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GAUSSIAN PROCESS MODELS FOR PRELIMINARY  
LOW-THRUST TRAJECTORY OPTIMIZATION 

Lieve Bouwman,* Yuxin Liu† and Kevin Cowan‡ 

Low-thrust trajectories can benefit the search for propellant-optimal trajectories, but in-
creases in modeling complexity and computational load remain a challenge for efficient mis-
sion design and optimization. In this paper, an approach for developing models utilizing
Gaussian Process (GP) regression and classification is proposed to perform computationally
efficient optimization while obtaining acceptable accuracies for trajectories based on expo-
nential sinusoid shaping. The goal of this work is to predict a combination of values of input
variables which corresponds to a shape-based trajectory with the smallest total velocity in-
crement (ΔV ) or propellant mass fraction (Jm). A GP classification model is constructed
to assess whether a given combination of values of input variables corresponds to a feasible
trajectory. GP regression models are developed to predict the total ΔV and Jm correspond-
ing to a combination of shape parameters, which can replace the required integration along
the shape. In addition, advanced regression models are developed to predict the target values
while requiring only three input parameters, thereby replacing the entire shape computation.
In order to develop a GP model that fits the problem at hand, the underlying functions and
parameters should be selected rationally. In this work, a novel model development approach
is proposed to ensure that the mean function, covariance function, likelihood function, in-
ference method, and hyperparameters, which dominate the performance of the models, are
chosen rationally in terms of mean absolute percentage error (MAPE) and prediction time.
Using this approach, GP models are developed and tested on transfer trajectories from Earth
to Mars and Ceres, and from Mars to Earth, and their performance, in terms of MAPE and
prediction time, is compared to that of more common optimization techniques in combina-
tion with the exponential sinusoid and other shape-based methods. The results demonstrate
that the computation time can significantly be reduced while achieving promising MAPE’s,
especially when the goal is to locate regions of feasible or near-optimal trajectories. The
proposed model development procedure is tested for robustness, which provides confidence
in the proposed approach. Furthermore, it is found that the models which map three input
variables directly to a ΔV or Jm value perform better than the ones trained with shape in-
formation, which demonstrates the strength of GP models as applied to low-thrust trajectory
optimization.

INTRODUCTION

Trajectories flown with low-thrust rocket engines, such as ion propulsion systems, are attractive due to

their propellant efficiency and high reliability.1 This becomes especially important for interplanetary mis-

sions where large velocity changes are generally required. To obtain ΔV values required for interplanetary

flight, the engine has to operate for thousands of hours, which complicates the dynamics of the vehicle and

results in challenging trajectory design and optimization. Most of the methods that are used to solve this

optimization challenge for low-thrust trajectories are based on a non-linear programming problem. Although

these methods are successful in the detailed design of a trajectory, they fail to efficiently explore a large num-

ber of candidate trajectories. For the preliminary design of trajectories, analytical methods have proven to

be powerful tools. The shape-based method first introduced by Petropoulos2 approximates the spacecraft’s
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trajectory with an exponential sinusoid and is well-known due to its wide applicability. A generalized imple-

mentation of the exponential sinusoid using the multi-revolution Lambert’s problem was proposed by Izzo.3

The resulting algorithm efficiently locates near-optimal trajectories, but a time-consuming search process is

required to locate these trajectories. Depending on the shape-based method and the computer used, most

shapes take about 0.3-2 s computation (CPU) time per trajectory,1 which may result in a rather slow process

when a large search space needs to be investigated. Given the increasing interest in low-thrust trajectories,

faster calculations are needed when exploring a search space for a specific mission.

Gaussian Process regression (GPR) and classification (GPC) are useful techniques to predict a large number

of target values within limited CPU time. D.G. Krige4 was the first to propose the GPR method with the goal

of estimating the distribution of gold. Since then, GPR has been applied four times in the aerospace field: 1)

to evaluate the aerodynamic coefficient of a spaceplane,5 2) to assess the accessibility of main-belt asteroids,6

3) to model the gravity field of small bodies7 and 4) to evaluate the Mars entry terminal state.8 GPC has not

been used before to classify problems related to aerospace. The main advantage of a method based on a GP

is that it is flexible and computationally efficient for handling the relation between inputs and outputs in both

regression and classification problems.6 A GP model is composed of functions, so in theory an unlimited

number of different models could be developed. Generally, the GP model for a specific problem is selected

by trial and error6 or based on models used for comparable problems, leaving the functionality of the model

as a black box. In this paper, a procedure for developing models using a GP is proposed to further speed up

the preliminary optimization of low-thrust trajectories based on exponential sinusoid shaping. The robustness

of the choices made in this development procedure is also assessed.

This paper begins by discussing the implementation of the exponential sinusoid according to the multi-

revolution Lambert’s problem, in order to generate training data for the GP models. Next, the basics of

GPR and GPC are discussed, together with the proposed development procedure for models based on a GP.

The performance of the models is explained, and the robustness of the model development procedure is as-

sessed. Models are developed for three mission test cases. The models for the test case from Earth to Mars

are presented and their robustness measured. The models developed for the other two test cases are presented

in Reference 9. The performance reached for each of the test cases, in terms of accuracy, CPU time, and the

ability to locate regions of near-optimal trajectories, is discussed, followed by the conclusions.

MODELING LOW-THRUST TRAJECTORIES USING THE EXPONENTIAL SINUSOID

Theory of the Exponential Sinusoid

Consider the equations of motion of a point mass subject to a Newtonian gravity field and some additional

force (ie. thrust) acting on the particle:10

{
r̈ − rθ̇2 + μ/r2 = F sinα

θ̈r + 2θ̇ṙ = F cosα
(1)

where r is the radial distance to the particle∗, θ is the polar angle, μ is the gravitational parameter of the

central body, F is the magnitude of the thrust acceleration, and α is the angle of attack. The normalized

acceleration a is obtained by normalizing F with respect to the local gravitational acceleration, Eq. (2).

a ≡ F/(μ/r2) (2)

The general equation of a pure exponential sinusoid (ie. exposin) is defined by:2

r = k0 exp [k1 sin (k2θ + φ)] (3)

where k0, k1, k2, and φ are constants. k0 is a scaling factor. k1 is the dynamic range parameter, which controls

the ratio of apoapsis distance to periapsis distance. k2 is called the winding parameter, since it determines the

number of revolutions until reaching apocenter. The phase angle φ defines the orientation of the exposin in its

∗Superscripts: �̇ = derivative with respect to time t; �̈ = second derivative with respect to time t
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plane. The values of the parameters should be chosen such that the resulting trajectory fulfills the boundary

conditions for the initial and final position and the time of flight (TOF). The idea of Petropoulos’ work2 is to

find a solution for the equations of motion using Eq. (3). A tangential thrust profile is assumed, such that α =

γ. The flight-path angle γ, which is equal to dr/dθ, can be written as follows:

tan γ = k1k2 cos (k2θ + φ) (4)

As thrust tangential to the velocity vector maximizes the energy gain and thus the velocity change,10 this

assumption is deemed reasonable. Using Eq. (1), Eq. (3), and Eq. (4), and the tangential thrust assumption,

the normalized thrust acceleration can, after some manipulation,9 be derived as:

a =
(−1)n tan γ

2 cos γ

[
1

tan γ2 + k1k22s+ 1
− k22(1− 2k1s)

(tan γ2 + k1k22s+ 1)2

]
(5)

where s ≡ sin k2θ + φ; when n = 0, the thrust is directed along the velocity vector and when n = 1 against

the velocity vector.

The TOF can be computed by integrating the inverse of the angular velocity over the polar angle:3

TOF =

∫ tf

t0

dt =

∫ θf

θ0

dt

dθ
dθ

=

∫ θf

θ0

√
r3(tan γ2 + k1k22s+ 1)/μ dθ (6)

=

imax∑
i=1

√
r3(tan γ2 + k1k22s+ 1)/μ Δθi

where imax is the specified number of intervals. Eq. (6) can be solved using a numerical integration technique.

Implementation Using Lambert’s Approach

Petropoulos’ work2 was quite successful from a numerical point of view, yet it lacked a solution to go from

a generic point P1 to another point P2 in a specified amount of time. In the case of ballistic arcs, this problem,

named Lambert’s problem, permits a number of solutions. In line with this work, Izzo proposed the multi-
revolution Lambert’s problem for exponential sinusoids, which is a convenient approach for implementation

of the exposin.3 It starts with assuming k2 fixed and known, which reduces the problem to all exposins that

are defined by only three free parameters: k0, k1, and φ. After some simplification, it can be shown that with

r0, rf , ψ, and the number of revolutions N required, and for an assumed value of k2, a class Sk2[r0, rf , ψ,N ]
of exposins exists passing through r0 and rf , with ψ the transfer angle. An exposin is classified as a valid

trajectory whenever the condition k1k
2
2 < 1 is fulfilled. Within a defined class, the only free parameter is γ0,

which determines the differences within the family of exposins, namely the TOF. A numerical method can be

used to find the intersection between a required TOF and the TOF curve corresponding to a class of exposins.

With the value for γ0 defined, the geometric parameters (k0, k1, and φ) can be obtained.9

Using this generic approach, the problem is to choose the shape parameter k2 for each exposin. A direct

interplanetary low-thrust transfer between two bodies will therefore have a three-dimensional input vector

x = [t0, k2,TOF], where t0 is the departure date. When this input vector is known, the ephemerides of

the departure planet at departure and of the arrival planet at arrival should be evaluated. Finally, the unique

exposin matching the TOF requirement must be found.

Total Velocity Increment Computation

The first method to assess the efficiency of trajectories is via the total velocity increment (ΔV ) required

to fly a specific exposin. This value consists of a low-thrust part along the arc (ΔVLT) and two impulsive
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shots: one at departure (ΔV0) and one at arrival (ΔVf ). The ΔVLT can be determined by integrating the

thrust acceleration F over the flight time t, which in turn can be obtained as a function of the polar angle∗:

ΔVLT =

∫ tf

0

Fdt =

∫ θf

0

F

dθ
dθ (7)

Impulsive shots are modeled to match the velocity of the departure (Vdep) and arrival (Varr) planets to the

velocity required at the initial (V0,exp) and final (Vf,exp) position of the exposin:

ΔV0 = V0,exp − Vdep ; ΔVf = Varr − Vf,exp

The velocity at any point along the exposin can be computed using the radial and tangential components†:10

Vr = rθ̇ tan γ ; Vt = rθ̇

where, after some manipulation,9 the derivative of the angular rate is found using Eq. (8).

θ̇2 =

(
μ

r3

)
1

tan γ2 + k1k22(sin k2θ + φ) + 1
(8)

The velocity vectors along the exposin should be converted from polar coordinates to Cartesian coordinates

to match the velocities of the planets.

Propellant Mass Fraction Computation

A second measure for the efficiency of trajectories is the propellant mass fraction Jm:11

Jm = 1− exp(−ΔV0 +ΔVf

Isp,chem · g0 − ΔVLT

Isp,LT · g0 ) (9)

where Isp,chem and Isp,LT are the specific impulses for the chemical and low-thrust engine respectively, and g0 is

the standard gravitational acceleration. As payload mass increases when propellant mass fraction decreases,

the most optimal trajectories are those with the lowest value of Jm. The efficiency of the trajectories depends

not only on the total ΔV , but also on the relative magnitude of ΔVLT and ΔV0 + ΔVf , so it could be argued

that Jm is a better parameter to assess the optimality of trajectories.

GENERATION OF TRAJECTORIES

In order to train any GP model, training data must be generated. In this work, the exposin is implemented

according to the multi-revolution Lambert’s problem to model low-thrust trajectories. The problem is reduced

by assuming a transfer using an exposin with one revolution (N = 1). The goal is to locate regions of

near-optimal trajectories within a defined three-dimensional input space [t0, k2,TOF]. It is assumed that the

spacecraft has a mass of 1000 kg and is equipped with both an ion propulsion engine and a chemical rocket

engine, with specific impulses of 3000 s and 350 s, respectively. The maximum achievable thrust acceleration

(Fmax) of the ion propulsion engine is taken as 3 · 10−4 km/s2.1

Input vectors with uniform randomly distributed values for t0, k2, and TOF, within defined bounds, are fed

into a program written by the authors, which computes the corresponding exposin for each input vector, using

the approach outlined above. With the k2 and t0 values defined by the input vector, a class of exposins can

be computed if any exist.9 The Regula Falsi method12 is then used to find the unique exposins that matches

the required TOF within this class; the TOF is evaluated using the Midpoint method.13 The data generation

program is implemented using the ECLIPJ2000 reference frame with the Sun as center of the reference frame.

The JPL DE405 ephemerides are used to evaluate the ephemerides of the departure and arrival planets at times

∗Subscripts: 0 = initial value, f = final value, LT = low-thrust
†Subscripts: r = radial component, t = tangential component
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t0 and t0+TOF, respectively.∗ As in the work of Izzo,3 the centers of mass of the arrival and departure planets

are taken, respectively, as the r0 and rf positions. One-way light time and stellar aberration corrections are

applied to the states of the planets. With the unique exposin defined, the ΔV and Jm values corresponding

to this trajectory can be computed. The Midpoint method13 is used again for the numerical integration of

ΔVLT. Using the criterion, as defined by Gondelach,1 of a 0.1% accuracy in ΔV required to rank trajectories,

1000 integration steps have been selected. As the Midpoint method is a one-step method, first the thrust

acceleration required along the low-thrust arc is evaluated at 1000 points along the trajectory, using Eq. (2)

and Eq. (5). The impulsive velocities can be computed by matching the velocities of the exposin to those of

the planets,9 after which Jm can be found. As the main purpose of the exposin is to provide an initial guess

for a detailed numerical optimization, only the gravitational acceleration of the Sun is taken into account; all

other perturbations are ignored, which is in accordance with the work of both Petropoulus2 and Izzo.3

Finally, three criteria have been selected to classify whether a specific input vector specifies a feasible exposin:

(1) the condition k1k
2
2 < 1 should be fulfilled,2

(2) the difference between the required and actual TOF of a trajectory must be smaller than 1 second, and

(3) the thrust profile required to follow the low-thrust arc should not exceed the maximum available thrust.

The program used to generate training data, described above, is referred to as “the data generation program”.

GAUSSIAN PROCESS MODELS FOR PREDICTION OF OPTIMAL TRAJECTORIES

Due to the constraints on feasible trajectories as discussed in the previous section, not all input vectors

contain an exposin that can actually be flown. Before predicting near-optimal trajectories in terms of ΔV
and Jm from a set of candidate input vectors, each of the input vectors is first checked for correspondence to

a feasible exposin. This is where classification using a GPC model becomes useful. The mapping function,

which associates the “feasible” or “not feasible” output with the input vector, is defined as the predicting

target, where x = [t0, k2,TOF] and Q = −1 (not feasible) or Q = 1 (feasible):

fGPC : R3 → R,

x �→ Q.
(10)

Once each input vector is classified as feasible or not feasible, a GPR model is used to predict the ΔV or Jm
values corresponding to the feasible trajectories:

fGPR,1 : R3 → R,

x �→ ΔV or x �→ Jm.
(11)

where x = [t0, k2,TOF]. This model will be referred to as “GPR model 1”; it directly maps the input vector

to a ΔV or Jm value, so it is only trained with shape parameter k2. To investigate the applicability of the GP-

based method, a second GPR model has been developed (“GPR model 2”) that maps the entire shape infor-

mation onto a ΔV or Jm value, thereby replacing only the integration step, where x = [r0, ψ, k0, k1, k2, φ]:

fGPR,2 : R6 → R,

x �→ ΔV or x �→ Jm.
(12)

For a GP model, the prediction of an output value given an input can be achieved using Bayesian inference

operating on a GP in function space. In a GP, every random collection of variables has a multivariate normal

distribution.14 In this work, the input vector x is considered to be the random variable following a Gaussian

distribution. A GP over the function f(x) is defined by:14

f(x) ∼ GP (μ(x), k(x,x∗)) (13)

where μ(x) and k(x,x∗) are the mean function and covariance function, respectively, and x∗ represents a

point in the input domain†. The GP does not contain any prior information until some data is observed. It

∗https://naif.jpl.nasa.gov/naif/toolkit.html
†Superscripts: �∗ = prediction data from Gaussian Process
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is therefore necessary to train any GP model with information provided by training samples. For M training

samples, a training set is constructed as:

D = {X = [x1,x2, ...,xM]T ,Y = [y1, y1, ..., yM]T } (14)

where X and Y are the training input matrix and output vector, respectively∗. The training inputs xi, 1 ≤
i ≤ M are generated with a random uniform distribution in the input domain and are normalized between 0

and 1. Y is considered to be free of noise as the training outputs are obtained by the data generation program.

It is assumed that the ΔV and Jm values of M∗ input vectors need to be assessed. The predicting input

and output vectors are defined as X∗ = [x∗
1,x

∗
2, ...,x

∗
M∗ ] and Y ∗ = [ΔV ∗

1 ,ΔV ∗
2 , ...,ΔV ∗

M∗ ] or Y ∗ =
[J∗

m1
, J∗

m2
, ..., J∗

mM∗ ]. The joint distribution of the training Y and predicting outputs Y ∗ is then defined as:

[
Y
Y ∗

]
∼ N

([
μ(X)
μ(X∗)

]
,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(15)

where the covariance matrix K(X,X) is given by:

K(X,X) =

⎡
⎢⎢⎣
k(x1,x1) k(x1,x2) ... k(x1,xM)
k(x2,x1) k(x2,x2) ... k(x2,xM)

... ... ... ...
k(xM,x1) k(xM,x2) ... k(xM,xM)

⎤
⎥⎥⎦ (16)

The likelihood function defines the probability density of the observations given the parameters, and inference

allows the prediction of new targets given a dataset and the associated GP model.14

Model Development Procedure

Two sufficient conditions are met to develop a GP model: (1) the probability of obtaining correct training

outputs given the model is maximal, (2) the errors in predicting outputs are limited to an acceptable level.6

A GP is defined by its mean function, covariance function, likelihood function, and inference method, and a

combination of them should be found where (1) and (2) are satisfied. The selected mean function, covariance

function, and likelihood function will contain parameters, called the “hyperparameters”, which should be

optimized in order to improve the performance. Thus “model development” in this paper refers to (a) the

selection of the mean, covariance, and likelihood functions and the inference method, and (b) the optimization

of the hyperparameters.

To assess the performance of the developed GPR models, three error measures ε were used: the mean absolute

error (MAE), the mean absolute percentage error (MAPE), and the root mean square error (RMSE), given by

Equations 17–19.

εMAE(M) =
1

MT

MT∑
i=1

|TDG,i − TGPR,i| (17)

εMAPE(M) =
100%

MT

MT∑
i=1

|TDG,i − TGPR,i

TDG,i
| (18)

εRMSE(M) =

√√√√ 1

MT

MT∑
i=1

(TDG,i − TGPR,i)2 (19)

∗�T = transpose of a vector
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In the above equations, M is the training set size, MT the test set size, and TDG,i and TGPR,i the target values

(ΔV or Jm) obtained from the data generation program and the GPR model, respectively. For the GPC model

only the MAPE value is of interest, Eq. (20).

εMAPE,GPC(M) =
100%

MT

MT∑
i=1

|QDG,i −QGPR,i|
2

(20)

In theory, one could define infinitely many mean functions and covariance functions, and thus infinitely many

GP models. As we cannot theoretically define the optimal GP model for a specific application, and using a

trial and error procedure is generally highly time consuming, a model development procedure is proposed

which consists of three phases: (i) a Preliminary model selection phase, (ii) a Combined model selection

phase, and (iii) a Hyperparameter optimization phase. During the first two phases, the same method is used,

as visualized in Figure 1. The details of each selection phase are discussed in the following subsections.

Figure 1: Model selection and training method

Preliminary Model Selection Phase During the preliminary phase, candidates which are promising in

terms of MAPE are separately sought for the mean function, the covariance function, the likelihood func-

tion, and the inference method. Each of them is defined as a “candidate to be selected”, as referred to in

Figure 1. While this procedure is performed for one candidate (e.g. the mean function), default settings are

used for the other candidates. The selected default settings are: no mean function, a squared exponential

covariance function with automatic relevance determination, a Gaussian likelihood function, and Gaussian

inference for both training and prediction. The dataset contains 250 samples on which k-fold cross validation

is applied14 such that k − 1 subsets are selected for training and the remaining subset for validation, i.e.

defining the accuracy of the models. This process is repeated in total k times; in this work, k = 5. For each

individual candidate, all possible functions that were provided by the gpml toolbox in MATLAB are evalu-

ated where, for the composite functions, up to two base functions are combined.∗ The procedure is repeated

four times with different data sets to increase the robustness of validation, after which the average MAPE

for each function is computed. For the mean function, covariance function, and inference method, the five

functions resulting in the lowest MAPE values are selected. The single best likelihood function is selected.

Combined Model Selection Phase In the combined model selection phase, the top five functions for the

mean function, covariance function, and inference method, and the top likelihood function, as selected in

the preliminary phase, are combined into a GP model. In total, 45 different GP models have to be evaluated

according to the procedure depicted in Figure 1, where the GP model is the “candidate to be selected”. A

dataset containing 1250 samples is used and the procedure is repeated once, after which the optimal GP model

based on MAPE value is selected. One could optionally take the CPU time for prediction into account as a

second selection criterion.

Hyperparameter Optimization During the third phase model training is performed, in which the values of

the hyperparameters are selected. The most common way to optimize the hyperparameters (components of

the vector θ) is by using the maximum likelihood method, where the optimal values of the hyperparameters

∗http://www.gaussianprocess.org/gpml/code/matlab/doc/
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are found by minimizing the following objective function:14

J(θ) = −log p(Y |X,θ) =
1

2
Y TK−1(X,X)Y +

1

2
log|K(X,X)|+ M

2
log2π

with p the likelihood function. To keep the procedure consistent, all hyperparameters are initialized with

zeros, after which the conjugate gradient method is used to find optimal values.14 1000 training samples are

used, and the validation is performed by 1000 test samples. It is expected that multiple local optima exist for

the values of the hyperparemeters. Although a gradient-based marginal likelihood optimization method might

converge to a local optimum instead of the global one, it is chosen due to its fast execution. Furthermore, as

the optima found for the values of the hyperparameters result in satisfactory behavior, it is decided that using

a more powerful optimization technique is not required. In other work,15 random searches have been advised

for the optimization of hyperparameters. However, due to the large number of hyperparameters of the models

under consideration, this approach is unattractive for preliminary optimization as it would require long CPU

times to find optimal combinations of hyperparameters.

Training Set Size

With the GP models developed, the number of training samples must be determined. Training any GP

model with a larger number of samples will generally improve performance. As a consequence, however,

the CPU time needed for prediction will also increase, so it’s a trade-off given that one is unable to define

the optimal training set size.16 Therefore, the MAE is taken as the evaluation criterion for determining the

training set size of the regression models.6 The training set size is initialized to 50 samples and is increased

until a balance between prediction time and accuracy is reached using the following incremental update

equation Ms+1 = Ms +m, where m is the specified increment of training samples, taken as 50. For every

Ms training samples, n+ 1 MAEs are evaluated using:

E(Ms,m, n) = [εMAE(Ms), εMAE(Ms +m), ..., εMAE(Ms + nm)]T

where n is set to 10. Next, the difference between the maximum and minimum values in vector E is com-

puted:

ΔεMAE = max(E(Ms,m, n)−min(E(Ms,m, n) (21)

For each update step, the procedure is repeated five times with different training samples, and the average

values are taken, with the goal of increasing the robustness of validation. When ΔεMAE becomes smaller than

a specified threshold, the increment update process is stopped. For both the regression models, this threshold

is defined as 0.01 km/s when predicting ΔV and 0.001 when predicting Jm. For the classification model, the

same approach is used, but as only the MAPE is of interest, ΔεMAPE,GPC ≤ 0.1% is taken as the threshold.

Using this approach, it can be assured that the GP models are stable and a balance between accuracy and

CPU time for prediction is achieved.

Robustness of Model Development Procedure

In this work a novel model development procedure is proposed, so a robustness analysis with respect to

the choices made during this procedure (e.g. the size of the dataset) is conducted. All choices are made

with the goal of optimizing the trade-off between CPU time of the development process and robustness of

the validation. It should be verified whether these choices are made rationally and whether choosing a more

elaborate model development procedure would result in the development of models performing better in terms

of MAPE. The procedure as previously proposed will be referred to as “the baseline model development

procedure” and the models developed using this procedure as the “baseline models”.

Preliminary Model Selection Phase The size of the dataset used in the preliminary phase is set to 250

samples. It is expected that the larger the dataset, the more robust the validation of the models. To test

whether 250 samples is enough during the preliminary phase, a comparison with the performance of the final

developed models is performed when using a five times larger dataset. The baseline model development

procedure is used, but with a dataset of 1250 samples during the preliminary phase. The models resulting

from this modified procedure are compared to the baseline models in terms of MAPE.
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Combined Model Selection Phase In the baseline model development procedure, only the top performing

GP model is selected during the combined phase. However, the best performing model in the combined phase

will not necessarily perform best after hyperparameter optimization is applied. Therefore, the development

procedure is modified by selecting the top three performing models during the combined phase to apply the

hyperparameter optimization on all three of them. All other settings are kept the same as in the baseline model

development procedure. The MAPE of the models resulting from this modified development procedure are

compared to that of the baseline models.

Hyperparameter Optimization As it is likely that the conjugate gradient method converges to a local op-

timum, it should be verified how much the final performance deviates when the hyperparameters belonging

to another (local or global) optimum are selected. Therefore, while keeping the preliminary and combined

stage unchanged, differential evolution is used to initialize the values of the hyperparameters, after which the

conjugate gradient method is applied to determine the actual values of the hyperparameters. Combining these

two methods, it is more likely to converge to the global optimum instead of a local one. The settings for the

differential evolution are taken as Fp = 0.75, Cr = 0.8, and I = 20D, with I the number of individuals

and D the dimension of the problem (i.e. the number of hyperparameters to be optimized).17 Again, the

performance of the models resulting from this modified procedure is compared to that of the baseline models.

The robustness of the choices made in each phase of the development procedure is assessed with Eq. (22):

%robustness = (1− MAPEmodel,x −MAPEmodel,0

MAPEmodel,0
) · 100% (22)

where x and 0 indicate models resulting from the modified and baseline model development procedure.

TEST CASES

The performance of the GP-based method for the preliminary optimization of low-thrust trajectories, in

terms of accuracy and CPU time, was assessed for three mission test cases. Using the proposed model

development procedure, GP models were developed for these test cases: rendezvous missions from Earth to

Mars, from Mars to Earth, and from Earth to Ceres. Characteristics of each target body are shown in Table 1∗.

Table 1: Characteristics of target bodies for test cases

a (AU) e (-) i (deg) Orbital

period

(days)

Synodic

period

(days)

Mars 1.5237 0.0934 1.8506 687 780

Earth 1.0000 0.0167 0.0000 365 -

Ceres 2.7671 0.0758 10.593 1682 467

Rendezvous Mission from Earth to Mars

The Earth-Mars transfer has been used before to test the performance of other shape-based methods,1, 18, 19

so it is selected as a test case in this work to compare the results obtained with the developed GP models to

external results computed by others. The results reported in Table 5 are used, which cover shaping techniques

and DITAN. DITAN is a trajectory optimization tool and can be considered state of the art for low-thrust

interplanetary trajectory design.19 The bounds for the input space are selected as t0: [58848, 61769] MJD

and TOF: [500, 2000] days, in accordance with the work of Novak and Vasile.18 k2 is selected to lie within

the bounds [0.01, 1], allowing for up to 50 revolutions around the Sun, a number deemed unlikely to be

exceeded in practice. The launch window between 1 Jan 2020 and 31 December 2027 is large enough to

contain almost four synodic periods of the Sun-Earth-Mars system, which is equal to 780 days on average.

∗semi-major axis a, eccentricity e, and inclination i (with respect to the mean ecliptic and equinox of J2000), orbital period, and

synodic period (with respect to Earth)
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Rendezvous Mission from Mars to Earth

The developed GP models should ideally be tested against as many test cases as possible. The performance

was thus also tested for a mission from an outbound to an inbound target, namely a rendezvous mission from

Mars to Earth. To the authors’ knowledge, no other relevant results are available for direct comparison, so

the performance is compared to that of the Earth-Mars test case; the same input space is therefore chosen.

Rendezvous Mission from Earth to Ceres

The third mission test case is selected as a rendezvous mission from Earth to the asteroid Ceres. Due to its

much larger inclination than Mars, it is expected to be a challenging target in terms of predicting feasible and

near-optimal trajectories. As this test case has not been used before in low-thrust trajectory optimization, the

same input space as for the Earth-Mars test case is chosen to allow for comparison between both test cases.

SELECTED GP MODELS

Using the baseline model development procedure as proposed above, five GP models are selected for each

of the test cases: a GPC model, GPR model 1 with target value ΔV , GPR model 1 with target value Jm,

GPR model 2 with target value ΔV , and GPR model 2 with target value Jm. The models developed for the

Earth-Mars test case, the equations of the underlying functions, and the values of the hyperparameters found,

are presented in this section. A method to assess the robustness of the developed models is also discussed.

Selected Models for a Rendezvous Mission from Earth to Mars

Classification Model For the classification model, the mean function is selected as the sum of a constant

and a polynomial mean function, with two polynomials:

μ(x) = μpolynomial(x) + μconstant(x) =
D∑
i=1

d∑
j=1

aij · xj
i + c (23)

D is the input space dimension, d the number of polynomials, and aij and c hyperparameters to be selected.

The covariance function is selected as the sum of a piecewise polynomial covariance function with automatic

relevance determination (PPard) and a squared exponential covariance function with automatic relevance

determination (SEard):

k(x,x∗) = k(x,x∗)PPard + k(x,x∗)SEard (24)

k(x,x∗)PPard = s2f,PPard ·max(1− r, 0)j+d · f(r, j) (25)

k(x,x∗)SEard = s2f,SEard · e−(x−x∗)′·inv(P )·x−x∗
2 (26)

where the distance r is defined as: r =
√

(x− x∗)′inv(P )(x− x∗) (27)

where the P matrix is diagonal with automatic relevance determination parameters 	21, ..., 	
2
D. Furthermore,

d is the number of polynomials (in this case 1), j = floor(D/2) + d + 1, and s2f is the signal variance. The

function f(r, j) is equal to 1 + r(j + 1) for d = 1.

Finally, Gaussian likelihood is selected, given by Eq. (28), using Leave-One-Out (LOO) inference for training

and Gaussian noise inference for prediction:

p(yi|fi) = e
−(yi−fi)

2

2s2n√
2πs2n

(28)

where f is a scalar latent function value, and sn is the standard deviation of the noise.

The classification model has a three dimensional input vector, so the following hyperparameters must be

set, where M,C, and L indicate the hyperparameters of the mean, covariance, and likelihood function, and

subscripts P and S stand for “PPard” and “SEard”, respectively:
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θM
C = [a11, a12, a21, a22, a31, a32, c]

T

θC
C = [�1,P , �2,P , �3,P , sf,P , �1,S , �2,S , �3,S , sf,S ]

T

θL
C = log(sn)

Regression Model 1 for Prediction of ΔV The mean function is selected as the product of a polynomial

mean function (d = 3) and a constant mean function:

μ(x) = μpolynomial(x) · μconstant(x) (29)

The covariance function is selected as the product of PPard (d = 2) and a rational quadratic covariance

function with automatic relevance determination (RQard):

k(x,x∗) = k(x,x∗)PPard · k(x,x∗)RQard (30)

k(x,x∗)RQard = s2f,RQard[1 +
(x− x∗)′inv(P )(x− x∗)

2α
]−α (31)

with α a shape parameter and f(r, j) in Eq. (25) equal to 1 + r(j + 2) + (j2 + 4j + 3)/3r2 for d = 2.

The likelihood function and inference method for training and prediction are selected as for the GPC model.

The following hyperparameters must be set for this GPR model with a three dimensional input vector, where

subscript R indicates the “RQard” covariance function:

θM
R1ΔV

= [a11, a12, a13, a21, a22, a23, a31, a32, a33, c]
T

θC
R1ΔV

= [�1,P , �2,P , �3,P , sf,P , �1,R, �2,R, �3,R, sf,R, α]
T

θL
R1ΔV

= log(sn)

Regression Model 1 for Prediction of Jm When the goal is to predict the propellant mass fraction Jm
instead of ΔV , the continuous target values for the regression models differ significantly. Therefore, the

model development procedure is repeated.

The mean function is selected as the second power of a constant mean function, with P the power (in this

case 2):

μ(x) = μconstant(x)
P = cP (32)

The same covariance function is selected as for the prediction of ΔV , but with d = 1 for PPard. Instead of

LOO inference for training, as selected for the model when predicting ΔV , Laplace inference is selected.

The following hyperparameters must be set:

θM
R1Jm

= c

θC
R1Jm

= [�1,P , �2,P , �3,P , sf,P , �1,R, �2,R, �3,R, sf,R, α]
T

θL
R1Jm

= log(sn)

Regression Model 2 for Prediction of ΔV Selecting the mean function as the sum of a polynomial mean

function (d = 4) and a linear mean function results in the smallest MAPE:

μ(x) = μpolynomial(x) + μlinear(x) (33)

μlinear(x) =

D∑
i=1

ci · xi (34)
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with ci hyperparameters to be selected.

The covariance function is selected as the product of the PPard covariance function (d = 1) and a squared

exponential covariance function with isotropic length scale (SEiso):

k(x,x∗) = k(x,x∗)PPard · k(x,x∗)SEiso (35)

k(x,x∗)SEiso = s2f,SEiso · e−(x−x∗)′·inv(P )·x−x∗
2 (36)

For the SEiso covariance function, P is 	2 times the unit matrix, with 	 an isotropic lengthscale.

In accordance with GPR model 1, Gaussian likelihood and Gaussian inference for prediction are selected;

LOO likelihood is selected for training. The input space has six-dimensions, so the hyperparameters are set:

θM
R2ΔV

[a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41, a42, a43, a44,
a51, a52, a53, a54, a61, a62, a63, a64, c1, c2, c3, c4, c5, c6]

T

θC
R2ΔV

[�1,P , �2,P , �3,P , �4,P , �5,P , �6,P , sf,P , �S , sf,S ]
T

θL
R2ΔV

log(sn)

Regression Model 2 for Prediction of Jm Only one difference exist for GPR model 2 when predicting Jm
instead of ΔV : in accordance with GPR model 1, the mean function is selected as the second power of a

constant mean function. The following hyperparameters must be set:

θM
R2Jm

c

θC
R2Jm

[�1,P , �2,P , �3,P , �4,P , �5,P , �6,P , sf,P , �S , sf,S ]
T

θL
R2Jm

log(sn)

Selected Values of the Hyperparameters

The optimal values selected for the hyperparameters of the five models are given in Reference 9.

Assessing the Robustness of the Developed Models

When one wants to apply the provided GP models, referred to as “the initial models”, on a slightly different

mission scenario than the Earth-Mars test case as selected in this work (“the initial mission scenario”), one

could either use the models provided or repeat the model development procedure. In this subsection, the

robustness of the developed models (i.e. their dependency on the specified mission scenario) is assessed by

testing their performance in terms of MAPE and prediction time when applied to slightly different mission

scenarios. The goal is to provide some confidence in the application of these models to mission scenarios

that differ from the one discussed in this paper. To assess this robustness, the initial models are tested on 15

different mission scenarios by applying three deviations along five mission design dimensions (Table 2).

While one of these mission design parameters is varied, all other settings are kept equal to the initial mission

scenario. For each of the 15 new mission scenarios, training and test samples are generated. The initial

models are applied on all 15 mission scenarios, with the number of training samples equal to those presented

in Table 3. The difference in performance with respect to the initial mission scenario is computed, where x
and 0 indicate the deviated and initial mission scenarios, respectively:

%difference =
MAPEscenario,x −MAPEscenario,0

MAPEscenario,0

· 100% (37)

NUMERICAL RESULTS AND DISCUSSION

In order to evaluate model performance, test samples with a uniform random distribution in the input space

are used for all GP models. In previous work,6, 7 the ratio between training and test samples varied between
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Table 2: Mission scenarios

Initial Deviation 1 Deviation 2 Deviation 3

i) A different range for t0
Jan 1 2020 – Dec

31 2027

Jan 1 2028 – Dec

31 2035

Jan 1 2036 – Dec

31 2043

Jan 1 2044 – Dec

31 2051

ii) A smaller range for t0 . . .
Jan 1 2020 – Dec

31 2027

Jan 1 2020 – Dec

31 2023

Jan 1 2020 – Dec

31 2027

Jan 1 2020 – Dec

31 2021

. . . and/or TOF 500–2000 days 500–1250 days 500–875 days 500–2000 days

iii) A larger range for t0 . . .
Jan 1 2020 – Dec

31 2027

Jan 1 2020 – Dec

31 2035

Jan 1 2020 – Dec

31 2027

Jan 1 2020 – Dec

31 2051

. . . and/or TOF 500–2000 days 500–3500 days 500–6500 days 500–2000 days

iv) A different target planet Mars Ceres Pallas Vesta

v) A different number of revolu-

tions (N ) for the exposin
1 2 3 4
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Figure 2: Relationship between MAPE of test samples and number of training samples for GPC models for

all three test cases

1:1 and 1:5, and the number of required training samples is expected to lie between 1000 and 5000, so

1000 test samples are selected. The number of training samples for which a balance between accuracy and

prediction time is obtained is determined using the approach outlined above. This is demonstrated in Figure

2, which shows the resulting number of training samples for the GPC models for all test cases. Note that

the performance of the GPC models barely improves when more training samples are used than the number

selected by the iterative procedure. The prediction time for each of the models is computed as the CPU time

for the prediction of 1000 samples and is averaged over 1000 runs. Furthermore, the results are discussed

for the robustness analysis of the model development procedure and for the robustness of the developed

models, as outlined above. All algorithms are implemented in MATLAB 2017a and are executed on a desktop

computer with an Intel 2 GHz processor and 8.0 GB memory operating on a 64-bit macOS platform. In the

following, the performance of the developed GP models is discussed in terms of accuracy, CPU time, and

their ability to locate regions of near-optimal trajectories, for each of the three test cases defined above.

Rendezvous Mission from Earth to Mars

Numerical Results of GP Models The determined number of training samples, the corresponding MAE,

MAPE, and RMSE values, and the prediction times, are provided in Table 3. The prediction time is dependent

on both the number of training samples and the complexity of the model.
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Classification Model Out of the 1000 test samples that are predicted, on average 948 are predicted

correctly. Out of the 52 that are predicted incorrectly, 29 infeasible trajectories are predicted as feasible and

23 feasible trajectories are predicted as infeasible. GP models have not been applied before to classification

problems in the aerospace field. In several other classification applications, unrelated to this work, accuracies

between 1.5% and 33% have been found.20–23 Compared to these numbers, the MAPE of 5.16% achieved in

this work is located near the lower bound of this range. However, it should be noted that these MAPE values

are not the best indicator for the performance achieved in this work, but are provided here as reference for the

reader regarding the range of values that could be obtained for classification problems.

Regression Models When evaluating the performance of each of the GPR models, it becomes clear that

1) the performance is better when predicting Jm instead of ΔV and 2) the performance of GPR model 1 is

better than that of GPR model 2. It is expected that GPR models are, in general, better in predicting targets

with a smaller ratio between the minimum and maximum target value. As the values for Jm vary between

0.48 and 1.00, and for ΔV between 6.06 and about 130 km/s, this could explain the first observation, which

is referred to as “hypothesis 1”. The second observation could be explained by the fact that GPR model

2 is primarily trained with shape information, while GPR model 1 is trained with parameters containing

information on the input space. Therefore, GPR model 2 should be able to accurately predict ΔVLT, but

is expected to contain less information on the impulsive velocities required at departure and arrival. This

hypothesis is referred to as “hypothesis 2”.

GPR has been applied once before for the prediction of ΔV values. In the work of Shang and Liu6 it was

used to predict the ΔV values required to access main-belt asteroids using (high-thrust) transfer trajectories,

and MAEs of 0.06-0.12 km/s were found. It should be noted that the values to be predicted ranged within

6-12 km/s, which is a much smaller ratio between the minimum and maximum value than the one used in

this test case, from which it is expected that high accuracies could be obtained more easily. As a result, the

MAEs obtained for the GPR models in this work when predicting ΔV are worse, starting from 7.49 km/s

for GPR model 1. The MAPEs found in the work of Shang and Liu range between 0.58% and 1.33%, which

comes close to the value obtained in this work for GPR model 1 when predicting Jm. Another way to assess

the performance is in comparison with other machine learning algorithms. In the work of Li,15 the MAPEs

of several machine learning algorithms applied on low-thrust fuel optimization problems have been listed.

For eight machine learning algorithms, the corresponding MAPEs varied between 0.33% and 3.66%. Similar

MAPEs are found for both GPR models when predicting Jm.

Table 3: Numerical results for a rendezvous mission from Earth to Mars

Model #

training

samples

MAE

(km/s)

or (-)

MAPE

(%)

RMSE

(km/s)

or (-)

CPU

time

prediction

(s)

GPC 5150 - 5.16 - 9.63

GPR 1 - ΔV 4100 7.49 23.16 13.07 6.43

GPR 1 - Jm 2350 0.01 1.38 0.02 1.45

GPR 2 - ΔV 2700 33.26 119.08 40.01 2.16

GPR 2 - Jm 2350 0.03 3.74 0.06 1.60

Optimal Trajectories The best trajectories found previously with other shape-based methods (1, 18, 24), to-

gether with the optimization techniques used, are presented in Table 5. To find the overall best trajectory

belonging to the exposin shape, three optimization techniques are selected: differential evolution (DE),25 a

grid search (GS), and a grid search with mesh refinements. The total ΔV values and maximum accelerations

corresponding to the optimal trajectories in terms of ΔV modeled by the exposin shape are shown in Table 5.

The optimal value for Jm is found using differential evolution and is given in Table 9. In this work, the

globally optimal trajectory is defined as the overall best trajectory found by either the differential evolution,

the grid search, or the adaptive grid search.
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Differential Evolution The classical version of differential evolution (DE) is chosen, as developed by

Storn and Price.25 To determine the optimal values for the mutation probability Fp and crossover probability

Cr used in the DE, Fp is varied between 0.5 and 0.8, and Cr between 0.85 and 0.95, as optimal values for

comparable problems were found to lie within these ranges.1, 26 The number of individuals I turns out to

be optimal between 50 and 100 based on trial and error. Using a grid of 0.05 for Fp and Cr, and 10 for I ,

the optimal settings are found to be 0.5, 0.85, and 100 for Fp, Cr, and I , respectively. The input vectors

corresponding to the optimal trajectories found in terms of ΔV and Jm are given by x =[ 61175.64, 0.4007,

618.04] and x = [61358.04, 0.4359, 949.05], respectively.

Grid Search A grid search (GS) is implemented, where the grid is specified as: t0 = [58848 : 15 :
61769], k2 = [0.01 : 0.025 : 1], and TOF = [500 : 20 : 2000], in line with the work of Novak and Vasile.18

At each grid point, the ΔV and Jm values corresponding to this input vector are computed, and the optimal

trajectory in terms of ΔV is found to belong to input vector x = [61173.00, 0.3850, 620.00].

Adaptive Grid Search An adaptive grid search (AGS) is implemented, where a coarse grid is used that

is refined around the obtained interim solution. The initial grid (G0) contains 75 grid points, where five points

are spaced equally for all three dimensions. After evaluation of all 75 grid points, the grid is refined around

the interim solution by halving the length of the search interval (G1). This process of refining the grid is

repeated i times, until the solution at Gi is the same as Gi−10 and therefore convergence is reached. The

input vector for the optimal trajectory obtained with the AGS in terms of ΔV is given by x = [62701.02,

0.1970, 562.74].

From Table 5, it is evident that for all three optimization techniques, less optimal trajectories in terms of

total ΔV are found for the exposin shape than for the other shape-based methods. As the GP models are

trained with transfer trajectories based on the exposin shape, they won’t be able to find trajectories with ΔV
values smaller than 6.06 km/s, which is therefore used as the global optimum for comparison of GP model

performance. As given in Table 9, Jm = 0.48 is used as the global optimum for the propellant mass fraction.

Table 4: Numerical results for the prediction of ΔVLT

for a rendezvous mission from Earth to Mars

Model #

training

samples

MAE

(km/s)

or (-)

MAPE

(%)

RMSE

(km/s)

or (-)

CPU

time

prediction

(s)

GPR 1 -

ΔV
5050 0.20 2.18 0.33 3.98

GPR 2 -

ΔV

1100 0.04 0.54 0.12 0.15

When the GPC model and GPR model 1 are placed in series, it is possible to predict ΔV and Jm belonging

to feasible trajectories given a set of input vectors, thereby replacing the functionality of the data generation

program. The more samples that are fed to the GP models, the higher the probability that trajectories with

ΔV and Jm values close to the global optima are found. On the other hand, the corresponding prediction

time also increases. Figure 3 shows a trade-off between the optima found and the corresponding prediction

time, at different numbers of samples to be predicted. These plots are produced as follows. The specified

number of samples (e.g. 10,000) is fed to the GPC model. The GPC model is trained with the number

of training samples as provided in Table 3. The trajectories classified by the GPC model as feasible are

fed into GPR model 1. The predicted values for each of the input vectors are ranked, and the top 50 input

vectors are selected. The actual target values are computed for these 50 input vectors, making use of the data

generation program. Averaged over 50 runs, the target value of the best trajectory is given as a dot in Figure

3. The error-bar shown spans the range between the worst and best values found for the best trajectory within

these 50 runs. This procedure is performed for both the prediction of ΔV and Jm. For the prediction of

Jm, a decreasing average target value and increasing prediction time, at an increasing number of prediction

samples, is clearly visible. Furthermore, it can be observed that the error bars get smaller for a larger number
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Table 5: Required ΔV and maximum thrust accelerations Fmax corresponding to minimum-ΔV trajectories

found by different methods for a rendezvous mission to Mars

Method Optimization

technique

ΔV

[km/s]

Fmax

[10−4 m/s2]

Hohmann19 - 5.50 -

Hodographic - time1 Nelder-Mead 5.77 1.5

Hodographic

- polar angle1

Nelder-Mead 5.81 1.6

Spherical18 Grid Search 5.74 2.2

Pseudo-equinoctial19 Evolutionary

Branching

5.83 1.6

DITAN19 Direct Finite Element

Transcription

+ Sparse optimizer

5.66 1.5

Exponential sinusoid Differential Evolution 6.24 1.2

Exponential sinusoid Grid Search 6.25 1.2

Exponential sinusoid Adaptive Grid Search 6.06 1.2

of samples to be predicted, indicating that the reliability of the average Jm value increases. Such a clear trend

is not observed for the prediction of ΔV , and the target values barely get better with increasing samples to

be predicted, although the average prediction time does increase. This observation could be explained by the

fact that the accuracies achieved for the prediction of Jm are much better than those for the prediction of ΔV ,

and the resulting optimal trajectories are therefore more reliable. Additionally, it becomes clear from Figure

3a that the optimal trajectories found deviate somewhat from the global optima, which could be explained as

follows. When producing 100,000 randomly generated input vectors, the smallest ΔV values found generally

lie between 6.25 and 6.30 km/s and the smallest Jm values between 0.49 and 0.52. Furthermore, as the

training set contains only 4100 or 2350 training samples for the prediction of ΔV and Jm respectively, the

models are likely not trained with (near-)globally optimal trajectories. If the goal is to obtain globally optimal

trajectories, it should be investigated how the performance of the GPR models could be improved by adding

the globally optimal trajectories to the training set.

(a) Trade-off plots for Earth-Mars mission test case (b) Trade-off plots for Earth-Ceres mission test case

Figure 3: Trade-off plots

Although the GP models are not most suitable for finding globally optimal trajectories, they are a powerful

tool for the prediction of a large input space with the goal of locating the regions of feasible or near-optimal

trajectories. Classifying the feasibility of 1,000,000 candidate input vectors, and predicting the ΔV or Jm
values corresponding to the feasible trajectories, is achieved within a total computation time for prediction
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of less than 1400 seconds. If assessing these values with the data generation program, this would take more

than one week. Training the models takes about 30 s CPU time per model, but as the hyperparameters are

available (see Reference 9), training the model is unnecessary and only prediction has to be repeated. The

CPU time required to generate the training samples takes 0.7 s per trajectory times the amount of training

samples required, in this case 5150. For these purposes, the CPU time can be reduced approximately 150

times. It should be noted that for an increasing number of candidates to be assessed, the reduction in CPU

time is even larger as prediction time does not increase linearly with prediction samples, which is evident in

Figure 3a.

Predicting ΔV Along the Low-Thrust Arc The total ΔV required for an interplanetary transfer is com-

posed of a part delivered by the chemical engine and a part along the the low-thrust arc, delivered by the ion

propulsion engine. To prove hypothesis 2, used to explain why GPR models 1 are performing better than GPR

models 2, the prediction only of ΔVLT for the Earth-Mars mission test case is discussed in this subsection.

As only ΔVLT has to be predicted, Jm is linearly related to this value and is therefore not of importance. The

model development procedure is repeated for GPR model 1 and GPR model 2, with ΔVLT as target value.

The same input space as for the Earth-Mars mission test case is used.

The determined number of training samples and the numerical results achieved for both models are presented

in Table 4. It can be observed that the performance of GPR model 2 is significantly better than that of GPR

model 1, which is contrary to the performance of the GPR models for target value ΔV . This observation

could be explained by the fact that GPR model 2 is trained with full shape information (input vector defined

as x = [r0, ψ, k0, k1, k2, φ]), and is therefore able to accurately predict the value for ΔVLT. As for most

transfer trajectories the largest portion of the total ΔV is composed of the impulsive ΔV s, the performance

of GPR model 2 is much worse when predicting ΔV . The values found for ΔVLT for the Earth-Mars mission

test case range within about 3.20 km/s and 16.60 km/s. As the ratio between minimum and maximum target

values is much smaller than for the target value ΔV , and better performance is reached for both GPR models

when predicting ΔVLT, the results obtained for this test case support hypothesis 1 as well.

Rendezvous Mission from Mars to Earth

Numerical Results of GP Models The numerical results are given in Table 6. It is observed that for all

models slightly worse performance is achieved than for the Earth-Mars test case. Better performance is

obtained for GPR models 1 than GPR models 2, and the models perform significantly better when predicting

Jm instead of ΔV , which is in line with the Earth-Mars test case. Hypotheses 1 and 2 are supported by both

observations.

Optimal Trajectories The optimal trajectories in terms of ΔV and Jm are provided in Table 8 and Table 9,

respectively, together with the corresponding input vectors at which these value are achieved. The DE, GS,

and AGS are applied on this optimization problem, and the optima are found using the DE. If one would

produce the trade-off plots for the Mars-Earth test case, results comparable to those shown in Figure 3 are

observed. In line with the Earth-Mars test case, it can be concluded that the GP models are not perfectly suited

for the computation of globally optimal trajectories, but they significantly outperform other optimization

techniques in efficient exploration of a large search space for feasible and near-optimal trajectories.

Rendezvous Mission from Earth to Ceres

Numerical Results of GP models The numerical results achieved for the Earth-Ceres mission test case are

presented in Table 7. The performance achieved for the GPC model is slightly better than the one reached

for the Earth-Mars test case. The GPR models show significantly better performance than for the other two

test cases. Using hypothesis 1, this could be explained by the fact that for the Earth-Ceres test case the ratios

between minimum and maximum values of ΔV and Jm are smaller. Consistent with the other two test cases

and in accordance with hypothesis 2, GPR models 1 show better performance than GPR models 2.

Optimal Trajectories The optimal trajectories in terms of ΔV and Jm values are provided in Table 8 and

Table 9, respectively. The DE, GS, and AGS are applied to this optimization problem, and the optima are

found using the DE. The trade-off between the number of prediction samples and target values found is
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Table 6: Numerical results for a rendezvous

mission from Mars to Earth

Model #

training

samples

MAE

(km/s)

or (-)

MAPE

(%)

RMSE

(km/s)

or (-)

CPU time

prediction

(s)

GPC 1100 - 13.55 - 0.31

GPR 1 - ΔV 5000 9.35 31.24 14.75 11.22

GPR 1 - Jm 2350 0.02 2.14 0.03 1.41

GPR 2 - ΔV 1100 47.82 187.06 49.10 0.28

GPR 2 - Jm 1000 0.06 7.12 0.09 0.17

Table 7: Numerical results for a rendezvous

mission from Earth to Ceres

Model #

training

samples

MAE

(km/s)

or (-)

MAPE

(%)

RMSE

(km/s)

or (-)

CPU time

prediction

(s)

GPC 6100 - 4.90 - 12.22

GPR 1 - ΔV 3900 3.96 9.03 7.36 4.02

GPR 1 - Jm 2100 0.01 0.55 0.01 0.57

GPR 2 - ΔV 2100 37.07 96.07 38.78 1.21

GPR 2 - Jm 2250 0.02 1.63 0.02 0.43

Table 8: Globally optimal trajectories in terms

of ΔV for all test-cases using the traditional

optimization techniques (DE, AGS, and GS)

Mission

testcase

ΔV

(km/s)

t0

(MJD)

k2

(-)

TOF

(days)

Earth-Mars 6.06 62701.02 0.1970 562.74

Earth-Mars

(low-thrust arc)

3.15 61263.21 0.5837 507.33

Mars-Earth 6.34 61157.18 0.4341 580.45

Earth-Ceres 13.85 60290.56 0.5506 1007.22

Table 9: Globally optimal trajectories in

terms of Jm for all test-cases using the

traditional optimization techniques (DE,

AGS, and GS)

Mission

testcase

Jm

(-)

t0

(MJD)

k2

(-)

TOF

(days)

Earth-Mars 0.48 61358.04 0.4359 949.05

Mars-Earth 0.39 59599.01 0.3728 651.99

Earth-Ceres 0.76 59197.22 0.2639 1178.24

shown in Figure 3b. It is evident that both the ΔV and Jm values steadily decrease for an increasing number

of samples to be predicted, and as the error-bars are getting smaller, the reliability increases. The difference

between Figures 3a and 3b for target value ΔV could be explained by the higher accuracies reached for the

Earth-Ceres than for the Earth-Mars test case. Although the results for finding globally optimal trajectories

are better for the Earth-Ceres mission test case than for the other two, the main strength of the GP models is

still found in the efficient evaluation of a large input space.

Robustness of the Model Development Procedure

The robustness analysis as detailed above is applied to both the GPC model and GPR model 1 with tar-

get value ΔV , for the rendezvous mission from Earth to Mars. The development procedure for the GPR

model turned out to be highly robust, especially in the preliminary and combined phase, where (according to

Eq. (22)) a robustness of more than 99% is reached. A robustness of 96.1% is obtained for the hyperparam-

eter optimization phase after performing 50 iterations, which takes more than 100 hours. For the application

of the proposed procedure on the development of a GPC model, a robustness of more than 99% is again

achieved in the preliminary phase. The robustnesses achieved in phases 2 and 3, of respectively 92% and

86%, are lower than the ones achieved for the GPR model. It should be taken into account that the deviated

procedure requires significantly more CPU time than the baseline model development procedure.

Robustness of the Developed Models

The numerical results achieved with the initial GP models are assessed for all 15 mission scenarios of

the Earth-Mars test case. Along the five mission design dimensions as specified above, the results averaged

over the three deviations are taken. The MAPE values obtained for the averaged deviated mission scenarios,

together with those for the initial mission scenario, are provided for all GP models in Figure 4 (left). The right

plot in Figure 4 shows the relative difference in MAPE with respect to the initial mission scenario, which is

computed using Eq. (37). Positive percentages indicate a larger MAPE and therefore worse accuracies. It can
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be observed that for all models, better performance is achieved when they are applied on a mission scenario

with a smaller range for t0 and/or TOF. This result is expected, as fewer training samples are generally

required for a smaller range between the input bounds.14 Higher accuracies could be obtained because the

same numbers of training samples as for the initial mission scenario are used. When the models are applied

on a test case with a different range for t0, but of the same size, the performance is comparable to that of the

initial mission scenario. Worse performance is obtained when the models are applied on mission scenarios

with a larger range for t0 and/or TOF, as generally more training samples are required. When the models are

applied on mission scenarios with a different target planet, better performance is achieved for all regression

models. As the ratio between minimum and maximum ΔV and Jm values for missions to Ceres, Pallas,

and Vesta is smaller than for a mission to Mars, the higher accuracies obtained for the GPR models support

hypothesis 1. For mission scenarios with a different number of revolutions, significantly worse performance

is observed.

Figure 4: Spider plots indicating the robustness of the developed models for the Earth-Mars test case. Left:

MAPE values, Right: relative difference in MAPE with respect to initial mission scenario (taken as 0%)

CONCLUSIONS

In this paper, a novel procedure is proposed for the development of models utilizing GP regression and

classification to perform computationally efficient, preliminary optimization for direct, low-thrust trajectories.

The low-thrust trajectories are modeled using the exponential sinusoid shape. The analysis performed in this

work demonstrates that the proposed procedure is (highly) robust, especially where the development of GPR

models is concerned. GP models have been developed for test cases from Earth to Mars and Ceres, and

from Mars to Earth. In all test cases, the main advantage of the GP-based method is its efficiency in locating

regions of feasible and near-optimal trajectories, especially when a large input space is explored. For the

evaluation of 1,000,000 candidate trajectories, the GP-based prediction method is approximately 150 times

faster than numerical trajectory computation. This speed advantage increases for an increasing number of

candidates.

GPR models trained with only three input space parameters showed higher accuracies than the ones trained

with full shape information. This observation is caused by the fact that the shape-trained GPR models can

accurately predict ΔVLT, but are not informative about the impulsive ΔV s. Additionally, significantly higher

accuracies were achieved when predicting propellant mass fraction values (Jm) instead of ΔV . As one of

the main objectives of space missions is to decrease Jm, models able to accurately predict Jm could be of

significant importance in the preliminary design of low-thrust missions. From the results presented in this

paper, a hypothesis is developed which states that GPR models can reach higher accuracies when the ratio

between the minimum and maximum target values gets smaller. This hypothesis is supported by the results

of all three test cases, but further work is necessary to confirm this.

MAPE values obtained for the regression models with target value Jm ranged between 0.55% and 2.14%,

which is in line with other work.6 For the classification of feasible exposins, MAPE values between 4.90%
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and 13.55% were achieved. When GPC and GPR models are placed in series, it is possible to predict (regions

of) near-optimal trajectories while requiring only three input parameters. Trajectories located in these regions

may serve as initial guesses for more refined optimization techniques. The models presented have been tested

for dependency on the Earth-Mars test case presented in this paper. Comparable results, in terms of MAPE

and prediction time, were achieved when the models were applied on a mission scenario with a different or

smaller range for t0 and/or TOF or a different target planet than the Earth-Mars mission scenario.

REFERENCES

[1] D. J. Gondelach and R. Noomen, “Hodographic-Shaping Method for Low-Thrust Interplanetary Trajec-
tory Design,” Journal of Spacecraft and Rockets, Vol. 52, No. 3, 2015, pp. 728–738.

[2] A. E. Petropoulos and J. M. Longuski, “A shape-based algorithm for the automated design of low-
thrust, gravity-assist trajectories,” Advances in the Astronautical Sciences, Vol. 109 III, No. 5, 2002,
pp. 2321–2336.

[3] D. Izzo, “Lambert’s problem for exponential sinusoids,” Tech. Rep. April, ESA/ESTEC, 2005.
[4] D. G. Krige, “A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand,”

Journal of the Chemical Metallurgical & Mining Society of South Africa, Vol. 52, No. 6, 1951.
[5] R. Dufour, J. d. Muelenaere, and A. Elham, “Trajectory driven multidisciplinary design optimization

of a sub-orbital spaceplane using non-stationary Gaussian process,” Structural and Multidisciplinary
Optimization, Vol. 52, No. 4, 2015, pp. 755–771.

[6] H. Shang and Y. Liu, “Assessing Accessibility of Main-Belt Asteroids Based on Gaussian Process
Regression,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 5, 2017, pp. 1144–1154.

[7] A. Gao and W. Liao, “Efficient Gravity Field Modeling Method for Small Bodies Based on Gaussian
Process Regression,” Acta Astronautica, Vol. 157, 2019, pp. 73–91.

[8] A. Gao, G. Y. Wang, S. S. Wu, and T. Song, “Efficient Evaluation of Mars Entry Terminal State Based
on Gaussian Process Regression Efficient,” IOP Conference Series: Materials Science and Engineering,
2018.

[9] L. Bouwman, “Gaussian Process Models for Preliminary Low-thrust Trajectory Optimization,” Master’s
thesis, Delft University of Technology, 2019.

[10] D. A. Vallado, Fundamentals of Astrodynamics and Applications. Space Technology Library, 2nd ed.,
2013.

[11] M. D. Vasile, O. Schütze, O. Junge, G. Radice, “Spiral Trajectories in Global Optimisation of Interplan-
etary and Orbital Transfers Table of Contents,” Tech. Rep. 5, 2006.

[12] M. Dowell and I. Jarratt, “A Modified Regula Falsi Method for Computing the Root of an Equation,”
BIT Numerical Mathematics, Vol. 11, No. 2, 1971, pp. 168–174.

[13] P. C. Hammer, “The Midpoint Method of Numerical Integration,” Mathematics Magazine, Vol. 31,
No. 4, 1958, pp. 193–195.

[14] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, Vol. 14.
Massechusetts Institute of Technology, 2004.

[15] H. Li, S. Chen, D. Izzo, and H. Baoyin, “Deep Networks as Approximators of Optimal Transfers Solu-
tions in Multitarget Missions,” arXiv, 2019, arXiv:1902.00250.

[16] J. Pericchi, O. Berger, and R. Luis, “Training Samples in Objective Bayesian Model Selection,” The
Annals of Statistics, Vol. 32, No. 3, 2004, pp. 841–869.

[17] M. Vasile and E. Minisci, “Analysis of Some Global Optimization Algorithms for Space Trajectory
Design,” Journal of Spacecraft and Rockets, Vol. 47, No. 2, 2010.

[18] D. M. Novak and M. Vasile, “Improved Shaping Approach to the Preliminary Design of Low-Thrust
Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 1, 2011, pp. 128–147.

[19] P. d. Pascale and M. Vasile, “Preliminary Design of Low-Thrust Multiple Gravity-Assist Trajectories,”
Journal of Spacecraft and Rockets, Vol. 43, No. 5, 2006, pp. 1065–1076.

[20] K. Kapoor, A.and Grauman, R. Urtasun, and T. Darrell
[21] M. Kuss and C. E. Rasmussen, “Assessing Approximate Inference for Binary Gaussian Process Classi-

fication,” Journal of Machine Learning Research, Vol. 6, 2005, pp. 1679–1704.
[22] R. M. Neal Bayesian Statistics, p. 475.
[23] C. K. I. Williams and D. Barber, “Bayesian Classification With Gaussian Processes,” Vol. 20, No. 12,

1998, pp. 1342–1351.
[24] M. Vasile, O. Schütze, and O. Junge, “Spiral trajectories in global optimisation of interplanetary and

orbital transfers,” ESA Technical Report, Vol. 31, 2006, pp. 0–45.
[25] R. Storn and K. Price, “Differential Evolution - A Simple and Efficient Heuristic for Global Optimiza-

tion over Continuous Spaces,” Journal of Global Optimization, Vol. 11, No. 4, 1997, pp. 341–359.
[26] J. Englander, “Automated Trajectory Planning for Multiple-Flyby Interplanetary Missions,” University

of Illinois at Urbana-Champaign, 2013.

View publication statsView publication stats

https://www.researchgate.net/publication/342503928


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


