-
charge (DE,Qval). In addition, the model was evaluated with
respect to the overall performance (DE,ESQval). This was
done for the solutions from both calibration strategies.

4 Model results

4.1 Benchmark model (Model A)

4.1.1 Discharge-based calibration

For the benchmark model (Model A), the model performance
of all model realizations following the first calibration strat-
egy, i.e. calibrating to discharge, resulted in an optimum
DE,Qcal,opt = 0.76 andDE,Qval = 0.37 during validation (Ta-
ble 6, Fig. 3). As shown in Fig. 4, the main features of the
hydrological response were captured reasonably well. How-
ever, particularly in the validation period, low flows were
somewhat underestimated. Note that in 2013, the observed
high flows were probably underestimated due to failures in
the recording, which resulted in a truncated top in the hy-
drograph and flat top in the flow duration curve during the
validation time period (Fig. 4) and which affect the validated
model performance values (DE,Qval). The range in the cali-
brated model performance with respect to each discharge sig-
nature separately is visualized in Fig. S1 in the Supplement.

The basin-average evaporation (ENS,Basin,E = 0.54) and
total water storage anomalies (ENS,Basin,S = 0.74) were in
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Figure 3. Model performance with respect to discharge, evaporation and storage for all models. The model is calibrated to dis-
charge (DE,Qcal, darker boxplots in the first column) and validated to the discharge, evaporation and storage (lighter boxplots). The dots
represent the model performance using the “optimal” parameter set and the boxplot the range of the best 5 % solutions, both according to
discharge (DE,Qcal). The following performance metrics were used: (1) discharge using the overall model performance metric (DE,Qcal for
calibration and DE,Qval for validation), (2) temporal evaporation basin-average (ENS,Basin,E), (3) temporal evaporation, wetland areas
only (ENS,Wetland,E), (4) spatial evaporation (ESP,E), (5) temporal storage basin-average (ENS,Basin,S), (6) spatial storage (ESP,S) and
(7) the combination of evaporation, storage and discharge (combined metric DE,ESQval).

Figure 4. Range of model solutions for Model A. Panel (a) shows the hydrograph and (b, c) the flow duration curve of the recorded (black)
and modelled discharge: the line indicates the solution with the highest calibration objective function with respect to discharge (DE,Qcal)
and the shaded area the envelope of the solutions retained as feasible. The data in the white area were used for calibration and the grey shaded
area for validation.

general also reproduced rather well (Figs. S3 and S5). In
contrast, the model failed to mimic the evaporation dy-
namics in wetland-dominated areas as it decreased rapidly
to zero in the dry season in contrast to the observations
(ENS,Wetland,E = 0.25, Fig. 5). Similarly, the spatial variabil-
ity in evaporation (ESP,E = 0.17) and water storage anoma-
lies (ESP,S =−0.02) were poorly captured as several areas
were over- or underestimated (Figs. 6 and 7). Note that in
both figures the normalized evaporation and total water stor-

age anomalies were plotted by applying Eq. (33) to empha-
size relative spatial differences rather than absolute values.

4.1.2 Multi-variable calibration

Calibrating with respect to multiple variables simultaneously
in the second calibration strategy resulted in a reduced model
skill in simultaneously reproducing all flow signatures in
the validation period with DE,Qval = 0.07 (Table 7, Figs. 8
and 9). Compared to the first calibration strategy, the simu-
lated evaporation did not change significantly with respect to
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Figure 5. Range of model solutions for Model A. Panel (a) shows the time series and (b, c) the duration curve of the recorded (black) and
modelled normalized evaporation for wetland-dominated areas: the line indicates the solution with the highest calibration objective function
with respect to discharge (DE,Qcal) and the shaded area the envelope of the solutions retained as feasible. The data in the grey shaded area
were used for validation.

Figure 6. Spatial variability of the normalized total evaporation for Model A averaged over all days within the dry season. Panel (a) shows
the observation according to WaPOR data, (b) the model result using the “optimal” parameter set with respect to discharge (DE,Qcal) and
(c) the difference between the observation and model.

Figure 7. Spatial variability of the normalized total water storage anomalies for Model A averaged over all days within the dry season.
Panel (a) shows the observation according to GRACE data, (b) the model result using the “optimal” parameter set with respect to dis-
charge (DE,Qcal) and (c) the difference between the observation and model.

the temporal dynamics (ENS,Wetland,E = 0.27, ENS,Basin,E =

0.57) and spatial pattern (ESP,E =−0.18). Evaporation from
wetland-dominated areas remained underestimated in the dry
season (Fig. 10), and large areas in the basin were still under-
or overestimated (Fig. 11). The reproduction of the total

water storage anomalies decreased though, mostly with re-
spect to the spatial pattern (ESP,S =−0.14, Fig. 12). On
the other hand, when looking at the 5th and 95th percentile
range instead of the “optimal” parameter set, then an im-
provement was observed in the spatial pattern in evapora-
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Figure 8. Model performance with respect to discharge, evaporation and storage for all models. The model is calibrated to multiple variables
simultaneously (DE,ESQcal, darker boxplots in the first column) and evaluated with respect to each flux individually (lighter boxplots). The
dots represent the model performance using the “optimal” parameter set and the boxplot the range of the best 5 % solutions, both according
toDE,ESQcal. The following performance metrics were used: (1) discharge using the overall model performance metric (DE,Qval), (2) tempo-
ral evaporation basin-average (ENS,Basin,E), (3) temporal evaporation, wetland areas only (ENS,Wetland,E), (4) spatial evaporation (ESP,E),
(5) temporal storage basin-average (ENS,Basin,S), (6) spatial storage (ESP,S) and (7) the combination of evaporation, storage and discharge
(combined metric DE,ESQval).

tion (ESP,E,5/95 =−0.10–0.22) and in total water storage
(ESP,S,5/95 =−0.17–0.08; compare Tables 6 and 7).

4.1.3 Model deficiencies

Regardless of the calibration strategy, the benchmark model
failed in particular to adequately reproduce evaporation dy-
namics in wetland-dominated areas. During the dry seasons,
the modelled evaporation decreased rapidly to zero in con-
trast to the observations (Figs. 5 and 10). Partly as a conse-
quence of that, the spatial pattern of evaporation was cap-
tured poorly, as illustrated in Figs. 6 and 11. Apart from
the wetlands, the modelled average dry season evaporation
was also extremely low in the centre of the basin, which did
not correspond with the satellite observations. At the same
time, the evaporation was significantly overestimated in the
southern part of the basin. Also the spatial pattern in to-
tal water storage anomalies were poorly represented since
the model significantly overestimated storage anomalies in
large parts of the basin (Figs. 7 and 12). Note, overestima-
tions in specific regions do not necessarily mean the actual
(non-normalized) model values were also higher compared
to the observation, but it does mean the model results in this
cell/region were high relative to the remainder of the basin

compared to observations. This was the case for the evapo-
ration and total water storage, even though it was negative
during dry seasons (compare Figs. S8 and S9).

4.2 First model adaptation: adding groundwater
upwelling (Models B–D)

In the benchmark model (Model A), there was no groundwa-
ter upwelling into the wetlands and floodplains around the
river channels, similar to many distributed conceptual hydro-
logical models (e.g. Samaniego et al., 2010; Bieger et al.,
2017). However, according to field and satellite-based ob-
servations, wetland areas remain moist at the end of the dry
season, while the remaining areas of the basin become very
dry. Given the low elevation of these wetlands above rivers,
it is plausible to assume that groundwater from higher parts
of the catchment is pushed up into the unsaturated root zone
of these wetlands. As a result, water deficits in the unsatu-
rated zone are partly replenished by upwelling groundwater.
It thereby can sustain relatively elevated levels of moisture,
available for plant transpiration long into the dry season.

To improve the representation of evaporation in the model,
the process of upwelling groundwater (RGW) was added to
the model. In principle, it was assumed that the upwelling
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Figure 9. Range of model solutions for Models A to F. The left panels show the hydrograph and the right panels the flow duration curve of
the recorded (black) and modelled discharge: the line indicates the solution with the highest calibration objective function with respect to
multiple variables (DE,ESQcal) and the shaded area the envelope of the solutions retained as feasible. The data in the grey shaded area were
used for validation.
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Figure 10. Range of model solutions for Models A to F. The left panels show the time series and the right panels the duration curve of
the recorded (black) and modelled normalized evaporation for wetland-dominated areas: the line indicates the solution with the highest
calibration objective function with respect to multiple variables (DE,ESQcal) and the shaded area the envelope of the solutions retained as
feasible. The data in the grey shaded area were used for validation.
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Figure 11. Spatial variability of the normalized total evaporation for Models A, C and F averaged over all days within the dry season. Panels
(a, d, g) show the observation according to WaPOR data, (b, e, h) the model result using the “optimal” parameter set with respect to multiple
variables (DE,ESQcal) and (c, f, i) the difference between the observation and model.

groundwater is regulated by the head difference between up-
land groundwater and the groundwater in the wetland. As this
information was not available, due to the lack of continuous
gradients in the type of model used (Hrachowitz and Clark,
2017), this was done in a simplified way. In three alternative
formulations of this hypothesis, the upwelling groundwater
was made (1) a linear function of the water content in the
unsaturated reservoir (Model B, Eq. 9), (2) a linear func-
tion of the water content in the slow-responding reservoir
(Model C, Eq. 10) and (3) a non-linear function of the water
content in the slow-responding reservoir (Model D, Eq. 11).
In other words, in Model B the groundwater upwelling was
driven by the water deficit in the unsaturated zone; hence the
lower the water content in the unsaturated zone, the higher
the groundwater upwelling. In Models C and D, the ground-
water upwelling was driven by the water content in the slow-
responding reservoir, the groundwater system, such that the
higher the water content in the slow-responding reservoir, the

higher the groundwater upwelling. As a result of the non-
linear relation between the groundwater upwelling and the
water content in the slow-responding reservoir in Model D,
the groundwater upwelling increased the most under dry con-
ditions and the least under wet conditions. In Models B–D,
the groundwater upwelling flowed into the unsaturated zone
until it was saturated, hence until its maximum Su,max was
reached (Eq. 12). Model B required one additional calibra-
tion parameter, Model C two and Model D three (Tables 2
and 3).

4.2.1 Discharge-based calibration

Following the first calibration strategy, the performances of
Models B–D with respect to discharge did not improve sig-
nificantly for the calibration period (DE,Qcal = 0.75–0.79)
compared to Model A, regardless of the model (Table 6,
Figs. 3 and S2). For the validation period, Models B and D
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Figure 12. Spatial variability of the normalized total water storage anomalies for Models A, C and F averaged over all days within the dry
season. Panels (a, d, g) show the observation according to GRACE data, (b, e, h) the model result using the “optimal” parameter set with
respect to multiple variables (DE,ESQcal) and (c, f, i) the difference between the observation and model.

experienced a pronounced reduction of their ability to ade-
quately reproduce the discharge signatures with DE,Qval =

0.08 and −1.7, respectively, since the flows were mostly un-
derestimated (Fig. S2). On the other hand, Model C showed
significant improvements with DE,Qval = 0.81. With respect
to the evaporation from wetland-dominated areas, the largest
improvements were found for Model D (ENS,Wetland,E =

0.41), where the evaporation did not drop rapidly to zero any-
more, even though it was still significantly underestimated
in the dry season (Fig. S4). But this came at the cost of
decreased simulations of all remaining variables (Table 6,
Fig. 3), i.e. the discharge, basin-average evaporation and to-
tal water storage and their spatial patterns (Figs. S2–S7).
For example Fig. S6 illustrates the poorly simulated tempo-
rally averaged dry season evaporation for Model D, which
was higher in wetland areas (centre of the basin) compared
to the surrounding areas and which was not observed in
the satellite-based observations. For Models B and C, the

model performances with respect to the remaining variables
remained comparable to Model A or even decreased, as can
be seen in Table 6 and Fig. 3. As a result, when consider-
ing all variables simultaneously, Model C performed the best,
with DE,ESQval = 0.32.

4.2.2 Multi-variable calibration

Following the second calibration strategy, Model C experi-
enced the largest increases compared to Model A in its abil-
ity to describe features of discharge, with DE,Qval = 0.61,
while Model D decreased the most toDE,Qval =−0.08, with
the high flows being overestimated and low flows underesti-
mated (Table 7, Figs. 8 and 9). With this calibration strategy,
large improvements were observed in the reproduction of the
evaporation from wetland-dominated areas for all three Mod-
els B–D, especially for Model D, with ENS,Wetland,E = 0.59,
where the evaporation was simulated well, even during the
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dry season as it did not decrease rapidly to zero in the dry
season compared to Model A (Fig. 10). For Models C and D,
the spatial pattern in evaporation and total water storage
anomalies improved, albeit moderately (Table 7), as large ar-
eas were still under- or overestimated (Figs. S12 and S13),
whereas it decreased slightly for Model B. For Models B–
D, the basin-average temporal dynamics in evaporation and
total water storage anomalies remained similar or decreased
slightly (Table 7, Figs. S10 and S11). Overall, when consid-
ering the model performance with respect to all variables si-
multaneously, Model C showed the best performance, with
DE,ESQval = 0.33.

4.2.3 Model deficiencies

According to the results, the representation of evaporation
strongly benefitted from including upwelling groundwater as
a function of the water content in the slow-responding reser-
voir (Eq. 10; Model C), especially for the second calibration
strategy. The incorporation of this flux resulted in increased
levels of water supply to the unsaturated zone of wetlands to
sustain higher levels of transpiration throughout the dry pe-
riods (Fig. 10). But even though the evaporation increased
during dry periods, it was still underestimated, especially to-
wards the end of the dry season, due to too large an amount of
groundwater upwelling depleting the slow-responding reser-
voir. The major weakness of the model remained its very
limited ability in representing the spatial pattern in evapora-
tion as there were several local clusters of considerable mis-
matches, both over- and underestimating observed evapora-
tion. This was clearly visible for example in the centre and
southern part of the basin (Fig. 11). Also the spatial pattern
in the total water storage anomalies remained poorly repre-
sented, in spite of some improvements compared to Model A,
as they were considerably overestimated in the northern parts
of the basin (Fig. 12). This could be a result of deficiencies
in the hydrological models or in the satellite-based observa-
tions.

4.3 Second model adaptation: discretizing the
groundwater system (Models E and F)

In all above models, the groundwater layer was simulated
as a single lumped reservoir, assuming equal groundwater
availability throughout the entire basin. As groundwater pro-
cesses can occur on relatively large spatial scales, this as-
sumption may be valid for small-scale or mesoscale catch-
ments but not necessarily for larger basins such as the Lu-
angwa basin. This may partly be responsible for the defi-
ciency of all above models to meaningfully reproduce the
spatial pattern of the total water storage. Taking Model C as
a basis for further model adaptations, two more alternative
model hypothesis were formulated. In both models the slow-
responding reservoir, representing the groundwater, was spa-
tially discretized. For Model E, the reservoir was split into

four units with an area of 15 396–47 239 km2, each contain-
ing four to six different GRACE cells (see Fig. 1a). In con-
trast, Model F was formulated with a completely distributed
slow reservoir at the resolution of the remaining parts of the
model, i.e. 10× 10 km2. In Models E and F, the slow reser-
voir timescalesKs remained constant throughout the basin to
limit the number of calibration parameters. Models E and F
did not require additional calibration parameters. See Ta-
bles 2 and 3 for the corresponding model equations and cali-
bration parameter ranges.

4.3.1 Discharge-based calibration

Following the first calibration strategy, the calibrated and
validated model performance with respect to discharge did
not change significantly for Model E compared to Model C.
For Model F on the other hand, the calibrated model perfor-
mance increased toDE,Qcal = 0.91 (Table 6, Figs. 3 and S2),
but during validation it decreased to DE,Qval = 0.52 com-
pared to Model C as a result of overestimated high flows
(Fig. S2). In other words, the discharge simulation was
only affected when applying a fully distributed groundwa-
ter system (Model F). Also the simulated dynamics of the
evaporation improved for Model F, especially for wetland-
dominated areas (ENS,Wetland,E = 0.56, Table 6), even though
it remained significantly underestimated during the dry sea-
son (Fig. S4). But for both models, no improvements in the
spatial pattern of evaporation can be observed, with ESP,E =

0.05 and −0.03 for Models E and F, respectively. As shown
in Fig. S6, for Model E and F the temporally averaged dry
season evaporation was very low in the centre of the basin
compared to the remaining part of the basin in contrast to the
satellite-based observations. The spatial pattern of total water
storage anomalies was at least slightly better mimicked by
Model F with ESP,S = 0.08 (Fig. S7), which, in turn, came
at the price of a poorer reproduction of the temporal dy-
namics of the basin-averaged total water storage anomalies
(ENS,Basin,S = 0.66, Fig. S5).

4.3.2 Multi-variable calibration

Including multiple variables in the calibration process did
not improve the representation of the hydrological response
with respect to discharge for Models E and F compared to
Model C with DE,Qval = 0.30 and 0.51, respectively (Ta-
ble 7, Figs. 8 and 9). For both models, the flows were un-
derestimated during low flows and overestimated during high
flows (Fig. 9). Also the evaporation from wetland-dominated
areas did not improve for both models as it decreased rapidly
in the dry season (Fig. 10). On the other hand, the spatial
pattern in the evaporation was slightly better mimicked for
Model F (ESP,E = 0.23) but still at low performance levels
similar to Models A–D, with large areas still being under- or
overestimated (Fig. S12). Slight improvements could be ob-
served though for the representation of spatial pattern in total
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water storage in Models F (ESP,S = 0.09, Fig. S13), albeit
modestly. Overall, when considering the model performance
with respect to all variables simultaneously, Model F showed
the best performance, with DE,ESQval = 0.37.

4.3.3 Model deficiencies

Applying the second calibration strategy, Model F poorly re-
produced the evaporation from wetlands (Fig. 10) since the
water availability for evaporation decreased rapidly in the
dry season due to the limited water availability in the slow-
responding reservoir. This was a direct result of the limited
connectivity in the distributed groundwater system within the
basin and very likely points to the presence of contiguous
groundwater systems extending beyond the modelling reso-
lution that sustain dry-season evaporation in wetlands. Strik-
ingly, discretizing the groundwater basin only had limited
effects on the spatial pattern in evaporation and total water
storage anomalies. Despite their limited improvements, they
remained poorly captured as several local clusters were over-
and underestimated (Figs. 11 and 12).

5 Discussion

As illustrated in the previous sections, satellite-based evap-
oration and storage anomaly data were used in an attempt
to (1) iteratively improve a benchmark model structure and
(2) identify parameter sets with which the model can simul-
taneously reproduce the temporal dynamics as well as the
spatial patterns of multiple flux and storage variables.

The results suggested that among the tested models, Mod-
els C and F provided the overall best representation of the
hydrological processes in the Luangwa basin, following the
first and second calibration strategy respectively. The ad-
dition of upwelling groundwater alone (Model C) signif-
icantly improved the discharge simulations during valida-
tion regardless of the calibration strategy and the simula-
tion of evaporation from wetland areas following the sec-
ond calibration strategy. Discretizing the slow-responding
reservoir (Model F) reached reasonable overall performance
levels, i.e. DE,ESQval, when calibrating with respect to dis-
charge and its signatures only (Fig. 3), with improved sim-
ulations of evaporation from wetland areas. But calibrating
with respect to multiple variables proved instrumental as it
allowed the spatial pattern of the evaporation to be improved
compared to calibrating with respect to discharge (Figs. 11
and S12) while maintaining high levels for the other per-
formance criteria (Fig. 8). In general, it could also be ob-
served that a further discretization of the model led to a
better representation of the system especially with respect
to the spatial patterns. Nevertheless, while the model struc-
ture and calibration strategy did influence the spatial pattern
in the evaporation (Figs. S6 and S12) and total water stor-
age anomalies (Figs. S7 and S13), none of the tested mod-

els could adequately reproduce the observed spatial pattern,
which could be a result of model deficiencies or uncertainties
in the satellite-based spatial patterns.

A potential reason for the models’ problems in meaning-
fully describing the spatial pattern of the evaporation was in
this study the use of the same parameters within a specific
HRU in different model grid cells, as also observed in pre-
vious studies (Stisen et al., 2018). As a result, the simulated
spatial pattern was strongly influenced by the catchment clas-
sification method into distinct HRUs. In this study, the catch-
ment was classified merely on the basis of topography into
flat, sloped and wetland areas, whereas ecosystem diversity
could also be considered as an additional layer in the classifi-
cation. The poor representation of the spatial pattern in total
water storage was also partly linked to that. Spatially dis-
tributing calibration parameters could improve the modelled
spatial pattern, assuming there are sufficient data available to
meaningfully constrain the increased number of calibration
parameters and thus to avoid elevated equifinality. In a pre-
liminary test, the maximum interception storage (Imax) was
spatially distributed using a linear transfer function with LAI
(leaf area index) data similar to previous studies (Samaniego
et al., 2010; Kumar et al., 2013) and using Model F as a ba-
sis. This did not result in obvious improvements as shown in
Fig. S14. It was considered outside the scope of this study to
analyse additional parameter distribution strategies with the
limited data availability in this study region.

Another likely reason for the poorly modelled spatial pat-
tern is the absence of lateral exchange of subsurface water
between model grid cells in the tested models, as contigu-
ous groundwater bodies of varying but unknown spatial scale
will shape water transfer through the landscape in the real
world, which remains unaccounted for in the model. Lateral
exchange fluxes are, as any flux, driven by continuous gradi-
ents and resistances. However, conceptual-type models, such
as the one used in this study, only mimic gradients within grid
cells but not between grid cells. As a result, the head differ-
ence between neighbouring cells remains unknown, which
entails that the direction and magnitude of lateral exchange
between cells are unknown. Consequently, these fluxes can
only be expressed on the basis of free calibration parameters.
However, in this data-scarce region it will not be possible to
test whether the additional calibration parameters and the as-
sociated exchange fluxes are physically plausible. These un-
specified boundary fluxes across grid cells are at the core of
the closure problem (Beven, 2006a) and touch on the limits
of what can be done in hydrology with our current observa-
tional technology and the available data. Therefore, adding
lateral exchange flow to the model was considered outside
the scope of this study.

In addition, each of the applied data sources have their
own uncertainties and bias. These include uncertainties in
observed discharge due to rating curve uncertainties (Wester-
berg et al., 2011; Domeneghetti et al., 2012; Tomkins, 2014)
and limited data availability, in precipitation data, often as
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a result of poorly capturing mountainous regions or extreme
events on small scales (Hrachowitz and Weiler, 2011; Kimani
et al., 2017; Dinku et al., 2018; Le Coz and van de Giesen,
2019), in estimates of total water storage anomalies as a re-
sult of data (post-)processing including data smoothing using
a radius of for example 300 km, affecting the spatial variabil-
ity on a basin scale (Landerer and Swenson, 2012; Blazquez
et al., 2018), and in evaporation data due to model, input
data and parameter estimation uncertainties (Zhang et al.,
2016). In general satellite products are a result of models that
are prone to uncertainties related to the input data or model
conceptualization. Uncertainties in for example the spatial
pattern of the precipitation affect the spatial pattern of the
evaporation considerably, as shown in Fig. S15. In an ideal
situation, the data would be validated with field measure-
ments to assess the error magnitude. However, this was not
possible due to data limitations. To compensate for bias er-
rors in the satellite-based evaporation, and to allow for more
reliable comparisons with model results, the satellite-based
evaporation was adjusted with a correction factor of 1.08
(Sect. 2.1.2). Correcting the precipitation in a similar man-
ner instead of the evaporation did not significantly affect the
model results since normalized values were used for model
calibration and evaluation (Fig. S16).

The results in this study were sensitive to the choice
of performance metrics with respect to the individual vari-
ables (discharge, evaporation and total water storage) and all
variables combined. For instance, the overall model perfor-
mance measure DE,ESQval (Eq. 32) was strongly influenced
by the validated discharge model performance DE,Qval due
to its large range and variation between models compared
to the remaining variables, for which the range was smaller
and similar for all models (Fig. 8). As a result, the overall
model performance measure might not reflect each variable
equally well, which affected the choice of best performing
model. However, this did not cause the poorly reproduced
spatial pattern in the evaporation as it remained poorly mod-
elled also when calibrating only with respect to that vari-
able (ESP,E, Fig. S17). In addition, the histogram compo-
nent (γ ) in the spatial efficiency metric (ESP, Eq. 30) be-
comes less meaningful for very coarse resolutions when the
river basin consists of only a few grid cells, as was the case
for GRACE. It would be interesting to examine the different
components in ESP in more detail in future studies to assess
the overall suitability of this metric to identify feasible pa-
rameter sets across different spatial scales.

Reflecting the results of previous studies, this study found
that calibrating to multiple variables including the spatial pat-
terns improved the simulation of the evaporation and storage
with some trade-off in the discharge simulation depending
on the model structure (Stisen et al., 2011; Rientjes et al.,
2013; Demirel et al., 2018; Herman et al., 2018; 2018; Dem-
bélé et al., 2020). But in contrast and in addition to previ-
ous studies, this study also provided an example, illustrating
that spatial data, here evaporation and total water storage, can

contain relevant information to diagnose model deficiencies
and to therefore enable stepwise model structural improve-
ment. Previous studies have largely relied on discharge ob-
servations to improve model structures (Hrachowitz et al.,
2014; Fenicia et al., 2016), and only few studies used satel-
lite data (Roy et al., 2017), even though they provide valuable
information on the internal processes temporally and spa-
tially, which is not available with discharge data alone (Dag-
gupati et al., 2015; Rakovec et al., 2016). Roy et al. (2017)
observed that the simulated evaporation according to the
spatially lumped model HYMOD (HYdrological MODel)
rapidly dropped to zero in contrast to the satellite product
GLEAM (Global Land Evaporation Amsterdam Model) in
the Nyangores River basin in Kenya. They improved this
simulated evaporation while maintaining good discharge per-
formances by modifying the corresponding equation in HY-
MOD such that it was a function of the soil moisture.

While here we focussed on upwelling groundwater and
spatial discretization, a promising avenue for future stud-
ies may be to evaluate the incorporation of simple formu-
lations of subsurface exchange fluxes between model grid
cells. Similarly, a further discretization of HRUs into differ-
ent land cover and ecosystem types may be worthwhile. In
addition, a systematic sensitivity analysis is recommended
to explore the influence of individual factors such as model
structure and parameters on the spatial and temporal variabil-
ity of different variables and to further improve the represen-
tation of the hydrological processes.

6 Conclusion

The objective of this paper was to explore the added value of
satellite-based evaporation and total water storage anomaly
data to increase the understanding of hydrological processes
through stepwise model structure improvement and model
calibration for large river systems in a semi-arid, data-scarce
region. For this purpose, a distributed process-based hy-
drological model with sub-grid process heterogeneity for
the Luangwa River basin was developed and iteratively ad-
justed. The results suggested that (1) the benchmark model
(Model A) calibrated with respect to discharge reproduced
observed discharge but also basin-average evaporation and
total water storage anomalies rather well, while poorly cap-
turing the evaporation for wetland-dominated areas as well
as the spatial pattern of evaporation and total water storage
anomalies. Testing five further alternative model structures
(Models B–F), it was found that (2) among the tested model
hypotheses, Model F, allowing for upwelling groundwater
from a distributed representation of the groundwater reser-
voir and (3) simultaneously calibrating this model with re-
spect to multiple variables, i.e. discharge, evaporation and
total water storage anomalies, resulted in marked improve-
ments of the model performance, providing the best simul-
taneous representation of all these variables with respect to
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their temporal dynamics and spatial pattern. As a result of
the limited data availability and model hypotheses tested in
this study, it should be noted that Model F allowed for the
rejection of alternative hypotheses tested here but may be
rejected in future studies in favour of another hypothesis.
However, this study illustrated that satellite-based evapora-
tion and total water storage anomaly data are not only valu-
able for multi-criteria calibration, but can also play an im-
portant role in improving our understanding of hydrological
processes through the diagnosis of model deficiencies and
stepwise model structural improvement.
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Appendix A: Abbreviations

CHIRPS Climate Hazards Group InfraRed Precipitation with Station
CMRSET CSIRO MODIS reflectance scaling evapotranspiration
CRU Climatic Research Unit
CSIRO Commonwealth Scientific and Industrial Research Organization
FAO Food and Agriculture Organization
GEOS Goddard Earth Observing System model
GMTED Global Multi-resolution Terrain Elevation Data
GRACE Gravity Recovery and Climate Experiment
HRU Hydrological response unit
MERRA Modern-Era Retrospective analysis for Research and Applications
MODIS Moderate Resolution Imaging Spectroradiometer
NDVI Normalized Difference Vegetation Index
SSEBop Operational Simplified Surface Energy Balance
WaPOR Water Productivity Open-access portal

Hydrol. Earth Syst. Sci., 25, 957–982, 2021 https://doi.org/10.5194/hess-25-957-2021



P. Hulsman et al.: Learning from satellite observations: increased understanding of catchment processes 979

Data availability. Local discharge data were provided by WARMA
(Water Resources Management Authority) in Zambia.

Author contributions. PH and MH designed the experiment. PH did
the analysis. PH and MH wrote the first draft. All the authors dis-
cussed the results and contributed to writing the final paper.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This research is supported by the
TU Delft|Global Initiative, a programme of the Delft Univer-
sity of Technology to boost Science and Technology for Global
Development.

Financial support. This research has been supported by the NWO-
WOTRO (grant no. W 07.303.102).

Review statement. This paper was edited by Markus Weiler and re-
viewed by Simon Stisen and one anonymous referee.

References

Beven, K.: Searching for the Holy Grail of scientific hydrology:
Qt = (S, R, 1t)A as closure, Hydrol. Earth Syst. Sci., 10, 609–
618, https://doi.org/10.5194/hess-10-609-2006, 2006a.

Beven, K. J.: A manifesto for the equifinality thesis, J. Hydrol., 320,
18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006b.

Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D.
D., Allen, P. M., Volk, M., and Srinivasan, R.: Introduction to
SWAT+, A Completely Restructured Version of the Soil and Wa-
ter Assessment Tool, J. Am. Water Resour. Assoc., 53, 115–130,
https://doi.org/10.1111/1752-1688.12482, 2017.

Blazquez, A., Meyssignac, B., Lemoine, J. M., Berthier, E., Ribes,
A., and Cazenave, A.: Exploring the uncertainty in GRACE es-
timates of the mass redistributions at the Earth surface: implica-
tions for the global water and sea level budgets, Geophys. J. Int.,
215, 415–430, https://doi.org/10.1093/gji/ggy293, 2018.

Blöschl, G. and Sivapalan, M.: Scale issues in hydrolog-
ical modelling: A review, Hydrol. Process., 9, 251–290,
https://doi.org/10.1002/hyp.3360090305, 1995.

Bouaziz, L. J. E., Weerts, A., Schellekens, J., Sprokkereef, E., Stam,
J., Savenije, H., and Hrachowitz, M.: Redressing the balance:
quantifying net intercatchment groundwater flows, Hydrol. Earth
Syst. Sci., 22, 6415–6434, https://doi.org/10.5194/hess-22-6415-
2018, 2018.

Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt,
R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.: Hy-
drological data assimilation with the ensemble Kalman fil-
ter: Use of streamflow observations to update states in a dis-
tributed hydrological model, Adv. Water Resour., 31, 1309–
1324, https://doi.org/10.1016/j.advwatres.2008.06.005, 2008.

Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the
method of multiple working hypotheses for hydro-
logical modeling, Water Resour. Res., 47, W09301,
https://doi.org/10.1029/2010WR009827, 2011.

Daggupati, P., Yen, H., White, M. J., Srinivasan, R., Arnold, J.
G., Keitzer, C. S., and Sowa, S. P.: Impact of model develop-
ment, calibration and validation decisions on hydrological sim-
ulations in West Lake Erie Basin, Hydrol. Process., 29, 5307–
5320, https://doi.org/10.1002/hyp.10536, 2015.

Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain
elevation data 2010 (GMTED2010), in: Open-File Report 2011-
1073, US Geological Survey, Reston, Virginia, 2011.

Dembélé, M., Hrachowitz, M., Savenije, H. H. G., Mariéthoz,
G., and Schaefli, B.: Improving the Predictive Skill of a Dis-
tributed Hydrological Model by Calibration on Spatial Pat-
terns With Multiple Satellite Data Sets, Water Resour. Res.,
56, e2019WR026085, https://doi.org/10.1029/2019WR026085,
2020.

Demirel, M. C., Mai, J., Mendiguren, G., Koch, J., Samaniego, L.,
and Stisen, S.: Combining satellite data and appropriate objec-
tive functions for improved spatial pattern performance of a dis-
tributed hydrologic model, Hydrol. Earth Syst. Sci., 22, 1299–
1315, https://doi.org/10.5194/hess-22-1299-2018, 2018.

Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T.,
Gadain, H., and Ceccato, P.: Validation of the CHIRPS satellite
rainfall estimates over eastern Africa, Q. J. Roy. Meteorol. Soc.,
144, 292–312, https://doi.org/10.1002/qj.3244, 2018.

Domeneghetti, A., Castellarin, A., and Brath, A.: Assess-
ing rating-curve uncertainty and its effects on hydraulic
model calibration, Hydrol. Earth Syst. Sci., 16, 1191–1202,
https://doi.org/10.5194/hess-16-1191-2012, 2012.

Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlen-
brook, S., and Savenije, H. H. G.: A framework to assess the re-
alism of model structures using hydrological signatures, Hydrol.
Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-
1893-2013, 2013.

Euser, T., Hrachowitz, M., Winsemius, H. C., and Savenije, H. H.
G.: The effect of forcing and landscape distribution on perfor-
mance and consistency of model structures, Hydrol. Process., 29,
3727–3743, https://doi.org/10.1002/hyp.10445, 2015.

FAO: WaPOR Database Methodology: Level 1. Remote Sensing for
Water Productivity Technical Report: Methodology Series, FAO,
Rome, 74 pp., 2018.

FAO and IHE Delft: WaPOR quality assessment. Technical report
on the data quality of the WaPOR FAO database version 1.0, FAO
and IHE Delft, Rome, 134 pp., 2019.

Fenicia, F., McDonnell, J. J., and Savenije, H. H. G.: Learning
from model improvement: On the contribution of complementary
data to process understanding, Water Resour. Res., 44, W06419,
https://doi.org/10.1029/2007WR006386, 2008.

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a
flexible approach for conceptual hydrological modeling: 1. Mo-
tivation and theoretical development, Water Resour. Res., 47,
W11510, https://doi.org/10.1029/2010WR010174, 2011.

Fenicia, F., Kavetski, D., Savenije, H. H. G., and Pfister, L.: From
spatially variable streamflow to distributed hydrological mod-
els: Analysis of key modeling decisions, Water Resour. Res., 52,
954–989, https://doi.org/10.1002/2015WR017398, 2016.

https://doi.org/10.5194/hess-25-957-2021 Hydrol. Earth Syst. Sci., 25, 957–982, 2021

https://doi.org/10.5194/hess-10-609-2006
https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.1111/1752-1688.12482
https://doi.org/10.1093/gji/ggy293
https://doi.org/10.1002/hyp.3360090305
https://doi.org/10.5194/hess-22-6415-2018
https://doi.org/10.5194/hess-22-6415-2018
https://doi.org/10.1016/j.advwatres.2008.06.005
https://doi.org/10.1029/2010WR009827
https://doi.org/10.1002/hyp.10536
https://doi.org/10.1029/2019WR026085
https://doi.org/10.5194/hess-22-1299-2018
https://doi.org/10.1002/qj.3244
https://doi.org/10.5194/hess-16-1191-2012
https://doi.org/10.5194/hess-17-1893-2013
https://doi.org/10.5194/hess-17-1893-2013
https://doi.org/10.1002/hyp.10445
https://doi.org/10.1029/2007WR006386
https://doi.org/10.1029/2010WR010174
https://doi.org/10.1002/2015WR017398


980 P. Hulsman et al.: Learning from satellite observations: increased understanding of catchment processes

Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D.
H., Verdin, J. P., Rowland, J. D., Romero, B. E., Husak,
G. J., Michaelsen, J. C., and Verdin, A. P.: A quasi-
global precipitation time series for drought monitoring, in:
Data Series 832, US Geological Survey, South Dakota, 4 pp.
https://doi.org/10.3133/ds832, 2014.

Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., and Savenije,
H. H. G.: Testing the realism of a topography-driven
model (FLEX-Topo) in the nested catchments of the Up-
per Heihe, China, Hydrol. Earth Syst. Sci., 18, 1895–1915,
https://doi.org/10.5194/hess-18-1895-2014, 2014.

Gao, H., Hrachowitz, M., Sriwongsitanon, N., Fenicia, F., Gharari,
S., and Savenije, H. H. G.: Accounting for the influence of
vegetation and landscape improves model transferability in a
tropical savannah region, Water Resour. Res., 52, 7999–8022,
https://doi.org/10.1002/2016WR019574, 2016.

Garavaglia, F., Le Lay, M., Gottardi, F., Garçon, R., Gailhard, J.,
Paquet, E., and Mathevet, T.: Impact of model structure on flow
simulation and hydrological realism: from a lumped to a semi-
distributed approach, Hydrol. Earth Syst. Sci., 21, 3937–3952,
https://doi.org/10.5194/hess-21-3937-2017, 2017.

Getirana, A. C. V.: Integrating spatial altimetry data into the auto-
matic calibration of hydrological models, J. Hydrol., 387, 244–
255, https://doi.org/10.1016/j.jhydrol.2010.04.013, 2010.

Gharari, S., Hrachowitz, M., Fenicia, F., Gao, H., and Savenije,
H. H. G.: Using expert knowledge to increase realism in
environmental system models can dramatically reduce the
need for calibration, Hydrol. Earth Syst. Sci., 18, 4839–4859,
https://doi.org/10.5194/hess-18-4839-2014, 2014.

Gupta, H. V., Wagener, T., and Liu, Y.: Reconciling the-
ory with observations: elements of a diagnostic approach
to model evaluation, Hydrol. Process., 22, 3802–3813,
https://doi.org/10.1002/hyp.6989, 2008.

Hargreaves, G. H. and Allen, R. G.: History and evaluation of harg-
reaves evapotranspiration equation, J. Irrig. Drain. Eng., 129, 53–
63, https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53),
2003.

Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapo-
transpiration from Temperature, Appl. Eng. Agricult., 1, 96–99,
https://doi.org/10.13031/2013.26773, 1985.

Herman, M. R., Nejadhashemi, A. P., Abouali, M., Hernandez-
Suarez, J. S., Daneshvar, F., Zhang, Z., Anderson, M. C.,
Sadeghi, A. M., Hain, C. R., and Sharifi, A.: Evaluating the
role of evapotranspiration remote sensing data in improving
hydrological modeling predictability, J. Hydrol., 556, 39–49,
https://doi.org/10.1016/j.jhydrol.2017.11.009, 2018.

Hrachowitz, M. and Clark, M. P.: HESS Opinions: The
complementary merits of competing modelling philosophies
in hydrology, Hydrol. Earth Syst. Sci., 21, 3953–3973,
https://doi.org/10.5194/hess-21-3953-2017, 2017.

Hrachowitz, M. and Weiler, M.: Uncertainty of Precipita-
tion Estimates Caused by Sparse Gauging Networks in a
Small, Mountainous Watershed, J. Hydrol. Eng., 16, 460–471,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000331, 2011.

Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink,
R., Freer, J., Savenije, H. H. G., and Gascuel-Odoux, C.: Process
consistency in models: The importance of system signatures, ex-
pert knowledge, and process complexity, Water Resour. Res., 50,
7445–7469, https://doi.org/10.1002/2014WR015484, 2014.

Hulsman, P., Winsemius, H. C., Michailovsky, C. I., Savenije, H. H.
G., and Hrachowitz, M.: Using altimetry observations combined
with GRACE to select parameter sets of a hydrological model
in a data-scarce region, Hydrol. Earth Syst. Sci., 24, 3331–3359,
https://doi.org/10.5194/hess-24-3331-2020, 2020.

Immerzeel, W. W. and Droogers, P.: Calibration of
a distributed hydrological model based on satel-
lite evapotranspiration, J. Hydrol., 349, 411–424,
https://doi.org/10.1016/j.jhydrol.2007.11.017, 2008.

Jiang, D. and Wang, K.: The role of satellite-based remote sensing
in improving simulated streamflow: A review, Water, 11, 1615,
https://doi.org/10.3390/w11081615, 2019.

Kavetski, D. and Fenicia, F.: Elements of a flexible ap-
proach for conceptual hydrological modeling: 2. Application
and experimental insights, Water Resour. Res., 47, W11511,
https://doi.org/10.1029/2011WR010748, 2011.

Kimani, W. M., Hoedjes, C. B. J., and Su, Z.: An As-
sessment of Satellite-Derived Rainfall Products Relative to
Ground Observations over East Africa, Remote Sens., 9, 430,
https://doi.org/10.3390/rs9050430, 2017.

Kirchner, J. W.: Getting the right answers for the right rea-
sons: Linking measurements, analyses, and models to advance
the science of hydrology, Water Resour. Res., 42, W03S04,
https://doi.org/10.1029/2005WR004362, 2006.

Kittel, C. M. M., Nielsen, K., Tøttrup, C., and Bauer-Gottwein,
P.: Informing a hydrological model of the Ogooué with multi-
mission remote sensing data, Hydrol. Earth Syst. Sci., 22, 1453–
1472, https://doi.org/10.5194/hess-22-1453-2018, 2018.

Koch, J., Siemann, A., Stisen, S., and Sheffield, J.: Spatial val-
idation of large-scale land surface models against monthly
land surface temperature patterns using innovative perfor-
mance metrics, J. Geophys. Res.-Atmos., 121, 5430–5452,
https://doi.org/10.1002/2015JD024482, 2016.

Koch, J., Demirel, M. C., and Stisen, S.: The SPAtial EFfi-
ciency metric (SPAEF): Multiple-component evaluation of spa-
tial patterns for optimization of hydrological models, Geosci.
Model Dev., 11, 1873–1886, https://doi.org/10.5194/gmd-11-
1873-2018, 2018.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of dis-
tributed hydrologic model parameterization on water fluxes at
multiple scales and locations, Water Resour. Res., 49, 360–379,
https://doi.org/10.1029/2012WR012195, 2013.

Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE
terrestrial water storage estimates, Water Resour. Res., 48,
W04531, https://doi.org/10.1029/2011WR011453, 2012.

Le Coz, C. and van de Giesen, N.: Comparison of rainfall prod-
ucts over sub-Sahara Africa, J. Hydrometeorol., 21, 553–596,
https://doi.org/10.1175/JHM-D-18-0256.1, 2019.

Li, Z., Yang, D., Gao, B., Jiao, Y., Hong, Y., and Xu, T.:
Multiscale hydrologic applications of the latest satellite pre-
cipitation products in the Yangtze river basin using a dis-
tributed hydrologic model, J. Hydrometeorol., 16, 407–426,
https://doi.org/10.1175/JHM-D-14-0105.1, 2015.

López, P. L., Sutanudjaja, E. H., Schellekens, J., Sterk, G., and
Bierkens, M. F. P.: Calibration of a large-scale hydrologi-
cal model using satellite-based soil moisture and evapotran-
spiration products, Hydrol. Earth Syst. Sci., 21, 3125–3144,
https://doi.org/10.5194/hess-21-3125-2017, 2017.

Hydrol. Earth Syst. Sci., 25, 957–982, 2021 https://doi.org/10.5194/hess-25-957-2021

https://doi.org/10.3133/ds832
https://doi.org/10.5194/hess-18-1895-2014
https://doi.org/10.1002/2016WR019574
https://doi.org/10.5194/hess-21-3937-2017
https://doi.org/10.1016/j.jhydrol.2010.04.013
https://doi.org/10.5194/hess-18-4839-2014
https://doi.org/10.1002/hyp.6989
https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
https://doi.org/10.13031/2013.26773
https://doi.org/10.1016/j.jhydrol.2017.11.009
https://doi.org/10.5194/hess-21-3953-2017
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000331
https://doi.org/10.1002/2014WR015484
https://doi.org/10.5194/hess-24-3331-2020
https://doi.org/10.1016/j.jhydrol.2007.11.017
https://doi.org/10.3390/w11081615
https://doi.org/10.1029/2011WR010748
https://doi.org/10.3390/rs9050430
https://doi.org/10.1029/2005WR004362
https://doi.org/10.5194/hess-22-1453-2018
https://doi.org/10.1002/2015JD024482
https://doi.org/10.5194/gmd-11-1873-2018
https://doi.org/10.5194/gmd-11-1873-2018
https://doi.org/10.1029/2012WR012195
https://doi.org/10.1029/2011WR011453
https://doi.org/10.1175/JHM-D-18-0256.1
https://doi.org/10.1175/JHM-D-14-0105.1
https://doi.org/10.5194/hess-21-3125-2017


P. Hulsman et al.: Learning from satellite observations: increased understanding of catchment processes 981

Mazzoleni, M., Brandimarte, L., and Amaranto, A.:
Evaluating precipitation datasets for large-scale dis-
tributed hydrological modelling, J. Hydrol., 578, 124076,
https://doi.org/10.1016/j.jhydrol.2019.124076, 2019.

Mendiguren, G., Koch, J., and Stisen, S.: Spatial pattern evaluation
of a calibrated national hydrological model – a remote-sensing-
based diagnostic approach, Hydrol. Earth Syst. Sci., 21, 5987–
6005, https://doi.org/10.5194/hess-21-5987-2017, 2017.

Michailovsky, C. I., Milzow, C., and Bauer-Gottwein, P.: As-
similation of radar altimetry to a routing model of the
Brahmaputra River, Water Resour. Res., 49, 4807–4816,
https://doi.org/10.1002/wrcr.20345, 2013.

Milzow, C., Krogh, P. E., and Bauer-Gottwein, P.: Combining satel-
lite radar altimetry, SAR surface soil moisture and GRACE to-
tal storage changes for hydrological model calibration in a large
poorly gauged catchment, Hydrol. Earth Syst. Sci., 15, 1729–
1743, https://doi.org/10.5194/hess-15-1729-2011, 2011.

Nijzink, R. C., Samaniego, L., Mai, J., Kumar, R., Thober, S.,
Zink, M., Schäfer, D., Savenije, H. H. G., and Hrachowitz, M.:
The importance of topography-controlled sub-grid process het-
erogeneity and semi-quantitative prior constraints in distributed
hydrological models, Hydrol. Earth Syst. Sci., 20, 1151–1176,
https://doi.org/10.5194/hess-20-1151-2016, 2016.

Nijzink, R. C., Almeida, S., Pechlivanidis, I. G., Capell, R., Gustafs-
sons, D., Arheimer, B., Parajka, J., Freer, J., Han, D., Wagener,
T., van Nooijen, R. R. P., Savenije, H. H. G., and Hrachowitz,
M.: Constraining Conceptual Hydrological Models With Mul-
tiple Information Sources, Water Resour. Res., 54, 8332–8362,
https://doi.org/10.1029/2017WR021895, 2018.

Odusanya, A. E., Mehdi, B., Schürz, C., Oke, A. O., Awokola,
O. S., Awomeso, J. A., Adejuwon, J. O., and Schulz, K.:
Multi-site calibration and validation of SWAT with satellite-
based evapotranspiration in a data-sparse catchment in south-
western Nigeria, Hydrol. Earth Syst. Sci., 23, 1113–1144,
https://doi.org/10.5194/hess-23-1113-2019, 2019.

Rajib, A., Evenson, G. R., Golden, H. E., and Lane, C.
R.: Hydrologic model predictability improves with spatially
explicit calibration using remotely sensed evapotranspira-
tion and biophysical parameters, J. Hydrol., 567, 668–683,
https://doi.org/10.1016/j.jhydrol.2018.10.024, 2018.

Rakovec, O., Kumar, R., Attinger, S., and Samaniego, L.: Improving
the realism of hydrologic model functioning through multivari-
ate parameter estimation, Water Resour. Res., 52, 7779–7792,
https://doi.org/10.1002/2016WR019430, 2016.

Rennó, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hod-
nett, M. G., Tomasella, J., and Waterloo, M. J.: HAND, a new
terrain descriptor using SRTM-DEM: Mapping terra-firme rain-
forest environments in Amazonia, Remote Sens. Environ., 112,
3469–3481, https://doi.org/10.1016/j.rse.2008.03.018, 2008.

Revilla-Romero, B., Beck, H. E., Burek, P., Salamon, P.,
de Roo, A., and Thielen, J.: Filling the gaps: Cali-
brating a rainfall-runoff model using satellite-derived sur-
face water extent, Remote Sens. Environ., 171, 118–131,
https://doi.org/10.1016/j.rse.2015.10.022, 2015.

Rientjes, T. H. M., Muthuwatta, L. P., Bos, M. G., Booij, M.
J., and Bhatti, H. A.: Multi-variable calibration of a semi-
distributed hydrological model using streamflow data and
satellite-based evapotranspiration, J. Hydrol., 505, 276–290,
https://doi.org/10.1016/j.jhydrol.2013.10.006, 2013.

Roy, T., Gupta, H. V., Serrat-Capdevila, A., and Valdes, J. B.: Us-
ing satellite-based evapotranspiration estimates to improve the
structure of a simple conceptual rainfall–runoff model, Hydrol.
Earth Syst. Sci., 21, 879–896, https://doi.org/10.5194/hess-21-
879-2017, 2017.

SADC: Integrated Water Resources Management Strat-
egy and Implementation Plan for the Zambezi River
Basin, Euroconsult Mott MacDonald, available at:
http://www.zambezicommission.org/sites/default/files/clusters_
pdfs/ZambeziRiver_Basin_IWRM_Strategy_ZAMSTRAT.pdf
(last access: February 2021), 2008.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale pa-
rameter regionalization of a grid-based hydrologic model
at the mesoscale, Water Resour. Res., 46, W05523,
https://doi.org/10.1029/2008WR007327, 2010.

Savenije, H. H. G.: Topography driven conceptual mod-
elling (FLEX-Topo), Hydrol. Earth Syst. Sci., 14, 2681–2692,
https://doi.org/10.5194/hess-14-2681-2010, 2010.

Schleiss, A. J. and Matos, J. P.: Chapter 98: Zambezi River Basin,
in: Chow’s Handbook of Applied Hydrology, edited by: Singh,
V. P., McGraw-Hill Education – Europe, USA, 2016.

Schumann, G., Kirschbaum, D., Anderson, E., and Rashid, K.: Role
of Earth Observation Data in Disaster Response and Recovery:
From Science to Capacity Building, in: Earth Science Satellite
Applications, edited by: Hossain, F., Springer International Pub-
lishing, Seattle, USA, 2016.

Seyler, F., Muller, F., Cochonneau, G., Guimarães, L., and Guyot,
J. L.: Watershed delineation for the Amazon sub-basin sys-
tem using GTOPO30 DEM and a drainage network extracted
from JERS SAR images, Hydrol. Process., 23, 3173–3185,
https://doi.org/10.1002/hyp.7397, 2009.

Stisen, S., McCabe, M. F., Refsgaard, J. C., Lerer, S., and Butts, M.
B.: Model parameter analysis using remotely sensed pattern in-
formation in a multi-constraint framework, J. Hydrol., 409, 337–
349, https://doi.org/10.1016/j.jhydrol.2011.08.030, 2011.

Stisen, S., Koch, J., Sonnenborg, T. O., Refsgaard, J. C., Bircher,
S., Ringgaard, R., and Jensen, K. H.: Moving beyond run-
off calibration – Multivariable optimization of a surface–
subsurface–atmosphere model, Hydrol. Process., 32, 2654–2668,
https://doi.org/10.1002/hyp.13177, 2018.

Sun, W., Song, H., Cheng, T., and Yu, J.: Calibration of hydrologi-
cal models using TOPEX/Poseidon radar altimetry observations,
Proc. IAHS, 368, 3–8, https://doi.org/10.5194/piahs-368-3-2015,
2015.

Sun, W., Fan, J., Wang, G., Ishidaira, H., Bastola, S., Yu, J., Fu,
Y. H., Kiem, A. S., Zuo, D., and Xu, Z.: Calibrating a hydro-
logical model in a regional river of the Qinghai–Tibet plateau
using river water width determined from high spatial resolu-
tion satellite images, Remote Sens. Environ., 214, 100–114,
https://doi.org/10.1016/j.rse.2018.05.020, 2018.

Swenson, S. C.: GRACE monthly land water mass grids NETCDF
RELEASE 5.0, PO.DAAC, CA, USA, 2012.

Swenson, S. C. and Wahr, J.: Post-processing removal of corre-
lated errors in GRACE data, Geophys. Res. Lett., 33, L08402,
https://doi.org/10.1029/2005GL025285, 2006.

Tang, X., Zhang, J., Gao, C., Ruben, G. B., and Wang, G.: Assess-
ing the uncertainties of four precipitation products for SWAT
modeling in Mekong River Basin, Remote Sens., 11, 304,
https://doi.org/10.3390/rs11030304, 2019.

https://doi.org/10.5194/hess-25-957-2021 Hydrol. Earth Syst. Sci., 25, 957–982, 2021

https://doi.org/10.1016/j.jhydrol.2019.124076
https://doi.org/10.5194/hess-21-5987-2017
https://doi.org/10.1002/wrcr.20345
https://doi.org/10.5194/hess-15-1729-2011
https://doi.org/10.5194/hess-20-1151-2016
https://doi.org/10.1029/2017WR021895
https://doi.org/10.5194/hess-23-1113-2019
https://doi.org/10.1016/j.jhydrol.2018.10.024
https://doi.org/10.1002/2016WR019430
https://doi.org/10.1016/j.rse.2008.03.018
https://doi.org/10.1016/j.rse.2015.10.022
https://doi.org/10.1016/j.jhydrol.2013.10.006
https://doi.org/10.5194/hess-21-879-2017
https://doi.org/10.5194/hess-21-879-2017
http://www.zambezicommission.org/sites/default/files/clusters_pdfs/Zambezi River_Basin_IWRM_Strategy_ZAMSTRAT.pdf
http://www.zambezicommission.org/sites/default/files/clusters_pdfs/Zambezi River_Basin_IWRM_Strategy_ZAMSTRAT.pdf
https://doi.org/10.1029/2008WR007327
https://doi.org/10.5194/hess-14-2681-2010
https://doi.org/10.1002/hyp.7397
https://doi.org/10.1016/j.jhydrol.2011.08.030
https://doi.org/10.1002/hyp.13177
https://doi.org/10.5194/piahs-368-3-2015
https://doi.org/10.1016/j.rse.2018.05.020
https://doi.org/10.1029/2005GL025285
https://doi.org/10.3390/rs11030304


982 P. Hulsman et al.: Learning from satellite observations: increased understanding of catchment processes

The World Bank: The Zambezi River Basin: A Multi-Sector Invest-
ment Opportunities Analysis, in: Volume 3 State of the Basin,
The International Bank for Reconstruction and Development,
The World Bank, Washington, D.C., 2010.

Tomkins, K. M.: Uncertainty in streamflow rating curves: Meth-
ods, controls and consequences, Hydrolo. Process., 28, 464–481,
https://doi.org/10.1002/hyp.9567, 2014.

University of East Anglia Climatic Research Unit, Harris, I. C.,
and Jones, P. D.: CRU TS4.01: Climatic Research Unit (CRU)
Time-Series (TS) version 4.01 of high-resolution gridded data
of month-by-month variation in climate (Jan. 1901–Dec. 2016),
Centre for Environmental Data Analysis, Norwich, UK,
https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0,
2017.

van Dijk, A. I. J. M. and Renzullo, L. J.: Water resource monitoring
systems and the role of satellite observations, Hydrol. Earth Syst.
Sci., 15, 39–55, https://doi.org/10.5194/hess-15-39-2011, 2011.

Vervoort, R. W., Miechels, S. F., van Ogtrop, F. F., and Guillaume, J.
H. A.: Remotely sensed evapotranspiration to calibrate a lumped
conceptual model: Pitfalls and opportunities, J. Hydrol., 519,
3223–3236, https://doi.org/10.1016/j.jhydrol.2014.10.034, 2014.

Weerasinghe, I., Bastiaanssen, W., Mul, M., Jia, L., and
van Griensven, A.: Can we trust remote sensing evapotranspi-
ration products over Africa?, Hydrol. Earth Syst. Sci., 24, 1565–
1586, https://doi.org/10.5194/hess-24-1565-2020, 2020.

Werth, S., Güntner, A., Petrovic, S., and Schmidt, R.: In-
tegration of GRACE mass variations into a global hy-
drological model, Earth Planet. Sc. Lett., 277, 166–173,
https://doi.org/10.1016/j.epsl.2008.10.021, 2009.

Westerberg, I., Guerrero, J. L., Seibert, J., Beven, K. J., and Halldin,
S.: Stage-discharge uncertainty derived with a non-stationary rat-
ing curve in the Choluteca River, Honduras, Hydrol. Process., 25,
603–613, https://doi.org/10.1002/hyp.7848, 2011.

Winsemius, H. C., Savenije, H. H. G., and Bastiaanssen, W. G. M.:
Constraining model parameters on remotely sensed evaporation:
justification for distribution in ungauged basins?, Hydrol. Earth
Syst. Sci., 12, 1403–1413, https://doi.org/10.5194/hess-12-1403-
2008, 2008.

Xu, X., Li, J., and Tolson, B. A.: Progress in integrating remote
sensing data and hydrologic modeling, Prog. Phys. Geogr., 38,
464–498, https://doi.org/10.1177/0309133314536583, 2014.

ZAMCOM, SADC, and SARDC: Zambezi Environment Out-
look 2015, Harare, Gaborone, 2015.

Zhang, K., Kimball, J. S., and Running, S. W.: A re-
view of remote sensing based actual evapotranspiration es-
timation, Wiley Interdisciplin. Rev.: Water, 3, 834–853,
https://doi.org/10.1002/wat2.1168, 2016.

Zink, M., Mai, J., Cuntz, M., and Samaniego, L.: Condition-
ing a Hydrologic Model Using Patterns of Remotely Sensed
Land Surface Temperature, Water Resour. Res., 54, 2976–2998,
https://doi.org/10.1002/2017WR021346, 2018.

Hydrol. Earth Syst. Sci., 25, 957–982, 2021 https://doi.org/10.5194/hess-25-957-2021

https://doi.org/10.1002/hyp.9567
https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0
https://doi.org/10.5194/hess-15-39-2011
https://doi.org/10.1016/j.jhydrol.2014.10.034
https://doi.org/10.5194/hess-24-1565-2020
https://doi.org/10.1016/j.epsl.2008.10.021
https://doi.org/10.1002/hyp.7848
https://doi.org/10.5194/hess-12-1403-2008
https://doi.org/10.5194/hess-12-1403-2008
https://doi.org/10.1177/0309133314536583
https://doi.org/10.1002/wat2.1168
https://doi.org/10.1002/2017WR021346

	Abstract
	Introduction
	Site description
	Data availability
	In situ discharge observations
	Spatially gridded observation


	Modelling approach
	Hydrological models
	Benchmark model (Model A)
	First model adaptation: adding groundwater upwelling (Models B–D)
	Second model adaptation: discretizing the groundwater system (Models E and F)

	Model performance metrics
	Discharge
	Evaporation and total water storage
	Multi-variable

	Model calibration
	Model validation

	Model results
	Benchmark model (Model A)
	Discharge-based calibration
	Multi-variable calibration
	Model deficiencies

	First model adaptation: adding groundwater upwelling (Models B–D)
	Discharge-based calibration
	Multi-variable calibration
	Model deficiencies

	Second model adaptation: discretizing the groundwater system (Models E and F)
	Discharge-based calibration
	Multi-variable calibration
	Model deficiencies


	Discussion
	Conclusion
	Appendix A: Abbreviations
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

