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Abstract
Multi-scale structures, as found in nature (e.g., bone and bamboo), hold the promise of achieving superior performance
while being intrinsically lightweight, robust, and multi-functional. Recent years have seen a rapid development in topology
optimization approaches for designing multi-scale structures, but the field actually dates back to the seminal paper by
Bendsøe and Kikuchi from 1988 (Computer Methods in Applied Mechanics and Engineering 71(2): pp. 197–224). In this
review, we intend to categorize existing approaches, explain the principles of each category, analyze their strengths and
applicabilities, and discuss open research questions. The review and associated analyses will hopefully form a basis for
future research and development in this exciting field.

Keywords Topology optimization · Multi-scale structures · Multi-scale modelling · Additive manufacturing

1 Introduction

Topology optimization is a computational design method for
automatically generating a structural layout with maximized
performance under relevant design specifications. In other
words, the structural design problem can be formulated
as optimizing the distribution of material in a discretized
design domain (Bendsøe 1989). The optimized layout is
not restricted to its initial topology, opening for superior
structural performance over manual designs based on engi-
neers’ intuition and experience. This capability is especially
attractive and has been successfully applied in high-tech
industries, such as aerospace (Zhu et al. 2016), automo-
tive (Yang and Chahande 1995), architecture (Beghini et al.
2014), and healthcare (Wang et al. 2016).

Early works that lead to the establishment of this field,
and in particular the seminal work by Bendsøe and Kikuchi
(1988), made use of a material model corresponding
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2800, Kgs. Lyngby, Denmark

to infinitely small square cells with rectangular holes
and evaluated equivalent mechanical properties of these
cells by numerical homogenization. Theoretically, optimal
structures comprise spatially varying geometric patterns
spanning multiple length scales. Due to manufacturing
difficulties of these multi-scale structures, focus in the
late 1990s shifted from homogenization-based approaches
to “mono-scale” approaches, optimizing the distribution
of a homogeneous isotropic material (Bendsøe 1989;
Zhou and Rozvany 1991; Mlejnek 1992; Bendsøe and
Sigmund 1999). Popular methods such as those based on
density (Sigmund 2001), level sets (Wang et al. 2003;
Allaire et al. 2004), and evolutionary procedures (Xie and
Steven 1993) all belong to this latter category.

Over the past few years, along with advances in additive
manufacturing (AM, also known as 3D printing), there has
been a resurgent interest in optimal design of multi-scale
structures. In additive manufacturing, parts are produced
layer upon layer by, e.g., extruding small flattened strings
of molten material or melting and fusing powder material
or wire. AM provides an effective means to fabricate
complex mono-scale structures as well as delicate multi-
scale structures. In fact, topology optimization of (mono-
scale) structures and the use of lattice infill are recognized
as two dominating strategies for designing next-generation
lightweight structures (Brackett et al. 2011; Thompson et al.
2016; Plocher and Panesar 2019). The combination, i.e.,
topology optimization of multi-scale structures, thus holds
the promise of superior performance in a general sense.
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Fig. 1 Illustration of a
multi-scale structure

These expectations are sometimes coupled with observation
of multi-scale structures found in nature (e.g., bone and
bamboo (Lakes 1993; Fratzl and Weinkamer 2007)), while
the specific function and the driving mechanisms underlying
those natural multi-scale structures are not always known
precisely.

Figure 1 illustrates a multi-scale structure. Each point
in the macroscale structure effectively represents a periodic
repetition of a local microstructure. Here, as common in
the topology optimization literature, microstructure shall
be interpreted relatively—it does not specifically refer to
a physical size under, e.g., 1 mm but rather to a scale
much smaller than the macroscale. It is thus assumed that
continuum mechanics is applicable to both macro- and
microscales. Some examples of 3D multi-scale structures
designed by topology optimization are shown in Fig. 2.

In view of the rapid development of topology optimiza-
tion of multi-scale structures, it seems timely to critically
review the variety of methods that have been proposed.
The term multi-scale has been used extensively in the lit-
erature (and also in this review) to describe structures and
modelling techniques, as well as design approaches. Many
design approaches make use of multi-scale modelling, i.e.,
they assume separation of length scales. However, mono-
scale modelling can also be used to design multi-scale

structures. In this review, we intend to categorize existing
approaches, explain the principles of each category, analyze
their strengths and applicabilities, and discuss open research
questions. This review is supplemented with our imple-
mentation of representative approaches, based on which we
quantitatively evaluate structural performance. This review
and analysis hopefully will form a basis for future research
and development in this exciting field.

2 Background

In this section, we categorize three fundamental formula-
tions that provide the basis for most multi-scale approaches.

2.1 Homogenization-based structural optimization

A starting point in the history of structural optimization
is the classical work by Michell (1904) where an opti-
mal truss design is represented by a continuum description.
Arguably, this is the first work on multi-scale optimiza-
tion since the truss-like continuum description is actually
a limit case that can only be realized by using an infinite
number of discrete truss members; see Prager and Roz-
vany (1977) for more details. Similarly, Cheng and Olhoff

Fig. 2 Some examples of 3D multi-scale structures designed by
topology optimization. From left to right: a bone-inspired infill struc-
tures, b variable-density lattice optimization, and (c,d,e) three de-
homogenization schemes in 3D. The first three are produced by 3D
printing, while the last two are renderings. a and c Reprinted with

permission from IEEE, from Wu et al. (2018) and Wu et al. (2021),
respectively. b, d and e Reprinted with permission from Elsevier, from
Zhang et al. (2017), Geoffroy-Donders et al. (2020)and Groen et al.
(2020), respectively
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Fig. 3 Layout of the unit cell
with a rectangular hole, in local
(y1, y2), and global (x1, x2)
coordinate systems

(1981) found that for the case of optimizing the stiffness
of a plate by varying the thickness, more stiffener-like
reinforcement appeared when the design space was refined.
They made the important conclusion that in the limit of
an infinitely fine mesh an infinite number of stiffener-like
reinforcing members would occur (Cheng 1981). Only by
restricting the variation in shape can existence of a solution
be proven (Niordson 1983). For compliance minimization
in 2 or 3 dimensions, Kohn and Strang (1986) proved
that the optimal material distribution can only be found by
relaxing the design space. This means the use of a contin-
uous composite material description using a characteristic
unit-cell length ε → 0, allowing for much more detail
than a single-scale discretized point-wise material or void
description. Here, the theory of homogenization (Bensous-
san et al. 1978) enters the field of structural optimization,
since this is the perfect tool to bridge the scale between the
microscopic periodic composite material and its effective
(homogenized) properties on the macroscale. Using this the-
ory, several research groups independently and more or less
simultaneously realized that there exists a class of sequential
laminates, the so-called rank-N laminates that can achieve
the theoretical upper bounds for maximum strain energy
density (Lurie and Cherkaev 1984; Norris 1985; Francfort
and Murat 1986; Milton 1986). These composite materials
consist of several scales in themselves, which is a nec-
essary condition to achieve ultimate stiffness (Allaire and
Aubry 1999). With this knowledge, Bendsøe and Kikuchi
(1988) came up with the landmark paper that provided
the computational framework to do homogenization-based
topology optimization of continuum structures. Contrary to
using rank-2 laminates that are optimal for a single load
case in 2D, they came up with a single-scale interpretation,
the square microstructure with a rectangular hole, shown in
Fig. 3. By changing the widths μ1 and μ2 as well as the
orientation θ throughout the design domain, near-optimal
structures could be achieved. The use of rank-2 laminates
as a microstructure was included in later works (Bendsøe
1989; Allaire and Kohn 1993).

2.2 Density-based topology optimization

Shortly after the homogenization-based topology optimiza-
tion approach was introduced, an alternative known as the
SIMP (Solid Isotropic Material with Penalization) or power-
law approach was suggested (Bendsøe 1989; Zhou and
Rozvany 1991; Mlejnek 1992). Here, the material distribu-
tion in a design domain is represented by a scalar field, with
a relative density per element in the discretized domain.
Here, ρ = 1 means solid and ρ = 0 means empty. This
integer-programming problem is relaxed to allow for inter-
mediate densities during optimization. Regardless of the
value of the relative density, the material within each ele-
ment is assumed to be isotropic and homogeneous. Material
properties (e.g., Young’s modulus) are related to relative
densities by a power-law interpolation. This seemingly arti-
ficial relationship was later proved physically permissible
for a properly chosen penalty power, e.g., with a power
p ≥ 3 for Poisson’s ratio ν = 1/3 (Bendsøe and Sigmund
1999). Based on this, a heterogeneous material distribu-
tion within the element domain, i.e., a microstructure of
solid base material and void, can be found to match the
expected material properties of an intermediate density.
Hence, even the simple “mono-scale” density approaches
may be interpreted as multi-scale approaches albeit with
suboptimal microstructures. With a justified penalization
power, the SIMP approach converges to near 0-1 solu-
tions, representing mono-scale structures. In a number of
multi-scale approaches to be discussed later, a smaller p is
chosen for obtaining solutions with a large portion of inter-
mediate densities, which provide a basis for filling porous
microstructures. However, this may not be mechanically
valid, c.f. if p < 3 for ν = 1/3, this power-law scheme
violates the Hashin-Strikhman bounds (Hashin and Shtrik-
man 1963). The SIMP approach is easy to implement; see
educational codes (Sigmund 2001; Andreassen et al. 2011;
Ferrari and Sigmund 2020). Here, the three-field projection
approach is recommended (Guest et al. 2004; Xu et al. 2010;
Wang et al. 2011).
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Mono-scale structures can also be optimized by methods
based on level sets (Wang et al. 2003; Allaire et al.
2004), evolutionary procedures (Xie and Steven 1993), and
geometric morphing and projection (Norato et al. 2004; Guo
et al. 2014). For an overview of these methods, we refer
to the reviews by Sigmund and Maute (2013) and Deaton
and Grandhi (2014). The use of non-gradient approaches
for solving topology optimization problems with many
variables is not recommended (Sigmund 2011).

2.3 Inverse homogenization

The theory of numerical homogenization, which approxi-
mates effective properties of a periodic unit cell, can also
be exploited to design a microstructure with desired prop-
erties. This method was introduced by Sigmund (1994)
and is generally referred to as inverse homogenization.
With compliance minimization in mind, it is common prac-
tice to formulate an optimization problem to maximize the
microstructure stiffness with respect to the applied stresses
or strains. For the difference in stiffness between such
microstructures and the optimal energy bounds, see, e.g.,
Guedes et al. (2003) and Träff et al. (2019). Furthermore,
microstructures with negative Poisson’s ratio (Sigmund
1994; Andreassen et al. 2014; Clausen et al. 2015b), materi-
als with maximum shear and bulk moduli (Sigmund 2000),
or materials with increased buckling strength (Thomsen
et al. 2018; Wang and Sigmund 2020) can be designed using
inverse homogenization.

Besides problems in elasticity, inverse homogenization
can be applied to many other types of physics. Sigmund
and Torquato (1996) considered thermal expansion prob-
lems, while Torquato et al. (2002) included both thermal and
electrical conductivity. Sigmund (1999) and Challis et al.
(2012) considered combined stiffness and fluid permeabil-
ity. Inverse homogenization for the design of phononic and
photonic materials has been considered by Sigmund and
Jensen (2003) and Jensen and Sigmund (2011), respectively.
Lately, inverse homogenization has been applied to the
design of photonic isolaters by Christiansen et al. (2019).
For more details on material design using inverse homog-
enization, we refer interested readers to the review papers
by Cadman et al. (2013) and Osanov and Guest (2016) and
the Ph.D. thesis by Andreassen (2015).

3 Full-scale approaches

As mentioned earlier, multi-scale structures can be designed
using either multi-scale or mono-scale modelling. In this re-
view, approaches based on multi-scale modelling (i.e., with
the assumption of separation of length scales) are referred
to as multi-scale approaches. Approaches that do not make

this assumption, i.e., “mono-scale” approaches, optimize
distribution of a homogeneous material. When the design
domain is discretized by a finite-sized mesh, such “mono-
scale” approaches typically result in mono-scale structures.
However, as the discretization of the design domain goes
high, it can directly be used to achieve multi-scale struc-
tures, since theoretical stiffness optimal structures span mul-
tiple scales. By employing careful continuation techniques
and sufficiently fine meshes, and in the absence of regular-
ization for mesh independence such as control of minimum
length, perimeter, or slope, multi-scale structures should
appear naturally. However, the appearance of fine scale
structures may also be stimulated by controlling the layout
locally. In these approaches, analysis and optimization of
structures are performed in the full resolution of the domain,
and we thus refer to them as full-scale approaches.

For local control approaches, two strategies can be dis-
tinguished: pattern repetition and local volume constraints.
In the former, the design domain is partitioned into a num-
ber of subdomains that are further refined. The layout in
each subdomain is enforced to be the same as that in the
others, leading to periodic patterns in the full domain. In
a variation, the subdomains are grouped, and an identical
layout is enforced in subdomains per group, resulting in,
for instance, periodic patterns along one axis with grada-
tion along another. The enforcement of an identical layout
in subdomains can be achieved by creating a template that
links all subdomains. The sensitivity of each point in the
template is the sum of sensitivities of corresponding points
in all linked subdomains. This strategy reduces the solution
space from the full design domain to one subdomain, or a
few for a gradation or partitioning, but the analysis is still
performed on the full mesh.

Pattern repetition is pursued in full-scale approaches as
well as multi-scale approaches. We discuss the former here,
and will return to the latter in subsequent sections. Zhang
and Sun (2006) presented a first and comprehensive study
on creating periodic patterns using topology optimization.
It was shown that topology design results were greatly
influenced by both the number and aspect ratio of the
subdomains. Similar results were later reproduced using
evolutionary procedures (Huang and Xie 2008) and level
sets (Liu et al. 2018b). Almeida et al. (2010) presented
a density-based approach to create pattern repetition as
well as structural symmetry. It is worth noting that
the subdomains do not have to be of the same size.
Repetitive pattern with a variation in size was demonstrated
by Stromberg et al. (2011) and Wu et al. (2016a) for
architectural design, by establishing a mapping between
points in size-varying subdomains. Lately, the principle
of pattern repetition has been used to design mechanisms
(Wu et al. 2020). Designing periodic patterns using full-
scale analysis involves intensive computation. Zhang and
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Sun (2006) proposed to reduce computation time through
condensation—unfortunately, the details were missing in
the original paper. Alexandersen and Lazarov (2015)
showed an enormous reduction in computational cost by
using a spectral coarse basis pre-conditioner that exploits
the repeated patterns, i.e., for each repeated pattern the same
spectral basis can be used.

The second strategy to stimulate fine scale structures is
to apply local volume constraints (Wu et al. 2018). The
idea is to impose an upper bound on the fraction of solid
elements in the neighborhood of every point in the full
design domain. This involves two important parameters: the
radius of the neighborhood which affects the pore size, and
the prescribed upper bound on the local volume fraction
which controls the porosity. Since this creates a large
number of constraints (equal to the number of elements),
aggregation schemes such as the p-norm are often applied
to aggregate the per-element constraints into a global one,
facilitating the optimization process. It is found that local
volume constraints yield bone-like porous structures that are
aligned with principal stress directions (see Fig. 2a). These
structures are robust with respect to load variations, local
material failure, and buckling, at the price of some decrease
in stiffness. A typical way to ensure robustness is to model
uncertainties such as material failure and load variations
in topology optimization, resulting in distributed structures
(e.g., Jansen et al. (2014)). This demands multiple finite
element analyses per optimization iteration. In this regard,
applying local volume constraints is an efficient alternative
for robust design. The concept of local volume constraints
is similar to maximum length scale control, which was
introduced by Guest (2009) and later studied in Lazarov and
Wang (2017) and Carstensen and Guest (2018).

A number of further developments of the local volume
constraints have been proposed. Wu et al. (2017) combined
it with a coating approach (Clausen et al. 2015a) to simu-
ltaneously evolve the (macroscale) structure and the mic-
rostructures therein, referred to as shell-infill composites.
Gradation in the porosity and pore size was demonstrated

by Schmidt et al. (2019). Dou (2020) reformulated the
constraints by a projection method, while Cang et al.
(2019) made use of machine learning algorithms to predict
optimized structures with local volume constraints. This
was recently extended to incorporate multiple materials (Li
et al. 2020). Furthermore, the local volume constraints have
been applied in the context of other physics problems, e.g.,
heat conduction (Yan et al. 2018) and structural mechanics
coupled with heat conduction (Das and Sutradhar 2020).

Figure 4 compares compliance-minimized structures
optimized using a conventional mono-scale formulation
under a total volume constraint (left), with pattern repetition
(middle) and with local volume constraints (right). From
this comparison it can be concluded that:

– Both pattern repetition and local volume constraints
restrict the solution space, and the structure is expected
to be less optimal than obtained from a formulation
on the same resolution without these constraints. While
more tests are not included here, it can be found that the
restriction becomes more pronounced if the size of the
repetitive pattern or the filter radius for defining local
volume is reduced. Oppositely, when the pattern size
or filter radius is larger than the size of the domain,
the constraints have no influence on the solution; the
local volume constraints degenerate to the conventional
global volume constraint.

– Porous structures from local volume constraints exhibit
continuous variations in orientation, while periodic
patterns have a constant orientation. In this sense,
local volume constraints are less restrictive than pattern
repetition in constraining the optimization problem.
Note that pattern repetition also implicitly controls the
volume fraction in subdomains.

4 Classification of multi-scale approaches

Many works on multi-scale optimization repeat the theory to
do numerical homogenization using finite elements, which

Fig. 4 Full-scale optimized structures using the same amount of mate-
rial. The design space is a rectangular domain discretized by 400×200
square elements. The boundary condition is illustrated on the reference
design (left). Middle: Optimized design with enforced pattern repeti-
tion. The size of the pattern is 40 × 40, indicated by a blue transparent

square. Right: Optimized design with local volume constraints. The
radius of the filter for calculating local volumes is 20, indicated by
a blue transparent disk. From left to right, the compliance values are
100.56, 282.82, and 152.28, respectively
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was described in detail by Guedes and Kikuchi (1990).
Based on this theory, Andreassen and Andreasen (2014)
provided an open-source educational Matlab code to do nu-
merical homogenization for plane problems, which has later
been extended to 3D by Dong et al. (2019). However, more
important is how to accurately define the multi-scale opti-
mization problem. Therefore, we will now review some theo-
retical aspects about the problem formulation for compliance
minimization problems for nload load cases. Using spatially
varying microstructures, we can write the corresponding
optimization problem as (e.g., Rodrigues et al. 2002),

max
ρ

∫
Ω ρdΩ≤Vmax

max
EH (ρ)∈Ead

min
uk∈U

{
nload∑

k=1

wkΠk
tot

}

. (1)

Here, ρ is the macroscale variable describing the porosity
of the varying microstructures, which is subject to an upper
bound on the available material Vmax . EH describes the
homogenized elasticity tensor of the microstructures, which
has to be in the physically admissible set of elasticity
tensors Ead . The inner problem describes the minimization
of potential energy Πk

tot , i.e., the equilibrium constraint
that has to hold for each load case k, where we solve
for displacement field uk in the space of kinematically
admissible displacement fields U . Finally, wk is a weighting
factor to scale the energy for each load case. The compliance
J can be calculated as,

J = −2

{
nload∑

k=1

wkΠk
tot

}

, (2)

hence, maximizing the total potential energy is equivalent to
minimizing the compliance.

Optimization problem (1) can be solved in different
ways, e.g., as one system of equations using the simultane-
ous analysis and design (SAND) approach (Jog and Haber
1996), or using a sequence of separable convex approxima-
tions using a so-called nested analysis and design (NAND)
approach (Fleury 1993). The latter is the de facto stan-
dard for topology optimization problems. However, solving
problem (1) would, depending on the way the material of the
microstructures is modeled, result in a large KKT matrix for
the maximization with respect to EH . To circumvent this,
we can interchange the maximization with respect to EH

and the minimization with respect to u,

max
ρ

∫
Ω ρdΩ≤Vmax

min
uk∈U

{

max
EH (ρ)∈Ead

{
E(uk, ρ)

}
−

nload∑

k=1

wkΠk
ext

}

. (3)

Here, Πext is the potential energy of the applied loads for
the k-th load case, and the point-wise optimal strain energy
E can be written as,

E = 1

2

nload∑

k=1

wk
( ∫

Ω

ε(uk) : EH (ρ) : ε(uk)dΩ
)

. (4)

Hence, we now have an inner point-wise microstructure
optimization problem. As proven by Lipton (1994b),
problem (3) is equivalent to problem (1) if a microstructure
parameterization is used such that the strain energy
is concave with respect to EH . This concavity is a
property of optimal rank-N microstructures. Hence, if
suboptimal microstructures are used, the optimality of the
solution to problem (3) cannot be guaranteed. Nevertheless,
problem (3) results in an optimization problem that is
independent of the material description and thus forms
the basis for the vast majority of multi-scale topology
optimization approaches. The most common way to solve
the optimization problem (3) is to use a hierarchical solution
procedure (see, e.g., Bendsøe and Sigmund (2004) for
a detailed description), which can be summarized in the
flowchart below.

1. Initialize data: Geometry, mesh, boundary conditions,
density ρ, microstructure description EH , etc.

2. Analysis: Solve for macroscale displacements uk .
3. Microstructure optimization: Solve point-wise for EH

by maximizing E for given strains and ρ.
4. Density update: Update the outer maximization prob-

lem, subject to volume constraint.
5. Check convergence: Check if the optimization problem

is converged. If not, repeat steps 2–5.

It is not necessary to solve the problem exactly like
this. For example, one can combine the global density
update and all local problems in one large optimization
step (see, e.g., Bendsøe and Kikuchi (1988)). However,
for problems with a large number of design variables,
the separation in local and global problems allows for
reducing the computational time through the use of parallel
computations (Coelho et al. 2008).

An alternative to the hierarchical formulation (problem
(1)) is to assign two sets of design variables, i.e., on
both macro- and microscales, and concurrently optimize
these two sets. This concurrent formulation, known as
PAMP (Porous Anisotropic Material with Penalization),
was proposed by Liu et al. (2008) to design microstructures
and their macroscopic layout.

Problem (3) and the abovementioned flowchart will
be used to categorize multi-scale approaches later on.
Although the equation concerns compliance minimization
in the elasticity setting, similar looking equations and
flowcharts can be made for different types of physics
including additional constraints. Each of these multi-scale
problems can be divided into a sequence of three related
optimization problems, i.e., a state problem; a global
parameter distribution problem; and one or many local
microstructure optimization problems. The key point in
classifying the different multi-scale topology optimization
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approaches is to determine what kinds of restrictions are
applied to the solution space of each of the sub-problems.
For now, we assume that at least the state problem is
solved up to full accuracy in each of the multi-scale
problems, although this may not apply to deep learning
or iterative solution approaches. Hence, we classify the
different approaches by (1) the restrictions that are applied
to the density distribution and (2) the restrictions that are
applied to the admissible set of properties Ead that can be
achieved by the parameterized microstructure.

It should be mentioned that even in the elasticity setting
it is not for all cases exactly known which constitutive
tensors are realizable (Milton et al. 2017). For example,
microstructures that reach minimum shear modulus at the
Walpole point have never been realized (Sigmund 2000).
However, as discussed above, rank-N laminates cover the
full space of optimal designs for compliance minimization
problems. In other words, if one uses rank-N laminates for
the microstructure description one can solve problem (3)
to the true optimum. It is known that for a single load
case in a 2D setting, rank-2 laminates are sufficient to
describe the optimal solution, while for multiple load cases
a rank-3 laminate is required (Avellaneda 1987). Hence,
if one would only use a rank-2 parameterization for a
multiple load case problem, the optimality could be severely
reduced. Since the vast majority of works on multi-scale
topology optimization use (strongly) restricted sets Ead

(for computational, manufacturing or other reasons), we
categorize approaches based on the following restrictions,
starting with the least restricted category:

I Optimal set of elasticity tensors: Ead is represented
by a geometry parameterization that allows the local
problem to be solved to optimality. This is for
elasticity and conduction problems the set of rank-N
laminates (Allaire 2002). However, note that, for many
other types of problems, the optimal set of constitutive
tensors is not exactly known yet.

II Unrestricted unit-cell design: Ead contains the set
of unit cells that can be obtained using inverse
homogenization, without restrictions on the material
distribution, shape, connectivity, or orientation of the
unit cell. This means that if a fine enough discretization
is used, the microstructures should converge to what
is theoretically possible. However, in practice, limited
mesh resolution will cause suboptimal microstructures.

III Restricted unit-cell design: Ead contains the set of unit
cells that can be obtained using inverse homogeniza-
tion with restrictions on material distribution, unit-cell
shape, connectivity, or orientation. For example, this
can be a square unit cell or a design with pre-defined
solid elements, both resulting in severely restricted
design freedom.

IV Parameterized unit cell with multiple parameters: Ead

contains a set of pre-computed parameterized unit
cells such that the microstructure is parameterized
using more than 1 parameter. For example, this can
be the rectangular hole microstructure by Bendsøe
and Kikuchi (1988). Due to the rotational freedom,
the rectangular hole cell actually performs almost as
well as rank-2 microstructures (Bendsøe and Sigmund
1999), if properly de-homogenized.

V Parameterized unit cell based on density: Ead con-
tains a single constitutive tensor EH for a given
microstructure density ρ. This is the most restrictive
case since it does not involve a local optimization prob-
lem. Isotropic microstructures satisfying the Hashin-
Shtrikman bounds (Hashin and Shtrikman 1963) fall
in this category since the isotropic elasticity tensor
follows only from the density. Likewise, the SIMP
approach with a penalty parameter p that satisfies
the Hashin-Shtrikman bounds (Bendsøe and Sigmund
1999) falls into this category.

The difference between category III where the
microstructure topology is optimized during the optimiza-
tion process and category IV is that for category IV a
database of pre-computed microstructural properties is
generated. Hence, category IV will require a heavy pre-
computation step, but afterwards the optimization problem
can be solved more efficiently.

There are many works that consider a set of elasticity
tensors Ead outside of the bounds on what is theoretically
possible. An example of this is the free material optimiza-
tion (FMO) approach (Bendsøe et al. 1994), which has also
been used in two-scale structural optimization (Schury et al.
2012; Hu et al. 2020). In this method, the entries of EH

are the design variables, and using either a constraint on a
norm or on eigenvalues of EH one can try to relate the ten-
sor to a density distribution. Nevertheless, there is no direct
relation between the bounds used on the tensor and the
Hashin-Shtrikman bounds; and therefore, we will not dis-
cuss the FMO method further in this review. Another good
example of violation of the bounds is the variable thickness
sheet problem (Rossow and Taylor 1973), i.e., the SIMP
method with p = 1. In 2 dimensions, we can justify these
designs by interpreting density as a thickness in the out-
of-plane direction. Hence, it should therefore be seen as a
sizing problem. However, the model becomes invalid if used
to pre-compute a global density distribution for a subse-
quent porous microstructure realization. One cannot make
an in-plane realization of these variable thickness designs
and therefore works that use SIMP with p = 1 for any
porous or 3D design problem should be avoided.

Finally, we can categorize the outer problem into three
different categories.
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A Unrestricted density: There are no restrictions on the
density, i.e., ρ ∈ [0, 1].

B Restricted density: Only a few values of ρ are allowed.
For example, this applies to the SIMP method (possibly
combined with a projection method (Guest et al. 2004)
to reduce elements with intermediate densities), and
also the PAMP approach (Liu et al. 2008) falls into
this category. This also applies to interface bounded
approaches (Clausen et al. 2015a; Groen et al. 2019;
Luo et al. 2019) with a fixed infill density and a solid
outer shell.

C Fixed density: The density field is fixed, i.e., there is no
outer optimization problem. This is, for example, a uni-
form density field or a density distribution based on
some prior optimization problem. Note that a fixed
density does not necessarily restrict the unit cell to
be periodic, though this is the case in Cherkaev et al.
(1998) and Fujii et al. (2001). A fixed density permits
unit cell adaptation, e.g., rotation (Wu et al. 2021).

In total, we can thus identify 5 × 3 different categories
of multi-scale topology optimization problems, which are
summarized in Table 1. Here, we also list a fundamental
paper for each category (if available).

5Multi-scale approaches

This section is organized in accordance with the above
classification based on restrictions on unit cells. We start
with the least restricted category—the optimal set of
constitutive properties (I), and then proceed directly to
the most restricted one where unit cells are parameterized
by a single parameter, i.e., density (V). This is followed
by categories with increasing flexibility in the unit cell
parameterization (II, III, IV). This order is found to align
with the chronological order of the first article in each
category (see Table 1, column A).

5.1 Optimal set of constitutive properties

In the context of elasticity, the minimum number of
sequential layers that is required to parameterize the optimal

solution using rank-N microstructures depends on both
the number of load cases and the dimension of the
problem (Avellaneda 1987; Francfort and Murat 1986):

– Rank-2 laminates with orthogonal layers, for plane
problems subject to a single load case

– Rank-3 laminates, for plane problems subject to
multiple load cases

– Rank-3 laminates with orthogonal layers, for problems
in 3D subject to a single load case

– Rank-6 laminates for problems in 3D subject to
multiple load cases

Hence, at most, 7 different length scales are needed to describe
an optimal material parameterization in 3D, i.e., six length
scales for the microstructure and one for the macroscopic
parameterization. The elasticity tensors of these multi-scale
laminates can be derived analytically, allowing the local
microstructure optimization problems to be solved in a very
efficient manner. For example, for a rank-2 laminate shown
in Fig. 5 (right) the first layering is constructed on the
infinitesimal length scale x/ε2 shown in Fig. 5 (left). This
layering can be described by the relative layer width μ1

that describes the ratio of the isotropic stiff material (+)
compared to the weak void material (-) and the interface
normal n1 and tangent t1. Subsequently, the rank-2 laminate
is constructed using a second layering on length scale x/ε

using relative layer width μ2 that describes the ratio of the
stiff material to the first layering. By ensuring orthogonal
interface vectors, the elasticity tensor is thus defined by
only three parameters, μ1, μ2, and θ2, besides the material
properties of the stiff (+) and weak (-) phase respectively.

The first work in which topology optimization using
rank-2 laminates was considered is the work by Bendsøe
(1989). Subsequently, Allaire and Kohn (1993) proved that
the optimal design for plane problem subject to a single load
case can be described purely by the stress distribution in the
macroscopic domain. Multiple load case problems, where
the design is parameterized using optimal rank-3 laminates,
have been considered for both plane problems (Allaire et al.
1996; Cherkaev et al. 1998) and plate/shell problems (Dı́az
et al. 1995; Hammer et al. 1997; Krog and Olhoff 1999).
By choosing different plate layouts, e.g., using a fixed core
thickness, Soto and Dı́az (1993) and Krog and Olhoff (1999)

Table 1 Categories of multi-scale topology optimization problems and representative papers

A: Unrestricted density B: Restricted density C: Fixed density

I: Optimal set of elasticity tensors Rank-2 (Bendsøe 1989) Soto and Dı́az (1993) Cherkaev et al. (1998)

II: Unrestricted unit-cell design Barbarosie and Toader (2014) – –

III: Restricted unit-cell design Rodrigues et al. (2002) Liu et al. (2008) Fujii et al. (2001)

IV: Parameterized unit cell with multiple parameters Bendsøe and Kikuchi (1988) Groen et al. (2019) Wu et al. (2021)

V: Parameterized unit cell based on density SIMP (Bendsøe 1989) Guest et al. (2004) Finite element analysis
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Fig. 5 Visualization of how a
rank-2 microstructure is
constructed from a stiff isotropic
material (+) and a
weak/compliant isotropic
material (-). Please note the
different length scales, on the
left x/ε2 and on the right x/ε,
with the characteristic unit-cell
length ε → 0

θ1

 x2/ϵ2

 x1/ϵ2
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n1
t1μ1

(1-μ1)
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 x2/ϵ

showed the effect of using several density restrictions on
the performance. The effect of restricting the amount of
unique microstructures in the domain has been investigated
by Cherkaev et al. (1998), who demonstrated that the
performance can be at least twice as bad if only 1 or a few
unique micostructures are used in the design domain.

The method has been applied to 3D topology optimiza-
tion problems, where orthogonal rank-3 laminates are used
for single load case problems (Cherkaev and Palais 1996;
Allaire et al. 1997; Dı́az and Lipton 1997; Olhoff et al. 1998;
Czarnecki and Lewiński 2006). Multiple load cases are con-
sidered by Dı́az and Lipton (2000). A nice feature of rank-N
laminates is that they provide a lower bound on the theoreti-
cal compliance that can be reached. It is thus recommended
to include this comparison when presenting a multi-scale
approach. To help doing so, we supply a code for the opti-
mization of rank-2 microstructures, which is discussed in
Appendix.

A downside of structures optimized using rank-N
laminates is that they consist of several length scales.
This poses two challenges. Firstly, although technology is
rapidly developing and lab work has demonstrated multi-
scale manufacturing capability (e.g., Zheng et al. (2016)),
a majority of manufacturing techniques do not yet support

precise production of structures spanning multiple length
scales. Hence, single scale interpretation of multi-scale
rank-N laminates is required. Träff et al. (2019) have
shown that the multi-scale rank-N microstructures can be
approximated on a single scale with only a small loss in
performance. Secondly, it is necessary to compile globally
consistent structures from locally defined rank-N laminates
(or their simplified versions), i.e., to de-homogenize the
results. This problem was first addressed by Pantz and
Trabelsi (2008), who used an implicit geometry description
to interpret the optimized multi-scale designs on a single
length scale with little loss in performance. More details on
de-homogenization will be presented later in Section 5.3.1.

Another difficulty with the interpretation of rank-N
microstructures is that, for multiple load cases, there exist
an infinite number of different microstructure parameter-
izations that can reach the same elasticity tensor. As an
example, consider the planar unit-cell optimization problem
using four independent load cases shown in Fig. 6 (top).
If we optimize for minimum complementary energy and
find the corresponding rank-3 laminates using the method
of Lipton (1994a), we obtain the four distinct microstructure
realizations shown in Fig. 6 (bottom). These microstruc-
tures and an infinite number of combinations thereof can

Fig. 6 Top: Illustration of the
four stress cases and their
respective weights. Bottom:
Visualizations of optimal rank-3
laminates with indicated
hierarchy, optimized for the 4
stress cases using
ρ = 0.5 (Groen 2019) 0.150.35 0.150.35
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Fig. 7 Three types of 3D unit
cells, from left to right, truss- or
beam-like lattice structure, triply
periodic minimal surface
(TPMS), and topology
optimized microstructure
(Reprinted from Andreassen
et al. 2014 with permission from
Elsevier)

achieve the same minimum complementary energy, which
is both an advantage and a difficulty when finding practical
interpretations of rank-N designs.

Finally, it should be mentioned again that for many
problems beyond elasticity and heat conduction, a full
parameterization of the optimal set of constitutive properties
is yet to be found. Finding these bounds on the properties
and geometries that reach these bounds is a research field
on its own. The interested reader is referred to the books on
the theory of composites by Milton (2002, 2016).

5.2 Parameterized unit cell based on density

Predefined cellular structures such as those shown in
Fig. 7 have been used to efficiently design multi-
scale components. Common in many of these multi-scale
approaches is the use of homogenization to evaluate
the effective material properties of predefined unit cells.
Since the cells are predefined, homogenization can be
performed off-line prior to optimization. This allows to
generate structures with fine geometric details at a run-
time computational complexity comparable to mono-scale
approaches (Section 2.2). This is attractive, as evidenced by
the large number of publications and industrial examples
falling into this category. Predefined unit cells reduce the
solution space of the microstructures to a dimension of 1
(or a few, see Section 5.3). This distinguishes this approach
from hierarchical or concurrent approaches (Sections 5.4
and 5.5), where microstructures are represented by multi-
variable density fields. This distinction is meaningful for
implementation. Since the solution space is reduced, it is
convenient to construct a differentiable function that maps
the reduced parameters to homogenized properties, and use
this function in macroscale optimization.

A typical application of these approaches is to design 3D
printed components with uniform infill patterns. From the
optimization perspective, this requires no or little adaption
of mono-scale optimization approaches. The repeating unit
cell can be interpreted as a material, the distribution
of which is then optimized by mono-scale approaches.
Note that the unit cells interpreted as a material can be
isotropic or anisotropic. An example of the former is a
2D beam-like lattice structure constructed from a regular
triangular tiling (Clausen et al. 2016). In contrast, the 2D

lattice structure from a regular square tiling is anisotropic.
Most mono-scale optimization approaches in their standard
form deal with isotropic materials. To handle anisotropic
materials, the stiffness matrices in finite element analysis
must be adapted to reflect the homogenized elasticity tensor
of the anisotropic material. Also note that if not optimally
oriented along local principal stress directions, anisotropic
microstructures may result in highly suboptimal results.

There has been a growing interest in designing com-
ponents with graded cellular structures. Here, the input to
optimization extends from a single unit cell to a set of cells
with gradation in porosity and effective material proper-
ties (e.g., elasticity tensor). This set can thus be referred
to as functionally graded cells. They are typically param-
eterized by the fraction of solid material within each cell
(ρ), naturally serving as the design variable in optimization.
The homogenized elasticity tensor (EH ) is a function of
ρ, EH (ρ), which can be constructed by interpolating elas-
ticity tensors of sample cells with equally spaced material
fractions. EH (ρ) thus depends on the specific functionally
graded cells, and in general it deviates from the power-
law relation. This function for X-shaped lattice structures
with varying thicknesses is visualized in Fig. 8a, where the
power-law curves with p = 1 (i.e., unpenalized), 2 and 3
are also plotted. For accurately representing the correspond-
ing mechanical properties, the cell-specific EH (ρ) shall
be used in lieu of the generic power-law in density-based
topology optimization. The cell-specific EH (ρ) is com-
monly constructed using numerical homogenization. Wu
et al. (2019) proposed an alternative surrogate model for
mapping the effective properties of density parameterized
unit cells. It used static condensation to reduce the degrees
of freedom of unit cells, followed by proper orthogonal
decomposition and diffuse approximation for mapping the
density to unit cell stiffness matrix.

Cell-specific material interpolation models have been
used in the optimization for components consisting of
gyroid-based cellular structures (Li et al. 2018a) and beam-
like lattice structures (Wang et al. 2018; Watts et al. 2019),
as well as topology optimized microstructures (Garner et al.
2019). Graded cellular structures can also be obtained
by post-processing an unmodified SIMP-based mono-scale
topology optimization approach, e.g., by replacing the
intermediate densities by unit cells of the corresponding
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Fig. 8 Comparison of different interpolations for topology optimiza-
tion of a cantilever beam using a volume fraction of 25%. a Inter-
polation functions for square-shaped (Es ) and X-shaped (Ex ) lattice
cells with varying member thicknesses. The samples of square- and
X-shaped cells are marked by � and ×, respectively. b, c Opti-
mized density distributions using square- and X-shaped cells with
cell-specific interpolation functions, respectively. d, e Optimized

density distributions using a SIMP interpolation, with p = 1 and 3,
respectively. In d and e, c indicates the compliance estimated by the
generic (unphysical) power-law, while cs and cx refer to the compli-
ance re-evaluated with cell-specific elasticity tensors. SIMP with p = 1
d significantly overestimates the stiffness of lattice cells. f A reference
design by using rank-2 material (obtained with code in Appendix)

material fractions (Brackett et al. 2011; Panesar et al.
2018). Figure 8 compares interpolation schemes for two
different unit cells (c.f., (b) and (c)) with varying member
thicknesses. The comparison is performed on the 2D
cantilever problem, thoroughly studied by Sigmund et al.
(2016). The domain is fixed at its left edge and loaded with
a unit vertical load distributed over the central 10% of the
right edge. Young’s moduli for the solid and void material
are E0 = 1 and Emin = 0.001, respectively1. Poisson’s
ratio is ν0 = 0.3 for both materials2. The compliances of
the designs using the cell-specific interpolation functions
(b and c) are much smaller than the design using generic
(unphysical) power-law with p = 1 (d) and post-processed
by interpreting gray elements with square- or X-shaped
cells, demonstrating the significance of using an accurate
material interpolation model in optimization. It simply
does not make mechanical sense to use a non-physical
macroscale model like SIMP with p = 1 to control the
macroscopic density in multi-scale approaches. In (d), the
post-process of replacing gray elements by square-shaped
cells leads to a large compliance of cs = 1017.03, since
low-density square-shaped cells are weak in shear. The
designs using cell-specific interpolations (b and c) have

1For rank-2 material, continuation can be applied to allow for a smaller
value of Emin; see Appendix.
2ν0 = 0.0 was used in Sigmund et al. (2016)

higher compliance values than design (e) using the power
law with p = 3 (p starts from 1 and is increased by 0.2
every 50 iterations). This suggests the optimization using
cell-specific interpolations gets stuck in local minima. The
number of iterations for obtaining both (b) and (c) is 400.
Design (b) has a density distribution close to black and
white, while design (c) has large gray regions. X-Shaped
cells have large shear moduli, making it economical to
place gray elements in the middle of the beam which is
predominately under shear stress. Rank-2 material achieves
optimal stiffness (f) due to the alignment of material
anisotropy with principal stress directions, whereas the
fixed orientation of the square- and X-shaped lattice cells
restricts the adaptation of material anisotropy.

The curves for EH
ij (ρ) for the square- and X-shaped

cells are lower than the theoretical limit according to
the Hashin–Shtrikman bounds (Hashin and Shtrikman
1963). This means a suboptimal use of material using
cellular structures with a simple geometry. To improve
the properties, Zhou and Li (2008) applied inverse
homogenization (see Section 2.3) to design a series of
unit cells with varying material fractions. Figure 9 (top)
shows unit cells independently optimized for an increasing
material fraction, using the code provided by Xia and
Breitkopf (2015). These optimized cells have distinct
topology, owing to the large solution space in topology
optimization. It is also noticeable that neighboring cells,
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Fig. 9 Top: Illustration of poorly connected microstructures. The unit
cells are individually optimized for maximum bulk modulus under
linearly varying volume fractions from 30 to 50%, from left to right.
Bottom: Optimized connectivity, achieved by maximizing the bulk
modulus of extended domains covering adjacent cells (Garner et al.
2019). Reprinted from Garner et al. (2019) with permission from
Elsevier

despite being close in terms of material fractions, may have
poor connectivity across the interface (see Fig. 9 (top),
between the first and second and between the third and
fourth cells). The connectivity issue is also recognizable
in hierarchical approaches (Rodrigues et al. 2002), to be
discussed in Section 5.4. Note that this is less of a problem
in cellular structures parameterized by thickness since the
topology there is constant, as long as the thickness does not
vanish to 0.

Zhou and Li (2008) proposed three methods to
address the connectivity issue between topology optimized
microstructures: kinematic connectivity constraint, pseudo
load, and unified formulation with non-linear diffusion. In
the first two, unit cells are optimized individually, while
solid non-design regions or pseudo loads are prescribed
along the domain boundary to stimulate connectivity. In
the last, unit cells are optimized altogether, while a non-
linear diffusion term defined on the domain covering all
cells is integrated in the objective function to penalize dis-
connection and suppress checkerboard patterns. Radman
(2013a, b) improved the computational efficiency of the
unified formulation by successively optimizing new unit
cells, while considering connection to already optimized
cells. Du et al. (2018) proposed a physics-independent
connectivity index, which measures the amount of overlap
in adjacent cells across the shared interface. Garner et al.
(2019) proposed to optimize the connectivity, quantified
by the physical properties of interest (e.g., bulk modulus)
of an extended domain that covers adjacent cells. Poor
connectivity between adjacent cells leads to an inferior
bulk modulus for the extended domain as a compound
cell, and thus is effectively suppressed in optimization.
Figure 9 (bottom) shows results from this compound for-
mulation. Mapping these compatibility optimized cells to a
compliance-minimized macroscale density distribution, and
evaluating structural compliance using both full-scale and

homogenization-based analyses, it was found that the dis-
crepancy is small (a relative error of 2%). This small error
is also attributed to the limited and slowly varying nature of
the microstructure which satisfies basic assumptions of the
homogenization-based multi-scale modelling. This method
has been demonstrated for optimizing up to 100 varying
unit cells in 2D. Optimizing a large number of unit cells
in 3D can be computationally expensive. Cramer et al.
(2016) proposed geometric interpolation to obtain transi-
tioning microstructures between individually optimized unit
cells. This geometric approach works for microstructures of
similar topology.

Cellular structures, both assemblies of geometric primi-
tives and topology optimized microstructures, are typically
defined within a square or cube domain. Such a fixed design
domain may limit the achievable properties (c.f., Träff et al.
(2019)). These cellular structures may be square symmet-
ric (2D) or cubic symmetric (3D) but not (necessarily)
isotropic. If orthotropic directions are oriented along regular
finite element grid directions and not along principal stress
directions as recommended by Pedersen (1989), inferior
stiffness may be the result.

5.3 Parameterized unit cell withmultiple parameters

Functionally graded cells can be obtained by uniformly
varying the thickness of the geometric primitives in the
cell domain, e.g., the square- and X-shaped 2D lattices
in the previous subsection. Consequently, each element in
the macroscale optimization is assigned a single design
variable, the material volume fraction, ρ(d), where d

is the thickness. To enlarge the solution space, the
parameterization of unit cells can be extended. The unit
cell in Fig. 10 (middle) has two superimposed geometric
patterns, i.e., an X shape and a plus shape, each with an
independent thickness, leading to more variations in the
attainable elasticity tensor, EH (d, t). The number of design
variables per element can be further increased, e.g., by
assigning an individual thickness per geometric primitive,
indicated by different colors in Fig. 10 (right). Graded
lattice structures in 2D and 3D optimized with multiple
design variables per macro element have been demonstrated
by Wang (2018, 2020). Imediegwu et al. (2019) used
a lattice cell with seven independent parameters for 3D
optimization. As the number of independent parameters

Fig. 10 Illustration of unit cells with 1, 2, and 4 independent
parameters, from left to right
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Fig. 11 Single-scale interpretations of a multi-scale design for the
Michell cantilever using a volume fraction of 0.4 and the microstruc-
tures by Bendsøe and Kikuchi (1988). Left: Naive interpretation, right:

de-homogenized design using the approach presented in Groen and
Sigmund (2018). Reprinted from Groen et al. (2019) with permission
from John Wiley & Sons

for describing the unit cell increases, a large number of
numerical homogenization operations is required. White
et al. (2019) proposed a neural network surrogate model
to provide the mapping from parameters to resulting
metamaterial properties. Zhu et al. (2017) pre-computed the
space of attainable Young’s modulus and Poisson’s ratio
for certain types of microstructures, and used this space
as a constraint for macroscale topology optimization with
microstructures. Zhu et al. (2019) presented an approach
for concurrent optimization of the microscale material
distribution and a macroscale mapping function which
transforms periodic microstructures into graded ones. This
was extended and demonstrated for 3D problems (Xue et al.
2020).

As the number of parameters increases, the potential to
generate a variety in the anisotropic directions of the mic-
rostructures increases, and this, to some extent, allows an
adaption of microstructural anisotropy to the local stress di-
rections during optimization. To ultimately align the aniso-
tropy of microstructures to stress directions, it is critical to
release the rotational freedom in the unit cell parameteriza-
tion, as pioneered by Bendsøe and Kikuchi (1988).

5.3.1 De-homogenization

A benefit of the approaches using parameterized unit cells
with multiple parameters including rotation is that one
can get optimized designs that perform very close to the
theoretical limit. For example, let us consider a classical
optimization example: the Michell cantilever clamped on
the left with a unit load on 20% of the right boundary.
Using the square microstructure with a rectangular hole
by Bendsøe and Kikuchi (1988) shown in Fig. 3, and
parameterizing the design domain by 80 × 40 bi-linear
elements, we can obtain a compliance value of 58.35 for an
upper bound on the material volume fraction of 0.4. This
is very close to the value of 56.73 obtained using optimal
rank-2 microstructures reported in Sigmund et al. (2016).
Although the microstructures are on a single length scale, it
is still difficult to interpret the spatially varying multi-scale

design as a well-connected manufacturable design. A naive
approach would be to enlarge each microstructure to the
size of a bi-linear element and apply the appropriate
orientation. As can be seen in Fig. 11 (left), this results in a
disconnected design. The process of constructing connected
and physically realizable designs from homogenization-
based optimization is referred to as de-homogenization—a
term coined by G. Allaire and colleagues.

A very promising post-processing method to obtain well-
connected mono-scale designs from a spatially varying
multi-scale design is the de-homogenization method intro-
duced by Pantz and Trabelsi (2008). Using this method, an
implicit geometry description is created to represent/enlarge
the multi-scale design to a fine but realizable single length
scale. In recent years, the interest in this approach has
renewed, resulting in simplifications and improvements of
the approach (Groen and Sigmund 2018; Allaire et al.
2018). The approach of Groen and Sigmund (2018), applied
to the Michell cantilever, resulted in the high-resolution
mono-scale design (1600 × 800 elements) shown in Fig. 11
(right). A minimum feature size is applied and resulting
compliance is 59.55. The core idea of the approach is to cre-
ate a set of smooth mapping functions φi(x) that convert
from the global frame of reference x to the microstructure
frame of reference y. In other words, we create a conformal-
like map in a similar fashion as texture mapping (Lévy et al.
2002). The most important requirement is that the spatially
varying microstructure orientation is smooth throughout the
domain such that smooth mapping functions φi(x) can be
generated. A visual overview of how the approach works is
given in Fig. 12. Consider a coated domain (Fig. 12a) with a
porous interior using the microstructure in Fig. 3 with μ1 =
μ2 = 0.1, the corresponding microstructure orientation θ

is shown in Fig. 12b. One of the two mapping functions
φ1(x) is shown in Fig. 12c and the corresponding de-
homogenized design is seen in Fig. 12d. A main advantage
of this approach is that since it uses an implicit geometry
description, the design can be evaluated at an infinitely fine
resolution. Furthermore, the periodicity (i.e., the amount of
microstructures) can be explicitly controlled, even to have
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Fig. 12 Example of the de-homogenization procedure. From left to
right, a coated domain, b microstructure orientation θ , c mapping func-
tion φ1(x), d de-homogenized design, e de-homogenized design using

adaptive periodicity approach from (Groen et al. 2019). Reprinted
from Groen et al. (2019) with permission from Elsevier

a more uniform spacing as can be seen in Fig. 12e (Groen
et al. 2019). It has to be mentioned that different kinds of
microstructures (i.e., with non-orthogonal features) can be
de-homogenized as well (Geoffroy-Donders 2018; Groen
2019; Kumar and Suresh 2020; Tamijani et al. 2020).

A challenge of the de-homogenization approach is to
allow a smooth microstructure orientation throughout the
domain. This is especially an issue since the elasticity
tensor has a rotational symmetry of π , i.e., rotating the
microstructure 180° does not affect the properties; however,
it complicates the de-homogenization. To circumvent this,
Pantz and Trabelsi (2008) proposed a two-field approach to
solve for φi(x). In a different approach, Groen and Sigmund
(2018) used an image-based sorting approach, while Allaire
et al. (2018) used a discontinuous Galerkin approach to
solve for φi(x). Furthermore, it is known that singularities
can occur in the design domain, either caused by the
stress field or caused by regularization methods. Hence,
the algorithms should be able to handle these singularities.
Different approaches to do so are discussed in Pantz and
Trabelsi (2010), Geoffroy-Donders (2018), and Stutz et al.
(2020). The extension of the approach to 3D requires a
solution to the problem that the principal stress directions
are not well-ordered in 3D. To circumvent this, Geoffroy-
Donders et al. (2020) introduced a regularization functional,
while Groen et al. (2020) combined a regularization and an
image-based sorting approach.

A further challenge is the de-homogenization of rank-N
designs optimized for multiple load cases. The non-uniqueness

of the optimal microstructures, which allows for an
infinite amount of designs, has to be taken into account,
since the de-homogenization procedure requires smooth
vector fields throughout the design domain. Hence, making
sure that the microstructure orientation is continuous
throughout Ω , without restricting the performance is a key
challenge (Groen 2019).

Above approaches seek a global parameterization of each
of the principal stress directions. In a different approach,
de-homogenization is cast as finding a quadrilateral (2D) or
hexahedral (3D) mesh with each edge being aligned with
the optimized stress directions (Wu et al. 2021), borrowing
ideas from field-aligned meshing (Jakob et al. 2015; Gao
et al. 2017). Instead of decomposing a tensor field into
three vector fields, the difference between the orientation
of a (locally parameterized) quad/hex element and a stress
tensor is measured by comparing all possible perturbations
of decomposed directions. The cumulative difference over
all elements is minimized by an iterative local updating
scheme. This approach is demonstrated in combination
with a modified version of the rectangular hole model. As
illustrated in Fig. 13a for 2D cases, the unit cell is allowed
to rotate (θ ) and elongate independently along each axis (αx

and αy). In addition, another design variable (not shown in
(a)), similarly used in PAMP (Liu et al. 2008), is introduced
to encode whether or not a finite element is filled with
lattices. The optimized lattice distribution and the compiled
continuous lattice structure are shown in Fig. 13b and
c, respectively. The optimized structure possesses spatial

Fig. 13 a The unit cell, a modified version of the rectangular hole
model, adapts by rotating and elongation. b The optimized lattice
distribution for the Michell cantilever using 15% solid material. The
frames are rotated and elongated according to the optimized fields. c

A continuous lattice structure compiled from b, demonstrating spa-
tial variations in orientation, porosity, and anisotropy (Wu et al. 2021).
©2021 IEEE. Reprinted, with permission, from Wu et al. (2021)
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variations in orientation, porosity, and anisotropy. A 3D
example is shown in Fig. 2c.

Yet another mapping strategy is to modify crossing of
contour lines of aforementioned φ fields, connect these
by truss or frame elements, and then tune nodal positions
and connectivities in a subsequent shape optimization
process (Larsen et al. 2018).

5.4 Restricted unit-cell design

Predefined cellular structures are beneficial for computa-
tional efficiency. However, they may significantly restrict
the solution space. To access the full solution space, while
avoiding intensive full-scale analysis, an idea is to use a
hierarchical formulation. Hierarchical optimization of mate-
rial and structure dates back to Rodrigues et al. (2002)
which was later extended to 3D (Coelho et al. 2008),
both using SIMP. Comparable results were reproduced with
level sets (Sivapuram et al. 2016). Hierarchical optimiza-
tion combined with inverse homogenization is also referred
to as concurrent (or simultaneous) optimization of struc-
ture and material (or microstructure). Like in approaches
in other categories, here, a two-scale discretization of the
domain is employed. The formulation involves one prob-
lem at the global (or macro) scale and many problems
at the local (or micro) scale. The global problem deter-
mines the macroscopic spatial distribution of homogenized
material, and local problems determine microscopic spa-
tial distribution of solid and void phases by optimizing for
homogenized properties. The structural equilibrium in the
macroscale is in general nonlinear due to the microstructure
adaptation (Jog and Haber 1996). A nonlinear resolution
framework based on FE2 scheme was developed to address
this nonlinearity (Xia and Breitkopf 2014). This subsection
discusses approaches that prescribe the domain shape of
microstructures and/or their orientation.

The microstructural optimization problem (inverse
homogenization) should result in single-scale approxima-
tions of theoretically optimal rank-N composites. In a recent
work, it was found that inverse homogenization at low vol-
ume fractions is prone to producing local optima, and a
simple mapping approach was suggested to approxi-
mate rank-3 laminates (Träff et al. 2019). These mapped
microstructures perform relatively close to theoretical
energy bounds, and can serve as starting guesses for inverse
homogenization problems to achieve performances even
closer to the bounds.

In each iteration of a hierarchical solution process, fol-
lowing a solved global problem, the local problems become
independent from each other. On the positive side, the inde-
pendent problems can be solved in parallel by sending sets
of local problems to different processors (Coelho et al.
2011). This gains a computational speedup and thus allows

solving two-scale problems in 3D. On the other hand, the
independent nature of the local problems creates a criti-
cal challenge regarding the compatibility of microstructures
across the shared boundary. We emphasize that the prob-
lem of concern is related to structural properties beyond the
disconnected geometry, and thus choose to use compatibil-
ity in lieu of connectivity. The compatibility problem arises
since disconnections between adjacent microstructures are
not captured in the global analysis using homogenized prop-
erties (separation of scales). A mechanical indication of
compatibility is the discrepancy between the objective (e.g.,
compliance) evaluated by a full-scale analysis and by an
analysis using the homogenized properties (Garner et al.
2019). Some approaches summarized in Section 5.2 for
improving compatibility in functionally graded microstruc-
tures are also applicable to the hierarchical optimization.
For instance, by using extended domains that overlap in
local optimizations, the compatibility can be significantly
improved, reducing the discrepancy in compliance val-
ues between full-scale and homogenization analyses from
six orders of magnitude to two (Garner et al. 2019) (see
Fig. 14). While this is good progress, a discrepancy of
two orders of magnitude is still alarming. To examine the
optimality, we can visually compare hierarchically opti-
mized structures with those from full-scale approaches with
local volume constraints (Section 3) and de-homogenization
approaches (Section 5.3). For a single load, orthogonal
microstructures that are individually aligned with princi-
pal stress directions are known to be close to optimal.
Such orthogonal microstructures are distinct in full-scale
approaches with local volume constraints as well as de-
homogenization approaches, but are difficult to discover
in large regions of hierarchically optimized structures. A
reason behind the poor compatibility is that the fixed, axis-
aligned rectangular domain used in inverse homogenization
is incapable of accommodating rotation of these orthogonal
microstructures.

Other strategies have been proposed to enhance connec-
tivity. Wang et al. (2017) proposed a shape metamorphosis
method based on level-set representations to interpolate a
prototype microstructure to generate a family of graded
microstructures. The interpolated microstructures are con-
nectable to each other in a natural way since they present
similar topological features and material distribution pat-
terns at their edges. Li et al. (2018b) adopted the kinematic
constraint approach (Zhou and Li 2008) for level-set–based
topology optimization of functionally graded cellular com-
posites hosting auxetic metamaterials. Zhou et al. (2019)
proposed a geometric connectivity index upon which con-
straints were defined and included in the macroscale opti-
mization to improve connectivity. Liu et al. (2020) recently
proposed to ensure connectivity between any two types of
the microstructures by introducing pre-defined connective
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Fig. 14 Illustrative result of hierarchical optimization of material and
structure of a simply supported beam, without (left) and with (right) a
compound formulation to improve microstructural compatibility (Gar-
ner et al. 2019). Half of the optimized structure from each formulation
is shown, for compactness. The compliance of the left part by a

full-scale analysis and an analysis using homogenized properties is
8.32 × 1013 and 6.54 × 107, respectively, while the compliance of
the right part is 4.96 × 109 and 8.42 × 107, respectively. Reprinted
from Garner et al. (2019) with permission from Elsevier

regions in the microstructural unit cells and keeping these
regions sharing the same topology. In these approaches, the
connectivity was often visually assessed, and a mechanical
assessment was unfortunately missing.

The compatibility issue is circumvented if the optimiza-
tion problem is reformulated to design structures consist-
ing of repetitive microstructures, at the cost of reduced
structural performance. Such a formulation was presented
by Fujii et al. (2001) for designing repetitive microstruc-
tures in the entire design space. Liu et al. (2008) incor-
porated a macroscale variable to concurrently design the
microstructure and its distribution. Here, the solution space
is reduced to a single microstructure, a strategy similar to
pattern repetition in full-scale approaches (Section 3). The
global analysis is performed using homogenized properties
rather than on the full scale, assisted with an interpolation
scheme called Porous Anisotropic Material with Penal-
ization (PAMP). It was first demonstrated for compliance
minimization, and extended for maximizing fundamental
frequency (Niu et al. 2009), for considering load uncer-
tainties (Guo et al. 2015) and more. Similar formulations
and extensions using evolutionary procedures can be found
in Huang et al. (2013) and more.

In between the spectrum from a single microstructure to
the full solution space, approaches have been developed to
design the structural layout of a few unique, unprescribed
microstructures (Deng and Chen 2017; Zhang et al. 2018;
Liu et al. 2020). Pizzolato et al. (2019) built on the
PAMP framework (Liu et al. 2008) and developed a
level-set approach to optimize the distribution of multiple
concurrently optimized microstructures. It was studied in

the context of heat transfer problems. When the location
of unique microstructures is not prescribed, it is often
cast as a multi-material optimization problem, for which
discrete material optimization (Stegmann and Lund 2005)
and ordered SIMP interpolation (Zuo and Saitou 2017) are
applicable.

As discussed in Section 3, periodic and graded
microstructures can also be designed using full-scale
approaches. When the structural analysis is performed on
the full resolution, a poor connectivity is reflected by
a suboptimal objective. Thus, full-scale approaches natu-
rally ensure good connectivity between microstructures or
subdomains, at the price of intensive full-scale analyses.
Therefore, results from relevant full-scale approaches may
serve as a reference for multi-scale approaches of graded
microstructures. From the comparison in Fig. 4, it is clear
that a logical (but often underreported) consequence of
using periodic microstructures with a fixed orientation is a
large reduction in stiffness.

5.5 Unrestricted unit-cell design

All approaches in the previous section have one thing in
common; the shape of the unit-cell domain is rectangular.
However, it is very important to acknowledge the effect
of the unit-cell domain on the performance. In a large
amount of works that consider a single load case, the
numerical examples show that the optimized unit cells
resemble a rotated version of the microstructure by Bendsøe
and Kikuchi (1988) (Fig. 3). However, since the unit-cell
domain cannot be rotated, the shape of the microstructures

1470



Topology optimization of multi-scale structures: a review

is modified to account for a periodic shape, in turn reducing
performance. In other words, if the unit-cell design domain
was allowed to rotate, a simpler and close to optimal
microstructure would have been found.

To investigate the effect of the unit-cell shape and
orientation on the performance, Träff et al. (2019) did
an extensive comparison of the effect of the starting
guess, when inverse homogenization is used to optimize
the microstructure performance. They observed that the
material design problem is non-unique and highly non-
convex, i.e., different starting guesses result in completely
different unit-cell designs and performances. Furthermore,
a starting guess of the unit-cell shape and topology based on
an optimal rank-3 microstructure resulted in a significantly
better performance compared to the use of a rectangular
domain. The parallelogram shape of the unit cell, which
was optimized as well, allowed for periodicity patterns
that cannot be described by a rectangular domain as seen
in Fig. 15. Especially for lower volume fractions, Träff
et al. (2019) observed that a unit cell with a starting
guess and shape based on an optimal rank-3 laminate
significantly outperformed (e.g., up to 30% more efficient)
the designs using a traditional rectangular domain. Hence,
the choice of the unit-cell domain significantly influences
the performance and researchers have to be aware of
this when choosing a multi-scale topology optimization
algorithm.

Recently, Wang et al. (2019) showed that near-optimal
and periodic truss lattice structures could be obtained for
multiple load cases by distorting simple Bravais-like lattice
structures to a parallelepiped. Besides using a parallelogram
in 2D or a parallelepiped in 3D, one can use many more
different types of polygons to solve the homogenization
equations (Barbarosie et al. 2017; Podestá et al. 2019). For
example, in 2D, a hexagon can be used to describe a periodic
isotropic hexagonal microstructure (Sigmund 2000).

From all studies discussed above, we can conclude
that performing multi-scale optimization with unit cells

Fig. 15 Left: Rank-3 microstructure with indicated hierarchy. Right:
approximated single-scale microstructure using the method by Träff
et al. (2019) to indicate different periodicity patterns that cannot be
achieved by a rectangular unit cell. Reprinted from Träff et al. (2019)
with permission from Springer Nature

that are optimized using inverse homogenization on a
rectangular domain reduces the optimality. This effect has
been acknowledged by Barbarosie and Toader (2014) who
combined the optimization of the microstructure topology
and shape. This approach can achieve structural designs
that are close to optimal; however, an extensive comparison
unfortunately has not been performed. To address the large
computational cost included in solving the problem, the
approach has been parallelized. To the authors’ knowledge
(and surprise), this is the only work on multi-scale topology
optimization that simultaneously addresses the macroscopic
design and both unit-cell topology and shape to get as close
to the optimal design that can be achieved on a single
length scale. Nevertheless, this method does not address
the connectivity of the spatially varying unit cells over the
design domain. More research has to be done to efficiently
blend unit cells of different shapes together without a loss
in performance to further advance this method.

6 Discussion

6.1 Motivation

Two important questions that people working on multi-scale
structures should ask themselves are:

– What are the benefits of multi-scale structures?
– What are the expected benefits of multi-scale

approaches?

These two questions are related but apparently independent
from each other. While multi-scale structures are most often
optimized, not surprisingly, by multi-scale approaches, they
can also be designed using full-scale approaches with some
additional constraints (Section 3). One important motivation
of multi-scale topology optimization is to accelerate the
computation for optimizing structures at high resolution.
Here, it shall be reminded that theoretical stiffness-
optimal structures span multiple scales. A higher resolution
discretization enables the appearance of fine geometric
details, which may bring the performance of optimized
structures closer to theoretical limit. This, however,
implies significant computational cost. Thus, multi-scale
approaches are introduced for means of acceleration. These
include the original hierarchical approach by Rodrigues
et al. (2002), de-homogenization approaches (Pantz and
Trabelsi 2008; Groen and Sigmund 2018), and works along
these directions.

Many multi-scale approaches, while being formulated
as an optimization problem (e.g., for maximizing stiff-
ness), restrict the solution space by enforcing one or a
few repetitive microstructures that are either predefined
or concurrently optimized, with a fixed orientation and/or
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limited density range. This restriction may be beneficial
under various considerations, from structural such as buck-
ling strength (Clausen et al. 2016), robustness (Wu et al.
2018), and multi-functionality to operational such as inspec-
tion and repair, and from manufacturability over aesthetics
to sustainability. In this regard, the microstructures play the
role of accounting for these considerations. From a math-
ematical perspective, it would be interesting to explicitly
model these requirements and integrate them in an opti-
mization problem with a high-resolution discretization. This
is challenging, since a mathematical model of some of the
requirements is not available yet or comes with computa-
tional complications. Thus, restricting the solution space by
a reduced parameterization can be understood as a strategy
to balance the defined objective and various other consider-
ations. A general recommendation is to always motivate use
of stiffness suboptimal microstructures. Too many works
seem to forget this aspect and show optimized designs that
are clearly not optimal with respect to stiffness.

Analogous to technical optimization, nature has been
an advocate for multi-scale structures. Hierarchically
organized, functionally graded structures can be found in
plant and animal bodies such as bamboo and bone (Lakes
1993; Fratzl and Weinkamer 2007). These bio-structures are
remarkable from a mechanical perspective while supporting
biological functionalities.

6.2 Evaluation

Most (if not all) multi-scale approaches make use of homo-
genization, which assumes separation of scales, i.e.,
microstructure should be much smaller than the macrostruc-
ture. This assumption often becomes invalid when consid-
ering the finite resolution of manufacturing processes. A
general rule of thumb is that cells should be repeated 5 to
10 times before effective properties can be trusted. This cer-
tainly means that commonly seen approaches where one
macroscale finite element corresponds to one microstructure
cell, where cells may vary between each element, should
be used with extreme caution. Interestingly, however, multi-
scale optimization, where microstructure is appropriately
adapted to local stress fields, unimpeded by cell geometry
or orientation (c.f., de-homogenization approaches) pro-
vides extremely good performances even for quite large
periodicities, i.e., with lack of scale separation (see Groen
and Sigmund (2018) and Wu et al. (2021)). The reason
is that the optimal microstructures ensure purely tension-
compression-dominated deformations at both micro- and
macroscale, which homogenization-wise need fewer cell
repetitions for accuracy than required for bending or shear
dominated deformations. Under all circumstances, it is
strongly recommended to verify any assumptions of scale
separation with subsequent full-scale analyses. Full-scale

analysis of course implies heavy computation. Fortunately,
however, recent adoption of advanced linear solvers and par-
allel computing has partially alleviated this problem (Amir
et al. 2014; Aage et al. 2015; Wu et al. 2016a). Validation
by full-scale analysis in 2D starts to appear in a handful
of recent papers (Groen and Sigmund 2018; Garner et al.
2019; Wu et al. 2021), and should be an integral part of the
validation of all multi-scale works.

Optimization in general and multi-scale approaches in
particular are about making a delicate balance between con-
flicting objectives and constraints, and between the quality
of results and computational efficiency. In this regard, gains
in one aspect are often, understandably, accompanied by
losses in other aspects. Both sides are valuable for inspiring
future development. These are especially important for
researchers who may be less familiar with the topic, e.g.,
students, application engineers, and colleagues from other
disciplines. Therefore, we strongly recommend to include
a quantitative comparison (or a discussion if a quantitative
analysis is difficult to perform, e.g., regarding aesthetics)
when a new approach is introduced. Comparisons can
be made on different levels, with non-optimized designs,
with optimized mono-scale structures, with designs from
alternative multi-scale approaches, etc. In the case of a
2D compliance design subject to a single load case, we
recommend to perform a quantitative comparison with what
is theoretically possible using rank-2 microstructures. To do
this, we provide a Matlab script in Appendix.

6.3 Extensions, alternative formulations, open
questions

Our review has been focusing on design parameterizations,
which are typically demonstrated in compliance minimiza-
tion under the assumption of small deformations. Accom-
modating stress constraints, buckling constraints, and geo-
metric and material nonlinearities represents an important
and non-trivial next step. Some recent works have started to
tackle these challenges.

– Stress constraints. Collet et al. (2018) proposed a
formulation for optimizing periodic microstructures
with stress constraints, assuming that the classical von
Mises stress criterion remains valid at the microscale.
Ferrer et al. (2020) proposed a square cell with a super-
ellipsoidal hole, avoiding right angles and thus stress
concentration in the classic rectangular hole model.
In concurrent optimization of shell and parameterized
lattice infill, Yu et al. (2020) proposed using two stress
constraints on the macroscale, a von Mises stress-
based constraint for the solid shell layer, and a Tsai-
Hill yield criteria-based constraint for the homogenized
infill.
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– Buckling, geometric and material nonlinearities, and
plasticity. Yuge and Kikuchi (1995) developed elasto-
plastic finite element analysis based on homogenization
to optimize frame structures subjected to plastic
deformation. Neves et al. (2002) addressed the problem
of determining highly localized buckling modes in
perfectly periodic cellular microstructures of infinite
extent. Thomsen et al. (2018) proposed a optimization
model to predict local and global microstructural
buckling, based on which periodic cellular materials are
optimized for maximized strength under compressive
load. A systematic investigation of the performances
of simple and optimized periodic infill structures
in terms of finite scale stiffness and buckling was
presented by Wang and Sigmund (2020). Strength of
common 3D microstructures is treated in Andersen
et al. (2021). Furthermore, Bluhm et al. (2020)
proposed a framework for benchmarking the ability
of periodic microstructures to maintain stiffness under
large deformations, accounting in a unified manner
both for buckling and softening due to geometric and
material nonlinearities.

Going beyond structural mechanics, design of multi-
scale structures involving other physics and even multi-
physics is another important venue to explore. Some of
the works along this direction have been mentioned in
previous sections when specific multi-scale approaches
were introduced. For instance, Das and Sutradhar (2020)
presented an extension of the full-scale approach with the
local volume constraints (Wu et al. 2018) to optimize heat-
dissipating structures considering structural and thermal
performance. Fluid flow through the pores in lattice
structures is another interesting topic, relevant for design of
actuators (Andreasen and Sigmund 2011) and biomedical
implants (Challis et al. 2012). Furthermore, as discussed
in Section 2.3, inverse homogenization has been used
to design metamaterials with extreme or counter-intuitive
physical properties such as a negative Poisson’s ratio
and negative thermal expansion (Sigmund and Torquato
1996). Designing multi-scale structures composed of such
metamaterials is fascinating. It can potentially open
innovative application areas in shape-morphing products,
soft robots, and 4D printing (i.e., with an extra dimension of
transformation over time).

Optimized structures from multi-scale approaches typi-
cally have two scales. It is worth mentioning that buckling-
enhanced microstructures themselves exhibit two (or more)
hierarchical scales (Thomsen et al. 2018). Integrating them
in macroscale structural optimization would effectively lead
to three-scale structures. The microstructures in two-scale
approaches are normally defined in a uniform discretization
of the macro domain, and thus have the same spatial extent.

Wu et al. (2016b) proposed a full-scale approach to design
octree-tree like structures, where the cells exhibit spatially
varying sizes. This allows to achieve a large range of vari-
ations in porosity and pore sizes. The discrete problem of
hierarchical subdivision was later reformulated by continu-
ous variables to facilitate gradient-based optimization (Wu
2018).

Microstructures are typically defined and analyzed
based on a Cartesian grid discretization with a fixed
orientation. Approximating free-form macroscale shape by
square or cubic microstructures leads to staircasing on the
boundaries. This artifact may be less of a concern when the
macroscale domain is orders of magnitude larger than the
microstructure size. However, with the limited resolution
of manufacturing processes, the effects of this artifact
may be non-negligible, both visually and mechanically.
Conforming quad/hex meshing can be an alternative for
constructing a boundary-aligned grid (Wu et al. 2021).
However, mapping square or cubic microstructures into
irregular grids may introduce error in mechanical properties.
Note that homogenization assumes a repeatable domain, and
thus direct homogenization over irregular cells seems not
possible.

As stated in the Introduction section, much of the recent
interest in designing multi-scale structures is triggered by
contemporary advances in additive manufacturing (AM).
While being able to produce highly complex shapes
and even structural features spanning seven orders of
magnitude (Zheng et al. 2016), existing AM processes
are not free from manufacturability and post-processing
requirements. Structural design thus needs to consider, e.g.,
a minimum feature size, self-supportingness (i.e., free of
critical overhang), accessibility for removing unsolidified
powder or resin, and auxiliary support structure (Liu
et al. 2018a). In the context of multi-scale design, these
requirements (or some of them) can be satisfied by carefully
selecting unit cells, e.g., beam-like lattice cells (see prints in
Fig. 2) or self-supporting rhombic cells (Wu et al. 2016b).
Stiffness optimal rank-N laminates and closed-walled cells
with stiffness close to theoretical bounds (Sigmund et al.
2016) may, depending on process, be less favorable than
open-walled cells regarding the removal of unsolidified
powder or resin. Along with developments of advanced
manufacturing technologies, design for manufacturability
will continue to be an important topic in (multi-scale)
topology optimization.

The design of multi-scale structures is a topic of interest
in multiple other disciplines apart from applied mathemat-
ics, computational mechanics, and mechanical engineering.
We envisage that cross-pollination with material science
(e.g., multi-scale materials modelling (van der Giessen et al.
2020)) as well as geometry modelling and processing (e.g.,
texture synthesis (Dumas et al. 2015)) will further advance
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optimization and inverse design of multi-scale structures.
The cross-pollination is actually already benefiting the field.
For instance, the conformal-like mapping and field-aligned
meshing have been used for de-homogenization.

7 Conclusion

We have reviewed the development of multi-scale topology
optimization, from its inception to the current state-of-the-
art. Existing approaches are classified into full-scale and
multi-scale approaches, according to whether or not the
separation of length scales is assumed in the modelling.
Full-scale approaches control structural details by imposing,
e.g., pattern repetition and local volume constraints,
while performing structural analysis on the fine scale,
which is computation-intensive. Multi-scale approaches
reduce computation by using analytical or numerical
homogenization, under the assumption of separation of
length scales, which may give rise to compatibility issues.
These approaches are categorized in this review based on
the parameterization of the micro- and macroscales.

The development in this field is exciting. Innovative
approaches and applications continue to appear. To con-
struct an objective understanding of multi-scale structures
and multi-scale optimization approaches, we make the fol-
lowing recommendations:

– Since the assumption of separation of length scales may
not be respected in the optimized multi-scale structures,
structural performance evaluated by homogenization
may not faithfully represent reality. It is thus strongly
recommended to compare with full-scale analysis when
homogenization is used in the optimization approach.

– Many parameterizations have been introduced for
designing multi-scale structures while reducing the
gap between full-scale and homogenization-based
analyses. These parameterizations may (severely) limit
the achievable structural objective. It is thus also
recommended to compare with standard mono-scale
approaches under a comparable computation time,
when investigating homogenization-based methods.

– Multi-scale structures hold the promise of achiev-
ing superior performance while being intrinsically
lightweight, robust, and multi-functional. The true ben-
efits of novel multi-scale structures need to be validated,
numerically, and/or experimentally.

Appendix : MATLAB code topRank2

Together with this review, we present a MATLAB code
for the topology optimization of 2D structures subject to

a single load case using optimal rank-2 microstructures
consisting of solid material (with stiffness E+) and void.
The code is based on the MATLAB code by Andreassen
et al. (2011), and we will therefore only discuss the
differences. The most obvious difference is the use of a
rank-2 material model (see Fig. 5 for the visualization
of a unit cell). The effective material property can be
analytically derived using the homogenization equation
(see, e.g., Allaire (2002) and Bendsøe and Sigmund (2004)),
and can be summarized in Voigt notation as,

EH (μ1, μ2, θ) = E−

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1−ν

2

⎤

⎦ + E+

1 − μ2 + μ1μ2(1 − ν)

RT (θ)

⎡

⎣
μ1 μ1μ2ν 0

μ1μ2ν μ2(1 − μ2 + μ1μ2) 0
0 0 0

⎤

⎦R(θ) (5)

Since a rank-2 microstructure consisting of solid material
and void contains no stiffness against shearing, a small
isotropic background stiffness E− is added to make this
material model work stable on a finite mesh. To minimize
the effect of this background stiffness and avoid getting
stuck in local minima, we start with E− = 0.1E+ and
gradually reduce every 50 iterations until E− = 10−6E+.
For efficient assembly of the stiffness matrix, we pre-
integrated 6 element matrices, i.e., one for each unique
index of the rotated elasticity tensor. As is discussed
by Pedersen (1989), a microstructure is optimally aligned
with the principal stresses/strains. Therefore, we update the
microstructure orientation (θ ) during each design iteration
based on the principal stress directions. Subsequently, we
update the relative layer widths (μi) based on the gradients
using the optimality criterion approach. Finally, it should be
noted that we use the density filter to avoid the formation of
checkerboard-like patterns that are artificially stiff. Similar
to the 88-line MATLAB code, the default design problem
is the half MBB-beam, where the compliance is minimized
subject to an upper bound on the volume fraction of the stiff
material. The code can be called as follows:

toprank2(nelX,nelY,rMin,volFrac)

where nelX and nelY are the number of bi-linear elements
in x- and y-direction, respectively, rMin is the filter radius
in element length h used for the density filter, and volFrac
is the volume fraction that the stiff material is allowed to
use.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00158-021-02881-8.
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Lévy B, Petitjean S, Ray N, Maillot J (2002) Least squares conformal
maps for automatic texture atlas generation. ACM Trans Graph
21(3):10. https://doi.org/10.1145/566654.566590

Li D, Liao W, Dai N, Dong G, Tang Y, Xie YM (2018a) Optimal
design and modeling of gyroid-based functionally graded cellular
structures for additive manufacturing. Comput Aided Des 104:87–
99. https://doi.org/10.1016/j.cad.2018.06.003

Li H, Luo Z, Gao L, Walker P (2018b) Topology optimization
for functionally graded cellular composites with metamaterials
by level sets. Comput Methods Appl Mech Eng 328:340–364.
https://doi.org/10.1016/j.cma.2017.09.008

Li H, Gao L, Li H, Tong H (2020) Spatial-varying multi-phase
infill design using density-based topology optimiza-
tion. Comput Methods Appl Mech Eng 372:113354.
https://doi.org/10.1016/j.cma.2020.113354

Lipton R (1994a) On optimal reinforcement of plates and choice of
design parameters. Control Cybern 23(3):481–493

Lipton R (1994b) A saddle-point theorem with application to
structural optimization. J Optim Theory Appl 81(3):549–568.
https://doi.org/10.1007/bf02193100

Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li
L, Kato J, Tang J, Wang CCL, Cheng L, Liang X, To AC
(2018a) Current and future trends in topology optimization for
additive manufacturing. Struct Multidiscip Optim 57(6):2457–
2483. https://doi.org/10.1007/s00158-018-1994-3

Liu L, Yan J, Cheng G (2008) Optimum structure with homogeneous
optimum truss-like material. Comput Struct 86(13):1417–1425.
https://doi.org/10.1016/j.compstruc.2007.04.030

Liu P, Kang Z, Luo Y (2020) Two-scale concurrent topology optimiza-
tion of lattice structures with connectable microstructures. Addit
Manuf 36:101427. https://doi.org/10.1016/j.addma.2020.101427

Liu Y, Li Z, Wei P, Wang W (2018b) Parameterized level-set
based topology optimization method considering symmetry and
pattern repetition constraints. Comput Methods Appl Mech Eng
340:1079–1101. https://doi.org/10.1016/j.cma.2018.04.034

1477

https://doi.org/10.1088/1361-651X/ab7150
https://doi.org/10.1002/nme.5575
https://doi.org/10.1002/nme.5575
https://doi.org/10.1016/j.cma.2020.112979
https://doi.org/10.1016/j.cma.2020.112979
https://doi.org/10.1016/0045-7825(90)90148-F
https://doi.org/10.1007/s00158-003-0305-8
https://doi.org/10.1007/s00158-008-0250-7
https://doi.org/10.1002/nme.1064
https://doi.org/10.1115/1.4027609
https://doi.org/10.1115/1.4027609
https://doi.org/10.1016/j.cma.2014.10.014
https://doi.org/10.1016/s0020-7683(96)00023-6
https://doi.org/10.1016/0022-5096(63)90060-7
https://doi.org/10.1016/j.cad.2020.102854
https://doi.org/10.1007/s00158-007-0196-1
https://doi.org/10.1016/j.commatsci.2012.09.018
https://doi.org/10.1007/s00158-019-02220-y
https://doi.org/10.1145/2816795.2818078
https://doi.org/10.1007/s00158-013-1001-y
https://doi.org/10.1002/lpor.201000014
https://doi.org/10.1016/0045-7825(95)00928-0
https://doi.org/10.1002/cpa.3160390107
https://doi.org/10.1016/s0045-7949(98)00326-5
https://doi.org/10.1007/s00158-019-02422-4
https://doi.org/10.1038/361511a0
https://doi.org/10.1007/s00158-018-1948-9
https://doi.org/10.1016/j.cma.2017.02.018
https://doi.org/10.1145/566654.566590
https://doi.org/10.1016/j.cad.2018.06.003
https://doi.org/10.1016/j.cma.2017.09.008
https://doi.org/10.1016/j.cma.2020.113354
https://doi.org/10.1007/bf02193100
https://doi.org/10.1007/s00158-018-1994-3
https://doi.org/10.1016/j.compstruc.2007.04.030
https://doi.org/10.1016/j.addma.2020.101427
https://doi.org/10.1016/j.cma.2018.04.034


J. Wu et al.

Luo Y, Li Q, Liu S (2019) A projection-based method for topology
optimization of structures with graded surfaces. Int J Numer
Methods Eng 118(11):654–677. https://doi.org/10.1002/nme.6031

Lurie KA, Cherkaev AV (1984) G-closure of a set of anisotropically
conducting media in the two-dimensional case. J Optim Theory
Appl 42(2):283–304. https://doi.org/10.1007/BF00934300

Michell A (1904) The limits of economy of material in
frame-structures. The London Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science 8(47):589–597.
https://doi.org/10.1080/14786440409463229

Milton G, Harutyunyan D, Briane M (2017) Towards a complete
characterization of the effective elasticity tensors of mixtures of an
elastic phase and an almost rigid phase. Math Mech Complex Syst
5(1):95–113. https://doi.org/10.2140/memocs.2017.5.95

Milton GW (1986) Modelling the properties of composites
by laminates. In: Ericksen JL, Kinderlehrer D, Kohn R,
Lions JL (eds) Homogenization and effective moduli of
materials and media. Springer, New York, pp 150-174.
https://doi.org/10.1007/978-1-4613-8646-9

Milton GW (2002) The Theory of Composites. Cambridge University
Press, Cambridge. https://doi.org/10.1017/cbo9780511613357

Milton GW (2016) Extending the theory of composites to other areas
of science. Milton-Patton Publishers

Mlejnek H (1992) Some aspects of the genesis of structures. Struct
Optim 5(1-2):64–69. https://doi.org/10.1007/BF01744697

Neves MM, Sigmund O, Bendsøe MP (2002) Topology optimization
of periodic microstructures with a penalization of highly localized
buckling modes. Int J Numer Methods Eng 54(6):809–834.
https://doi.org/10.1002/nme.449

Niordson F (1983) Optimal design of elastic plates with a constraint on
the slope of the thickness function. Int J Solids Struct 19(2):141–
151. https://doi.org/10.1016/0020-7683(83)90005-7

Niu B, Yan J, Cheng G (2009) Optimum structure with
homogeneous optimum cellular material for maximum fun-
damental frequency. Struct Multidiscip Optim 39(2):115.
https://doi.org/10.1007/s00158-008-0334-4

Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry
projection method for shape optimization. Int J Numer Methods
Eng 60(14):2289–2312. https://doi.org/10.1002/nme.1044

Norris A (1985) A differential scheme for the effec-
tive moduli of composites. Mech Mater 4(1):1–16.
https://doi.org/10.1016/0167-6636(85)90002-x

Olhoff N, Rønholt E, Scheel J (1998) Topology optimization of three-
dimensional structures using optimum microstructures. Struct
Optim 16(1):1–18. https://doi.org/10.1007/bf01213995

Osanov M, Guest JK (2016) Topology optimization for archi-
tected materials design. Annu Rev Mater Res 46(1):211–233.
https://doi.org/10.1146/annurev-matsci-070115-031826

Panesar A, Abdi M, Hickman D, Ashcroft I (2018) Strategies for
functionally graded lattice structures derived using topology
optimisation for additive manufacturing. Addit Manuf 19:81–94.
https://doi.org/10.1016/j.addma.2017.11.008

Pantz O, Trabelsi K (2008) A post-treatment of the homogeniza-
tion method for shape optimization. SIAM J Control Optim
47(3):1380–1398. https://doi.org/10.1137/070688900

Pantz O, Trabelsi K (2010) Construction of minimization sequences
for shape optimization. In: 15th International conference on
methods and models in automation and robotics (MMAR),
pp 278–283. https://doi.org/10.1109/MMAR.2010.5587222

Pedersen P (1989) On optimal orientation of orthotropic materials.
Struct Optim 1(2):101–106. https://doi.org/10.1007/BF01637666

Pizzolato A, Sharma A, Maute K, Sciacovelli A, Verda V (2019)
Multi-scale topology optimization of multi-material structures
with controllable geometric complexity — applications to heat

transfer problems. Comput Methods Appl Mech Eng 357:112552.
https://doi.org/10.1016/j.cma.2019.07.021

Plocher J, Panesar A (2019) Review on design and struc-
tural optimisation in additive manufacturing: towards next-
generation lightweight structures. Mater Des 183:108164.
https://doi.org/10.1016/j.matdes.2019.108164
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