
 
 

Delft University of Technology

Hardware-Encoding Grid States in a Nonreciprocal Superconducting Circuit

Rymarz, Martin; Bosco, Stefano; Ciani, Alessandro; Divincenzo, David P.

DOI
10.1103/PhysRevX.11.011032
Publication date
2021
Document Version
Final published version
Published in
Physical Review X

Citation (APA)
Rymarz, M., Bosco, S., Ciani, A., & Divincenzo, D. P. (2021). Hardware-Encoding Grid States in a
Nonreciprocal Superconducting Circuit. Physical Review X, 11(1), Article 011032.
https://doi.org/10.1103/PhysRevX.11.011032

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1103/PhysRevX.11.011032
https://doi.org/10.1103/PhysRevX.11.011032


 

Hardware-Encoding Grid States in a Nonreciprocal Superconducting Circuit

Martin Rymarz ,1,* Stefano Bosco ,2,3 Alessandro Ciani ,4 and David P. DiVincenzo 1,2

1JARA-Institute for Quantum Information, RWTH Aachen University, D-52056 Aachen, Germany
2Peter Grünberg Institute, Theoretical Nanoelectronics,
Forschungszentrum Jülich, D-52425 Jülich, Germany

3Department of Physics, University of Basel, CH-4056 Basel, Switzerland
4QuTech, Delft University of Technology, 2628 CJ Delft, Netherlands

(Received 18 March 2020; revised 23 October 2020; accepted 9 November 2020; published 17 February 2021)

We present a circuit design composed of two Josephson junctions coupled by a nonreciprocal element,
the gyrator, whose ground space is doubly degenerate. The ground states are approximate code words of the
Gottesman-Kitaev-Preskill code. We determine the low-energy dynamics of the circuit by working out the
equivalence of this system to the problem of a single electron in a crystal, confined to a two-dimensional
plane, and subjected to a strong, homogeneous magnetic field. We find that the circuit is naturally protected
against the common noise channels in superconducting circuits, such as charge and flux noise, implying
that it can be used for passive quantum error correction. We also propose realistic design parameters for an
experimental realization, and we describe possible protocols to perform logical one- and two-qubit gates,
state preparation, and readout.

DOI: 10.1103/PhysRevX.11.011032 Subject Areas: Quantum Physics, Quantum Information

I. INTRODUCTION

Building a quantum computer in a physical system
is a formidably challenging task because of the inherent
fragility of physical quantum bits (qubits). The key idea
behind quantum error correction (QEC) [1,2] is to use
logical qubits that can be protected against certain
likely errors, thus extending the lifetime of the encoded
quantum information and allowing for fault-tolerant
quantum computation [3,4].
There are different flavors of QEC codes, that differ

in the way in which the logical qubits are constructed.
For example, in the toric [5,6], surface [7–9], and color [10]
code, the logical qubits are encoded in lattices of physical
qubits. To date, the QEC codes that have been most
successful in enhancing the lifetime of quantum informa-
tion have been built from continuous variable (CV) systems
[11–13], such as a single microwave cavity mode. Efficient
QEC with cat states and binomial codes has been demon-
strated [14,15]. In this work, we focus on a similar CV
encoding, proposed by Gottesman, Kitaev, and Preskill
(GKP) in Ref. [16], where the code words are shifted grid
states, i.e., periodic repetitions of highly localized peaks

such that the code words do not have common support.
With the GKP code, these code words can be protected
against sufficiently small displacements in phase space.
The error-correcting properties of the GKP code are further
explored in Ref. [17], where it is shown that the GKP code
outperforms cat and binomial codes when a photon loss
channel is considered. Grid states have been successfully
prepared and actively stabilized in a superconducting
microwave cavity by applying conditional displacements
depending on the measurement outcome of an ancillary
physical qubit [18]. Also, implementations of these states
in superconducting circuits have been proposed by means
of the 0-π qubit [19,20] or in a passive procedure with the
dualmon [21].
However, the active implementation of QEC requires

complicated protocols where errors are detected and
compensated for by applying a recovery operation. In
contrast, in passive QEC, the protection is a built-in feature
of the system’s hardware, and it is, therefore, advantageous
in terms of hardware efficiency and scalability. Generally,
this is achieved by constructing a system whose twofold
degenerate ground states are the qubit states: Errors that
bring the system out of the computational space have an
associated energy penalty, and so the system automatically
relaxes back into the computational space [5,22,23].
An example of an implementation of the GKP code is

a single electron confined in a two-dimensional plane
within a periodic potential and a high perpendicular
magnetic field [24–37]. The magnetic field restricts the
dynamics of the electron to the lowest Landau level (LLL),
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so that the position operators in orthogonal directions do
not commute. The contribution of the periodic potential to
the Hamiltonian reduces to a sum of displacement oper-
ators, which are the stabilizers of the GKP code.
Although this system is useful for a theoretical under-

standing of the code, it is very unpractical to implement.
The magnetic field required for it to work is exactly
B ¼ Φ0=2A with A the area of the unit cell in space and
the magnetic flux quantum Φ0 ¼ h=e. In natural crystals,
this condition implies that the magnetic field needs to be
unrealistically large, about B ∼ 105 T. Moiré patterns in
twisted bilayer graphene can be used to reduce this value by
a few orders of magnitude due to their large unit cell [38].
Even if such a regime were possible to achieve, the external
magnetic field would still require an extremely precise
fine-tuning, and the electron density would still have to be
decreased to the unfeasible value of a single free electron in
the crystal.
Here, we propose instead a different implementation of

the GKP code, which does not suffer from any of these
issues. We consider a superconducting circuit composed of
two Josephson junctions coupled by a lossless and linear
nonreciprocal circuit element, the gyrator [39]. The circuit
is shown in Fig. 1.
The nonreciprocity of the gyrator breaks time-reversal

symmetry, and its contribution to the dynamics of the
circuit is akin to that of a uniform, perpendicular magnetic
field in an electronic system. In our circuit, the condition on
the strength of the magnetic field reduces to the require-
ment on the gyration conductance being precisely twice the
conductance quantum, i.e., G ¼ 2e2=h.
While unrealistic for conventional gyrators [40–45], this

value of G can be easily reached in quantum Hall effect
(QHE) devices [46–50], in which a precise fine-tuning of the
device parameters is unnecessary due to the quantization of
the off-diagonal conductivity. In addition, although conven-
tional QHE devices [50] require a high magnetic field to
operate, making them unpractical to couple to superconduct-
ing devices, we note that state-of-the-art quantum anomalous
Hall effect materials still present an extremely precise
conductivity quantization and low losses [51] and can be
used to implement nonreciprocal electrical network elements
that can operate at zero magnetic field [52].

We show that our construction is insensitive to
common types of noise. We discuss possible ideas of
how logical one-qubit as well as two-qubit Clifford gates
can be implemented by applying currents and using
tunable inductances. We show that the ground state of
our system is an eigenstate of the Hadamard gate.
Consequently, our system is suitable for universal quan-
tum computation [16,53,54].
The paper is organized as follows: In Sec. II, we review a

few key concepts of hardware-encoding GKP states, and
we introduce the Hamiltonian whose twofold degenerate
ground space is spanned by the GKP code words. In
Sec. III, we show how this Hamiltonian can be derived from
the low-energy description of a single electron in a high
magnetic field and a periodic potential. The dynamics of
this system is equivalent to that of a gyrator connected to
two Josephson junctions, but the solid-state jargon more
easily reveals the intimate relation to Hofstadter’s butterfly
[34,37]: The GKP states are obtained at a specific point in
the butterfly. In Sec. IV, we study the effect of an additional
parabolic confinement potential, which in the circuit model
consists of the addition of inductances in parallel to the
Josephson junctions. For this setting, the ground space of
the resulting Hamiltonian is twofold degenerate up to an
exponentially small gap, and the eigenstates of the system
resemble superpositions of normalizable, approximate
GKP code words [16]. In Sec. V, we highlight the
connection between the one-dimensional GKP grid states
and the two-dimensional ground space wave functions of
the electronic system’s Hamiltonian projected onto the
lowest Landau level. In Sec. VI, we work out in detail the
equivalence to the nonreciprocal superconducting circuit
model, and we propose realistic design parameters for an
experimental realization of the system. We also discuss
possible realizations of logical gates by using current
sources and tunable inductances, and we present ideas
for state preparation and readout. We provide an analysis of
the protection against common noise sources, such as flux
and charge noise. In Sec. VII, we compare our qubit design
with other currently existing or proposed superconducting
qubits, and we discuss possible trade-offs of our design.
Finally, in Sec. VIII, we summarize our results and give an
outlook on further work.

II. THE GKP CODE FOR PASSIVE QEC

The GKP code is a CV quantum error-correcting code
[11–13] introduced in Ref. [16]. In contrast to the standard
approach to quantum error correction, which assumes
physical qubits as fundamental noisy elements, in CV
quantum error correction, the idea is to encode a two-level
(or n-level, more generally) system in the infinite-
dimensional Hilbert space of a one-dimensional particle
characterized by dimensionless canonical quadrature oper-
ators X and P satisfying ½X;P� ¼ i. The GKP code can be
described within the stabilizer formalism for CV systems.

FIG. 1. Proposed hardware implementation of the GKP code.
The circuit consists of two Josephson junctions coupled by a
gyrator, highlighted in red.
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The role of the Pauli group is played by theWeyl-Heisenberg
group GH, i.e., the group of displacement operators [55,56]

DðαÞ ¼ eαb
†−α�b; α ∈ C; ð1Þ

with the annihilation operator b ¼ ðX þ iPÞ= ffiffiffi
2

p
. In this

framework, the GKP code is the two-dimensional subspace
stabilized by a subgroup SGKP of GH with group generators

SX ¼ Dði
ffiffiffiffiffiffi
2π

p
Þ ¼ ei2

ffiffi
π

p
X; SP ¼ Dð

ffiffiffiffiffiffi
2π

p
Þ ¼ e−i2

ffiffi
π

p
P

ð2Þ

and S−1X ; S−1P . The logical Pauli operators Z̄ and X̄ are
given by

Z̄ ¼ S1=2X ¼ ei
ffiffi
π

p
X; X̄ ¼ S1=2P ¼ e−i

ffiffi
π

p
P: ð3Þ

This choice of logical operators fixes the following (unnor-
malizable) code words:

j0̄i ¼
X
n∈Z

jX ¼ 2
ffiffiffi
π

p
ni; ð4aÞ

j1̄i ¼
X
n∈Z

jX ¼ 2
ffiffiffi
π

p
nþ ffiffiffi

π
p i; ð4bÞ

that are grid states, each describing a comb of equidistant δ
peaks in the X basis. These combs have a period of 2

ffiffiffi
π

p
and

are shifted with respect to each other by
ffiffiffi
π

p
.

Given a density matrix ρ describing the state of a one-
dimensional CV quantum system, one can expand a generic
quantum operation EðρÞ in terms of displacement oper-
ators. For simplicity, we consider the superoperator of a
diagonal channel, which can be expressed as [16]

EðρÞ ¼
Z
C
dαfðαÞDðαÞρD†ðαÞ; ð5Þ

with fðαÞ being a scalar function. IfD†ðα0ÞDðαÞ either is in
the stabilizer group or does not commute with the stabi-
lizers SX and SP in Eq. (2), the GKP code featuring the ideal
code words in Eq. (4) can correct against these kinds of
errors. Mathematically, this condition means that fðαÞmust
have support only for

jReðαÞj < 1

2

ffiffiffi
π

2

r
; jImðαÞj < 1

2

ffiffiffi
π

2

r
: ð6Þ

In this case, the error syndromes are unique, and the
displacement errors DðαÞ can be corrected. Otherwise,
logical errors will be made.
The main idea behind passive, stabilizer error correction

is to construct a Hamiltonian that has the code subspace
as the low-energy subspace. For the GKP code, this
Hamiltonian is easily obtained as [16]

HGKP=V0 ¼ −½cosð2 ffiffiffi
π

p
XÞ þ cosð2 ffiffiffi

π
p

PÞ�; ð7Þ

with V0 a constant with the unit of energy. Because the
code subspace is stabilized by the two cosines, it has
energy −2V0.
We remark that passive, stabilizer error correction for

CV systems is rather different than in systems based on a
large set of physical qubits, such as the toric, surface, or
color code [5–10]. In fact, the Hamiltonian in Eq. (7) is
gapless, with a continuous spectrum ranging from −2V0

to þ2V0. Also, because the Weyl-Heisenberg group is a
continuous group, in contrast to the discrete Pauli group,
the eigenstates of HGKP are unnormalizable and formally
out of the Hilbert space of any physical system. As a
consequence, the usual perturbation theory argument
[5,23] which claims that local perturbations of the
Hamiltonian give rise to small variations of the energy
levels is not directly applicable here. As pointed out in
Ref. [22], the argument can be restored in approximated
versions of Eq. (7), where the eigenstates are normalized
and confined, leading to a discrete spectrum. The par-
ticular way in which HGKP is approximated modifies the
properties of the degenerate ground space, but generally
its eigenstates remain with disjoint support. This idea of
passive protection is similar to the one behind the 0-π
qubit [19,20,57–61].
Finally, the addition of a confinement to HGKP provides

ways to prepare approximate versions of the GKP code
words in Eq. (4), or linear combinations of them, which
become the quasidegenerate ground states of the confined
system. However, for the GKP code featuring approximate
grid states, the condition of an error being correctable is
more intricate than Eq. (6) [16].

III. CRYSTAL ELECTRON
IN A MAGNETIC FIELD

We discuss how the code Hamiltonian in Eq. (7) can
emerge from the consideration of the well-known situation
of a single electron confined to a two-dimensional plane in
a strong perpendicular uniform magnetic field [24–37]. The
effect of a periodic potential on the electron’s motion has
been extensively studied because of the fractal nature of
the energy bands [34] and their nontrivial topology [62].
In this section, we want to clarify under what conditions the
ground states of the system are GKP states. We focus on the
Hamiltonian

H ¼ ½pþ eAðx1; x2Þ�2
2m

þ Vcrysðx1; x2Þ; ð8Þ

where the two-dimensional positions and momenta satisfy
canonical commutation relations ½xi; pj� ¼ iℏδij, for i; j ∈
f1; 2g, and B ¼ ∇ × A ¼ Be3. We consider a crystal
potential of the form
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Vcrysðx1; x2Þ ¼ −V
�
cos

�
2π

x1
L0

�
þ cos

�
2π

x2
L0

��
; ð9Þ

which corresponds to the first Fourier mode of any periodic
potential on a square lattice of size L0 in the x1x2 plane.
Although both the crystal potential Vcrys and the uniform
magnetic field B are periodic in the x1 and x2 direction, the
Hamiltonian is not, because the discrete translation sym-
metry is broken in at least one direction by the vector
potential A. As a result, H does not simultaneously
commute with both the canonical unitary translation
operators t1ðL0Þ and t2ðL0Þ, defined as

tiðrÞ ¼ e−irpi=ℏ; r ∈ R; i ¼ 1; 2: ð10Þ

It follows that H; t1ðL0Þ and t2ðL0Þ cannot have common
eigenstates, as the usual formulation of Bloch’s theorem
dictates. To find a set of translations which do commute
with the Hamiltonian, we work with the dynamical
momenta [63–66]

π1 ¼ p1 þ eA1; π2 ¼ p2 þ eA2 ð11Þ

and the guiding center variables

R1 ¼ x1 −
1

mωc
π2; R2 ¼ x2 þ

1

mωc
π1; ð12Þ

with the cyclotron frequency ωc ¼ eB=m. These operators
are gauge invariant (in contrast to the canonical momenta
pi) and satisfy the commutation relations

½π1; π2� ¼ −i
ℏ2

l2B
; ½R1; R2� ¼ il2B; ½πi; Rj� ¼ 0;

ð13Þ

for i; j ∈ f1; 2g and the magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB

p
.

Physically, the dynamical momenta are related to the
cyclotron motion of an electron around its center of mass,
which, in turn, is parametrized by the guiding center
coordinates.
We can impose boundary conditions by requiring the

wave function to be quasiperiodic in Ri. To this end, we
make use of the unitary magnetic translation operators
(MTOs) [27,66–69]

T1ðrÞ ¼ e−irR2=l2B ; T2ðrÞ ¼ eirR1=l2B ; r ∈ R; ð14Þ

which shift the guiding center variables Ri by r, i.e.,

T†
i ðrÞRiTiðrÞ ¼ Ri þ r; i ¼ 1; 2: ð15Þ

It is straightforward to show that the MTOs T1ðL0Þ and
T2ðL0Þ do commute with the Hamiltonian in Eq. (8).

However, because of the noncommutativity of R1 and
R2 in Eq. (12), magnetic translations in different directions
do not generally commute. An electron moving along
a closed path accumulates an Aharonov-Bohm phase
[70] proportional to the magnetic flux threaded by the
loop, and so

T2ðr2ÞT1ðr1Þ ¼ ei2πBr1r2=Φ0T1ðr1ÞT2ðr2Þ; ð16Þ

with the (nonsuperconducting) flux quantum Φ0 ¼ h=e.
Consequently, MTOs in orthogonal directions commute
only when an integer number of flux quanta is threaded
through the loop defined by the MTOs. Note that, with an
appropriate rescaling, the MTOs defined in Eq. (14)
correspond to the displacement operators similar to the
ones defined in Eq. (1).
In the following, we restrict to rational fluxes [34],

where the magnetic flux enclosed in a unit cell of size
L0 × L0 is a rational multiple of the flux quantum, i.e.,

Φ ¼ BL2
0 ¼

p
q
Φ0; ð17Þ

with coprime natural numbers p and q. In this case, we
consider an enlarged, magnetic unit cell of size qL0 × L0,
which contains p flux quanta, such that the MTOs
T1ðqL0Þ ¼ ½T1ðL0Þ�q and T2ðL0Þ commute with the
Hamiltonian in Eq. (8) and with each other [71]. As a
result, we consider the magnetic Bloch states satisfying

T1ðqL0Þjki ¼ eik1qL0 jki; ð18aÞ

T2ðL0Þjki ¼ eik2L0 jki; ð18bÞ

where k ¼ ðk1; k2ÞT is the crystal momentum defined in the
rectangular Brillouin zone

k1 ∈
�
0;

2π

qL0

�
; k2 ∈

�
0;
2π

L0

�
: ð19Þ

The states jki are sometimes referred to as Zak states
[28–30].
Introducing the Landau-level ladder operators

a ¼ 1ffiffiffi
2

p lB
ℏ
ðπ2 þ iπ1Þ; a† ¼ 1ffiffiffi

2
p lB

ℏ
ðπ2 − iπ1Þ; ð20Þ

satisfying the bosonic commutation relation ½a; a†� ¼ 1, the
Hamiltonian in Eq. (8) can be rewritten as

H ¼ ℏωc

�
a†aþ 1

2

�
−
V
2

�
Da

�
i

ffiffiffi
2

p
πlB

L0

�
T1

�
qL0

p

�

þDa

�
−

ffiffiffi
2

p
πlB

L0

�
T2

�
qL0

p

�
þ H:c:

�
; ð21Þ
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with the cyclotron frequency ωc ¼ eB=m and the unitary
displacement operator DaðαÞ ¼ exp ðαa† − α�aÞ acting on
the subspace of the dynamical momenta. A convenient
basis to numerically analyze the low-energy spectrum of
this Hamiltonian are the product states jn; k; li ¼ jni ⊗
jk; li satisfying

a†ajni ¼ njni; n ∈ N0; ð22Þ

and

T1ðqL0Þjk; li ¼ eik1qL0 jk; li; ð23aÞ

T2ðL0=pÞjk; li ¼ eiðk2L0þ2πlÞ=pjk; li; ð23bÞ

hk; ljk; l0i ∝ δll0 ; ð23cÞ

with l ¼ 0; 1; 2;…; p − 1; see the Appendix A. Note that,
in the absence of the potential (V ¼ 0), the states jn; k; li
diagonalize the Hamiltonian, leading to a p-fold degen-
eracy of each Landau level with energy En¼ℏωcðnþ1=2Þ
that does not depend on k. This degeneracy is the well-
known flat Landau-level degeneracy, which is often dis-
cussed in the quantum Hall effect literature [63–65].
Expressed in the x1x2 representation, the quasiperiodic
wave functions Ψn;k;lðx1; x2Þ ¼ hx1; x2jn; k; li are intro-
duced by Haldane and Rezayi in Ref. [72]; see also Sec. V.
The crystal potential couples states with different

Landau-level occupation numbers n and with different
guiding center quantum numbers l. Consequently, the
p-fold degeneracy of each initially flat Landau level is
lifted, and, for a moderately weak crystal potential, each
Landau level splits into p subbands with finite broadening
[31–33]; see Fig. 2, in which the two lowest split Landau

levels are shown. Moreover, although each subband has
a functional dependency on k, each band has an additional
q-fold degeneracy; see Appendix A. More details on the
general solution of the Hamiltonian in Eq. (21) can be
found in Appendix B 1.
In this paper, we are interested in the weak Landau-level

coupling limit V=ℏωc ≪ 1, where the dynamics of states
within each Landau level can be taken to be independent
from the others. This limit is analyzed in the following.

A. GKP qubit in the LLL projection

When the coupling between the Landau levels is weak,
an effective low-energy Hamiltonian acting on a single
Landau level can be obtained by a Schrieffer-Wolff trans-
formation [73,74]. In particular, to the lowest order and
considering only the LLL [75], we obtain from Eq. (21) the
effective Hamiltonian (up to an unimportant constant)

HLLL ¼ hn ¼ 0jHjn ¼ 0i

¼ −
V0

2

�
T1

�
qL0

p

�
þ T2

�
qL0

p

�
þ H:c:

�
; ð24Þ

where V0 ¼ Ve−πq=2p. Although formally this effective
Hamiltonian is valid only when V=ℏωc ≪ 1, numerics
shows that the approximation holds up well to relatively
high values of V=ℏωc ≲ 0.4; see Sec. IVA, where we
discuss in more detail the validity of the LLL projection.
In the limit of weak Landau-level coupling, the eigen-

value equation associated with HLLL is the Harper equation
[25,26,35,37,76], which is a special case of the almost
Mathieu equation [77–79]. In particular, the Harper equa-
tion is a finite-difference equation, resulting in an energy
spectrum in form of the Hofstadter butterfly [34], shown
in Fig. 3.
We point out that this spectrum has p bands that are

q-fold degenerate. In fact, states connected by the

FIG. 2. Low-energy spectrum of the Hamiltonian in Eq. (21) as
a function of the inverse flux ratio q=p for a fixed value of
V=ℏωc ¼ 0.4. The initially flat Landau levels at En=ℏωc ¼ nþ
1=2 (obtained for V ¼ 0) are split into subbands dependent on k.

FIG. 3. Hofstadter’s butterfly obtained by plotting the spectrum
of the effective lowest Landau-level Hamiltonian HLLL=V0,
defined in Eq. (24), as function of the inverse magnetic flux
ratio Φ0=Φ ¼ q=p. The two-dimensional GKP code space
corresponds to the states of minimal energy at p=q ¼ 1=2. This
point is marked by a red star in the figure.
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application of T1ðnL0Þ with n ¼ 1;…; q − 1 are orthogo-
nal but have the same energy; see Appendix A. Note
that this result is in contrast to the original tight-binding
result of Hofstadter [34], where different Landau levels are
strongly coupled and where there are q bands that are
q-fold degenerate [76]. For this reason, in the original
work, the Hofstadter butterfly is obtained by plotting the
spectrum as a function of p=q instead of q=p [34].
Importantly, by introducing the dimensionless variables

X ¼
ffiffiffi
π

p
L0

R1 ¼
ffiffiffiffiffiffi
q
2p

r
R1

lB
; P ¼ 2p

ffiffiffi
π

p
qL0

R2 ¼
ffiffiffiffiffiffi
2p
q

s
R2

lB
;

ð25Þ

satisfying the canonical commutation relation ½X;P� ¼ i,
we can rewrite HLLL as

HLLL=V0 ¼ −
�
cosð2 ffiffiffi

π
p

XÞ þ cos

�
q
p

ffiffiffi
π

p
P

��
: ð26Þ

Comparing with Eq. (7), we observe thatHLLL corresponds
to the GKP Hamiltonian HGKP when p=q ¼ 1=2. This
system is, therefore, suitable for passively encoding the
GKP code words, which are given in Eq. (4). Note that, for
p=q ¼ 1=2, the previous rescaling of the guiding center
variables Ri becomes equal, and so the code can correct
equal shifts on X and P.
Furthermore, for p=q ¼ 1=2, the MTOs defining the

states jki in Eq. (18) are related to the stabilizers and logical
operators of the GKP code as, respectively,

T1ð2L0Þ ¼ SP; T2ðL0Þ ¼ S1=2X ¼ Z̄: ð27Þ

Since the GKP code words are the eigenstates ofHLLL with
minimal eigenenergy, we can identify the code space with a
specific point in Hofstadter’s butterfly (see the red star in
Fig. 3). In particular, the code space is spanned by the
eigenstates obtained for k ¼ ð0; 0ÞT and k ¼ ð0; π=L0ÞT .
These states correspond to the logical code words intro-
duced in Eq. (4). The eigenfunctions of the full system
within the LLL projection are analyzed in Sec. V.
At this point, we highlight the main difference between

our approach and the original proposal by GKP [16]. GKP
propose to use the LLL projection at the rational flux
p=q ¼ d=1 without the crystal potential (Vcrys ≡ 0). A
qudit can be encoded by focusing on the d-fold degenerate
ground space obtained at vanishing Bloch momentum
(k ¼ 0), and one can take this qudit to construct different
shift-resistant quantum codes. In contrast, for the rational
flux p=q ¼ 1=2, by including the crystal potential and
using states with different Bloch momenta, here we encode
a qubit in a real CV system.

IV. ADDITIONAL PARABOLIC CONFINEMENT

Because the GKP code words in Eq. (4) are not normal-
izable, they are mathematical objects that are not physically
realizable. As a consequence, we can work only with
normalized wave packets that approximate the ideal code
words. This consideration leads to the introduction of
several versions of approximate GKP states [80]. In what
follows, we show that the addition of a parabolic confine-
ment allows us to obtain low-energy eigenstates with a finite
energy gap that are approximate GKP code words. Thus, the
ability to prepare the unique ground state provides a reliable
way to initialize the system. Importantly, we show that by
including a parabolic confinement potential it is possible to
prepare directly approximate GKP magic states, namely,
Hadamard eigenstates, which, together with Clifford oper-
ations and Pauli measurements, enable universal quantum
computation [53].
We start by choosing an isotropic parabolic confining

potential, and so the Hamiltonian is

H ¼ ½pþ eAðx1; x2Þ�2
2m

þ V totðx1; x2Þ; ð28Þ

with

V totðx1; x2Þ ¼ Vcrysðx1; x2Þ þ
1

2
mω2

0ðx21 þ x22Þ: ð29Þ

Because V tot does not preserve the discrete translational
symmetry defined by Vcrys, we cannot impose the magnetic
Bloch conditions in Eq. (18). In this case, we require
instead that the wave functions vanish at infinity.
We now briefly summarize the main findings of a

numerical analysis of the eigensystem of the Hamiltonian
in Eq. (28) (see Appendix B 2 for details). In particular, we
focus on the case p=q ¼ 1=2 [see Eq. (17)], which in the
LLL projection leads to ideal GKP states in the absence of
the parabolic confinement potential. As in the previous
section, we construct and analyze a low-energy theory of the
system, valid in the weak Landau-level coupling limit.

A. Numerical results

When a confinement potential is included, the twofold
degeneracy of the ground space is lifted, and an energy gap
opens between the degenerate ground states of HLLL
in Eq. (26). This energy gap, however, is exponentially
small in ω0, and so the ground state and the first excited
state remain quasidegenerate when ω0 is small enough. To
illustrate this point, in Fig. 4, we show the lowest ten
eigenenergies of the Hamiltonian in Eq. (28) as functions of
the confinement strength ℏω0=V for a rather large value of
V=ℏωc ¼ 0.4. Recall that V denotes the amplitude of Vcrys

in Eq. (9). We observe that the energy gap between the
ground state and first excited state is negligibly small up to
confinements of ℏω0=V ≲ 0.2 and that it nicely fits an
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exponential scaling E1 − E0 ∝ expð−αV=ℏω0Þ, with a
positive constant prefactor α [81]. In addition, the spectrum
is now discrete, and higher excited states are gapped from
the twofold quasidegenerate ground space [81].
As mentioned in Sec. II, the discreteness of the spectrum

then allows one to use a perturbative argument which states
that local perturbations do not considerably alter the
spectrum of the Hamiltonian.
Because we are interested in the weak Landau-level

coupling limit, we analyze the effect of higher Landau
levels on the low-energy eigenstates numerically. In Fig. 5,
we show how the expectation value of the LLL projector
ΠLLL ¼ j0ih0jπ in the ground state of the Hamiltonian in
Eq. (28) varies as a function of the confinement potential
for fixed values of V=ℏωc. We observe that the higher
Landau levels have a negligible effect for a wide range of
parameters, giving an error below 3% for rather large values
of both V=ℏωc and ℏω0=V and, consequently, justifying
even in this case a projection onto the LLL. In particular, at
the values V=ℏωc ¼ 0.4 and ℏω0=V ¼ 0.8, which are the
relevant parameters for the circuit model presented in
Sec. VI, we find hψ0jΠLLLjψ0i ¼ 0.981; see the green
circle in Fig. 5. The expectation values of ΠLLL evaluated
for the first excited states of the Hamiltonian in Eq. (28)
show a similar behavior.
The effective Hamiltonian of the system in this limit is

analyzed in the next section.

B. Approximate grid states in the LLL projection

In analogy to Sec. III A, here we find an effective
Hamiltonian that captures the behavior of the system in

the weak Landau-level coupling limit. By projecting
Eq. (28) onto the LLL and considering p=q ¼ 1=2, we
obtain

HLLL ¼ ℏω2
0

ωc

P2 þ X2

2
− V0½cosð2

ffiffiffi
π

p
XÞ þ cosð2 ffiffiffi

π
p

PÞ�;

ð30Þ

where V0 ¼ Ve−π and the canonical position X and
momentum P are defined by Eq. (25).
Importantly, the parabolic potential in Eq. (29) reduces to

the harmonic oscillator Hamiltonian with frequency ω2
0=ωc

after the LLL projection and breaks the periodicity of both
X and P. However, note that the confinement potential
preserves the fourfold rotational symmetry in x1 and x2.
Because a π=2 rotation in the x1x2 plane reduces to a
Fourier transform, which maps X ↦ P and P ↦ −X, when
projected onto the LLL, the Hamiltonian in Eq. (30) is
invariant under the exchange of X and P, and its eigenstates
are also eigenstates of the Fourier transform. More detailed
explanations of this symmetry and correspondence are
given in Appendixes B 2 and E.
In particular, the two quasidegenerate low-energy

eigenfunctions ψHþðXÞ (ground state) and ψH−ðXÞ (first
excited state), shown in Fig. 6, are even and odd eigen-
functions of the Fourier transform with eigenvalues �1,
respectively. These states are well approximated by the
linear combinations

ψHþðXÞ ≈ cos

�
π

8

�
ψ0ðXÞ þ sin

�
π

8

�
ψ1ðXÞ; ð31aÞ

FIG. 4. Lowest ten eigenenergies of the Hamiltonian in
Eq. (28) as functions of the confinement strength ℏω0=V for
p=q ¼ 1=2 and V=ℏωc ¼ 0.4. The gray dashed vertical line
marks the value of ℏω0=V ¼ 0.8 that is experimentally relevant
for our circuit proposal; see Sec. VI. Inset: Energy gap ΔE ¼
E1 − E0 between the two lowest eigenstates for the same values
of p=q and V=ℏωc. For V=ℏω0 ≫ 1, the energy gap decreases
exponentially with V=ℏω0.

FIG. 5. Expectation value of the LLL projector in the ground
state of the Hamiltonian in Eq. (28) for different values of
V=ℏωc as function of V=ℏω0. As expected, the LLL projection
becomes more accurate for smaller values of the energy ratios
V=ℏωc and ℏω0=V. We mark with a green circle the values of
V=ℏωc ¼ 0.4 and ℏω0=V ¼ 0.8 that are experimentally rel-
evant for our circuit proposal; see Sec. VI. For these values,
we find hψ0jΠLLLjψ0i ¼ 0.981.
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ψH−ðXÞ ≈ − sin

�
π

8

�
ψ0ðXÞ þ cos

�
π

8

�
ψ1ðXÞ ð31bÞ

of the approximate grid states

ψ0ðXÞ ¼
ffiffiffi
2

p

π1=4
e−X

2Δ2=2
X∞
n¼−∞

exp

�
−
ðX − 2

ffiffiffi
π

p
nÞ2

2Δ2

�
;

ð32aÞ

ψ1ðXÞ ¼
ffiffiffi
2

p

π1=4
e−X

2Δ2=2
X∞
n¼−∞

exp
�
−
ðX − 2

ffiffiffi
π

p
n −

ffiffiffi
π

p Þ2
2Δ2

�
ð32bÞ

that are shown in Fig. 7. Explicitly, the squeezing parameter
Δ is given by

Δ ¼
�

ℏω2
0

4πωcV0

�
1=4

≪ 1: ð33Þ

These approximate grid states are obtained by a convolu-
tion of the ideal grid states in Eq. (4) with a narrow
Gaussian of width Δ and a multiplication with a wide
Gaussian of width 1=Δ. This inverse relation is a conse-
quence of the invariance of the Hamiltonian with respect to
the Fourier transform, and it also reflects the fact that the
GKP code corrects equal errors in the X and P variables.
When the confinement frequency ω0 is decreased, the

width Δ of the individual Gaussian peaks of the approxi-
mate grid states in Eq. (32) decreases, while the broadening

of the envelope function increases, eventually recovering
the ideal grid states in Eq. (4) when ω0 → 0.
The derivation of Eqs. (31)–(33) is based on a nested

application of the envelope function approximation
[66,82,83] discussed in Appendix C. Note that, when
the parameter Δ is rather small, as we are considering
here, the states ψ0ðXÞ and ψ1ðXÞ are orthonormal up to an
exponentially small correction scaling as approximately
e−1=Δ

2

. Consequently, they form an appropriate computa-
tional basis for the quasidegenerate ground space of HLLL.
The angle π=8 which appears in the linear combination

in Eq. (31) can be understood by considering that, in the
basis ψ0;1ðXÞ, the Fourier transform approximately equals
the Hadamard gate [16]

H̄ ¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
; ð34Þ

whose even and odd eigenfunctions are ψHþðXÞ and
ψH−ðXÞ, respectively [84]. These states are magic states
which combined with Clifford operations achieve universal
quantum computation [16,53,54,85].
The previous result is based on the symmetry of both the

amplitudes of the quadratic terms as well as the amplitudes
of the cosines in the square brackets in Eq. (30). By breaking
this symmetry, for instance, by choosing sufficiently asym-
metric amplitudes of the two cosines in Eq. (30), we find that
the lowest-energy eigenstates are not Hadamard eigenstates

FIG. 6. Numerically obtained lowest-energy eigenfunctions
ψH�ðXÞ of the effective Hamiltonian in Eq. (30) for ℏω2

0=ωcV0 ¼
0.05, which corresponds to Δ ¼ 0.25; see Eq. (33). The quasi-
degenerate eigenfunctions are even and odd under Fourier
transforming, respectively, and are well approximated by the
analytic expressions (dashed light and dark gray lines, respec-
tively) in Eq. (31).

FIG. 7. Approximate GKP code words. We show with solid
lines the linear combinations of the numerically obtained lowest-
energy eigenfunctions ψH�ðXÞ of Eq. (30) that resemble the
approximate GKP states ψ0;1ðXÞ; see Eq. (31). The dashed light
and dark gray lines show the analytical results in Eq. (32),
respectively. The figure is obtained by using the same parameters
as in Fig. 6, i.e., ℏω2

0=ωcV0 ¼ 0.05, which corresponds to
Δ ¼ 0.25. The widths of the individual peaks and that of the
total envelope are the inverse of each other.
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but the approximate GKP logical codewords similar to those
shown in Fig. 7. This feature allows one to prepare either
Hadamard eigenstates or logical code words by tuning the
asymmetry of the crystal potential. We discuss some ideas
for state preparation in Sec. VI C.
We remark that an alternative low-energy description of

the Hamiltonian in Eq. (28) which relies on the introduction
of the eigenbasis of the quadratic part of the Hamiltonian is
possible. This basis is known as the Fock-Darwin basis
[86,87]. In the weak Landau-level coupling limit, the
results obtained with this approach are equivalent to the
ones shown here.

V. EIGENFUNCTIONS OF THE
TWO-DIMENSIONAL PROBLEM

So far, we describe eigenfunctions of a one-dimensional
Hamiltonian obtained by projecting a two-dimensional
Hamiltonian onto the LLL. Here, we establish the connec-
tion between the eigenfunctions of these two Hamiltonians.
In the weak Landau-level coupling regime, which we
consider in the previous sections, the wave function of
the two-dimensional system is the coherent state represen-
tation of the wave function of the one-dimensional system.
In the following, we begin by considering the ideal case
discussed in Sec. III, and then we straightforwardly general-
ize our result to include the parabolic confinement potential
as introduced in Sec. IV.
In the weak Landau-level coupling limit, the low-energy

eigenstates of the Hamiltonian in Eq. (21) are well
approximated by the product state

jΨi ¼ j0iπ ⊗ jψiR ≡ j0;ψi; ð35Þ

where j0iπ denotes the LLL and jψiR is an eigenstate of
the projected Hamiltonian in Eq. (26). From Eq. (35), it
follows that the wave function Ψðx1; x2Þ ¼ hx1; x2jΨi in
the original coordinates xi and the one-dimensional wave
function ψðXÞ ¼ hXjψiR are related by the unitary integral
transform

Ψðx1; x2Þ ¼
Z

∞

−∞
dXK0ðx1; x2;XÞψðXÞ; ð36Þ

where K0ðx1; x2;XÞ ¼ hx1; x2j0; Xi is a gauge-dependent
integration kernel. As derived in Appendix D, in the
symmetric gauge, i.e., Aðx1; x2Þ ¼ B=2ð−x2; x1; 0ÞT , we
obtain

K0ðx1; x2;XÞ ¼
1ffiffiffi
2

p
π3=4

exp

�
−
ðX − x1Þ2

2

�

× expð−ix2XÞ exp
�
i
x1x2
2

�
: ð37Þ

To simplify the notation, in this section, we work in
magnetic units, and we rescale all the lengths by the
magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

.
Note that, up to a gauge phase expðix1x2=2Þ, the

integration kernel K0ðx1; x2;XÞ is the complex conjugate
of the wave function (in X representation) of a coherent
state with average position and momentum x1 and x2,
respectively. Consequently, as long as the matrix elements
between different Landau levels are small and the approxi-
mate factorization in Eq. (35) is valid, the low-energy two-
dimensional eigenfunctions of the Hamiltonian in Eq. (21)
are the coherent state representations of the eigenfunctions
of the projected Hamiltonian in Eq. (26) [88]. It follows that
the absolute value squared jΨðx1; x2Þj2 is the non-negative
Husimi Q representation [56,89,90] associated with ψðXÞ.
Note also that the integral transform in Eq. (36) is invertible
and preserves orthonormality.
Let us consider now the LLL non-normalizable

eigenfunction

ψkðXÞ ¼ e−ik1X
X
n∈Z

δðX − 2
ffiffiffi
π

p
n − k2Þ ð38Þ

of the effective Hamiltonian in Eq. (26), satisfying the
quasiperiodic boundary conditions defined by Eq. (23) with
p=q ¼ 1=2 and l ¼ 0. Because of the choice p=q ¼ 1=2,
the length L0 (in magnetic units) reduces to

ffiffiffi
π

p
; see

Eq. (17). The wave function of the two-dimensional
system, obtained via the integral transform in Eq. (36), is

Ψkðx1; x2Þ ¼
1ffiffiffi
2

p
π3=4

e−x1ðx1−ix2Þ=2

× ϑ

�
k2=2

ffiffiffi
π

p

−k1=
ffiffiffi
π

p
��

−iðx1 − ix2Þffiffiffi
π

p ; 2i

�
; ð39Þ

with the generalized elliptic theta function

ϑ

�
a

b

�
ðz; τÞ ¼

X
n∈Z

eiπðnþaÞ2τei2πðnþaÞðzþbÞ: ð40Þ

Note that the absolute value of the wave function in
Eq. (39) is periodic in both x1 and x2, i.e., jΨkðx1; x2Þj ¼
jΨkðx1 þ 2

ffiffiffi
π

p
; x2Þj ¼ jΨkðx1; x2 þ

ffiffiffi
π

p Þj. Similar two-
dimensional functions satisfying quasiperiodic boundary
conditions are introduced by Haldane and Rezayi [72] as a
basis to describe the problem of an electron confined to the
surface of a torus and under the effect of a perpendicular
magnetic field.
The twofold degenerate ground space of the effective

Hamiltonian in Eq. (26) is spanned by the logical code
words in Eq. (4), which are obtained from Eq. (38) by
considering k ¼ ð0; 0ÞT and k ¼ ð0; ffiffiffi

π
p ÞT , respectively. As

discussed in Sec. IV B and in Appendix E, π=2 rotations in
the x1x2 plane correspond to a Fourier transform after the
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LLL projection. Consequently, because in the basis ψ0ðXÞ
and ψ1ðXÞ a Fourier transform is equivalent to a Hadamard
gate [16] (see Sec. IV B), to construct fourfold rotational
symmetric wave functions in the two-dimensional plane,
we consider the linear combinations [91]

ψHþðXÞ ¼ cos

�
π

8

�
ψ0ðXÞ þ sin

�
π

8

�
ψ1ðXÞ; ð41aÞ

ψH−ðXÞ ¼ − sin

�
π

8

�
ψ0ðXÞ þ cos

�
π

8

�
ψ1ðXÞ: ð41bÞ

These functions are even (odd) under Fourier transform,
and so the corresponding two-dimensional wave functions

(a)

(b)

FIG. 9. Absolute values squared of the quasidegenerate ground
state wave functions (a) ΨHþðx1; x2Þ and (b) ΨH−ðx1; x2Þ of the
Hamiltonian in Eq. (28), which includes a parabolic confinement
potential. These functions are obtained by combining Eqs. (31)
and (43) and are even and odd, respectively, under a π=2 rotation
in the x1x2 plane. The wave functions here are normalized and are
obtained by using Δ ¼ 0.25.

(a)

(b)

FIG. 8. Absolute values squared of the wave functions
(a) ΨHþðx1; x2Þ and (b) ΨH−ðx1; x2Þ. These wave functions
approximate the low-energy eigenstates of the two-
dimensional Hamiltonian in Eq. (21) and are constructed
to be even and odd, respectively, under a π=2 rotation in the
x1x2 plane. Note that the wave functions in the plot are not
normalized. We remark that jΨH�ðx1; x2Þj2 are the Husimi Q
quasiprobability functions associated with the eigenstates
ψH�ðXÞ [defined in Eq. (41)] of the projected Hamiltonian
in Eq. (26).
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ΨH�ðx1; x2Þ are even (odd) under a π=2 rotation around
the origin xi ¼ 0. The absolute values of the functions
ΨH�ðx1; x2Þ are shown in Fig. 8.
We observe that the absolute values are periodic with

period 2
ffiffiffi
π

p
in both the x1 and x2 direction. Also, we find

that these states are related to each other by

ΨHþðx1;x2Þ¼ iei
ffiffi
π

p ðx2−x1Þ=2ΨH−ðx1þ
ffiffiffi
π

p
;x2þ

ffiffiffi
π

p Þ;
ð42Þ

and so the absolute values of the two wave functions are
simply obtained by a shift of

ffiffiffi
π

p
in the x1 and x2 direction.

As long as the Landau-level coupling remains weak,
Eq. (36) is appropriate to describe also the system discussed
in Sec. IV, where an additional parabolic potential is
included. In particular, we find that the approximate grid
states given in Eq. (32) transform into

Ψjðx1; x2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Δ2

πð1þ Δ2 þ Δ4Þ

s
e½Δ2ðx1−ix2Þ2�=½2ð1þΔ2þΔ4Þ�e−½x1ðx1−ix2Þ�=2

× ϑ

� j
2

0

��
−iðx1 − ix2Þffiffiffi
π

p ð1þ Δ2 þ Δ4Þ ; 2i
1þ Δ2

1þ Δ2 þ Δ4

�
; ð43Þ

with j ¼ 0, 1 and Δ being defined in Eq. (33). The low-
energy eigenstates ΨH�ðx1; x2Þ of the Hamiltonian in
Eq. (28) are related to these basis states by Eq. (31),
and their absolute values obtained for Δ ¼ 0.25 are shown
in Fig. 9.
Comparing Figs. 8 and 9, we observe that the parabolic

potential introduces a Gaussian decay roughly of the order
1=Δ2 of the wave functions in both the x1 and x2 direction
and also it distorts the arguments of the theta functions with
corrections of the order of Δ2. Of course, the absolute
values of the wave functions in Fig. 8 are recovered by
taking the limit Δ → 0.

VI. GKP HAMILTONIAN IN A NONRECIPROCAL
SUPERCONDUCTING CIRCUIT

Here, we propose a possible experimental realization of
the Hamiltonian in Eq. (28) based on a combination of
state-of-the-art nonreciprocal superconducting circuits. We
consider here the circuit shown in Fig. 10.
The device consists of two fluxonia coupled by a gyrator.

The fluxonium is a well-known superconducting circuit
comprising a Josephson junction with Josephson energy
EJ in parallel with a capacitance C and an inductance L
[92–94]. The crucial difference of our design from more
conventional superconducting qubit architectures is the
nonreciprocity that comes from the gyrator [39].
A gyrator is a two-port linear device that relates incom-

ing currents and voltages according to

�
I1
I2

�
¼

�
0 −G
G 0

�
|{z}

Y

�
V1

V2

�
; ð44Þ

where G is the frequency-independent gyration conduct-
ance. Because it is characterized by an antisymmetric
admittance matrix Y, this device is nonreciprocal and
breaks the time-reversal symmetry of the circuit.
While the typical implementations of these devices are

quite bulky [40,41], there are also recent realizations of
miniaturized on-chip nonreciprocal devices based on
actively pumped systems [42–45] or based on the quantum
(anomalous) Hall effect [50,52]. Although our model is
independent of the specific realization of the gyrator, the
latter devices are advantageous in this context, because they
are passive and they rely on quantized excitations with a
long lifetime that can be well described by the theory of
circuit quantum electrodynamics (cQED) [95,96]. A further
advantage is the value of G.
To describe the system with circuit quantization

theory, we introduce the node fluxes ϕiðtÞ ¼
R
t
−∞ Viðt0Þdt0.

Using Kirchoff’s laws, the following contribution to the
Lagrangian [97,98]:

LG ¼ G
2
ðϕ1

_ϕ2 − _ϕ1ϕ2Þ ð45Þ

correctly reproduces the defining property of the gyrator in
Eq. (44) when two general classical networks are attached
to it. Importantly, note that (in the style of an electronic
system) Eq. (45) is similar to the effect of a homogeneous
magnetic field of strength B ¼ G=e passing through the
ϕ1ϕ2 plane. More details on circuit quantization of non-
reciprocal devices can be found in Refs. [97,99].
For now, we neglect the effect of magnetic fluxes

threading the superconducting loops, and we set
Φext

i ¼ Φext
Gi ¼ 0. Combining conventional circuit QED

with Eq. (45), we find the Hamiltonian of the circuit in
Fig. 10 to be

H ¼ ðQ1 þGϕ2=2Þ2
2C

þ ðQ2 − Gϕ1=2Þ2
2C

þ 1

2L
ðϕ2

1 þ ϕ2
2Þ

− EJ

�
cos

�
2π

Φ0;s
ϕ1

�
þ cos

�
2π

Φ0;s
ϕ2

��
: ð46Þ

FIG. 10. Circuit design implementing the Hamiltonian in
Eq. (46), which approximates the GKP Hamiltonian.
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We then impose the canonical commutation relation
½ϕi; Qj� ¼ iℏδij. Here, Qi are the charges on the ith
capacitor. Note that the superconducting flux quantum
Φ0;s ¼ h=2e differs from the flux quantum Φ0 used in
the previous sections by a factor of 2. For simplicity, we
assumed here that the two fluxonia coupled to the gyrator
are identical. We do not expect small anisotropies to
drastically alter the results described in this section.
The Hamiltonian in Eq. (46) describing our circuit has

the same structure as the Hamiltonian of a confined crystal
electron in a magnetic field in Eq. (28) and discussed in
detail in Sec. IV. The variables that play equivalent roles in
the two cases are given in Table I.
In particular, the gyration conductance G acts as a

magnetic field B, and the characteristic frequency of the
LC circuit ωLC ¼ 1=

ffiffiffiffiffiffiffi
LC

p
acts as the harmonic confine-

ment ω0. For later convenience, we also introduce the
charging energy EC ¼ e2=2C and the inductive energy
EL ¼ Φ2

0;s=4π
2L.

As shown in Sec. III, the number of flux quanta threading
one unit cell is of fundamental importance for realizing
GKP states. In our circuit, Eq. (17) becomes

p
q
¼ G

e

Φ2
0;s

Φ0

¼ G
G0

; ð47Þ

where we introduce the superconducting conductance
quantum G0 ¼ ð2eÞ2=h. In order to obtain GKP states,
we require p=q ¼ 1=2, and, accordingly, we require the
gyration conductance to be precisely

G ¼ 2e2

h
: ð48Þ

We remark again that, while this value ofG ∼ 1=ð13 kΩÞ is
unrealistic for superconducting-based gyrators, it can be
easily reached using quantum (anomalous) Hall effect
devices, where the characteristic impedance is 1=G ¼
h=2e2ν [46–52], with ν being the Landau-level filling
factor. The robust quantization of the Hall conductivity
in these materials also guarantees that the value of G
remains precisely fixed for a wide range of design param-
eters, hence improving the reproducibility of the gyrator.
To reach low values of the harmonic confinement

frequency ωLC, we expect that the novel hyperinductances
[100], the kinetic inductances based on granular aluminum

[101,102], or thin Nb nanowires [103] will be suitable.
Also, the Josephson junctions should work in the charge
regime EC ≳ EJ, which guarantees a weak Landau-level
coupling. In Table II, we list parameter values that are
experimentally achievable in state-of-the-art superconduct-
ing circuits and that can be used to design GKP qubits. The
resulting, relevant energy ratios which need to be small are
EJ=ℏωc ¼ 0.4 and ℏωLC=EJ ¼ 0.8. For the parameter
defining the widths of the approximate grid states (see
Sec. IV B), we obtain Δ ¼ ðEL=EJÞ1=4eπ=4 ¼ 0.8. In
Sec. VII, we discuss how these parameters should be
improved and also which trade-offs might be needed to
operate the circuit in the desired way.
We emphasize that our circuit encodes the approximate

grid states in a subsystem (to be precise, in the LLL)
whose dynamics is effectively described by the approxi-
mate GKP Hamiltonian in Eq. (30). For this reason, the
code words are passively protected [22], and so, in contrast
to current efforts to encode grid states in superconducting
cavities [18], they do not require permanent active
stabilization [22].
We also point out that there is a different proposal for a

superconducting circuit implementing grid states in a
doubly nonlinear qubit (the dualmon) [21], which involves
a Josephson junction and a quantum phase slip wire.
However, in contrast to our proposal, its dynamics is not
described within a Landau-level projection, and also the
GKP code words are not the lowest-lying eigenstates of the
resulting Hamiltonian [21].
So far, we neglect the effect of potential external

magnetic fluxes threading the superconducting loops in
the circuit shown in Fig. 10. Also, no external voltage or
current sources are attached to it. In the following, we show
how these additional degrees of freedom can be used to
perform single- and two-qubit gates and for state prepara-
tion and qubit readout. Because of the equivalent roles of X
and P, stemming from the similar accessibility of both
the fluxes ϕ1 and ϕ2 in the circuit in Fig. 11, quantum
operations can be performed in the logical Z̄ or X̄ basis,
depending on to which port of the gyrator the sources
are applied.

TABLE I. Mapping of the parameters and variables used in the
jargon of a crystal electron and cQED, such that the Hamiltonians
in Eqs. (28) and (46) coincide. Note that the cyclotron frequency
in terms of circuit parameters is ωc ¼ G=C.

Crystal electron xi pi m eB V L0 ω0

Circuit ϕi Qi C G EJ Φ0;s ωLC

TABLE II. Design parameters for the circuit in Fig. 10. These
parameters are achievable in state-of-the-art superconducting
circuits. The value of the inductive energy is taken from
Ref. [100]. The charging energy and the inductive energy
correspond to a capacitance C ¼ 1.4 fF and an inductance
L ¼ 2.3 μH, respectively.

Parameter GHz

EC=h 13.50
EJ=h 3.50
EL=h 0.07
ωc=2π 8.59
ωLC=2π 2.75
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A. Logical X̄ and Z̄ gates

We now turn our attention to the implementation of logical
gates in our system by focusing on the single-qubit X̄ and Z̄
gates defined in Eq. (3). For the sake of clarity,
we carry out the analysis for the case without harmonic
confinement potential, i.e., without inductances in the super-
conducting circuit. The same procedures also work for the
complete circuit in Fig. 10when the ratiosEL=EJ andEJ=EC
are sufficiently small, yielding approximate logical gates.
In our analysis, we demand that the system is operated in

the relevant case of weak Landau-level coupling as dis-
cussed in Sec. III A. The logical operators X̄ and Z̄ can be
implemented using current sources shunting either of the
ports of the gyrator. The circuit implementing the Z̄ gate is
depicted in Fig. 11.
The Hamiltonian of this circuit can be written as

HðtÞ ¼ π2

2C
− EJ cos

�
2π

Φ0;s

�
R1 þ

π2
Cωc

��

− EJ cos

�
2π

Φ0;s

�
R2 −

π1
Cωc

��
− I1ðtÞ

�
R1 þ

π2
Cωc

�
;

ð49Þ
where, in analogy with the electronic case [see Eqs. (11)
and (12)], we define the dynamical momenta π1 ¼ Q1 þ
Gϕ2=2 and π2 ¼ Q2 −Gϕ1=2 and the guiding centers
R1 ¼ ϕ1 − π2=Cωc and R2 ¼ ϕ2 þ π1=Cωc. The current
source appears in the Hamiltonian in the term
−I1ðtÞ½R1 þ π2=Cωc� ¼ −I1ðtÞϕ1. Note that, in the elec-
tronic analogy, the current source acts as a homogeneous
and time-dependent in-plane electric field, whose direction
depends on the port the generator is connected to. We
expect that, if the current source I1ðtÞ does not contain
frequencies close to ωc, it will not cause transitions
between Landau levels. Hence, we can project onto the
LLL and obtain (dropping constant shifts in energy)

HLLL ¼ −V0½cosð2
ffiffiffi
π

p
XÞ þ cosð2 ffiffiffi

π
p

PÞ� − I1ðtÞΦ0;sffiffiffi
π

p X

¼ HGKP −
I1ðtÞΦ0;sffiffiffi

π
p X; ð50Þ

where we immediately perform the variable rescaling
in Eq. (25). Also, we use the definition of the GKP
Hamiltonian in Eq. (7) to identify V0 ¼ EJe−π.
Now, we consider the following scenario. At time t ¼ 0,

the state is assumed to be in a generic superposition jψ ini ¼
c0j0̄i þ c1j1̄i of the ideal GKP code words given in Eq. (4).
We assume a constant current source I1ðtÞ≡ I1. In this
case, the time evolution operator associated with HLLL in
Eq. (50) reduces toULLLðtÞ ¼ expð−iHLLLt=ℏÞ. In order to
understand the effect of ULLLðtÞ on jψ ini, we use the
Zassenhaus formula [104]

etðAþBÞ ¼ etAetBe−t
2½A;B�=2et3ð2½B;½A;B��þ½A;½A;B��Þ=6… ð51Þ

with A ¼ iI1Φ0;sX=ℏ
ffiffiffi
π

p
and B ¼ −iHGKP=ℏ. Since all the

commutators in the Zassenhaus formula have the GKP
states as degenerate eigenstates, e.g.,

½X; cosð2 ffiffiffi
π

p
XÞ þ cosð2 ffiffiffi

π
p

PÞ� ¼ −i2
ffiffiffi
π

p
sinð2 ffiffiffi

π
p

PÞ;
ð52Þ

one can show that

jψðtÞi ¼ ULLLðtÞjψ ini ¼ eiθðtÞ exp
�
i
I1Φ0;s

ℏ
ffiffiffi
π

p Xt

�
jψ ini;

ð53Þ

where we factorize the irrelevant phase factor eiθðtÞ. Thus,
after a time

tZ ¼ ℏπ
I1Φ0;s

; ð54Þ

a logical Z̄ gate is applied to jψ ini, up to an overall
phase. Ideally, after a time tZ, the current source must be
switched off.
Because the variables X and P refer to the left and the

right port of the gyrator, respectively, it is straightforward
to convert between the logical Z̄ and X̄ basis by simply
changing the port of the gyrator where the current source is
applied and using the same protocol.

B. Noise sensitivity

We provide a first analysis of the noise sensitivity of our
qubit to typical noise sources, such as flux and charge
noise. We start our discussion by analyzing charge noise.
In the circuit in Fig. 10, charge noise can be modeled by
capacitively coupling random voltage sources to the ports
of the gyrator. This modifications change the kinetic term in
the Hamiltonian in Eq. (46) as π2=2C ↦ ðπ þ QgÞ2=2C,
where Qg is a vector containing the random charges on the
capacitors connected to the voltage sources on either side of
the circuit. The eigenspectrum is insensitive to static gate

FIG. 11. Circuit implementation of the ideal logical Z̄ gate with
a current source. Assuming the system starts in the code sub-
space, the current source is turned on and kept constant at a value
I1 for a time tZ given in Eq. (54). A current source on the opposite
port of the gyrator would instead implement a logical X̄ gate.
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charges, since they can be gauged away by a unitary
transformation, as for the fluxonium qubit [92,105].
Moreover, charge noise couples to the dynamical momenta
π1;2, and, as a consequence, it has only a small effect on the
guiding center variables in which our states are encoded.
From these arguments, we conclude that charge noise
should not be a major source of decoherence in our system,
even if the transmon condition in not fulfilled [106].
Another typical noise source in our system is flux noise.

We begin our analysis of flux noise sensitivity by consid-
ering again the ideal GKP Hamiltonian defined in Eq. (7),
thus neglecting the confining potential of the inductive
shunts. After the LLL projection, the external fluxes
through the loops formed by gyrator branches and
Josephson junctions give rise to the Hamiltonian [107]

H=V0 ¼ − cos ½2 ffiffiffi
π

p
X þ φext

G1ðtÞ� − cos ½2 ffiffiffi
π

p
Pþ φext

G2ðtÞ�;
ð55Þ

where φext
G1;G2ðtÞ ¼ 2πΦext

G1;G2ðtÞ=Φ0;s are the reduced
magnetic fluxes through the loops on either port of the
gyrator, respectively. The GKP code space is intrinsically
protected with respect to these fluxes, independently
of their strengths. In order to show this protection, we
rewrite Eq. (55) as the sum of the desired GKP Hamiltonian
and additional noise operators with time-dependent
coefficients, i.e.,

H=V0 ¼ HGKP=V0 þ sXðtÞ sinð2
ffiffiffi
π

p
XÞ þ cXðtÞ cosð2

ffiffiffi
π

p
XÞ

þ sPðtÞ sinð2
ffiffiffi
π

p
PÞ þ cPðtÞ cosð2

ffiffiffi
π

p
PÞ; ð56Þ

where we define cX;PðtÞ¼1−cos½φext
G1;G2ðtÞ� and sX;PðtÞ ¼

sin½φext
G1;G2ðtÞ�. Because all the individual noise operators in

Eq. (56) have the GKP code space as degenerate eigensub-
space, we conclude that the GKP code space is a
decoherence-free subspace [108,109] with respect to this
kind of noise. A similar observation is also made for the
dualmon in Ref. [21]. We stress that this argument does not
rely on the assumption of Markovianity of the flux noise.
The previous derivation assumes the ideal GKP

Hamiltonian given in Eq. (7). However, when we work
with its confined version, corresponding to the circuit
shown in Fig. 10, we have to take into account the noise
associated with the external magnetic fluxes Φext

1;2 through
the superconducting loops formed by the Josephson junc-
tions and the inductances on each port of the gyrator.
We stress that, in the limit of large inductances that we are
considering here, this flux noise has a weak effect and that
the associated noise term vanishes as the value of the
inductances increases.
To avoid pure dephasing due to 1=f noise, such as flux

noise, the energy levels should not depend on the noise
parameters. An example of the dependence of the energy
levels on flux noise is shown in Fig. 12. The protection

against flux noise dephasing, for the realistic parameter
regime in Table II, does not seem to be inherently different
from that of state-of-the-art fluxonium qubits [92], as well
as the one of 0-π qubits [58] and bifluxon qubits [110],
where the energy levels show a behavior as a function of the
external fluxes similar to our qubit.
However, in analogy to the 0-π qubit [58] and the

bifluxon [110], the disjoint support of the GKP code words
with respect to both X and P guarantees that the matrix
elements of local noise operators between the encoded
states are very small. This smallness, in turn, guarantees
protection against energy relaxation. In our case, the
relevant operators to characterize the noise due to the
external fluxes are φi ¼ 2πϕi=Φ0;s (coupling to Φext

i and
Φext

Gi ) and, to first order in the small noise parameters,
sinðφiÞ (coupling to Φext

Gi ). Furthermore, the noise operator
associated with quasiparticle tunneling is sinðφi=2Þ [111].
These noise sources have a small effect in the relevant
parameter regime. In fact, because the wave functions
ψH�ðXÞ are both even in X, the matrix elements of the
noise operators in the LLL projection vanish in the sub-
space spanned by ψH�ðXÞ, i.e.,

hijΠLLLOnoiseΠLLLjji ¼ 0; ð57Þ

with Onoise ∈ fφ1;2; sinðφ1;2Þ; sinðφ1;2=2Þg and i; j ∈
fψHþ;ψH−g.
Note, however, that for the realistic, currently achievable

parameter regime in Table II, there is a level crossing of the
first and second excited states as the inductances decrease;
see also Fig. 4. Although this crossing also happens for
the 0-π qubit [60] for the corresponding experimentally
realized parameters, we believe that this undesired level
crossing could be more problematic in our system. In fact,

FIG. 12. Low-energy spectrum of the circuit shown in Fig. 10
as a function of the external flux φext

1 ¼ 2πΦext
1 =Φ0;s for the

parameters in Table II and with the other external fluxes set to
zero. For these values, jψH−i is the second excited state. One
can clearly notice the sweet spots when φext

1 is an integer
multiple of π.
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the ground state and the second excited state both couple to
this intermediate level (for instance, through the flux
variable), which could lead to a decay of the second
excited state into the ground state via this level.
However, considering a value of EL that is 5 times smaller
than the one listed in Table II, the undesired energy level is
pushed above the energies of the code words, thus solving
this issue.

C. State preparation, qubit readout, and Clifford gates

State preparation, qubit readout, and the implementation
of Clifford gates are nontrivial and related topics for our
qubit. A destructive measurement in the GKP basis
fj0̄i; j1̄ig can be performed by measuring the flux ϕ1,
which in the LLL projection is approximately equivalent to
measuring the rescaled guiding center variable X. An
outcome of the measurement that is close to an even
multiple of

ffiffiffi
π

p
corresponds to state j0̄i, while an outcome

close to an odd multiple of
ffiffiffi
π

p
is assigned to state j1̄i.

A nondestructive measurement can be instead imple-
mented if we have the ability to perform a GKP phase
estimation protocol [112], where we prepare an ancilla
qubit in j0̄i, perform a CNOTwith the ancilla qubit as target,
and then measure the ancilla destructively [113,114]. In this
protocol, the nondestructive measurement relies on the
possibility to prepare the logical state j0̄i.
As recently shown in Ref. [54], a logical j0̄i state can be

prepared deterministically by an adaptive protocol starting
from two Hadamard eigenstates, using Clifford operations
and a destructive readout of one of the two qubits. In
Sec. IV B, we show that in the symmetric case the ground
state of our system is indeed approximately a GKP
Hadamard eigenstate. Thus, the ability to cool down our
system in the ground state would give us also the ability to
prepare the GKP j0̄i state, when combined with Clifford
operations and destructive measurement described above.
We also remark that, in Ref. [85], it is shown instead how
to prepare the GKP Hadamard eigenstate starting from
many GKP logical j0̄i states. However, as we observe in
Sec. IV B, if we have the ability to tune the asymmetry
between the fluxonia, for instance, by considering suffi-
ciently asymmetric Josephson junctions, the ground state
becomes an approximate GKP j0̄i state. Hence, if we are
able to prepare this state, this preparation would be an
alternative to using the protocols described beforehand.
In Sec. VI A, we describe a protocol to implement

logical X̄ and Z̄ gates by means of current sources.
Here, we discuss further ideas for the implementation of
general Clifford operations. As discussed in Ref. [16], one
of the convenient properties of the GKP code is that, in the
encoded subspace, Clifford unitaries are implemented by
symplectic transformations (see also Ref. [115] for a review
of gates for the GKP code). Symplectic transformations
are generated by Gaussian unitaries and, as such, can be

realized by using linear optics and squeezing [55,116].
The Clifford group for a single qubit is generated by
the Hadamard gate H̄ defined in Eq. (34) and the phase
gate [117]

S̄ ¼
�
1 0

0 i

�
: ð58Þ

As discussed in Ref. [22], a possible way to implement the
phase gate in our GKP qubits relies on the ability to change
the magnitude of one of the quadratic terms in Eq. (30).
This change can be achieved by tuning in time the super-
inductances, effectively creating an asymmetry between the
two fluxonia in the circuit in Fig. 10. In fact, in the GKP
code, the ideal unitary implementing the phase gate can be
chosen as US̄ ¼ e−iX

2=2 [16,115], and so we need a term
∝ X2 that dominates the quadratic part of the Hamiltonian.
This term appears if we create an asymmetry between the
two inductances such that EL1

≫ EL2
. Then, in the LLL

projection, we obtain a quadratic term ∝ EL1
X2 that

dominates over ∝ EL2
P2.

A logical Hadamard gate H̄ can be implemented with a
similar protocol by changing the magnitude of both the
quadratic terms in Eq. (30), e.g., by varying both the
superinductances in the circuit in Fig. 10 in time. However,
the Hadamard gate H̄ in Eq. (34), that corresponds to a
change of basis from logical Z̄ to logical X̄, is approx-
imately equal to a Fourier transform. Thus, the Hadamard
gate H̄ can be also realized virtually, namely, by applying
consequent gates and measurements on the other port of the
gyrator. This procedure is used in Sec. VI A for the
discussion of the Z̄ and X̄ gates, since X̄ ¼ H̄ Z̄ H̄.
Similar ideas can also be employed to implement a CNOT

gate: In this case, we need a tunable inductance coupling
the branches of two of our GKP qubits. In addition, for the
experimental realizable parameters in Table II, we believe
that, in analogy to the 0-π qubit, one could perform gates
also by using higher excitations of the circuit [59]. These
ideas have been recently realized experimentally for the 0-π
qubit [60].
The preparation of the ground state becomes more and

more difficult as the quality of our GKP states improves. In
fact, as the inductances increase, the ground and first
excited states become closer in energy. In this case, state
preparation would require temperatures that are lower than
in current practice for superconducting qubits. Similar
problems emerge also in the heavy fluxonium qubit and
have been recently addressed in Ref. [118]. Akin to the
implementation of Clifford gates, an alternative approach to
state preparation could use tunable superinductances. In
this scheme, one prepares the ground state at relatively
small inductances and then adiabatically increases the
inductances keeping the system always in the ground state;
see Fig. 4. However, also this scheme becomes harder as
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the energy gap shrinks, but the fact that the two quaside-
generate states are not significantly coupled by terms in the
Hamiltonian should suppress transitions from one state to
the other in the adiabatic protocol.
We believe that similar protocols can be realized by

using superconducting quantum interference devices
(SQUIDs) [119,120] instead of Josephson junctions and
by modifying the effective Josephson energy by adiabati-
cally tuning the external fluxes. Here, we do not explore
further these protocols quantitatively and leave a detailed
description of the implementation to future research.

VII. COMPARISON WITH OTHER
SUPERCONDUCTING QUBITS
AND DESIGN TRADE-OFFS

Our system ranks in the class of superconducting qubits
that attempt to provide a built-in, passive protection against
noise, going beyond standard qubit designs such as the
transmon [106], the flux qubit [121], and the fluxonium
[92]. The prototypical example of a protected supercon-
ducting qubit is perhaps the 0-π qubit, originally proposed
in Ref. [20] (with ideas from Ref. [19]), further analyzed in
Refs. [57–59], and recently also experimentally realized
[60]. Reference [61] instead proposes a different circuit
design to realize essentially the same idea of the original
0-π qubit circuit. The 0-π qubit achieves the desired
protection by engineering a superconducting circuit whose
energy levels are robust against typical noise sources and
whose eigenstates have disjoint support, thus inhibiting
dissipation-induced transitions. The same idea of protection
is employed also in the recently proposed, and experimen-
tally realized, bifluxon [110].
Among these qubit designs, the system that shows more

similarities with our proposal, although realized by a
completely different superconducting circuit, is certainly
the proposed dualmon [21]. The dualmon is constructed by
shunting a Josephson junction in parallel to a quantum
phase slip wire, and its effective dynamics is described by
the Hamiltonian in Eq. (26), however, for p=q ¼ 1 [122].
Thus, the crucial difference to our proposal is that the
ground state of the dualmon is unique and nondegenerate.
Nonetheless, the dualmon still possesses states that are
robust against flux and charge noise, in which quantum
information can be reliably encoded. Also, we remark that
in our case the quantum information is encoded in a
subsystem, while the other degrees of freedom are assumed
to be frozen in a Landau level.
The experimental realization of our system relies on the

availability of on-chip gyrators with gyration conductance
being twice the conductance quantum, i.e., G ¼ 2e2=h.
This realization will be most likely achievable by using
quantum Hall devices [46–52]. Assuming that this reali-
zation is possible, we reported in Table II currently
achievable parameters in superconducting systems, for
which the Landau-level approximation is valid.

We remark that, in order to fully exploit the potentials of
the proposed circuit design in Fig. 10, an improvement of
the currently achievable parameters is needed. In particular,
a decrease of the ratio EL=EJ by 2 orders of magnitude
(while keeping the Landau-level projection valid) seems
necessary in order to obtain adequate approximate grid
states with a small width Δ. We observe that reaching
sufficiently small values of Δ is partially hindered by the
unfavorable rescaling of the parameters in the lowest
Landau-level projection. Note also that a considerable
decrease of the ratio EL=EJ cannot be simply achieved
by increasing the Josephson energy EJ, since (given the fact
thatG is fixed) the main parameter that controls the validity
of the Landau-level projection is EJ=EC. Thus, the require-
ment of a smaller value of EL=EJ goes in the direction of
increasing the superinductance, which is a desirable feature
also for the previously discussed protected qubits.
In this work, we show the connection with the GKP

Hamiltonian, and, thus, we focus on the parameter regime
in which the Landau-level projection holds. However, we
believe that the system could also show some different
forms of noise resilience when this approximation is not
valid. The study of the system in a different parameter
regime, especially in an experimentally easily realizable
one, is definitely an interesting topic for future work.

VIII. CONCLUSIONS AND OUTLOOK

We have designed a circuit composed of state-of-the-art
superconducting circuit elements and a nonreciprocal device,
that can be used to passively implement the GKP quantum
error-correcting code. Our proposal crucially relies on the
gyrator, which plays the role of an effective homogeneous
magnetic field in an analogous electronic system and whose
amplitude depends on the characteristic admittance of the
device. By taking advantage of recent advances in manu-
facturing nonreciprocal quantum Hall effect devices, one can
reliably reach the desired value of the effective magnetic
field, which is well outside of the range that can be obtained
in electronic systems.
By working out in detail the equivalence between our

circuit and the problem of an electron in a magnetic field in
a crystal potential, we analyze the system and identify a
parameter range where the ground states of the system are
the GKP code words. Our analysis shows the deep relation
between the GKP states and the Hofstadter butterfly, which,
to the best of our knowledge, was not known previously.
We study an implementation of approximate GKP code
words by shunting our circuit with large inductances.
Wework out a mapping that allows one to understand the

eigenstates of the system in different coordinate systems,
facilitating the interpretation of experimental results.
We discuss possible ways to implement one- and two-

qubit logical gates as well as ideas for state preparation
and qubit readout. This discussion suggests that universal
quantum computation can be done with our qubits by using
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only current sources and tunable inductances or tunable
Josephson junctions (SQUIDs).
Finally, we discuss the effect of typical noise sources,

i.e., charge and flux noise, and conclude that our qubit is
well protected against them.
In this paper, we list a few ideas of how to implement

phase gates and how to initialize the quantum state. A
detailed comparison between the different protocols is still
missing and is required to have a better understanding of the
experimental capability of our qubit. Also, a more realistic
modeling of the device would have to account for asymme-
tries in the circuit, for a finite bandwidth of the gyrator or its
internal degrees of freedom, whose effects have been over-
looked in our analysis. A first consideration of a finite but
appropriately large bandwidth indicates that the effective
dynamics of the resulting system qualitatively reduces to the
model described in this work. Thus, we believe that these
imperfections in the experiments would not affect the
qualitative behavior of the system, which provides a prom-
ising hardware implementation of the GKP code.
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APPENDIX A: MAGNETIC TRANSLATION
OPERATORS

In this Appendix, we summarize a few key results about
the magnetic translation operators (MTOs), which are
required in Sec. III. In analogy to the main text, here we
restrict ourselves to the analysis of rational magnetic fluxes
Φ=Φ0 ¼ p=q [see Eq. (17)], where Φ ¼ BL2

0 denotes the
flux threading one unit cell of size L0 × L0 and Φ0 ¼ h=e
is the magnetic flux quantum. Using the definition of the
MTOs in Eq. (14), for integer values of p and q we find

½T1ðqL0Þ; T2ðL0Þ� ¼ 0; ðA1Þ

since the magnetic unit cell of size qL0 × L0 contains p
flux quanta. Equation (A1) justifies the magnetic Bloch
theorem in Eq. (18), which defines the magnetic Bloch
states jki, with k restricted to the first Brillouin zone;
see Eq. (19).
Given the magnetic Bloch theorem in Eq. (18), we can

find basis states that describe the system within a unit cell
by considering the eigenstates of the smallest possible

translations compatible with the magnetic Bloch theorem.
The choice of operators is, of course, nonunique, and here,
for example, we choose the eigenstate of the operator
T2ðL0=pÞ, which commutes with both T1ðqL0Þ and
T2ðL0Þ. We then define the basis states

T2ðL0=pÞjk; li ¼ eiðkyL0þ2πlÞ=pjk; li; ðA2Þ
where l ¼ 0; 1; 2;…; p − 1.
Note that the Hamiltonian in Eq. (21) exclusively

comprises the MTOs T1ðqL0=pÞ and T2ðqL0=pÞ and
their Hermitian conjugate. The action of T2ðqL0=pÞ ¼
½T2ðL0=pÞ�q on jk; li follows straightforwardly from
Eq. (A2). Thus, it remains to analyze the action of
T1ðqL0=pÞ. From Eq. (16), we find

T2ðL0=pÞT1ðqL0=pÞjk; li
¼ ei½k2L0þ2πðlþ1Þ�=pT1ðqL0=pÞjk; li; ðA3Þ

from which we conclude that

T1ðqL0=pÞjk; li ¼ eik1qL0=pjk; ðlþ 1Þ mod pi: ðA4Þ
Note that the state jk; li maps into itself after p consequent
applications of T1ðqL0=pÞ, in agreement with Eq. (18).
Finally, we analyze the degeneracy of the eigenstates of

the Hamiltonian H in Eq. (21). To this end, we note that
T1ðL0Þ commutes with H but not with both the MTOs
of the boundary conditions in Eq. (18). Thus, if jψi is an
eigenstate of H with eigenenergy E, the state T1ðL0Þjψi is
also an eigenstate of H with the same eigenenergy, and,
because ½T1ðL0Þ; T2ðL0Þ� ≠ 0, the states jψi and T1ðL0Þjψi
are physically distinguishable for q > 1. In particular, one
can easily show that

T1ðL0Þjðk1; k2ÞT; li
¼ eik1L0 j½k1; ðk2 þ 2π=qL0Þ mod 2π=L0�T; li
∝ jðk1; k2ÞT; li; for q > 1: ðA5Þ

As a result, every energy band of the Hamiltonian is at least
q-fold degenerate.

APPENDIX B: NUMERICAL ANALYSIS
OF THE EIGENSYSTEM

1. Without confinement potential

In the following, we provide a method to numerically
determine the spectrum of the Hamiltonian in Eq. (21).
To this end, we expand the Hamiltonian in the product
state basis jn; k; li [defined in Eqs. (22) and (23)] with
l ¼ 0;…; p − 1 and n ¼ 0;…; N for some reasonably
large integer N.
In particular, the matrix elements of the displacement

operator in the Landau-level basis are known analytically
[123] and read
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hmjDaðαÞjni ¼
ffiffiffiffiffiffi
n!
m!

r
αm−ne−jαj2=2Lm−n

n ðjαj2Þ; ðB1Þ

where Lm−n
n ðjαj2Þ denotes the associated Laguerre poly-

nomial. Note that the evaluation of the Hamiltonian in the
given basis is particularly convenient in the weak Landau-
level coupling limit (V=ℏωc ≪ 1), since the coupling of
product states jn; k; li with different n is weak. In this limit,
every Landau level splits into p bands with finite widths,
which are well separated from all the other split Landau
levels; see Fig. 2. Considering only one Landau level, it is
worth mentioning that the way in which it splits results in
an energy spectrum which shows a fractal behavior similar
to a deformed Hofstadter butterfly [34]; see Fig. 3.

2. Including confinement potential

Here, we present a convenient basis for the numerical
analysis of the eigensystem of the Hamiltonian in Eq. (28).
To this end, we introduce the bosonic ladder operators
associated with the guiding center variables:

b ¼ 1ffiffiffi
2

p R1 þ iR2

lB
; b† ¼ 1ffiffiffi

2
p R1 − iR2

lB
; ðB2Þ

satisfying ½b; b†� ¼ 1, and define the unitary displacement
operator associated to these variables:

DbðβÞ ¼ eβb
†−β�b; β ∈ C: ðB3Þ

Given the ladder operators of the guiding center variables
and those of the dynamical momenta [see Eq. (20)], we
rewrite the Hamiltonian in Eq. (28) as (dropping constant
energy offsets)

H ¼ ℏωca†aþ ℏω2
0

ωc
ða†aþ b†bþ abþ a†b†Þ

−
V
2
½DaðλÞDbð−λÞ þDaðiλÞDbðiλÞ þ H:c:�; ðB4Þ

with λ ¼ ffiffiffiffiffiffiffiffiffiffiffi
qπ=p

p
being the absolute value of each dis-

placement. This Hamiltonian is expanded in the basis of the
Fock product states

jn;mi ¼ a†nffiffiffiffiffi
n!

p j0i ⊗ b†mffiffiffiffiffiffi
m!

p j0i; n; m ∈ N0; ðB5Þ

where we have to reasonably truncate n and m. In the
process, the matrix elements of each individual term in the
Hamiltonian are known analytically, especially the matrix
elements of the displacement operators; see Eq. (B1).
At this point, one could proceed with an analytical

diagonalization of the quadratic part [124] of the
Hamiltonian [first line in Eq. (B4)] in order to reduce
the coupling of the basis states. The eigenstates of the

quadratic part of the Hamiltonian are known as Fock-
Darwin states [86,87].
We, however, do not perform this diagonalization,

because we want to retain the jargon of Landau levels.
Nevertheless, both approaches coincide in the limit of
consideration.
After the LLL projection, i.e., restricting to the subspace

spanned by j0; mi, the Hamiltonian in Eq. (B4) reduces to
(dropping constant energy offsets)

HLLL ¼ ℏω2
0

ωc
b†b −

V0

2
½DbðiλÞ þDbð−iλÞ

þDbðλÞ þDbð−λÞ�; ðB6Þ

where V0 ¼ Ve−πq=2p. Note that, in the limit of weak
confinements (ℏω2

0=ωcV0 ≪ 1), states j0; mi with different
m are strongly coupled due to the crystal potential.
Therefore, a large number of Fock states is required for
an accurate numerical treatment. Nevertheless, a finite
confinement prevents the eigenstates of constituting arbi-
trarily high excited Fock states.
Moreover, the matrix elements h0; m1jHLLLj0; m2i

are nonzero only if ðm1 −m2Þmod4 ¼ 0. Thus, the
Hamiltonian in the LLL projection couples only every
fourth Fock state. For this reason, also the eigenstates of
HLLL comprise only every fourth Fock state [16].
The consequence of this characteristic of the eigenstates

becomes clear by considering the X representation [see
Eq. (25)] of the mth Fock state:

hXjmi ¼ 1ffiffiffi
π4

p 1ffiffiffiffiffiffiffiffiffiffiffi
2mm!

p HmðXÞe−X2=2; ðB7Þ

where HmðXÞ is the mth Hermite polynomial. The Hermite
functions in Eq. (B7) have the fundamental property of
being eigenfunctions of the Fourier transform with eigen-
value ð−iÞm [125], which is cyclic in m with periodicity 4.
Hence, we can conclude that also the eigenfunctions of the
effective Hamiltonian in Eq. (B6) are invariant under a
Fourier transform, up to a constant prefactor ð−iÞm.

APPENDIX C: ENVELOPE FUNCTION
APPROXIMATION—DERIVATION OF THE

APPROXIMATE GRID STATES

In the following, we derive the approximate grid
states introduced in Sec. IV B, by using the envelope
function approximation. For convenience, we rescale the
Hamiltonian in Eq. (30) by ℏω2

0=ωc, leading to

H ¼ P2 þ X2

2
−W½cosð2 ffiffiffi

π
p

XÞ þ cosð2 ffiffiffi
π

p
PÞ�; ðC1Þ

where we introduce the large dimensionless parameter
W ¼ ωcV0=ℏω2

0 ≫ 1.
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Let us first examine the symmetries of this Hamiltonian.
First, H is an even function of both X and P, and so, in

both X and P representation, its eigenfunctions can be
chosen to be even and odd real-valued functions.
Second, since the Hamiltonian is invariant under an

exchange of the position and momentum variables
(X ↔ P), its eigenfunctions must be equal (up to an overall
phase) in both representations. From this statement, it follows
that the nondegenerate eigenfunctions of the Hamiltonian
must be eigenfunctions of the Fourier transform.
In general, applying the Fourier transform twice is

equivalent to applying a parity operation; applying the
Fourier transform four times corresponds to the identity.
For this reason, the eigenvalues of the Fourier transform are
integer powers of i. In particular, the eigenfunctions of the
Fourier transform with even parity have eigenvalues �1
under Fourier transform.
After having analyzed the Hamiltonian’s symmetries,

we now determine its approximate eigenfunctions with a
consequent double application of the envelope function
approximation [66,82,83].
Because W ≫ 1, we start from the GKP Hamiltonian

HGKP ¼ −W½cosð2 ffiffiffi
π

p
XÞ þ cosð2 ffiffiffi

π
p

PÞ�; ðC2Þ

and we treat the extra terms as smooth perturbations,
determining the behavior of the envelope function that
modulates the GKP ground states. The eigenstates of HGKP
are uniquely defined by the Zak states [28–30,126]

ei2
ffiffi
π

p
XjΨk;qi ¼ ei2

ffiffi
π

p
qjΨk;qi; ðC3aÞ

ei
ffiffi
π

p
PjΨk;qi ¼ ei

ffiffi
π

p
kjΨk;qi; ðC3bÞ

with k ∈ ½− ffiffiffi
π

p
=2; 3

ffiffiffi
π

p
=2Þ and q ∈ ½− ffiffiffi

π
p

=2;
ffiffiffi
π

p
=2Þ. In

position representation, these states can be written in the
Bloch form

Ψk;qðXÞ ¼ eikX
X
n∈Z

δðX −
ffiffiffi
π

p
n − qÞ; ðC4Þ

and, by a Fourier transform, we obtain (up to a global
prefactor)

Ψk;qðPÞ ¼ e−iqP
X
n∈Z

δðP − 2
ffiffiffi
π

p
n − kÞ: ðC5Þ

The spectrum of HGKP is continuous, and its band structure
is given by

Eðk; qÞ ¼ −W½cosð2 ffiffiffi
π

p
kÞ þ cosð2 ffiffiffi

π
p

qÞ�: ðC6Þ

This bandhas twodegenerateminimawith energyE ¼ −2W,
obtained for ðk ¼ 0; q ¼ 0Þ and ðk ¼ ffiffiffi

π
p

; q ¼ 0Þ.

Let us now consider the HamiltonianHP¼HGKPþP2=2.
Because the latter term is smooth on the scale of the GKP
Hamiltonian, we assume that the eigenfunction ofHP can be
factorized as

Ψ̃k;qðPÞ ¼ ϕðPÞΨk;qðPÞ; ðC7Þ

where the Bloch function Ψk;qðPÞ is given in Eq. (C5). The
function ϕðPÞ is a smooth envelope that modulates the
Bloch function, and, in analogy to solid-state theory, it
satisfies [66,82,83]

�
Eðk; qÞ þ P2

2

�
ϕðPÞ ¼ EðkÞϕðPÞ; ðC8Þ

with the eigenvalue EðkÞ. We are interested in the ground
state eigenfunctions only, and so we expand Eðk; qÞ around
the minimum q ¼ 0 (effective mass approximation).
Neglecting a constant energy offset and promoting the
crystal momentum q to the operator i∂P, we obtain the
harmonic oscillator differential equation

�
−2πW∂2

P þ P2

2

�
ϕðPÞ ¼ ½EðkÞ þW cosð2 ffiffiffi

π
p

kÞ�ϕðPÞ;

ðC9Þ

which has the ground state wave function

ϕðPÞ ¼
ffiffiffiffi
Δ

p

π1=4
exp

�
−
Δ2P2

2

�
: ðC10Þ

The characteristic length of this oscillator is

1=Δ ¼ ð4πWÞ1=4 ðC11Þ

and corresponds to the broadening 1=Δ of the Gaussian
envelope function discussed in Sec. IV B; see Eq. (33).
To include the X2=2 term, we first Fourier transform

Eq. (C7) for q ¼ 0, leading to the Bloch functions in X:

Ψ̃k;0ðXÞ ≈ eikX
X
n∈Z

e−ðX−
ffiffi
π

p
nþkÞ2=2Δ2

; ðC12Þ

where the approximate sign holds in the limit Δ ≪ 1.
Because X2=2 varies smoothly in each period of the Bloch
function, we proceed as before and factorize the wave
function of H ¼ HP þ X2=2 as

ψðXÞ ¼ ΦðXÞΨ̃k;0ðXÞ; ðC13Þ

where the modulating function ΦðXÞ satisfies the eigen-
value equation

HARDWARE-ENCODING GRID STATES IN A NONRECIPROCAL … PHYS. REV. X 11, 011032 (2021)

011032-19



�
EðkÞ þ X2

2

�
ΦðXÞ ¼ ϵΦðXÞ ðC14Þ

and, in the effective mass approximation, is given by

ΦðXÞ ¼
ffiffiffiffi
Δ

p

π1=4
exp

�
−
Δ2X2

2

�
: ðC15Þ

Importantly, EðkÞ has two degenerate minima at k ¼ 0 and
at k ¼ ffiffiffi

π
p

, and so we obtain two approximate ground state
eigenfunctions, that are given by the broadened GKP code
words ψ0ðXÞ and ψ1ðXÞ defined in Eq. (32). Note that these
states are approximately orthonormal in the limit Δ ≪ 1.
Importantly, in the approximation used here, the eigenstates
are degenerate, and the Fourier transforms of ψ0;1ðXÞ are
approximately given by

ψ�ðXÞ ¼
ψ0ðXÞ � ψ1ðXÞffiffiffi

2
p : ðC16Þ

Thus, we construct the states ψH�ðXÞ [see Eq. (31)] that
are approximately even and odd functions under Fourier
transform and respect the symmetries of the Hamiltonian.
As a consistency check, we can also estimate the

broadening of the code words in Fig. 7, by using the
Heisenberg uncertainty principle. For weak confinements
ℏω2

0=ωcV0 ≪ 1, we expect the low-energy eigenfunctions
of the Hamiltonian in Eq. (30) to have support only in the
vicinity of X ¼ n2

ffiffiffi
π

p
and X ¼ n2

ffiffiffi
π

p þ ffiffiffi
π

p
, respectively,

with n ∈ Z.
Let us focus on what happens close to X ¼ 0. From

Heisenberg’s uncertainty principle, confining a particle to a
narrow region causes large fluctuations in momentum P,
such that ℏω2

0hP2i=ωc ≫ V0. By expanding cosð2 ffiffiffi
π

p
XÞ

up to second order and neglecting the fast-oscillating
term cosð2 ffiffiffi

π
p

PÞ and the small perturbation ℏω2
0X

2=ωc,
we obtain

H ≈
ℏω2

0P
2

2ωc
þ 2πV0X2: ðC17Þ

This Hamiltonian is the one of a harmonic oscillator, and its
ground state is a Gaussian of width

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏω2

0

4πωcV0

4

s
: ðC18Þ

This wave function approximates the narrow Gaussian
centered at X ¼ 0 of the approximate GKP state ψ0ðXÞ.
The width of the wide Gaussian envelope can be found

by a similar argument, where one first considers localiza-
tion in momentum P and then Fourier transforms the result,
leading to Eq. (C11).

APPENDIX D: DERIVATION OF THE
INTEGRATION KERNEL

In this Appendix, we derive the analytical expression of
the integration kernel in Eq. (37), connecting the wave
functions of the two-dimensional Hamiltonians and that of
the one-dimensional Hamiltonians projected onto the LLL.
By inserting the identity operator

1̂ ¼
X∞
n¼0

Z
∞

−∞
dXjn; Xihn; Xj; ðD1Þ

in Ψðx1; x2Þ ¼ hx1; x2jΨi, and neglecting mixing to higher
Landau levels, we find

K0ðx1; x2;XÞ ¼ hx1; x2j0; Xi: ðD2Þ

To derive Eq. (37), we introduce the annihilation operators
of the dynamical momenta and guiding center variables:

â ¼ 1ffiffiffi
2

p lB
ℏ
ðπ̂2 þ iπ̂1Þ; b̂ ¼ 1ffiffiffi

2
p 1

lB
ðR̂1 þ iR̂2Þ: ðD3Þ

Note that, for the sake of clarity, within this Appendix,
we indicate operators with hats on top. Also, from now on,
the coordinates xi are given in magnetic units, thus scaled
by the magnetic length lB. Inserting the definition of the
guiding center variables R̂i [cf. Eq. (12)] in this equation
yields

b̂ ¼ x̂1 þ ix̂2ffiffiffi
2

p − â†: ðD4Þ

The projector Π̂LLL ¼ j0ih0ja onto the LLL acts solely in
the Hilbert space of the dynamical momenta and, thus,
commutes with any operator acting exclusively on the
guiding center variables. Because ½Π̂LLL; b̂� ¼ 0, we find
that the action of b̂ on the projected position eigenstate,

b̂Π̂LLLjx1; x2i ¼
x1 þ ix2ffiffiffi

2
p Π̂LLLjx1; x2i; ðD5Þ

is equivalent to the definition of a coherent state [56] jβib in
the subspace of the guiding center variables, i.e.,

Π̂LLLjx1; x2i ∝ j0ia ⊗ jβ ¼ ðx1 þ ix2Þ=
ffiffiffi
2

p
ib: ðD6Þ

We stress that Eq. (D5) is valid only for projectors onto the
lowest Landau level, since Π̂LLLâ† ¼ 0.
In conclusion, the integration kernel as defined in

Eq. (D2) is the complex conjugate of the coherent state
wave function in position representation [56]:
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K0ðx1; x2;XÞ ¼
1ffiffiffi
2

p
π3=4

exp

�
−
ðX − x1Þ2

2

�
× expð−ix2XÞ exp½igðx1; x2Þ�; ðD7Þ

where the prefactor is chosen to satisfyZZ
dx1dx2K�

0ðx1;x2;XÞK0ðx1;x2;X0Þ¼δðX−X0Þ: ðD8Þ

The real-valued function gðx1; x2Þ arranges an adjustment
of the global complex phase for fixed values of xi. It is
determined by the chosen gauge of the vector potential
Aðx1; x2Þ and is fixed by demanding the state j0; Xi to lie in
the LLL. Since the annihilation operator â of the dynamical
momenta, expressed in the initial positions x̂i, is gauge
dependent, the integration kernel has to satisfy (in magnetic
units)

0 ¼ ½∂x1 − i∂x2 þ A2ðx1; x2Þ þ iA1ðx1; x2Þ�K0ðx1; x2;XÞ;
ðD9Þ

leading to the equation

−∇gðx1; x2Þ ¼
�

A1ðx1; x2Þ
A2ðx1; x2Þ − x1

�
ðD10Þ

for the function gðx1; x2Þ. In particular, for the symmetric
gauge (in magnetic units),

A1ðx1; x2Þ ¼ −
x2
2
; A2ðx1; x2Þ ¼

x1
2
; ðD11Þ

we find, up to a trivial constant,

gðx1; x2Þ ¼
x1x2
2

: ðD12Þ

Combining Eqs. (D7) and (D12), we obtain Eq. (37).

APPENDIX E: RELATION BETWEEN
THE FOURFOLD ROTATION AND THE

FOURIER TRANSFORM

Given the integral transform in Eq. (36), here, we want
to show that any one-dimensional eigenfunction of the
Fourier transform with eigenvalue ð−iÞn, i.e.,

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dPψðPÞe−iXP ¼ ð−iÞnψðXÞ; ðE1Þ

results in a two-dimensional eigenfunction of the fourfold
rotation with the complex conjugate eigenvalue. To this
end, we make use of the result for the integration kernel in
symmetric gauge [see Eq. (37)] and obtain

Ψðx2;−x1Þ

¼
Z

∞

−∞
dXK0ðx2;−x1;XÞψðXÞ

¼ in

2π7=4

Z Z
R2

dXdPe−ðX−x2Þ2=2eiðx1−PÞXe−x1x2=2ψðPÞ

¼ inffiffiffi
2

p
π3=4

Z
∞

−∞
dPe−ðP−x1Þ2=2e−ix2Pei x1x2=2ψðPÞ

¼ in
Z

∞

−∞
dPK0ðx1; x2;PÞψðPÞ

¼ inΨðx1; x2Þ: ðE2Þ

The particular choice of the symmetric gauge is essential for
theprevious derivation, since it determines the complexphase
of the integration kernel for fixed values of xi. This choice is
in agreement with the observation that the two-dimensional
Hamiltonian in Eq. (28) is fourfold rotational symmetric in
the x1x2 plane in the symmetric gauge only. Rotation-
symmetric bosonic codes are analyzed in Ref. [127].
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