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1. Introduction
Precipitation extremes are commonly expected to increase with global temperature rise. Global climate 
model simulations show, that on large spatial and long temporal scales, the Clausius-Clapeyron (CC) rela-
tion presents a robust constraint in this context (Pall et al., 2007; Tebaldi et al., 2006). However, there are 
indications that on small spatial and short temporal scales a warming atmosphere enables rainfall amounts 
to increase above the CC rate of 7 % °C−1. For instance, Lenderink and van Meijgaard (2008) and Loriaux 
et al. (2013) showed that extremes of hourly and subhourly precipitation observations in the Netherlands 
exhibit an increase with warming up to 14 % °C−1. Similar results have been obtained for other locations, for 

Abstract There is increasing evidence that local rainfall extremes can increase with warming at a 
higher rate than expected from the Clausius-Clapeyron (CC) relation. The exact mechanisms behind this 
super-CC scaling phenomenon are still unsolved. Recent studies highlight invigorated local dynamics as 
a contributor to enhanced precipitation rates with warming. Here, cold pools play an important role in 
the process of organization and deepening of convective clouds. Another known effect of cold pools is 
the amplification of low-level moisture variability. Yet, how these processes respond to climatic warming 
and how they relate to enhanced precipitation rates remains largely unanswered. Unlike other studies 
which use rather simple approaches mimicking climate change, we present a much more comprehensive 
set of experiments using a high-resolution large eddy simulation (LES) model. We use an idealized 
but realistically forced case setup, representative for conditions with extreme summer precipitation in 
midlatitudes. Based on that, we examine how a warmer atmosphere under the assumption of constant and 
varying relative humidity, lapse rate changes and enhanced large-scale dynamics influence precipitation 
rates, cold pool dynamics, and the low-level moisture field. Warmer conditions generally lead to larger 
and more intense events, accompanied by enhanced cold pool dynamics and a concurring moisture 
accumulation in confined regions. The latter are known as preferred locations for new convective events. 
Our results show that cold pool dynamics play an increasingly important role in shaping the response of 
local precipitation extremes to global warming, providing a potential mechanism for super-CC behavior as 
subject for future research.

Plain Language Summary Observations and models show that rain extremes are increasing 
with global warming. Aggregated over large areas and long-time intervals, this increase will roughly follow 
the higher water holding capacity of air at a warmer temperature. However, local extreme storms show a 
much stronger response. This indicates that, in addition to a potentially greater local moisture availability 
in a warmer climate, rain events consume moisture from a larger area. Investigating this aspect requires 
expensive high-resolution models. We do this by simulating a typical summer day with heavy rainfall on 
an area roughly the size of the Netherlands. By changing the temperature along with other characteristics 
of the atmosphere, we mimic the impact of climatic change. Our results show that warmer conditions 
generally lead to larger and more intense storms. Furthermore, we find that moisture transport near the 
surface through the winds created by storms plays an important role. This can result in an accumulation 
of moisture at certain locations that stems from greater distances away. Freshly developing storms 
eventually can harvest this additional moisture. This feedback process intensifies under warmer and 
moister conditions and provides a potential mechanism for the strong increase of local rainfall extremes in 
a warmer climate.
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example, in Germany (Berg et al., 2013; Moseley et al., 2013), Hong Kong (Lenderink et al., 2011), and some 
regions of Australia (Wasko et al., 2018).

The mechanism behind the phenomenon of enhanced precipitation scaling with warming beyond the CC 
rate is still subject to ongoing research. A common theory suggests that invigorated convective updrafts 
through additional latent heating amplify moisture convergence and therefore moisture supply to the storm 
itself (Trenberth et al., 2003). Indeed, enhanced large-scale convergence is often found in combination with 
high precipitation rates and even further increases at warmer and moister surface conditions (Lenderink 
et al., 2017). The spatial properties of rainfall events might also play a crucial role here. Rain radar data 
analysis reveals that convective rain cells grow larger and intensify over most of their area at higher tem-
peratures and moisture availability (Lochbihler et al., 2017). Similar results from LES simulations confirm 
that size and intensity of rainfall events are clearly linked in such a scenario (Lochbihler et al., 2019). This 
indicates that enhanced precipitation intensities are at least partly attributable to a larger area of moisture 
supply to the storm.

Another potential driver for enhanced precipitation rates with warming is cloud-cloud interaction 
through cold pools. According to Tompkins (2001), cold pools generally evolve in the following manner. 
After an initial cooling and moistening of the subcloud layer through the evaporation of falling rain 
drops, the resulting relatively cold and dry air masses descend to lower levels, driven by gravity, and even-
tually reach the surface. This forces the cold pool to spread horizontally and while it remains relatively 
dry in the center the edges are moist. The resulting dynamics let cold pools play an important role for 
the formation of deep convection. If cold pool formation is suppressed, clouds remain small and shallow 
(Böing et al., 2012; Khairoutdinov & Randall, 2006). Furthermore, the triggering of convection at cold 
pool edges (e.g., Hirt et al., 2020; Seifert & Heus, 2013; Tompkins, 2001; Torri et al., 2015) or by collision 
of two or more cold pools (e.g., Haerter et al., 2019) plays a crucial role in the process of convective self-ag-
gregation and organization.

Cold pool dynamics also modify the local low-level moisture field and, hence, moisture availability to con-
vective clouds. For instance, Schlemmer and Hohenegger (2016) show, by using idealized Large eddy simu-
lations (LES), that most of the accumulated moisture in nonprecipitating regions stems from the advection 
through laterally spreading cold pools. Other sources, for example, surface fluxes, play a rather minor role 
in this context (Fuglestvedt & Haerter, 2020; Schlemmer & Hohenegger, 2016). These regions of relatively 
higher moisture content are then preferred locations for new convective cells. Evidence for the link be-
tween cold pool induced moisture convergence and subsequent convective events is further strengthened 
by Fuglestvedt and Haerter (2020). The authors use a back tracking method to establish a direct connection 
between cold pools as moisture conveyors and new convective rain events.

In this study, we use an LES model (200 m resolution on a 192 × 192 km domain) to analyze cold pool 
properties, and their relation to rainfall rates, for a case of heavy convection at midlatitudes. Previous stud-
ies have used rather simple perturbations to mimic climate change (e.g., Haerter & Schlemmer, 2018), but 
here we present a much larger set of perturbed experiments. These perturbations reflect warmer climatic 
perturbations, and cooler as well, based on projected changes of large-scale conditions in global climate 
model simulations. As such, besides perturbations with uniform vertical warming, and constant relative 
humidity, also different perturbations with enhanced warming at upper levels (reflecting a stabilization 
of the atmosphere in terms of the dry lapse rate) and decreased relative humidity are studied. Although 
these perturbations cover a broad range of possible future conditions, they obviously do not sample climate 
change to a full extent.

These experiments also differ from the radiative-convective equilibrium (RCE) simulations performed 
for the tropics where CC-scaling robustly applies (e.g., Fildier et al., 2017; Romps, 2011). Instead of stud-
ying the quasiequilibrium response in RCE, we use a strongly time varying forcing which destabilizes 
the atmosphere and provides moisture, and which are connected to surface fluxes and the passage of 
a larger-scale (synoptic) disturbance. For each of the resulting 25 experiments, we identify rain events, 
cold pools, and moist areas by a clustering method. We investigate how the intensity and size of rain 
events differs between the different simulations and how cold pool activity and the low-level moisture 
field relates to that.
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2. Methods
2.1. Simulation Setup

We use the Dutch Atmospheric Large Eddy Simulation (DALES) model (version 4.1; Böing et al., 2012; 
Heus et al., 2010) with a single moment cloud microphysics scheme (Böing et al., 2012; Grabowski, 1998). 
The evaporation of rain drops is parameterized as a function of the saturation deficit of the surrounding air 
mass, making the model suitable to study the effects of cold pools. The large-scale forcings, radiative cooling 
(1.5 K/day) and surface fluxes are prescribed. The simulations run with a horizontal resolution of 200 m on 
a domain of 192 × 192 km. The vertical grid has 240 levels with a variable layer thickness ranging from 40 m 
near the surface to 150 m at the top.

The case setup and forcing is similar to the LES simulation in Lochbihler et  al.  (2019) and Loriaux 
et al. (2017). They were derived from a typical summer day with extreme precipitation in the Netherlands 
under current climate providing initial conditions (Figure 1), surface forcing and large-scale winds, includ-
ing the large-scale vertical velocity, omega (see Lochbihler et al., 2019 for details). In contrast to the case 
setup in Lochbihler et al. (2019), we used a normal day length, but to allow a longer period of organized 
convection, we instead extended the peak forcing of omega and surface fluxes during the second half of the 
simulation (see Figures S1 and S2). This is primarily needed to provide more robust statistics and to over-
come limitations from the initialization by spatially uniform conditions leading to an initial convective state 
which is still characterized by many (unorganized) small-scale showers and considered less realistic (see 
also Lochbihler et al., 2019). After this initial state, the precipitation field transforms into fewer but larger 
multicell events. We refer to this characteristic when we use the term organized.

In addition to the CTL run, we ran a large number of experiments with different perturbation strategies. In 
total, there are five groups of perturbations which are summarized in Table 1.

The first experimental group, named the TEMP group, perturbs the initial temperature profile in steps of 
2 K from −4 K to +4 K with respect to CTL. This perturbation is constant with height. The profile of specific 
humidity is adjusted to keep relative humidity identical to CTL. This leads to an increase/decrease of dew 
point temperature as indicated in the experiment name tag. The changes in near surface dew point are used 
as a tag in all other experiments. We note that the stability of the atmosphere with respect to moist processes 
decreases from colder to warmer runs in such a setting.

Since relative humidity is generally expected to decrease with a warming atmosphere over land (e.g., O'Gor-
man & Muller,  2010), the second group, RH, introduces changes of relative humidity. This is achieved 
by taking the profiles of the TEMP group and further increase temperature by 1 K for P2K and 2 K for 
P4K (P2Krh and P4Krh). In case of the M2K and M4K experiments, temperature is lowered by the respec-
tive value (M2Krh and M4Krh). This causes an approximately uniform decrease of relative humidity for 
the warmer runs (P2Krh and P4Krh), whereas in the colder experiments, humidity is closer to saturation. 
Figure 1b illustrates this for the M4Krh and P4Krh experiments. The M2Krh and P2Krh experiments are 
approximately half way in between. We note that by applying this procedure, the absolute humidity of the 
air—near surface as measured by the dew point temperature but also in a vertically integrated sense—is the 
same as in the TEMP group.

In a similar way, but restricted to levels below 3 km, the experiments in the RHL group have a lower (high-
er) relative humidity for the P4Krhl (M4Krhl) experiments. Figure  1c illustrates this perturbation. This 
approach represents a more realistic vertical profile of relative humidity changes with warming specifically 
in the case of extreme precipitation events (see Figure 1b in Attema et al., 2014). To avoid an abrupt jump of 
temperature and relative humidity, we linearly interpolate temperature between 3 and 2 km. Below 2 km, 
the profiles are identical to the M4Krh and P4Krh experiments. We note that, whereas in RH the atmos-
pheric dry lapse rate (dry stability) is unchanged compared to the TEMP group, in this experiment changes 
in dry stability occur due to the enhanced boundary layer warming imposed.

Atmospheric warming due to a climate change is expected to vary with height, which is primarily related 
to convection which tends to keep the atmospheric lapse rate close to a moist adiabat with greater warming 
aloft (Bony et al., 2006; Tett et al., 1996). To account for these changes in the thermal stratification as the at-
mosphere warms, we apply a nonuniform temperature perturbation. Using a similar approach as in Loriaux 
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et al. (2013), the temperature perturbations of the experiments M4Klps100 and P4Klps100 of the LAPSE 
group follow a moist adiabatic lapse rate, while the M4Klps50 and P4Klps50 experiments are subjected to 
a temperature change that is halfway between a moist adiabatic perturbation and a uniform perturbation. 
More specifically, the resulting temperature profiles are a linear combination of a constant shift (e.g., P4K) 
and (the fraction of) a moist adiabatic temperature perturbation. For a more detailed description, see Sec-
tion 5 in Loriaux et al. (2013). All profiles of the temperature perturbations from the LAPSE group are dis-
played in Figure 1d. Note, that all these perturbations are uniform below 1 km which is approximately equal 
to the height of the lifting condensation level. The specific humidity is modified in all the experiments of the 
LAPSE group to keep the relative humidity identical to CTL. Since moist adiabatic perturbations hardly af-
fect the moist stability of the atmosphere, it should be noted that the destabilization of the atmosphere with 
warming is much stronger for the TEMP group than for the LAPSE group (see also Figure S3 that shows 
the time development of the CAPE of the various experiments). Also, we note that the vertically integrated 
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Figure 1. Initial temperature T and relative humidity RH profiles of the CTL setup (a) and the relative change of both 
variables for various types of perturbations, more specifically the RH (b), RHL (c), and LAPSE (d) groups. Note that, 
except for the LAPSE group, solid lines indicate temperature (bottom axis) and dashed lines represent relative humidity 
(top axis).
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water vapor is not identical to the corresponding experiments 
in the TEMP group (compare Figure S4).

The last perturbation group varies the large-scale conver-
gence (LS). Extreme precipitation events are often associ-
ated with a strong large-scale vertical lifting (Lenderink 
et al., 2017). Thus, we carry out an additional group of simu-
lations, LS, with enhanced forcing of the large-scale vertical 
velocity, wls. This is done by increasing wls in the TEMP exper-
iments by 30% and 60%.

As an aside we note that, due to intensive testing, we were able 
to obtain three realizations of the CTL and two of the M2K. They 
are represented as separate dots/lines in all following figures.

2.2. Identification of Rain Cells, Cold Pools, and Moist 
Patches

Following the approach of Lochbihler et al. (2017, 2019), we 
group continuous areas of surface precipitation to clusters 
hereby called rain cells. Two grid points belong to the same 
rain cell if they are neighbors in x or y direction. In order 
to avoid small cells with low intensity, grid points below a 
threshold of 0.6 mm h−1 are ignored. For the same reason we 
first coarse grain the precipitation output from a resolution 
of 200–400 m.

The principles of the described clustering process can also be 
used for the identification of cold pools. However, the detec-
tion criteria are obviously different. We follow the method of 
Schlemmer and Hohenegger (2014, 2016). Since a cold pool 
is a descending, relatively cold and dry air mass originating 
from evaporation of rain drops, the equivalent potential tem-
perature (θe) is a suitable indicator to diagnose the presence 

of a cold pool. More specifically, we calculate a low-level average of θe and subtract the domain average for 
each time step to obtain the horizontal field anomaly Δθe. Unlike Schlemmer and Hohenegger (2014, 2016), 
we have only output for two model levels at 20 m and 100 m. The Δθe fields are first coarse grained to the 
same resolution as the precipitation output and then smoothed with a Gaussian low-pass filter to remove 
remaining numerical noise. Figure 2a shows an example taken from the control simulation. In contrast to 
Schlemmer and Hohenegger (2014), we choose a less restrictive threshold for Δθe of −1 K. Testing has shown 
that this allows for smoother cold pool edges and thus reduces the cutoff of grid points which belong to the 
same cold pool. However, in accordance with Schlemmer and Hohenegger (2014), we neglect all cold pools 
that do not reach −2 K. In case of cold pools, we also aim to quantify the areal growth rate. Thus, informa-
tion about overlapping cold pools from one time step to another are saved during the clustering procedure.

Finally, we also apply the clustering technique to field anomalies of water vapor specific humidity, Δqv, to 
detect relatively moist areas in the domain, called moist patches (Schlemmer & Hohenegger, 2016). The 
same averaging and smoothing procedure is used as for Δθe is. The threshold for Δqv is 0.75 g kg−1.

2.3. Precipitation Measures, Characteristics of Rain Cells, Cold Pools, and Moist Patches

We use domain averaged precipitation statistics for a first basic comparison of the different perturbation 
groups. We apply the same threshold as used for the rain cell clustering procedure. Thus, grid points with a 
rain rate less than 0.6 mm h−1 are considered as zero precipitating. For each time step, we calculate the do-
main averaged conditional precipitation rate Pr and the precipitation area fraction α. Pr is the mean rainfall 
rate over all grid points with precipitation in the domain, hence the term conditional. Zero precipitating grid 
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Name tag Group tag Perturbation

• CTL – –

• M4K TEMP full-column −4K with const. RH

• M2K TEMP full-column −2K with const. RH

• P2K TEMP full-column +2K with const. RH

• P4K TEMP full-column +4K with const. RH

▴ M4Krh RH like M4K but with additional −2K; RH = CTL+10%

▴ M2Krh RH like M2K but with additional −1K; RH = CTL+5%

▴ P2Krh RH like P2K but with additional +1K; RH = CTL−5%

▴ P4Krh RH like P4K but with additional +2K; RH = CTL−10%

■ M4Krhl RHL like M4K but with additional −2K below 2 km

■ P4Krhl RHL like P4K but with additional +2K below 2 km

+ M4Klps50 LAPSE M4K with 50% moist adiabat superimposed; RH = CTL

+ P4Klps50 LAPSE P4K with 50% moist adiabat superimposed; RH = CTL

⊞ M4Klps100 LAPSE M4K with full moist adiabat superimposed; RH = CTL

⊞ P4Klps100 LAPSE P4K with full moist adiabat superimposed; RH = CTL

♢ CTLls30 LS CTL with 30% enhanced large-scale convergence

⊕ CTLls60 LS CTL with 60% enhanced large-scale convergence

♢ M4Kls30 LS M4K with 30% enhanced large-scale convergence

♢ P4Kls30 LS P4K with 30% enhanced large-scale convergence

⊕ M4Kls60 LS M4K with 60% enhanced large-scale convergence

⊕ P4Kls60 LS P4K with 60% enhanced large-scale convergence

Note. See text for a more elaborate explanation of the different perturbation strategies.

Table 1 
Table of Experiments
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points are excluded from the averaging process. α is defined as the number of grid points with precipitation 
divided by the total number of grid points in the domain. In both cases, grid points with precipitation rates 
below the clustering threshold are considered as zero precipitating grid points.

The clustering algorithm allows the derivation of several metrics to describe the properties of rain cells, cold 
pools, and moist patches. The subscript i in the following definitions represents a single rain cell, cold pool, 
or moist patch. The linear size Li of rain cell i is defined as the square root of the area Ai. Second, we calculate 
the average intensity of each cell Pi,r by summing up the rain rates of all grid points belonging to a cell divided 
by their number. To capture the combined effect of rain cell area Ai and intensity Pi,r, we define Pi,car which is 
the product of the area and intensity and, thus, the total amount of rain produced by a rain cell per unit time.

In order to characterize cold pool activity, we make use of two measures. First, the cold pool volume Ci,v 
which is defined as the product of the cold pool area and its average θe anomaly. This gives a combined esti-
mate of how large and deep cold pools grow and, at the same time, allows for an easier visual interpretation 
than each variable separately. For the sake of an easier visual interpretation, we drop the negative sign of 
Ci,v. Second, we derive the areal growth rate of a cold pool Ci,gr. This is done by matching overlapping cold 
pools in subsequent time steps and calculating the difference in area. Only cold pools that do not split in the 
next time step, and have not just merged, are considered (that is, only one forward link and zero or one back 
link in time). So area growth/decrease due to the merging or splitting of cold pools is excluded. To measure 
the growth of active cold pools, we restrict our analysis to those that grow in time and have an overlap with 
at least one rain cell.

The accumulation of low-level specific humidity in moist patches is measured in analogy to the cold pool 
volume. We therefore define the moist patch volume Mi,v as the product of the moist patch area and its 
average Δqv.

LOCHBIHLER ET AL.
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Figure 2. An illustration of the clustering of Δθe to cold pools (a and b) and Δqv to moist patches (c and d). Left panels show the plain Δθe and Δqv fields after 
18 h simulation time. Identified cold pools and moist patches are overlaid in black in the right panels. Note that, in addition to the color mapping, the 2D fields 
are warped by the values of the respective variable for an easy visualization of the steep gradients along cold pool and moist patch edges. An animated video 
(video animation V1) showing the temporal evolution of the low-level Δθe fields is available from the supplementary material.
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3. Results
3.1. Simulation Overview

The applied perturbation strategies create a diverse set of experiments. A modification of initial tempera-
ture, lapse rate, relative humidity, and large-scale convergence potentially influences several precipitation 
characteristics, for instance, the temporal evolution during the model day, rainfall intensities, and spatial 
properties of the precipitation field as well as individual events. In order to give an overview over the most 
fundamental differences between the experiment groups, we first focus on domain average precipitation 
statistics. Figure 3 shows the temporal evolution of the precipitation area fraction α and conditional rain 
rate Pr for the different groups.

The precipitation area fraction principally shows a similar temporal evolution for all experiments in all 
groups. Following an initial rapid increase after precipitation onset, the area fraction quickly decreases to 
a lower level for the rest of the simulation. In contrast to that, the rain rate rather continuously increases. 
This behavior has been described in Lochbihler et al. (2019) and essentially indicates a transition from a 
state with widespread small-scale unorganized showers to a state with a more limited number of showers, 
that are larger, more organized and more intense.

Besides these general commonalities of the experiments, there is a number of distinct differences between 
the groups. First and most obvious, the modification of relative humidity alters the timing of the precipi-
tation onset. While the increased relative humidity in the M4Krh experiment shifts the precipitation onset 
toward the beginning of the simulation, we find a postponed onset in the P4Krh run. The other experiments 
line up in between at nearly constant intervals. This is most likely the effect of a lower lifting condensation 
level due to the higher relative humidity in the colder runs of the RH (and RHL) group. The opposite is the 
case in warmer simulations. Another difference between the TEMP and RH groups is a reversed order of 
the experiments with the highest area fraction during the first hours after precipitation onset. In the TEMP 
group, the P4K experiment shows the highest area fraction while in the RH group the M4Krh experiment 
sits on top. In a later stage of the simulation, these differences virtually vanish.

Compared to the TEMP group the warmer experiments in the RH group show larger temporal fluctuations, 
indicative of more vigorous dynamics. Additionally, within the RH group, the precipitation rates, after the 
onset of rain, spin up much faster in warmer experiments than in colder experiments and, in a similar way, 
temporal variability of the rain rate increases with warming. The large fluctuations of the area fraction and 
rain rate in the P4Krh experiment indicate short bursts of intense precipitation most likely caused by few 
but relatively large events; the smooth and steadily increasing rain rate in the M4Krh experiment on the 
other hand is symptomatic of numerous small, continuously emerging, and decaying events. According to 
Lochbihler et al. (2019), the enhanced temporal fluctuations in warmer runs can be traced back to a strong-
er stabilization of the atmosphere after precipitation rates peak. Subsequently, more time is needed until the 
prescribed large-scale convergence and surface fluxes refill the moisture deficit. The consequence is a more 
reduced rain activity after each burst of precipitation (see time series of CAPE and water vapor path in the 
Figures S3 and S4 in the supplement).

The temporal evolution of surface precipitation in the other groups follows very similar paths. In the same 
way as the RH group, the experiments in the RHL group show substantial shifts of the precipitation onset. 
The time difference is about 5 h. However, in contrast to the RH group the initial precipitation area fraction 
for the P4Krhl experiment is higher than in the M4Krhl run. Nevertheless, just as in the RH group, both 
the increase in rain rate over time and the temporal variability are lower in the colder than in the warmer 
runs.

With an increased large-scale convergence in the LS group, we observe a generally increased area fraction (com-
pare dashed with solid lines). In the first hours after onset, this group shows the highest values of all experiments. 
The P4Kls60 experiment reaches a peak of 27%. However, the precipitation rate shows no significant difference 
when compared to the TEMP. Thus, we find that a modification of the large-scale convergence predominantly 
alters the area fraction of precipitation and not its intensity. This is in accordance with Loriaux et al. (2017) who 
further hypothesize that an increased large-scale vertical lifting triggers convection easier at more locations in 
the domain, leading to a higher area fraction but not necessarily higher precipitation rates per event.
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A modification of the lapse rate has a small impact on the timing of precipitation onset. As expected, 
more stable conditions (in terms of lapse rate) slightly delay the onset and first peak of precipitation (as in 
P4Klps50 and P4Klps100), whereas the more unstable condition in the colder runs lead to slightly earlier 
onset of precipitation. In the most extreme experiments (P4Klps100 and M4Klps100), we find a reduced/
increased precipitation area fraction in the first few hours after onset. The remaining part of the simulation 
in the LAPSE group shows no significant difference of area fraction between the experiments. Apart from 
this the precipitation rate increases from the coldest to the warmest experiments.

While domain averaged rain statistics reveal some basic properties of the response of the different exper-
iments, they do not reveal the rain cell properties very well. In order to investigate rain cell properties in 
the next sections, and how they relate to the cold pool properties, we pooled data over a sufficiently long-
time window of the simulation. As found in Lochbihler et al. (2019), in the course of the simulation, the 
precipitation field undergoes significant changes from many small cells to fewer but bigger events. Since 
we are particularly interested in the characteristics of convective precipitation in a more organized state, 
we choose to sample only events from a time window at a later stage of the simulations. Due to the obvious 
timing differences, we set the sampling interval relative to the time of precipitation onset. More specifically 
we use only data between 3 h after onset until 9 h after onset. This way we avoid a pollution of the statistics 
with data from around the first peak of precipitation area fraction where almost all rainfall events are of 
type small single-cell convection. Furthermore, the 6 h length of the time window guarantees a sufficient 
amount of precipitation events even for the RH and RHL groups. This choice proves robust even when 
choosing a different start for the analysis time window (compare Figure 5d and Figure S5).
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Figure 3. Time series of precipitation area fraction α (left panels) and conditional precipitation rate Pr (right panels). 
Each panel, from top to bottom, shows one specific perturbation group together with the control simulation.



Journal of Advances in Modeling Earth Systems

3.2. Intensity and Size of Rain Cells

Figure 4 shows the empirical cumulative distribution function (ECDF) of cell size and intensity for the 
experiments in the TEMP group derived from the 6 h time window. It illustrates that the size of large rain 
cells (>95th percentile) increases with temperature from the M4K to the P4K experiment. Below the 95th 
percentile threshold, cells are smaller in colder runs compared to warmer experiments. The same observa-
tion can be made for the intensity of rain cells (Figure 4b).

Since we are particularly interested in the most extreme and largest events, and at the same time, aim at 
comparing all experiments in all groups, we chose to calculate a high percentile from the distributions of 
cell size and intensity and use this percentile in further analysis. For this purpose, we choose the 99.5th 
percentile which is beyond the pivot point (95th percentile) but not yet prone to be polluted by outliers 
and therefore poor statistics. The 99.5th percentile is marked by a black vertical line in Figures 4a and 4b. 
Despite the fact that other percentiles deliver very similar results (see Figure S5), we find that this choice 
provides the best compromise with respect to the varying sample sizes between the different experiments.

Figure 5 shows the results of this analysis. Since at first sight the results of all experimental groups may 
be overwhelming, we introduce this plot by separating out the results of the different experiment groups 
here. Figure 5a compares the TEMP and LS groups. With focus on the x-axis, it becomes clear that for both 
groups one can observe an increase of rain cell intensity from the coldest to the warmest experiments. 
Concurrently, rain cells grow in size. However, the enhanced large-scale convergence in the LS group seems 
to generally only increase the rain cell size while cell intensities remain virtually the same as in the TEMP 
group. This appears as a vertical shift, as indicated by the arrows in Figure 5a. In essence, this resembles the 
domain wide increase of precipitation area fraction as described in the previous section, see also Figure 3. 
We note that these results contradict the theory that the higher area fraction is caused by a larger number 
of events of roughly the same size, as speculated by (Loriaux et al., 2017).

The response to stability changes in the LAPSE group with respect to the standard group, TEMP, is less uni-
vocal (Figure 5b). While the full adiabatic perturbations, M4Klps100 and P4Klps100, are on a clear trajecto-
ry toward the CTL setup (see arrows in Figure 5b), the intermediate experiments, M4Klps50 and P4Klps50, 
have a less unique direction. Nonetheless, in the first case, it can be concluded that cell intensity and size 
are eventually both affected by this perturbation setup.

In case of the perturbations of the relative humidity, the RH and RHL groups, there are multiple aspects 
(Figure 5c). First, although there is no increase of rain cell intensity from the P4K to the P4Krh experiments, 
the rain cells are larger in the latter case (red vertical arrow). This is particularly interesting since these 
experiments have the same amount of water vapor in their initial profiles and differ only in temperature 
and thus relative humidity (see Figure S4). The opposite behavior can be observed in the case of the M4K 
and M4Krh experiments: cell intensity decreases while the size remains nearly the same (blue horizontal ar-
row). In between, the P2Krh experiment shows a different behavior. Compared to their equivalents from the 
TEMP group cell size and intensity increases. Even more, both cell size and intensity increase to a point that 
are almost equal to the ones in the P4K experiment. This means, that a slightly lower relative humidity can 
boost precipitation intensity and event size to an equivalent level as in a considerably moister and warmer 
situation. The opposite behavior can be observed for the M2K and M2Krh experiments. The diagonal arrows 
in Figure 5c illustrate the described shifts. The response of cell intensity and size in the RHL group seems to 
follow a similar path although the signal is stronger for the colder runs than for the warmer experiments. We 
note that enhanced warming only near the surface also changes the atmospheric stability compared to the 
RH group where warming is applied to the whole atmospheric column (compare CAPE time series in Fig-
ure S3). This complicates interpretation. Also, we cannot identify a reason for the upper and lower bounds on 
Pi,r and Li. We conclude that changes in relative humidity have quite strong impacts on cell size and intensity. 
Surprisingly, a lower relative humidity with warming leads to bigger/more intense cells, and vica versa.

In the proceeding, we will relate the rain cell properties to cold pool properties. To do so, we will take the 
product of rain cell area and intensity, and call this measure the cell-aggregated rain rate Pcar, which is the 
total amount of rain per unit time. From the previous results it is already clear that rain cell intensity and size 
are well related, but it is not so clear whether the product of the 99.5th percentiles of intensity and area gives 
a good measure of the 99.5 percentile of cell-aggregated rain rate. Therefore, Figure 6 shows the product of 
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the 99.5th percentile of cell area and average intensity (pseudo Pcar) in relation to the true value of the 99.5th 
percentile of Pcar. Despite a slight deviation from the diagonal, both quantities linearly increase from the cold-
est to the warmest experiments. This shows that the separate contributions of cell size and intensity to Pcar 
systematically add up across all simulations. This is even closer to unity at lower percentiles (see Figure S6).

Using Pcar as the rainfall statistics, we investigate its relation with the cold pool properties. This will be done 
in two separate parts. First, we concentrate on how rainfall affects cold pool dynamics. In the second part, 
we investigate how cold pool dynamics alter the variability of the low-level moisture field and how this 
could feed back to the rainfall statistics. We note that obviously these two are intertwined forming a feed-
back loop, yet for means of simplicity and physical understanding we present both parts separately.

3.3. Cold Pool Activity in Response to Rain Activity

We make use of two quantities related to cold pool activity. While cold pool volume measures the combined 
effect of the area and depth of cold pools, the growth rate indicates the speed at which active cold pools 
spread. Again, a percentile from the distribution of the cold pool property (growth and volume) is chosen 
similar to rain cell precipitation. Here, we chose the 95th percentile, which is lower than the 99.5th percen-
tile for rain cell statistics. Since precipitation precedes the formation of a cold pool and cold pools without 
an associated rain cell are excluded from our analysis, sample sizes are even smaller than those for rain cells. 
Only selecting cold pools with increasing size, as we do in the case of cold pool growth rate, further shrinks 
sample sizes. Under these circumstances, we chose the 95th percentile. Testing has shown that the 95th 
percentile captures the most extreme cold pools in all experiment groups while still guaranteeing a robust 
estimate despite the varying sample sizes.

Since evaporation of rain is the primary driver for cold pools, we start by looking at the relation between the 
rain produced by a cell (Pi,car) and cold pool growth rate (Ci,gr), see Figure 7a. Assuming that the evaporation 
is proportional to the rain cell rain rate, we expect a good correlation. Indeed, a very strong relation is found 
between Pi,car and cold pool growth rate, with data almost on a straight line (through the origin). In general, 
larger and stronger precipitating rain cells cause faster spreading cold pools. However, the strength of the 
response depends on the initial temperature. Ci,gr and Pi,car rather weakly increase with initial temperature 
in the coldest simulations. Those experiments are densely packed in the lower left corner of Figure 7a. In 
warmer simulations, we find that the spread increases the higher the temperature.
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Figure 4. Probability of exceedance for rain cell size Li (a) and average intensity Pi,r (b) for the experiments of the TEMP group. Top axis shows corresponding 
percentiles. The 99.5th percentile is marked by a black vertical line.
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Looking specifically at the TEMP group, we find that cold pool growth rate continuously and strongly in-
creases with higher temperature and moisture availability from the M4K to the P4K experiment. The strong-
er large-scale convergence in the LS group virtually has no additional effect on the cold pool growth rate 
when compared to the TEMP group despite the presence of larger rain cells (see Figure 5a). In the LAPSE 
group, the previously described trajectory from the corresponding experiments in the TEMP group toward 
the CTL run appears to be a persistent feature: Cold pool growth rate decreases along with rain cell-aggre-
gated rain rate from the P4K to the P4Klps100 experiment and vice versa from M4K to M4Klps100. The RH 
and RHL however respond differently in terms of the cold pool volume. The experiments in both groups 
show, in relation to their partners in the TEMP group, a further amplification of the signal. For instance, 
Ci,gr further increases from the P2K to the P2Krh and from the P4K to the P4Krh experiments. The P4Krhl 
experiment has the fastest spreading cold pools. Cold pool growth rate in the M2Krh, M4Krh and M4Krhl 
experiments responds the opposite way, although the signal is rather weak in this case. We therefore con-
clude that evaporation of precipitation, the main driver of cold pools, further increases at decreased relative 
humidity and, thus, leading to stronger cold pools at comparable rainfall intensity in an atmosphere which 
is closer to saturation (e.g., compare P4K and P4Krh experiments).
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Figure 5. The 99.5th percentile of cell average intensity Pi,r versus rain cell size Li. Panel (a) shows the TEMP and LS groups, (b) the TEMP and LAPSE groups, 
(c) the TEMP, RH, and RHL groups. All groups together are depicted in (d). Arrows illustrate relative changes with respect to the TEMP group (see text).
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Due to the nature of cold pools which are essentially density currents, 
one would expect that faster spreading cold pools are associated with a 
stronger and more spacious θe anomaly. Figure 7b confirms this relation. 
Cold pool volume—the product of the average θe anomaly and the area 
of a cold pool—linearly increases with cold pool growth rate, and there-
fore with the initial temperature of the different simulations. Again, the 
rate of increase with initial temperature is lower for colder simulations 
than for the warmest. Particularly the warmest experiments in the RH 
and RHL groups exhibit a strong increase when compared to the TEMP 
group. The damping effect of a more stable atmosphere on the warmer 
side of the LAPSE experiments is also reflected here in form of smaller 
and weaker cold pools which eventually spread slower.

3.4. Low-Level Moisture and Rain Activity in Response to Cold 
Pool Activity

One of the key characteristics of laterally spreading cold pools is that they 
create a divergent wind field near the surface, and areas of convergence 
at the cold pool fronts and where different cold pool collide (Schlemmer 
& Hohenegger, 2014). Given the presence of multiple cold pools in dif-
ferent locations, this eventually leads to confined regions with strongly 
enhanced moisture content (see Figure 2).

We quantify these relatively moist regions in the domain by the product 
of their average moisture content and area, called moist patch volume. 

In analogy to previous figures, we draw a high percentile from the distribution of moist patch volume for 
all experiments. We chose the 95th percentile since sample sizes are relatively small compared to rain cells.

A direct comparison with cold pool volume, see Figure 8a, illustrates the effect of cold pool activity on the 
low-level moisture field. Warmer conditions generally lead to larger moist patches of higher moisture con-
tent. Moist patch volume is roughly four times higher in the P4K experiment than in the M4K run. The ef-
fect is, however, stronger for simulations warmer than CTL. Colder model runs are densely packed together 
at relatively low moist patch volumes. In particular, the relation with cold pool volume reveals that small, 
shallow and, thus, slowly spreading cold pools in the coldest simulations create moist patches which barely 
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Figure 7. Cell-aggregated rain rate Pi,car in relation to cold pool growth rate Ci,gr (a) and cold pool growth rate compared to cold pool volume Ci,v (b).

Figure 6. A comparison of the product of the 99.5th percentiles of cell 
intensity and area (pseudo Pcar) and the true value of the cell-aggregated 
rain rate (true Pcar).
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emerge above the average qv field. For instance, the M4Krh simulation stands out with very small cold pool 
and moist patch volumes. In contrast to that, the warmest simulations in the RH and RHL groups have, by 
far, the highest moist patch volume. Compared to the TEMP group, amplified cold pools due to a reduction 
of relative humidity boost the accumulation of moisture in confined regions. Lower precipitation amounts 
due to increased stability in the P4Klps100 experiment lead to weaker cold pool activity and eventually to 
a slightly smaller cold pool volume as in the corresponding simulation from the TEMP group (and vice 
versa for the M4Klps100 experiment). Interestingly, the strongly enhanced large-scale convergence in the  
CTLls60 and P4Kls60 experiments seems to reduce the moist patch volume. The reason for this behavior 
is not completely clear since there is virtually no change in cold pool activity (with respect to the TEMP 
group). Even more, the slightly increased cold pool volume and growth rate in the P4Kls60 experiment 
suggests the formation of wetter and larger moist patches. Thus, we speculate that the applied threshold for 
the moist patch clustering plays a role in this case. A strong uniformly applied moisture tendency through 
large-scale convergence causes the domain averaged specific humidity qv to increase. This average is mostly 
dependent on grid points outside moist patches (see Figure 2). A threshold of 0.75 g kg−1 might then be too 
high which potentially leads to relatively smaller moist patches after the clustering with eventually lower 
moist patch volume.

To examine how a concentrated accumulation of moisture through cold pools feeds back to precipitation 
amounts Figure 8b depicts the relation between moist patch volume and cell-aggregated rain rate. We find 
that increased moist patch volume at higher temperatures correlates well with enhanced rain cell intensity 
and size. The previously described tendencies in each perturbation group hold well in this context. For in-
stance, the experiments in the TEMP group reveal a strongly linear correlation between moist patch volume 
and cell-aggregated rain rate. When compared to the RH and RHL groups, reduced relative humidity leads 
to higher precipitation amounts inside rain cells (and vice versa). The LAPSE group confirms that when the 
temperature perturbation approaches a moist adiabat, and therefore stabilizes the atmosphere, attenuates 
the signal in comparison with the TEMP group. In the case of the LS group, despite increased cell-aggregat-
ed rain rates, we find no further increase in moist patch volume when compared to the TEMP group.

As a final remark, we note that, despite there is a clear relation between cold pool activity, moist patch vol-
ume, and rain event intensity, the described processes are intertwined and progress concurrently, possibly at 
different stages. This limits the ability to derive a direct causality from the presented statistics alone. However, 
it has been shown that new deep convective clouds form at locations of elevated moisture, of which a substan-
tial part stems from the advection through cold pools (Schlemmer & Hohenegger, 2016). This link is further 
strengthened in a more recent study by Fuglestvedt and Haerter (2020). They use a backtracking approach to 
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Figure 8. The 95th percentile of cold pool volume Ci,v compared to moist patch volume Mi,v (a) and moist patch volume compared to cell-aggregated rain rate 
Pi,car (b).
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identify cold pools as moisture conveyors for newly emerging deep convective clouds. In a more qualitative 
way, this process can be observed in video animation V1 where “waves” of warm and moist low-level air 
masses with high θe at the cold pool fronts “disappear” at locations where new rain cells appear slightly later.

4. Conclusion
In this study, we examined the impact of various atmospheric perturbations, which are relevant in the con-
text of climate change, on the characteristics of rain in convective cloud systems. To this end, we created a 
set of high-resolution large eddy simulations for a typical convective event at midlatitudes over a range of 
dew point temperatures, and in addition, groups based on accompanying changes in relative humidity, tem-
perature lapse rate, and large-scale convergence. With this set of experiments aimed to represent different 
climatic conditions, we examined how, and to which extent, cold pools relate to rain cell size and intensity.

A general conclusion for all experimental groups is a general increase of intensity and size of precipitation 
events with higher temperatures. The warmest simulations show the strongest signal. However, the details 
of the response in each experimental group differ. For instance, we find that enhanced large-scale conver-
gence under warmer conditions (LS group) only increases event size when compared to the latter alone 
(TEMP group). A stabilization of the atmosphere under warmer conditions according to a moist adiabat 
(LAPSE group) hampers the development of intense rain events under warmer conditions and, thus, weak-
ens the signal when compared to a vertically uniform warming (TEMP group). Finally, a modification of the 
relative humidity with warming (RH and RHL groups) bears the strongest response of intensity and size of 
rainfall events. However, this comes at the cost of number of events due to a later onset of precipitation in 
the course of the simulations. In other words, rain events become more rare but their extremes increase at a 
much higher rate when compared to a constant relative humidity perturbation (TEMP group).

Cold pool activity concurrently increases with stronger and larger rainfall events under warmer conditions, 
confirming results in Haerter and Schlemmer (2018). A very strong relation between the aggregated rain 
rate of extreme cells and the growth rate and size of cold pools is found, unifying all experiments onto an 
almost single curve relating rain rate to the cold pool statistics. In this case, the warmer runs with decreased 
relative humidity lead to the largest cold pools. Thus, we can identify two fundamental factors in our sim-
ulations that control the magnitude of cold pool activity. First, higher precipitation rates enable more evap-
oration of rain drops. This enhances the cooling rate of air masses which eventually form the cold pool. 
Second, a reduced relative humidity causes enhanced evaporation of rain drops at similar precipitation 
rates. The combined effect of these processes causes the warmer experiments with lower relative humidity 
to have the strongest response in cold pool dynamics.

Reversely, cold pool dynamics appear to influence local low-level moisture variability and subsequent rain-
fall formation, affirming Schlemmer and Hohenegger  (2016), but now in a climate change context. Al-
though the relation between cold pool statistics and moist patches—amount of excess moisture contained 
in confined, moist areas—appears less distinct, larger cold pools generally lead to larger moist patches. 
Subsequently, larger moist patches again translate into larger aggregated rain rates from rain cells. Physical-
ly, enhanced cold pool activity amplifies the advection of moisture into confined regions and this directly 
relates to intensified rainfall events. The most intense and fastest spreading cold pools are found in the 
warmest simulations. This enables moisture transport over longer distances and greater accumulation into 
moist patches. Again the warmest, lower relative humidity runs lead to the largest moist patches.

Concluding, we showed that cold pools play a crucial role in shaping the response of convective rain ex-
tremes in a large set of simulations, representing different climatic conditions. In general, cold pool dynam-
ics increase in warmer conditions, and we speculate that this feedback loop might play an important role 
explaining deviations from the CC-scaling in the response of rain extremes to global warming. Yet, we also 
note that the stabilization of the atmosphere (according to a moist adiabatic lapse rate) appears to dampen 
feedback from cold pools dynamics but on the other hand projected decreases in relative humidity appear to 
strongly amplify their influence. Further investigating these feedback processes, preferably also in different 
modeling setups, is therefore highly recommended.
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Data Availability Statement
A data set with the DALES case setup is available from https://doi.org/10.4121/13241072, the video ani-
mation from https://doi.org/10.4121/13241081, and the software used for clustering can be found under 
https://doi.org/10.4121/13241102.
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